2014_2015学年第一学期末数值分析考试试题A参考答案与评分标准

合集下载

2014-2015学年度第一学期初二数学期末试卷及答案

2014-2015学年度第一学期初二数学期末试卷及答案
„„„„„„„„„„密„„„„封„„„„线„„„„内„„„„不„„„„要„„„„答„„„„题„„„„„„„„„„
2014~2015 学年度第一学期期末考试
八年级数学 2015.2
说明:本卷满分 110 分,考试用时 100 分钟,解答结果除特殊要求外均取精确值,可使 用计算器. 一、选择题: (本大题共 10 小题,每题 3 分,共 30 分) 1. 2 的算术平方根是„„„„„„„„„„„„„„„„„„„„„„„„„„ ( ) A. 2 B.2 C.± 2 D.±2 2. 下面有 4 个汽车商标图案, 其中是轴对称图形的是„„„„„„„„„„„„ ( )
A B
y
A
C
O C
D
F
E
E B
O
x
B
D
C A
D
(第 3 题)
(第 4 题)
(第 7 题)
(第 8 题)
5.已知点(-2,y1),(3,y2)都在直线 y=-x+b 上,则 y1 与 y2 的大小关系是„„( ) A.y1<y2 B.y1=y2 C.y1>y2 D.无法确定 6.如图,直线 l 是一条河,P,Q 是两个村庄.计划在 l 上的某处修建一个水泵站 M, 向 P,Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道) ,则所需管道最 短的是„„( )
y A
4
D
B
7 - 2
O
图③
M
C 9
x
初二数学期终试卷 2015.2
第 6 页 共 8 页
2014-2015 学年第一学期八年级数学期末试卷答案及评分标准
(考试时间 100 分钟,共 110 分) 一.选择题: (本大题共 10 小题,每题 3 分,共 30 分) 1.A 2.B 3.B 4.A 5.C 6.D 7.B 8.C 9.D 10.D

2014_2015学年第一学期末数值分析考试试题A

2014_2015学年第一学期末数值分析考试试题A

中北大学数值分析课程考试试题(课程名称须与教学任务书相同)2014/2015 学年第1 学期试题类别 A 命题期望值70拟题日期2014.12.12 拟题教师课程编号教师编号1120048 基层教学组织负责人课程结束时间2014.11.28 印刷份数使用班级2014级研究生备注:(1)试题要求用B5纸由计算机打印,并将其电子稿于课程结束后上传至考务管理系统。

(2)试题类别指A卷或B卷。

(3)试题印制手续命题教师到院教务科办理。

2014/2015 学年 第 1 学期末考试试题(A 卷)课程名称 数值分析1使用班级: 2014级研究生一、填空题(每空2分,共30分)1. 用1457ˆe536=作为常数e (自然对数的底)的近似值具有 位有效数字,用355ˆπ113=作为圆周率π的近似值的绝对误差限可取为 ;用ˆπˆe u=%作为πe u =的近似值 具有 位有效数字;2. 已知求解某线性方程组的Jacobi 迭代公式为(k+1)(k)(k)123(k+1)(k)(k)213(k+1)(k)(k)3120.10.27.20.10.28.3,1,2,0.20.28.4x x x x x x k x x x ⎧=++⎪=++=⎨⎪=++⎩L 记其迭代矩阵为J G ,则J ∞=G ,又设该线性方程组的解为*x ,取初始解向量为()T(0)0,0,0=x,则(1)=x ,(20)*∞-≤x x ;3. 方程e 0xx +=的根*x ≈ (要求至少具有7位有效数字);4. 用割线法求解方程ln 20x x --=的迭代公式为;若取初始值03x =,14x =,则由该公式产生的迭代序列的收敛速度的阶至少是 。

5. 取权函数()x ρ=,在区间[-1,1]上计算函数()1f x =与()221g x x =-的积(),f g =;6. 设()()10.5,01,(1)2f f f -===,二阶差商[]1,0,1f -= ;7. 设()f x 在区间[,]a b 上具有连续的二阶导数,取等距节点(),0,1,,k x a kh k n =+=L ,b ah n-=,则近似计算积分()d b a I f x x =⎰的复化梯形公式的截断误差T R = ;该公式具有 次代数精度;8.求解常微分方程初值问题()()00,,y f t y t t T y t y'=≤≤⎧⎪⎨=⎪⎩的Euler折线法的计算公式为;它是一个阶方法。

成都市2014-2015年度学年度上期期末学业质量监测高一数学试卷与参考材料规范标准答案及评分标准(整理汇编)

成都市2014-2015年度学年度上期期末学业质量监测高一数学试卷与参考材料规范标准答案及评分标准(整理汇编)

成都市2014~2015学年度上期期末学业质量检测高一数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

第I 卷第1页至2页,第II 卷第3页至8页。

满分150分,考试时间120分钟。

第I 卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}1,0A =-,{}1,1B =-,则A B =U ( ) A.{}0,1 B.{}1,1- C. {}1,0,1- D.{}1-2. 计算:2lg 2lg 25+=( )A .1 B.2 C.3 D.43. 下列函数图象与x 轴都有公共点,其中不能用二分法求图中函数零点近似值的是( )4. 已知角α的顶点与平面直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点(3,4)P -,则sin α等于( )A.35 B.45 C. 35- D. 45- 5. 下列函数中,在R 上单调递增的是( )A. cos y x =B. 2y x = C. 3y x = D. 2xy -=6、为了得到函数sin(2)3y x π=-的图象,只要把函数sin 2y x =的图象上所有的点( ) A. 向左平行移动3π个单位长度 B. 向右平行移动3π个单位长度 C. 向左平行移动6π个单位长度 D. 向右平行移动6π个单位长度7. 已知函数()()()f x x a x b =--(其中)a b >,若()f x 的大致图象如图所示,则()x h x a b =+的图象可能是( )8. 设m n 、是两个不共线的向量,若5AB m n =+u u u r u r r ,28BC m n =-+u u u r u r r ,42CD m n =+u u u r u r r,则A 、ABC 、、三点共线 B 、A B 、、D 三点共线 C 、A 、 C 、D 三点共线 D 、B C D 、、三点共线9. 某小型贸易公司为了实现年终10万元利润的目标,特制订了一个销售人员年终绩效奖励方案:当销售利润为x (单位:万元,410x ≤≤)时,奖金y (单位万元)随销售利润x 的增加而增加,但奖金总数不差过2万元,同时奖金不超过销售利润的12,则下列符合该公司奖励方案的函数模型是(参考数据:lg 20.3≈,lg30.48≈、lg50.7≈)A. 0.4y x =B. 12y x = C. lg 1y x =+ D. 1.125xy =10、已知函数[]sin ,0,2()1(2),(2,)2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩,有下列说法:①函数()f x 对任意[)12,0,x x ∈+∞,都有12()()2f x f x -≤成立; ②函数()f x 在11(43),(41)()22n n n N *⎡⎤--∈⎢⎥⎣⎦上单调递减; ③函数2()log 1y f x x =-+在(0,)+∞上有3个零点; ④当8,7k ⎡⎫∈+∞⎪⎢⎣⎭时,对任意0x >,不等式()kf x x≤都成立; 期中正确说法的个数是( )A 、4B 、 3C 、2D 、1二、填空题:本大题共5小题,每小题5分,共25分. 11、函数2()log (1)f x x =-的定义域为________; 12、0sin 240的值是_________;13、已知幂函数()f x x α=的图象经过点(9,3),则α=_______;14、已知等边三角形ABC 的边长为2,设BC a =u u u r r ,CA b =u u u r r ,AB c =u u u r r ,则a b b c c a ⋅+⋅+⋅r r r r r r=_________; 15、有下列说法:①已知非零a r 与b r 的夹角为30°,且1a =u u r ,3b =u u r ,7a b +=r r;②如图,在四边形ABCD 中,13DC AB =u u u r u u u r,E 为BC 的中点,且AE x AB y AD =+u u u r u u u r u u u r,则320x y -=;③设函数(21)4,1()log ,1aa x a x f x x x -+<⎧=⎨≥⎩,若对任意的12x x ≠,都有2121()()0f x f x x x -<-,则实数a 的取值范围是11,73⎡⎫⎪⎢⎣⎭;④已知函数2()2+3f x x ax =-,其中a R ∈,若函数()f x 在(],2-∞上单调递减,且对任意的[]12,1,1x x a ∈+,总有12()()4f x f x -≤,则实数a 的取值范围为[]2,3; 其中,正确的说法有________________(写出所有正确说法的序号);三、解答题:本大题共6小题,满分75分,解答题写出文字说明,证明过程或演算步骤; 16.(每小题满分12分)已知函数2()1x f x x +=-;(I )计算1)f 的值; (II )若(tan )2f α=,求sin 2cos sin 3cos αααα+-的值;17、(每小题满分12分)已知点(2,4)A -,(3,1)B -,(,4)C m -,其中m R ∈;(I )当3m =-时,求向量AB u u u r 与BC uuur 夹角的余弦值;(II )若A B C 、、三点构成以A 为直角顶点的直角三角形,求m 的值;18、(本小题满分12分)声强是指声音在传播途径中每1平方米面积上声能流密度,用I (单位:2/m W )表示,一般正常人能听到的最低声强记为12010-=I 2/m W ,声强级是把所听到的声强I 与最低声强0I 的比值取常用对数后乘以10得到的数值,用I L (单位dB )表示,声强级I L (单位dB )与声强I (单位:2/m W )的函数关系式为:1210lg()10I IL -=(1)若平时常人交谈时的声强I 约为610-2/m W ,求其声强级I L ;(2)若一般正常人听觉能忍受的最高声强级I L 为120dB ,求其声强I 。

2014-2015学年第一学期七年级数学期末学习水平测试题参考答案与评分标准(1)

2014-2015学年第一学期七年级数学期末学习水平测试题参考答案与评分标准(1)

2014~2015学年度第一学期七年级数学期末学习水平测试题参考答案与评分标准一、选择题:1.B 2.B 3.D 4.A 5.C 6.A 7.C 8.B 9.A 10.B二、填空题:11.18 12.1 13.甲 14.20 15.30° 16.26+n三、解答题(一)17.解:原式=4 + 4)21(-⨯ ……4分 =4 - 2=2 ……6分18.解:(可以不注明步骤)去分母,得6)15()12(2=--+x x ……2分去括号,得61524=+-+x x ……4分移项,合并同类项,得3=-x ……5分系数化为1,得3-=x ……6分19.解:∵ AC =8cm ,CB =6cm ,点M 、N 分别是AC 、CB 的中点.……2分∴ cm AC MC 482121=⨯==,cm CB CN 362121=⨯== ……4分 ∴cm CN MC MN 734=+=+= ……6分四、解答题(二)20.解:因为3=x ,7=y所以3±=x ,7±=y ……2分 因为xy <0所以3=x ,7-=y ,4-=+y x . ……5分 或 3-=x ,7=y ,4=+y x ……7分21.解:设七(2)班有x 人参加本次“光盘行动”的活动,则七(1)班有(x +10)人参加本次“光盘行动”的活动. ……1分依题意,得(x +10)+x + 48=128, ……3分解得 x =35, ……5分则x +10=45。

……6分答:七(1)班有45人参加本次“光盘行动”的活动,七(2)班有35人参加本次“光盘行动”的活动。

……7分22、解:因为02132=⎪⎭⎫ ⎝⎛-++y x 所以03=+x ,0212=⎪⎭⎫ ⎝⎛-y ……2分 即 03=+x ,021=-y 所以3-=x ,21=y ……3分 因为原式=744422222--++-xy y x xy y x=722-y x ……5分所以当3-=x ,21=y 时, 原式=221)3(2⨯-⨯-7=9-7=2 ……7分五、解答题(三)23.解:(直接填空,答案正确的便可给分)(1)80÷40%=200(名),故这次活动一共调查了200名学生. ……3分(2)20÷200×360°=36°,故在扇形统计图中,“其他”所在扇形的圆心角等于36度. ……5分(3)200-80-40-20=60(名),即阅读“科普常识”的学生有60名, 补全后的条形统计图如图所示: ……7分(4)600×30%=180(名),故估计该年级喜欢“科普常识”的学生有180名. ……9分24.解:(1)因为OD 平分∠AOC ,∠AOC =50°,所以∠AOD =21∠AOC =25° ……2分 所以∠BOD =180°-25°=155°. ……4分(2)OE平分∠BOC。

重庆一中2014-2015学年高一上期期末考试数学试题

重庆一中2014-2015学年高一上期期末考试数学试题

秘密★启用前重庆一中2014-2015学年高一上学期期末考试数学试题2015.1数学试题共4页。

满分150分。

考试时间120分钟。

注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

一.选择题.( 本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合{|20}A x x=+=,集合2{|40}B x x=-=,则A B =( )A.{2}-B.{2}C.{2,2}-D.∅2.已知函数()f x为奇函数,且当0x>时,21()f x xx=+,则(1)f-=()A.2B.-2C.0D.13.已知α是第四象限的角,若3cos5α=,则tanα=()A.34 B.34-C.43 D.43-4.如图,在正六边形ABCDEF中,BA CD FB++等于() A.0 B.BE C.AD D.CF5.函数()33xf x x=+-在区间(0,1)内的零点个数是()A.3B.2C.1D.06.已知函数()()sin(0,0,0)2f x A x Aωϕπωϕ=+>><<的部分图象如图所示,则()f x的解析式是()A.()()2sin23f x xπ=+B.()()2sin3f x xπ=+Oyx7π62π32-2C.()()2sin 26f x x π=+ D .()()2sin 6f x x π=+ 7.下列函数中,既是偶函数,又在区间()1,2内是增函数的为 ( )A.cos y x =B. ln ||y x =C.2x xe ey --= D.tan 2y x = 8.设,cos55tan 35,sin 23b c a ︒=︒==︒,则( )A .a b c >>B .b c a >>C .c b a >>D .c a b >>9. (原创)定义域为R 的函数()f x 满足(2)2()f x f x +=,当[0,2)x ∈时,321()()2x f x -=-,则5()2f -=( ) A.14 B.18C.12-D.14-10.(原创) 函数cos 2()32cos sin x f x x x -=-+的值域是( )A.322,⎡⎢⎣ B. 233,⎡⎢⎣ C. 332⎡⎢⎣ D. 322,⎡⎢⎣二.填空题.(本大题共5小题,每小题5分,共25分.)11.5tan 6π=. 12.(原创)如右下图所示,平行四边形ABCD 的对角线AC 与BD 相交于点O ,点M 是线段OD 的中点,设,AB a AD b ==,则AM = .(结果用,a b 表示)13. 121(lg 25lg )1004--÷=.14.()1t sin an 5010︒+︒=.15.(原创) 设()1g x x =-,已知222()(1),(2)()()()(),(2)()g x g x g x g x f x g x g x g x g x --≤⎧=⎨->⎩,若关于x 的方程()f x m =恰有三个互不相等的实根123,,x x x ,则222123x x x ++的取值范围是 .三.解答题.( 本大题共6小题,共75分.解答须写出文字说明、证明过程和演算步骤.) 16. (原创)(本小题13分)已知2παπ<<,31tan tan 2αα-=-.(Ⅰ)求tan α的值;(Ⅱ)求3cos()cos()2sin()2παπαπα+---的值.17.(原创)(本小题13分)平面内给定三个向量(3,2)a =,(1,2)b =-,(4,1)c =.(Ⅰ)设向量5788d a b λλ=+,且||10d =,求向量d 的坐标;(Ⅱ) 若()a kc +//(2)b a -,求实数k 的值.18. (原创)(本小题13分)已知函数()(0,1)xf x a a a ≠=>在区间[1,2]-上的最大值是最小值的8倍.(Ⅰ)求a 的值;(Ⅱ)当1a >时,解不等式2log (22)log (1)a a a x x +<+.19. (原创)(本小题12分)已知函数()2()4sin(),()cos (0)3g x x h x x πωωπω=+=+>.(Ⅰ)当2ω=时,把()y g x =的图像向右平移6π个单位得到函数()y p x =的图像,求函数()y p x =的图像的对称中心坐标;(Ⅱ)设()()()f x g x h x =,若()f x的图象与直线2y =-的相邻两个交点之间的距离为π,求ω的值,并求函数()f x 的单调递增区间.20.(原创) (本小题12分)已知函数2()log (41)xf x mx =++. (Ⅰ)若()f x 是偶函数,求实数m 的值;(Ⅱ)当0m >时,关于x 的方程()242148(log )2log 41f x x m ++-=在区间上恰有两个不同的实数解,求m 的范围.21.(原创)(本小题13分)已知定义在(,1)(1,)-∞-+∞的奇函数满足:①(4)1f =;②对任意2x >均有()0f x >;③对任意1,1x y >>,均有()()(2)f x f y f xy x y +=--+. (Ⅰ)求(2)f 的值;(Ⅱ)证明:()f x 在(1,)+∞上为增函数; (Ⅲ)是否存在实数k ,使得()sin 2(4)(sin cos )2f k k θθθ--++<对任意的[0,]θπ∈恒成立?若存在,求出k 的范围;若不存在说明理由.2015年重庆一中高2017级高一上期期末考试 数学参考答案 2015.1 一.选择题:1-5:ABDAC:6——10:BBADA10. 解:cos 22cos ()32cos sin 1(64cos 2sin )2x x f x x x x x --==-+-+222222(2cos )2(2cos )1(2cos )(1sin )[(44cos cos )(12sin sin )]2x x x x x x x x --==-++-++++221sin 1()2cos x =++-令1sin 2cos x m x +=-,则1sin 2cos x m m x+=-,sin cos 21x m x m +=-,21)2n(1m x m ϕ=+-+得221)sin(1x m m ϕ-=++,由211m ≤+解得403m ≤≤,22()1f x m =+单增,值域为322,⎡⎢⎣二.填空题.(本大题共5小题,每小题5分,共25分.)11.3-;12.1344a b+;13. 20;14.1;15. 63⎫-⎪⎭.15.解:222221122(2),2,0()21211(1),,0x x x x x x x f x x x x x x x x -≤-----≤⎧⎧==⎨⎨->-----+>⎩⎩,绘出简图 若方程()f x m =有三个根,则104m <<,且当0x >时方程可化为20x x m -+-=,易知,231x x +=,23x x m =;当0x ≤时方程可化为220x x m --=,可解得1x =记y=2222212312323()212x x x x x x x x m++=++-=+-3928m =-+令t =,则2312116816y t t =--+,求得y ⎫∈⎪⎭ 三.解答题.( 本大题共6小题,共75分.解答须写出文字说明、证明过程和演算步骤.) 16. 解:(Ⅰ)令tan x α=,则132x x -=-,22320x x +-=,解得12x =或2x =-,2παπ<<,tan 0α<,故tan 2α=-;(Ⅱ)3cos()cos()sin cos 2tan 1211cos sin()2παπααααπαα+--+==+=-+=--17. 解:(Ⅰ)571510714,,(,3)885888d a bλλλλλλλλ⎛⎫⎛⎫=+=+-= ⎪ ⎪⎝⎭⎝⎭2||d λ=+=1±,(1,3)d =或(1,3)d =-- (Ⅱ) (34,2),2(5,2)a kc k k b a +=++-=-,由题得(34)(5)(2)02k k ⨯+--⨯+=,解得1613k =-18.解:(Ⅰ)当1a >时,21max min (),()f x a f x a -==,则2218a a a -==,解得2a =;当01a <<时,12max min(),()f x a f x a -==,则1328a a a --==,解得12a =;(Ⅱ) 当1a >时,由前知2a =,不等式2log (22)log (1)a a a x x +<+即为222log (42)log (1)x x +<+224202421230x x x x x x +>>-⎧⎧⇔⇔⎨⎨+<+-->⎩⎩213x x >-⎧⇔⎨<->⎩或得解集为(2,1)(3,)--+∞.19. 解:(Ⅰ)当2ω=时,2()4sin(2)3g x x π=+2()4sin(2)4sin(2)6333g x x x ππππ-=-+=+ ()4sin(2)3p x x π=+,令23x k ππ+=,得62k x ππ=-+,中心为,0()62k k Z ππ⎛⎫-+∈ ⎪⎝⎭;(Ⅱ)2()4sin()(cos )3f x x x πωω=+-14sin ()cos cos 2x x x ωωω⎡=-⋅-+⎢⎣22sin cos x x x ωωω=-sin 2cos2)x x ωω=-+2sin(2)3x πω=--由题意,T π=,2,12ππωω∴==令23t x π=-是x的增函数,则需2sin y t =是t 的增函数 故222232k x k πππππ-≤-≤+,522266k x k ππππ-≤≤+,51212k x k ππππ-≤≤+ 函数()f x 的单增区间是5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.20.解:(Ⅰ) 若()f x 是偶函数,则有()()f x f x -=恒成立,即:22log (41)log (41)x x mx mx-+-=++于是2222412log (41)log (41)log ()log (41)24xx x x x mx x -+=+-+=-+=-即是22mx x =-对x R ∈恒成立,故1m =-(Ⅱ)当0m >时,2log (41)x y =+,在R 上单增,y mx =在R 上也单增所以2()log (41)x f x mx=++在R 上单增,且(0)1f =则()242418(log )2log 41f x x m ++-=可化为()242418(log )2log 4(0)f x f x m ++-=又()f x 单增,得242418(log )2log 40x x m ++-=,换底得2222log 48()2log 40log 4x x m -+-=即22242(log )2log 40x x m -+-=,令2log t x =,则3[0,]2t ∈,问题转换化为 242240t t m -+-=在3[0,]2t ∈有两解24224t t m ⇔=-++令2224y t t =-++,29312()(0)222y t t =--+≤≤,max 19()22y y ==, 作出29312()(0)222y t t =--+≤≤与4y m =的简图知,4942m ≤<解得819m <≤ 又0m >,故819m <≤.21.解:(Ⅰ)由[][]()()(2)(1)(1)1(1)(1)1f x f y f xy x y f x y y f y x +=--+=-+-+=--+令1,1m x n y =-=-,则,0m n >,且有(1)(1)(1)f m f n f mn +++=+对任意,0m n >均成立令1m n ==即有(2)(2)(2)f f f +=,得(2)0f =;(Ⅱ)由(1)(1)(1)f m f n f mn +++=+有(1)(1)(1)f mn f n f m +-+=+,只需1m >就好 设211,1x mn x n =+=+,其中,0,1n m m >>,则21(1)0x x n m -=->,故21x x > 则21()()(1)(1)(1)f x f x f mn f n f m -=+-+=+,1,12m m >+>所以(1)0f m +>,即21()()0f x f x ->,21()()f x f x >,()f x 在(1,)+∞单调递增(Ⅲ)由(1)(1)(1)f m f n f mn +++=+令3m n ==,有(4)(4)(10)f f f +=,(10)2f =令19,9m n ==,由1(91)(1)(911)099f f f ⋅+++==+,故10()29f =-,由奇偶性10()29f -=-则()2f x <的解集是10(,)(1,10)9-∞-于是问题等价于是否存在实数k 使10sin 2(4)(sin cos )9k k θθθ--++<-或1sin 2(4)(sin cos )10k k θθθ<--++<对任意的[0,]θπ∈恒成立令sin cos ,[t t θθ=+∈-,问题等价于210(4)19t k t k --+-<-或21(4)110t k t k <--+-<对[t ∈-恒成立令2()(4)1g t t k t k =--+-,则10()9g t <-对[t ∈-恒成立的必要条件是10(1)9109g g ⎧-<-⎪⎪⎨⎪<-⎪⎩即123091109k k ⎧-+<⎪⎪⎨⎪+++<⎪⎩得1391989k k ⎧<⎪⎪⎨⎪>+++⎪⎩同理1()10g t <<恒成立的必要条件是1(1)10110g g <-<⎧⎪⎨<<⎪⎩,即124101(1110k k <-<⎧⎪⎨<-++<⎪⎩解得57218k k ⎧<<⎪⎨⎪--<<+⎩572k <<;当572k <<时,2()(4)1g t t k t k =--+-的对称轴42k t -=33,42⎛⎫∈- ⎪⎝⎭, (1)当47k +≤<时,对称轴04322k t -⎫=∈⎪⎭,在区间[-的右侧 2()(4)1g t t k t k =--+-在[-单调递减,1()10g t <<恒成立1(1)10110g g <-<⎧⎪⇔⎨<<⎪⎩成立故47k +≤<时,1()10g t <<恒成立;(2)当542k<<+42kt-=34⎛∈-⎝,2()(4)1g t t k t k=--+-在[-先减后增1()10g t<<恒成立还需min4()12kg t g-⎛⎫=>⎪⎝⎭,即2(4)4(4)1142k kk k----+->化简为212240k k-+<,2(6)12k-<,即6k-<-<66k-<<+故有66542kk⎧-<<+⎪⎨<<+⎪⎩解得64k-<<+;综上所述存在()67k∈-,使()sin2(4)(sin cos)2f k kθθθ--++<对任意的[0,]θπ∈恒成立.。

河北省唐山市2015届高三上期末考试数学(理)试题(有答案)AwAnAM

河北省唐山市2015届高三上期末考试数学(理)试题(有答案)AwAnAM

唐山市2014~2015学年度高三年级第一学期期末考试理科数学参考答案一、选择题:A 卷:BCAAB CAABD DCB 卷:ACADB AACBD CD二、填空题:(13)-1+i (14)5 (15)8 (16)-1三、解答题:(17)解:(Ⅰ)由正弦定理得sin C sin B =sin B cos C ,又sin B ≠0,所以sin C =cos C ,C =45°. 因为b cos C =3,所以b =32. …6分 (Ⅱ)因为S =12ac sin B =212,c sin B =3,所以a =7. 据余弦定理可得c 2=a 2+b 2-2ab cos C =25,所以c =5. …12分(18)解:(Ⅰ)证明:因为P A ⊥底面ABCD ,所以P A ⊥CD , 因为∠PCD =90︒,所以PC ⊥CD ,所以CD ⊥平面P AC ,所以CD ⊥AC . …4分 (Ⅱ)因为底面ABCD 是平行四边形,CD ⊥AC ,所以AB ⊥AC .又P A ⊥底面ABCD ,所以AB ,AC ,AP 两两垂直. 如图所示,以点A 为原点,以AB →为x 轴正方向,以|AB →|为单位长度,建立空间直角坐标系.则B (1,0,0),C (0,1,0),P (0,0,1),D (-1,1,0).设PE →=λPC →=λ(0,1,-1),则AE →=AP →+PE →= (0,λ,1-λ), 又∠DAE =60°,则cos 〈AE →,AD →〉= 12,即λ22λ2-2λ+1= 1 2,解得λ= 12. …8分则AE →=(0, 1 2, 1 2),ED →=AD →-AE →=(-1, 1 2,- 12),所以cos 〈AB →,ED →〉=AB →·ED →|AB →||ED →|=-63.因为AE →·ED →=0,所以AE →⊥ED →.又AB →⊥AE →,故二面角B -AE -D 的余弦值为-63. …12分(19)解:(Ⅰ)设东西南北四个主干道入口发生拥堵分别为事件A ,B ,C ,D . 则P (A )=1830= 35,P (B )=1530= 1 2,P (C )=930= 3 10,P (D )=1530= 12.设一天恰有三个入口发生拥堵为事件M ,则M =A -BCD +A B -CD +AB C -D +ABC D -.则P (M )= 2 5× 1 2× 3 10× 1 2+ 3 5× 1 2× 3 10× 1 2+ 3 5× 1 2× 7 10× 12+ 3 5× 1 2× 3 10× 12=45200= 940. …5分(Ⅱ)ξ的可能取值为0,1,2,3,4. P A D E B y z x CP (ξ=0)=14200=7100, P (ξ=1)=55200=1140, P (ξ=2)=77200, P (ξ=3)=45200= 9 40, P (ξ=4)=9200. ξ的分布列为:ξ 01 2 3m]4 p 7100 1140 77200 9 40 9200 E (ξ)=0×14200+1×55200+2×77200+3×45200+4×9200=380200=1910. …12分 (20)解:(Ⅰ)设l :x =my -2,代入y 2=2px ,得y 2-2pmy +4p =0.(*)设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2pm ,y 1y 2=4p ,则x 1x 2=y 21y 224p2=4. 因为OA →·OB →=12,所以x 1x 2+y 1y 2=12,即4+4p =12,得p =2,抛物线的方程为y 2=4x . …5分 (Ⅱ)由(Ⅰ)(*)化为y 2-4my +8=0.y 1+y 2=4m ,y 1y 2=8. …6分设AB 的中点为M ,则|AB |=2x m =x 1+x 2=m (y 1+y 2)-4=4m 2-4, ①又|AB |=1+m 2| y 1-y 2|=(1+m 2)(16m 2-32), ②由①②得(1+m 2)(16m 2-32) =(4m 2-4)2,解得m 2=3,m =±3.所以,直线l 的方程为x +3y+2=0,或x -3y+2=0. …12分(21)解:(Ⅰ)f '(x )=a e x +2x ,g '(x )= π 2cos πx 2+b , f (0)=a ,f '(0)=a ,g (1)=1+b ,g '(1)=b ,曲线y =f (x )在点(0,f (0))处的切线为y =ax +a ,曲线y =g (x )在点(1,g (1))处的切线为y =b (x -1)+1+b ,即y =bx +1.依题意,有a =b =1,直线l 方程为y =x +1.…4分 (Ⅱ)由(Ⅰ)知f (x )=e x +x 2,g (x )=sin πx 2+x . …5分 设F (x )=f (x )-(x +1)=e x +x 2-x -1,则F '(x )=e x +2x -1, 当x ∈(-∞,0)时,F '(x )<F '(0)=0;当x ∈(0,+∞)时,F '(x )>F '(0)=0.F (x )在(-∞,0)单调递减,在(0,+∞)单调递增,故F (x )≥F (0)=0.…8分 设G (x )=x +1-g (x )=1-sin πx 2, 则G (x )≥0,当且仅当x =4k +1(k ∈Z )时等号成立.…10分 由上可知,f (x )≥x +1≥g (x ),且两个等号不同时成立,因此f (x )>g (x ).…12分(22)解:(Ⅰ)证明:因为BD =CD ,所以∠BCD =∠CBD .因为CE 是圆的切线,所以∠ECD =∠CBD .所以∠ECD =∠BCD ,所以∠BCE =2∠ECD .因为∠EAC =∠BCE ,所以∠EAC =2∠ECD . …5分 (Ⅱ)解:因为BD ⊥AB ,所以AC ⊥CD ,AC =AB .因为BC =BE ,所以∠BEC =∠BCE =∠EAC ,所以AC =EC . 由切割线定理得EC 2=AE •BE ,即AB 2=AE •( AE -AB ),即AB 2+2 AB -4=0,解得AB =5-1. …10分(23)解:(Ⅰ)由ρ=2(cos θ+sin θ),得ρ2=2(ρcos θ+ρsin θ),即x 2+y 2=2x +2y ,即(x -1) 2+(y -1) 2=2.l 的参数方程为⎩⎨⎧x = 1 2t ,y =1+32t .(t为参数, t ∈R )…5分 (Ⅱ)将⎩⎨⎧x = 12t ,y =1+32t .代入(x -1) 2+(y -1) 2=2得t 2-t -1=0,解得,t 1=1+52,t 2=1-52,则|EA |+|EB |=| t 1|+| t 2|=|t 1-t 2|=5.…10分 (24)解:(Ⅰ)f (x )=⎩⎨⎧- 32x -1 ,x <-2,- 12x +1,-2≤x ≤0, 32x +1,x >0.当x ∈(-∞,0]时,f (x )单调递减,当x ∈[0,+∞)时,f (x )单调递增,所以当x =0时,f (x )的最小值a =1.…5分 (Ⅱ)由(Ⅰ)知m 2+n 2=1,由m 2+n 2≥2mn ,得mn ≤ 12,则 1 m +1n ≥21mn ≥22,当且仅当m =n =22时取等号.所以 1m + 1n 的最小值为22.…10分 注:如有其他答案,请参考评分标准给分.。

2014-2015-1-2数理统计

2014-2015-1-2数理统计

2014 —2015学年第 1 学期数理统计课程期末考试试卷(A 卷)
2
20,X 是来自__________.
则θ的费______________.
n X ,, 为来自该总体的样本,
,,
X是来自
n
2014—2015学年第 1 学期数理统计课程期末考试试卷(A卷)
13,
,x 与17,,y y . 已 知假设两条流水线上罐装的番茄酱的重量都服从正态分布,,n x 是来
2014—2015学年第 1学期数理统计课程期末考试试卷(A卷)
2014—2015学年第 1 学期数理统计课程期末考试试卷(A 卷)答案及评分标准
,
,n X 是来自答案、评分标准:11
)n x θ-
ln )n x +
+ln )(n x θ++解得最大似然估计为
13,
,x 与17,,y y . 已 知假设两条流水线上罐装的番茄酱的重量都服从正态分布
2014—2015学年第 1 学期数理统计课程期末考试试卷(A卷)答案及评分标准
x是来
,,
n
答案、评分标准:
,,;)
xθ=
n
θ
,)()
h X。

2015-同济大学数值分析-参考答案

2015-同济大学数值分析-参考答案
3
1

1
ex
2
1
1 x
2
dx
34 0 34 e e e 5.481
3
将 f ( x) =x 代入,左边 = 将 f ( x) =x 4 代入, 左边 =
1
1
3 3 3 3 3 dx sin d 0 0 2 右边 3 2 1 x2 2
(10 分)
l1 0 0 y1 5 Ly = 1 l2 0 y2 = 3.25 0 2.5 l y -29 3 3
追:
l1 4 l2 5.25 1 u1 5 l3 10.5 2.5 u2 10
x
y
0
2
2
1

1
3 2
2 (10 分)
基函数: 0 ( x) 1, 1 ( x) cos x, 2 ( x) sin x
(0 , 0 ) (0 , 1 ) (0 , 2 ) a (0 , f ) 法方程: (1 , 1 ) (1 , 2 ) b (0 , f ) sym (2 , 2 ) c (0 , f )
xk
4.5 4.766 4 4.789 6 4.790 6 4.790 6
3/4
k 0 1 2 3 4
4.5
Ans Ans cos( Ans) Ans 1 cos( Ans) Ans sin( Ans) 1
= = =
2014-2015 数值分析试卷
维基解密
x3

2
3

2014—2015学年第一学期初三年级数学期末考试试卷含答案

2014—2015学年第一学期初三年级数学期末考试试卷含答案

2014—2015学年第一学期初三年级期末质量抽测数学试卷2014.12学校姓名考试编号考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.已知⊙O 1和⊙O 2的半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2的位置关系是A .外切B.相交C.内切D.内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是A .15B.13C.25D.233.如图,⊙O 的直径AB=4,点C 在⊙O 上,如果∠ABC =30°,那么AC 的长是A .1B .2C .3D .24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是A .①B .②C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB,6AE,则AC 等于A. 3B. 4C . 6D. 86.当二次函数249y xx 取最小值时,x 的值为A .2B .1C .2D .9来源学|科|网ABC30°④③②①ABCODC BAO7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是A .12米B .83米C .24米D .243米[来源:]8.已知:如图,在半径为4的⊙O 中,AB 为直径,以弦AC (非直径)为对称轴将AC折叠后与AB 相交于点D ,如果3ADDB ,那么AC 的长为A .214B .27C .42D .6二、填空题(共4道小题,每小题4分,共16分)9.如果3cos 2A,那么锐角A 的度数为.10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.12.在平面直角坐标系xoy 中,直线2x 和抛物线2yax 在第一象限交于点A,过A 作ABx 轴于点B .如果a 取1,2,3,,,n 时对应的△AOB 的面积为123S S S ,,,,n S ,那么1S _____;123nS S S S _____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.如图1,正方形ABCD 是一个 6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径;(2)求点P 经过的路径总长.绕点A 顺时针旋转90°绕点B 顺时针旋转90°绕点C 顺时针旋转90°输入点P输出点ADPxOy[来源:.Com]14.计算:3tan302cos452sin 60.15.现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).[来源:]16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.17. 已知抛物线与x 轴相交于两点A(1,0),B(-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式;(2)如果点3,2Dm 是抛物线上的一点,求△ABD 的面积.18.如图,在△ABC 中,∠AB C =2∠C ,BD 平分∠ABC ,且2AD ,22BD ,求AB 的值.BCDADCBA四、解答题(共4道小题,每小题5分,共20分)19.如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.20.(1)已知二次函数223y xx ,请你化成2()y x h k的形式,并在直角坐标系中画出223y xx 的图象;(2)如果11()A x y ,,22()B x y ,是(1)中图象上的两点,且121x x ,请直接写出1y 、2y 的大小关系;(3)利用(1)中的图象表示出方程2210xx 的根来,要求保留画图痕迹,说明结果.21.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.yxO AB MNyOxEOA22.阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G. 如果3AF EF,求CD CG的值.他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF .请你回答:(1)AB 和EH 的数量关系为,CG 和EH 的数量关系为,CD CG的值为.(2)如图(2),在原题的其他条件不变的情况下,如果(0)AF a a EF,那么CD CG的值为(用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E是BC 延长线上一点,AE 和BD 相交于点 F. 如果(00)AB BC m n mnCDBE,,,那么AF EF的值为(用含m ,n 的代数式表示).H(1)ABCDE FG G FE DCBA(2)(3)AB CDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离612千米,B 市位于台风中心M 正东方向603千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2–kx + k – 1(k >2).(1)求证:抛物线y = x 2–kx + k- 1(k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD 中,AD ∥BC ,AD=AB=CD ,∠BAD =120°,点E 是射线CD 上的一个动点(与C 、D 不重合),将△ADE 绕点A 顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE 绕点A 顺时针旋转30°后交直线BC 于点F ,过点E 作EM∥AD 交直线AF 于点M ,写出线段DE 、BF 、ME 之间的数量关系;(3)如图3,在(2)的条件下,如果CE =2,AE=27,求ME 的长.xyO–1–21234–1–21234E'MFEDC BAE'EDCBA图1图2E'MFEDC BA图32014—2015学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准2014.12一、选择题(共8个小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案 ACDBDABA二、填空题(共4个小题,每小题4分,共16分)题号9 10 1112答案304344 ,2n(n+1)(各2分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:PAB CD,,,,,,,,,,,,,,,,,,,,2分(2)由题意得,点P 经过的路径总长为:270318091802n r .,,,,,,,,,,,4分14.解:原式=323322322,,,,,,,,,,,,,,,,,,,,,,3分=113,,,,,,,,,,,,,,,,,,,,,,4分=23.,,,,,,,,,,,,,,,,,,,,,,,,,,,,5分15.解:列表如下:O 1O 2 A O 1(O 1,O 1)(O 1,O 2)(O 1,A)O 2(O 2,O 1) (O 2,O 2) (O 2,A) A(A ,O 1)(A ,O 2) (A ,A),,,,,,,,,,,,,,,,,,,,,,,4分所以,两次所献血型均为O 型的概率为49.,,,,,,,,,,,,,,,,,,,,,,5分16.解:依题意,可知:30,45,,100,CABCBACD AB D CD 于点,,,,,,,,,,,,,,,1分,CD AB 90.CDACDB ,,,,,,,,,,,,,,,,,,,,,,,,,2分Rt 100BDC BDCD 在中,,,,,,,,,,,,,,,,,,,,,,,,3分Rt tan CDADC AAD在中,.∴31003AD CD .,,,,,,,,,,,,,,,,,,,,,,,,,4分1003100ABADBD.,,,,,,,,,,,,,,,,,,,,,,,5分∴AB 两处的距离为(1003100)米.17.解:(1)∵抛物线与y 轴相交于点C (0,3),∴设抛物线的解析式为23y axbx .,,,,,,,,,,,,,,,,,1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B ,∴30,9330.a b a b ,,,,,,,,,,,,,,,,,,,,,,,,,,,2分解得:1,2.a b∴抛物线的函数表达式为:232yxx .,,,,,,,,,,,,,,,,3分(2)∵点3(,)2D m 是抛物线上一点,∴2(23339)224m . ,,,,,,,,,,,,,,,,,,,,,,4分∴119942242ABDDSAB y . ,,,,,,,,,,,,,,,,,,5分18.解:∵BD 平分∠ABC ,∴∠ABC =2∠1=2∠2.∵∠ABC =2∠C ,∴∠C =∠1=∠2.,,,,,,,,,,,1分∴22CD BD . ,,,,,,,,,,,,2分∴32AC.又∵∠A=∠A,∴△ABD ∽△ACB .,,,,,,,,,,,,,,,,,,,,,,,,,,,3分∴AD AB ABAC.,,,,,,,,,,,,,,,,,,,,,,,,,,,4分∴22326AB AD AC .∴6AB(舍负).,,,,,,,,,,,,,,,,,,,,,,,,,,5分四、解答题(共4道小题,每小题5分,共20分)19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B(0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形.∴AC =OB=32,OC =BA .∵AC ⊥MN ,∴∠ACM=90°,MC=CN .,,,,,,,,,,,,,,,,,,,,2分∵M(12,0),∴OM =12.在Rt △AMC 中,设AM=r.O A B MNCyx21DCBA。

数值分析(工研)2102002一A答案(1)

数值分析(工研)2102002一A答案(1)

同济大学课程考核试卷(A 卷)2014 —2015 学年第 一 学期命题教师签名: 审核教师签名:课号: 课名: 数值分析(工研) 考试考查:考试此卷选为:期中考试( )、期终考试(√)、重考( )试卷(注意:本试卷共 8大题,2大张,满分100分.考试时间为 120分钟。

要求写出解题过程,否则不予计分。

编程题请只用Matlab 编程, 计算题若无指明精度请保留4位有效数字。

)一、(10分) 用追赶法解下列三对角线性方程组1234151 5.251 3.252.510.529x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭.解411 5.2512.510.540010.250150, 010.20 2.510001A LUL U ⎛⎫ ⎪== ⎪ ⎪⎝⎭⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭5 1.2513.25,0.4,,12933Ly y Ux y x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭二、(15分)已知函数()f x 的数据如下:对函数()f x 完成下列2个问题:(1) 写出函数()f x 的一个3次埃尔米特插值多项式()H x ,使其满足11()(),0,1,2,'()'()i i H x f x i H x f x ==⎧⎨=⎩要求将()H x 写成3213210a x a xa x a +++。

(2) 用()H x 近似代替函数()f x ,计算积分2()f x dx ⎰的近似值。

解(1)32113()122H x x x x =-++(2)2213()()3f x dx H x dx ≈=⎰⎰三、(10分)找出形如cos sin a b x c x ++的函数,使之在最小二乘的意义下拟合下表中的数据点。

解 法方程为462121a b c =⎧⎪=⎨⎪=-⎩其解为311,,222a b c ===-四、(10分)确定参数210,,ωωω使得下面的积分公式代数精度最高,并指明其代数精度:1012()((0)f x dx f f f ωωω-=++⎰并用它计算积分21xx -⎰的近似值。

2014~2015学年度第一学期期末考试九年级数学试卷答案

2014~2015学年度第一学期期末考试九年级数学试卷答案

2014——2015学年度第一学期期末测试九 年 级 数 学参考答案一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入题后括号内.1.D 2.B 3.C 4.A 5.B 6.C 7.D 8.A 9.B 10.C二、填空题:本大题共8小题,每小题3分,共24分.请把最后结果填在题中横线上. 11.0。

6 12.25 13.24 14.52 15.277 16.(9,0) 17.-1<x <3 18.②④三、解答题:本大题共10小题,共96分.解答时应写出文字说明、证明过程或演算步骤. 19.(本小题满分8分)每图4分解:由表可以看出,随机地摸取一个小球然后放回, 再随机地摸出一个小球,可能出现的结果有16个,它们出现的可能性相等.…………4分 (1)满足两次取的小球的标号相同的结果有4个,所以P (1)=164=41.……6分 (2)满足两次取的小球的标号的和等于4的结果有3个,所以P (2)=163.…8分21.(本小题满分9分)(1)8π (3分) (2)(3分)(3)③(3分)22.(本小题满分8分)证明:连接OC .………………………………………………1分∵OA =OC ,∴∠OAC =∠OCA .………………………2分∵CD 切⊙O 于点C ,∴OC ⊥CD .……………………3分∵AD ⊥CD ,∴∠ADC =∠OCD =90°,即∠ADC +∠OCD =180°,∴AD ∥OC ,……………………………………………5分∴∠DAC =∠OCA =∠OAC ,……………………………7分∴AC 平分∠DAB .……………………………………8分一 二1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3)4 (1,4) (2,4) (3,4) (4,4) A B C D O . (第22题图).O A B C解:设所围成圆锥的底面半径和高分别为r 和h .∵扇形半径为3㎝,圆心角为120°, ∴12032180r ππ⋅⋅=,……………………………………………………………………4分 ∴r =1,……………………………………………………………………………………6分∴h ==8分24.(本小题满分10分)解:(1)令y =0,得2230x x --=,………………………………………………………1分解得x 1=3,x 2=-1,………………………………………………………………3分 ∴抛物线与x 轴交点坐标为(3,0)和(-1,0).……………………………4分(2)令x =0,得y =-3,∴抛物线与y 轴交点坐标为(0,-3),…………………………………………5分 ∴将此抛物线向上平移3个单位后可以经过原点.……………………………7分 平移后抛物线解析式为22y x x =-.………………………………………10分25.(本小题满分9分)(1)证明:∵DE ∥BC ,EF ∥AB ,∴∠AED =∠ECF ,∠A =∠FEC ,……………2分∴△ADE ∽△EFC .………………………………………………………………4分(2)解:∵△ADE ∽△EFC , ∴AD DE EF FC=.…………………………5分 ∵AD =4,DE =5,EF =2, ∴FC =52.……………………………………6分 ∵DE ∥BC ,EF ∥AB ,∴四边形DEFB 是平行四边形,∴BF =DE =5,……8分∴BC =BF + FC =5+52=152.………………………………………………………9分26.(本小题满分10分)(1)证明:∵四边形ABCD 是正方形,∴∠A =∠B =90°,∴∠DEA +∠ADE =90°.…1分∵EF ⊥DE ,∴∠DEF =90°,∴∠DEA +∠FEB =90°,……………………………2分 ∴∠ADE =∠FEB ,……………………………………………………………………4分 ∴△ADE ∽△BEF .……………………………………………………………………5分(2)解:∵正方形的边长为4,AE =x ,∴BE =4-x .∵△ADE ∽△BEF , ∴DA AE EB BF =,……………………………………………7分 ∴44x x y =-, ∴2(4)144x x y x x -==-+,…………………………………10分解:(1)由题意得1060x y -=.…………………………………………………………3分 (2)由题意得1200040101)200)(1060()200(2++-=+-=+=x x x x x y z .6分 (3)由题意得)1060(201200040101202x x x y z w --++-=-= 10800421012++-=x x .…………………………………………9分 当每个房间的定价2102=-=a b x (元)时,w 有最大值,最大值是15210.………12分28.(本小题满分14分)解:(1)∵点A 坐标为(0,3),∴OA =3.∵矩形ABCO 面积为12,∴AB =4,……2分∴抛物线的对称轴为直线x =2.…………………………………………………4分(2)∵∠ADM =∠DOM ,∠AMD =∠DMO ,∴△ADM ∽△DOM , ∴MOMD MD AM =,∴MO AM MD ⋅=2.设MO=x ,则MA= x -3. ∴)3(4-=x x ,∴41=x ,12-=x ,∴MO=4,∴D 点坐标为(2,4).…6分 设抛物线的解析式为4)2(2+-=x a y . 将点A (0,3)代入得443+=a ,∴41-=a , ∴抛物线的解析式为4)2(412+--=x y .……………………………8分 (3)∵⊙P 在y 轴上截得线段长为2,OA =3, ∴P 点纵坐标为2或4.……9分在4)2(412+--=x y 中,令y=2或4得 4)2(4122+--=x 或4)2(4142+--=x ,………………………………11分 解得2221+=x ,2222-=x ,23=x ,∴P 点坐标为(222+,2)、(222-,2)或(2,4).………………14分。

2014-2015第一学期期末八年级答案

2014-2015第一学期期末八年级答案

2014-2015学年度第一学期期末学业水平检测八年级数学参考答案及评分标准一、选择题:(本题满分24分,共有8道小题,每小题3分)二、填空题:(本题满分24分,共有8道小题,每小题3分)9. 7 10. 10 11. 12. 34° 13. 14. 15. 84 16.三、解答下列各题:(本题满分72分,共有8道小题)17.解方程组(本小题满分10分,共有两道小题,每小题5分)(1) (2) 18.(本小题满分6分)解:(1)建立直角坐标系正确; ………3分(2)A (-2,5),B (-2,1),D (2,5)………6分19.(本小题满分8分)解:设滑道AC 的长为x m ,则AB 的长为x m ,AE 的长为(x -1 )m .………1分在Rt △ACE 中, ∵∠AEC =90°∴AE 2+EC 2= AC 2(勾股定理) ………4分 ∵CE =3∴(x -1)2+32=x 2解得,x =5 ………7分 答:滑道AC 的长是5 m . ………8分20.(本小题满分8分)本题给出两种评分标准(每步的理由不写或不正确酌情扣1-3分):评分标准(一)证明:(1)平行的线有:AB ∥CD ,EC ∥BF . ………2分 ∵∠EGD +∠BHA =180°(已知)∴EC ∥BF (同旁内角互补,两直线平行) ………4分(2)∵EC ∥BF (已证)∴∠AEG =∠B (两直线平行,同位角相等)………5分 又∵∠B =∠C (已知) ∴∠AEG =∠C (等量代换)∴AB ∥CD (内错角相等,两直线平行) ………7分73310⎩⎨⎧==42y x 2521±=x ⎩⎨⎧==23n m ABCFDEGH∴∠A =∠D (两直线平行,内错角相等) ………8分评分标准(二)证明:(1)平行的线有:AB ∥CD ,EC ∥BF . ………2分 ∵∠EGD +∠BHA =180°(已知)∴EC ∥BF (同旁内角互补,两直线平行) ………4分∴∠AEG =∠B (两直线平行,同位角相等) 又∵∠B =∠C (已知) ∴∠AEG =∠C (等量代换)∴AB ∥CD (内错角相等,两直线平行) ………6分 (2)∵AB ∥CD (已证)∴∠A =∠D (两直线平行,内错角相等) ………8分 21.(本小题满分8分)解:设小明8:00时看到的两位数的十位数字为x ,个位数字为y .根据题意,得…………4分解方程组,得 …………7分所以,小明8:00时看到的两位数为:10×1+5=15答:小明在8:00时看到的里程碑上的数是15. …………8分22.(本小题满分10分)…………4分 (2)小颖的成绩为:(分) 小亮的成绩为:(分) 所以,小亮的成绩高. …………8分(3)建议合理. …………10分23.(本小题满分10分)解:(1)l 1对应的一次函数表达式为:y =0.2x +4.5(用待定系数法求解,步骤略).…………3分l 2对应的一次函数表达式为:y =0.5x (用待定系数法求解,步骤略).…………5分 (2)解方程组 ,得 …………7分()()⎪⎩⎪⎨⎧+-+=+-+=+y x x y x y y x y x 10105.1101006⎩⎨⎧==51y x ()()7.7988851010101088080905801070807090≈+++++++⨯+++⨯+⨯+++()()1.808885101010108509070590101006010080≈+++++++⨯+++⨯+⨯+++⎨⎧=+=x y x y 5.05.42.0⎨⎧==5.715y x所以,快艇B 出发15 min 后,追上可疑船只A . …………8分(3)在l 1,l 2对应的两个一次函数表达式中,一次项系数的实际意义分别是可疑船只A 和快艇B 的速度. …………10分 24.(本小题满分12分)解:探究三:如图③,设点A (t ,3t )(t>0)在直线y =3x 上,则点B (-3t ,t )一定在直线y = x 上.过点A 、B 分别作x 轴的垂线,垂足分别为C ,D . ∵OC =t ,AC =3t ,OD =3t ,BD =t∴OC=BD ,AC=OD 又∵∠ACO =∠ODB =90° ∴△AOC ≌△ODB ∴∠AOC =∠OBD又∵∠BOD +∠OBD =90° ∴∠BOD +∠AOC =90° ∵∠DOC =180°∴∠AOB =90° 所以,在同一直角坐标系内,直线y =3x 与y = x 是互相垂直. …………5分解决问题: (或 或 )…………8分拓广应用:(1) (或 等)(答案不唯一)…………10分(2)垂直,垂足为(0,-7) …………12分31-31-x y 10-=110+-=x y 121-=⋅k k 211k k -=121k k -=。

2014研究生试题答案数值分析

2014研究生试题答案数值分析

+
h2 12
[
f
'
( xi
)

f ' (xi+1)] )
∑ =
n−1 i=0
h[ 2
f
(xi )+f
(
xi+1
))]
+
h2 [
12
f
'(a) −
f
' (b)]
----------------4

第 4页 共 6 页
五、(本题满分 13 分)应用数值积分的有关理论建立常微分方程初值问题: dy = f (x, y) dx y(x0 ) = y0
x n+1 xn
x − xn−1 dx + f xn − xn−1
xn−1, y xn−1
x n+1 xn
=
y ( xn
)
+
h 2
3
f
( xn ,
yn
)

f
( xn−1,
) yn−1
x − xn dx xn−1 − xn
-------------------------------------6 分
第 6页 共 6 页
解:(1)确定V = ϕ(i) 的形式。将表中给出的数据点描绘在坐标纸上,可以看出
这些点位于一条直线的附近,故可选择线性函数来拟合这组实验数据,即取 V = a + bi
(2)建立法方程组。
1 1
1
2

1 4
A = ,---------------------------2
将 y ( xn ) 用 yn 代替,将 ≈ 换成=,则命题得证。

华南理工大学期末考试《工科数学分析》上-试卷(A)(附解答) (1)(word文档良心出品)

华南理工大学期末考试《工科数学分析》上-试卷(A)(附解答) (1)(word文档良心出品)

《工科数学分析》2014—2015学年第一学期期末考试试卷诚信应考,考试作弊将带来严重后果!华南理工大学本科生期末考试 《工科数学分析》2014—2015学年第一学期期末考试试卷(A )卷注意事项:1. 开考前请将密封线内各项信息填写清楚;2. 所有答案请直接答在试卷上(或答题纸上);3.考试形式:闭卷; 4. 本试卷共 5个 大题,满分100分, 考试时间120分钟。

《工科数学分析》2014—2015学年第一学期期末考试试卷一、填空题(每小题3分,共15分) 1. 函数()1212x xe ef x e e+=-的间断点及其类型为0x =是跳跃间断点,12x =是无穷间断点;2. 已知函数()y y x =由方程yxx y =所确定,则曲线()y y x =在点()1,1处的切《工科数学分析》2014—2015学年第一学期期末考试试卷线方程为0x y -= ;3. 设xy xe =,则()n d y =()xnx n e dx + ;4. 220x t d e dt dx -⎛⎫= ⎪⎝⎭⎰42x xe - ;5. 反常积分()22ln dx x x +∞=⎰1ln 2.二、计算下列各题(每小题8分,共16分) 1. 求极限()11limxx x ex→+-《工科数学分析》2014—2015学年第一学期期末考试试卷解:()()()()()()()11ln 101ln 12001limlim1ln 1lim 41ln 1lim 6282x xxx x x x x x x eeexxx x x e x x x e x e +→→+→→+--=-++=⋅+-+==-分分分或()()()1ln 1110020011lim lim ln 1lim 4111lim 6282x x x x x x x e e x e x xx x e x x e x e +-→→→→⎡⎤-⎢⎥+-⎣⎦=+-=-+==-分分分2.计算定积分21dxx ⎰ 解:2321434tan,sec,cos4sin16sin t83x t dx tdttdttππππ===⎰⎰令则分=-分分三、解答下列各题(每小题10分,共40分)1.设()1110,1,2,,nx x n+===试证明数列{}n x收敛,并求lim.nnx→∞证明:(1)()1110343,3,1,2,nx x x n=≥=≥≥=,用归纳法可证,即数列{}nx有下界;3分(2)1320,n n nx xx x x+-+-==<即,数列{}n x 单调减少。

2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)

2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)

九年级数学试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页,为选择题,共36分.第Ⅱ卷2页,为非选择题,共84分.全卷满分120分,考试时间120分钟.2.答卷前,务必将答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应的位置,答在本试卷上一律无效.第Ⅰ卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,多选、不选、错选均记零分.)1. 下列说法中正确的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧;B. 圆是轴对称图形,每一条直径都是它的对称轴;C. 弦的垂直平分线过圆心;D. 相等的圆心角所对的弧也相等.2. 如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为()A.50°B.80°C.280°D.80°或280°3. 如图,在直径为AB的半圆O上有一动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()4. 下列命题中的假命题是()A. 正方形的半径等于正方形的边心距的2倍;B. 三角形任意两边的垂直平分线的交点是三角形的外心;C. 用反证法证明命题“三角形中至少有一个内角不小于60°”时,第一步应该“假设每一个内角都小于60°”;D. 过三点能且只能作一个圆.5. 如图,⊙O的半径是4,点P是弦AB延长线上的一点,连接OP,若OP=6,∠APO=30°,则弦AB的长为()A .27B .7C .5D .526. 如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,BC =3,AC =6,则CD 的长为( ) A .1 B .2 C .23 D .25 7. 下列方程中:①x 2-2x -1=0, ②2x 2-7x +2=0, ③x 2-x +1=0 两根互为倒数有( ) A. 0个 B. 1个 C. 2个 D. 3个 8. 一次函数y 1=3x +3与y 2=-2x +8在同一直角坐标系内的交点坐标 为(1,6).则当y 1>y 2时,x 的取值范围是( )A. x ≥1B. x =1C. x <1D. x >1 9. 在△ABC 中,若()21cosA 1tanB 02-+-=,则∠C 的度数是( ) A. 45° B. 60° C. 75° D. 105°10. 如图,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为60°,热气球A 与高楼的水平距离为120m ,这栋高楼BC 的高度为( ) A .1603m B .803 m C .()12031- m D .()12031+m11. 已知反比例函数y =xk的图像经过点P (-1,2),则这个函数图像位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 12. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc <0;②b >a +c ;③2a -b =0;④b 2-4ac <0.其中正确的结论个数是( ) A.1个 B.2个 C.3个 D.4个第Ⅱ卷二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题3分,满分18分) 13. 已知一元二次方程ax 2+bx +c =0的两根为x 1=2,x 2=-3,则二次三项式ax 2+bx +c 可分解因式为 .14. ⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,AB =16cm ,CD =12cm .则AB 与CD 之间的距离是 cm .15. 如图所示,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满足12AE AF EB FC ==,则△EFD 与△ABC 的面积比为 .16. 如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的一定点,过M 点作直线MN 截△ABC交AC 于点N ,使截得的△CMN 与△ABC 相似. 已知AB =6,AC =8,CM =4,则CN = .17. 一个足球从地面上被踢出,它距地面高度y (米)可以用二次函数x x y 6.199.42+-=刻画,其中x (秒)表示足球被踢出后经过的时间. 则足球被踢出后到离开地面达到最高点所用的时间是 秒. 18. 在△ABC 中,AB =AC =5,tanB =34.若⊙O 的半径为10,且⊙O 经过点B 、C ,那么线段OA 的长等于 .三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤. 共66分) 19. (本题满分10分)市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).21. (本题满分11分)如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD.(1)求证:四边形ABCD是等腰梯形;(2)已知AC=6,求阴影部分的面积.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求sinB 的值.23. (本题满分12分)已知关于x 的一元二次方程()2kx 4k 1x 3k 30-+++=. (1)试说明:无论k 取何值,方程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三角形时,求k 的值.AB是⊙O的直径,AD与⊙O相交,点C是⊙O上一点,经过点C的直线交AD于点E.⑴如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;⑵如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;⑶如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.试题答案及评分标准一、选择题(每小题选对得3分,满分36分. 多选、不选、错选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBDACBDCADB二、填空题(每小题3分,满分18分)13. a (x -2)(x +3) 14. 214或 15. 2:9 16. 1655或17.2 18. 3或5 三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤.共66分) 19. (本题满分10分)解:解:(1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………6分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………10分20. (本题满分10分)解:设小明的身高为x 米,则CD =EF =x 米. 在Rt △ACD 中,∠ADC =90°,tan ∠CAD =ADCD,即tan 30°=x /AD ,AD =3x --2分 在Rt △BEF 中,∠BFE =90°,tan ∠EBF =EF /BF ,即tan 60°=x /BF ,BF =x 33---4分 由题意得DF =2,∴BD =DF -BF =2-x 33,∵AB =AD +BD =4,∴3x +2-x 33=4 --8分即x =3.答:小明的身高为3米.------------------------------------------------------------------------10分 21. (本题满分11分)⑴证明:∵∠BAD =120°,AB =AD ∴∠ABD =∠ADB =30° ∴弧AB 和弧AD 的度数都等于60°又 ∵BC 是直径 ∴弧CD 的度数也是60° ------------------ --------------2分 ∴AB =CD 且∠CAD =∠ACB =30° ∴BC ∥AD∴四边形ABCD 是等腰梯形. --------------------------------------------------5分⑵∵BC 是直径 ∴∠BAC =90°∵∠ACB =30°,AC =6∴0cos 30AC BC ===R =∵弧AB 和弧AD 的度数都等于60° ∴∠BOD =120° ---------------------------6分 连接OA 交BD 于点E ,则OA ⊥BD 在Rt △BOE中:0sin30OE OB =⋅=0cos 330BE OB =⋅=,BD =2BE =6----------------------------------------------------8分∴(21201-63602BOD BODS S S⨯⨯=-=⨯阴影扇形ππ ----------------------------------------------------11分 22. (本题满分11分)⑴证明:∵∠AFE =∠B ,∠AFE 与∠AFD 互补,∠B 与∠C 互补∴∠AFD =∠C --------------------------------------------------2分 ∵AD ∥BC ∴∠ADF =∠DEC -------------------------------------------4分 ∴△ADF ∽△DEC ----------------------------------------------------5分 ⑵解:∵△ADF ∽△DEC ∴AD AFDE CD== 解得:DE =12 ----------------------------------------------------7分 ∵AE ⊥BC , AD ∥BC ∴AE ⊥AD∴6AE ==----9分在Rt △ABE 中,63sin 84AE B AB === -------------------------------------------------11分 23. (本题满分12分)解:⑴△=()()243341k k k -++ =2216181212k k k k ++--=2441k k -+ =()221k -≥0 --------------------------------------------------4分∴无论k 取何值,方程总有两个实数根. -------------------------------------------------5分 ⑵若AB =AC 则方程()2kx 4k 1x 3k 30-+++=有两个相等的实数根此时△=0,即:()221k -=0 解得:12k =当12k =时,AB =AC =3,此时AB 、AC 、BC 满足三边关系. -------------------------8分 若BC =5为△ABC 的一腰,则方程()2kx 4k 1x 3k 30-+++=有一根是5,将5x =代入方程()2kx 4k 1x 3k 30-+++=解得:14k = 当14k =时,解得方程两根为5和3,此时AB 、AC 、BC 满足三边关系. ----------11分 综上:当△ABC 是等腰三角形时,k 的值为1124或. -----------------------------12分24. (本题满分12分) ⑴证明:连接OC∵OA =OC ∴∠OAC =∠OCA ∵AC 平分∠BAD ∴∠OCA =∠CAD ∴OC ∥AD∵CE ⊥AD ∴CE ⊥OC -----------------------------------------------3分 又OC 是半径 ∴CE 是⊙O 的切线。

2014-2015-1工科高数(2-1)期末考试A卷参考答案

2014-2015-1工科高数(2-1)期末考试A卷参考答案

2014—2015学年第一学期《高等数学(2-1)》期末考试A卷( 工科类 )参考答案及评分标准各章所占分值如下:第一章函数与极限16 %;第二章一元函数的导数与微分16 %;第三章微分中值定理与导数的应用14 %;第四章不定积分15 %;第五章定积分及其应用26 % . 第六章常微分方程13 % .一.(共3小题,每小题4分,共计12 分)判断下列命题是否正确在 题后的括号内打“√”或“⨯” ,如果正确,请给出证明,如果不正确请举一个反例进行说明 .1.极限xx 1sinlim 0→不存在. ( √ )--------------------------------------------------(2分)证 设x x f 1sin )(= ,取πn x n 21=,221ππ+=n y n ,),2,1( =n0lim =∞→n n x ,0lim =∞→n n y ,但)(lim n n x f ∞→n n x 1sin lim ∞→=02sin lim ==∞→πn n ,)(lim n n y f ∞→n n y 1sinlim ∞→=1)22sin(lim =+=∞→ππn n , 由海涅定理,xx 1sin lim 0→不存在. ---------------------------------------------------------------(2分)2.若曲线)(x f y =在))(,(00x f x 点处存在切线,则)(x f 在0x 点必可导. ( ⨯ )--------------------------------------------------------(2分) 例:3x y =在)0,0(点处有切线0=x ,但3x y =在0=x 处不可导.---------------------------------------------------------(2分)3.设函数)(x f 在],[b a 上连续且下凸,在),(b a 内二阶可导,则),(b a x ∈∀有0)(>''x f . (⨯ )----------------------------------------------------------(2分)例:4)(x x f =在]3,2[-上连续且下凸,但 0)0(=''f .. ---------------------------------------------------------(2分)二.(共3小题,每小题6分,共计18分) 1. 求极限)!sin()11(lim n nnn ⋅-∞→ .解 ,0)11(lim =-∞→nn n,1)!s i n (≤n ------------------------------------------------------(3分).0)!sin()11(lim =⋅-∴∞→n nn n ----------------------------------------------------------------(3分)2.求极限44)1(limxdte t x x t x ⎰-+∞→+.解 44)1(l i mx dtet x xt x ⎰-+∞→+⎪⎭⎫⎝⎛∞∞+=⎰+∞→xx t x e x dt e t 404)1(lim----------------------------(2分)xxx e x x e x )4()1(lim434++=+∞→---------------------------------------------------------------------(2分).141lim 434=++=+∞→x x x x --------------------------------------------------------------------(2分)3.求极限)21(lim 222222nn nn n n n n ++++++∞→ . 解 )21(lim 222222n n nn n n n n ++++++∞→ ∑=∞→⋅⎪⎭⎫⎝⎛+=ni n n n i 12111lim ------------------------------------------------------------------(2分) ⎰+=1021x dx ---------------------------------------------------------------------(2分) 4arctan 10π==x. ----------------------------------------------------------------(2分)1.求函数()xx eex f 11211++=的间断点并判断其类型.解 0=x 是)(x f 的间断点,---------------------------------------------------------------------(3分)又 )(lim 0x f x +→21211lim 11=++=+→xx x ee,)(lim 0x f x -→1211lim 110=++=-→xxx e e , 0=∴x 是)(x f 的跳跃间断点. ---------------------------------------------------------------(3分)2.设⎪⎩⎪⎨⎧=≠-=0,00,1)(2x x x e x f x ,求 .)(x f '解 当0≠x 时,2)1(2)(22x e x x e x f x x --⋅='21222x e e x x --=----------------- (3分 ) 当0=x 时,0)0()(lim )0(0--='→x f x f f x xx e x x 1lim 20-=→201lim2x e x x -=→122lim 20==→x xe xx ,⎪⎩⎪⎨⎧=≠--='∴.0,1,0,12)(222x x x e e x f x x ------------------------------------------------ ( 3分 )3.设方程ln(sin )cos sin x t y t t t =⎧⎨=+⎩确定y 为x 的函数,求dy dx 与22d ydx . 解()sin ()dy y t t t dx x t '==' , --------------------------------------------------------------------(3分)22d y d dy dx dx dx ⎛⎫= ⎪⎝⎭()sin dt t dx =()sin d dt t t dt dx =⋅sin cos ()t t t x t +='sin tan sin t t t t =+. -----------------------------------------------------------------------(3分)1.求不定积分⎰+dx e xx ln 2.解 ⎰+dx e xxln 2⎰⋅=dx e e x x ln 2⎰=dx x e x 2-----------------------------------------------(3分))(2122⎰=x d e x -------------------------------------------------------------------------(2分) .212C e x += ----------------------------------------------------------------------(1分)2.求不定积分⎰dx x x 2cos .解⎰dx x x 2cos ⎰+=dx xx 22cos 1 -------------------------------------------------------(2分) ⎰+=)2(sin 41412x xd x ---------------------------------------------------(2分) ⎰-+=dx x x x x 2sin 412sin 41412 C x x x x +++=2cos 812sin 41412.------------------------------------(2分)3.设)(x f 在]1,1[-上连续,求定积分dx x x x f x f }1sin )]()([{211-+-+⎰-.解1dx x x x f x f }1sin )]()([{211-+-+⎰- dx x x f x f sin )]()([11-+=⎰-dx x 2111-+⎰-------------------------------(2分)dx x 210120-+=⎰(上半单位圆的面积)-----------------------------------(3分)242ππ=⋅=.------------------------------------------------------------------------------(1分)解2dx x x x f x f }1sin )]()([{211-+-+⎰- dx x x f x f sin )]()([11-+=⎰-dx x 2111-+⎰-----------------------------(2分)+=0dx x 2111-+⎰-(上半单位圆的面积)-------------------------------(3分)2π=.-------------------------------------------------------------------------------------(1分)五.(本题8分)设由曲线 x y ln = 与直线 0=-ey x 及 x 轴 所围平面图形为 D (1) 求D 的面积S ;(4分)(2) 求D 绕直线e x =旋转所得旋转体的体积 V .(4分)解 曲线x y ln =与直线 0=-ey x 的交点为)1,(e ----------------------(1分).12-=e------------------------------------------(3分) (2) ⎰⎰---=-=1210221)()(dy e e dy ey e V V V y ππ------------------------------(2分)⎰⎰+---=1221022)2()1(dy e ee e dy y e y y ππ.)3125(6)2212(3222+-=---=e e e e e πππ----------------------(2分)xx ⎰-=1)()1(dyy e e S y 12]2[e ye y -=六.(共2小题,每小题6分,共计12分)1.设有半径为R 的半球形蓄水池中已盛满水 (水的密度为ρ), 求将池中水全部抽出所做的功.解 过球心的纵截面建立坐标系如图,则半圆方程为222x y R +=. --------------------------------------------------(1分).44gR ρπ=---------------------------------------------------------------------------(2分)2.设有质量为m 的降落伞以初速度0v 开始降落,若空气的阻力与速度成正比(比例系数为0>k ),求降落伞下降的速度与时间的函数关系.解 设降落伞下降的速度为)(t v ,则根据牛顿第二运动定律,有 kv mg dtdvm-=,其中g 为重力加速度,-------------------------------------------(2分) 分离变量,得m dtkv mg dv =- , 两端积分 ⎰⎰=-m dtkv mg dv , 1ln 1C m t kv mg k +=-- , 1ln kC t mkkv mg --=-, t mk Cekv mg -=- (其中1kC eC -=,0>-kv mg )---------------------------------(2分)由已知0)0(v v =,代入上式,得0kv mg C -=,故 .)(0tm ke kmg v k mg v --+=------------------------------------------------------------(2分)y,],0[R x ∈∀所做功的微元:取],[dx x x +(其中g x dx x R g dW ⋅-=)(22πρ分)(3)(32dx x x R g -=πρ23()RW g R x x dxρπ=-⎰故七.(本题6分)求微分方程2106652+-=+'-''x x y y y 的通解.解 特征方程为:,0652=+-r r 特征根:.3,221==r r对应齐次方程的通解为:.3221x x e C e C y +=----------------------------------------(3分) 而0不是特征根,可设非齐次方程的特解为C Bx Ax y ++=21,----------------(1分)B Ax y +='21,A y 21='',代入原方程得, 2106)(6)2(5222+-=++++-x x C Bx Ax B Ax A , 2106652)106(622+-=+-+-+x x C B A x A B Ax ,比较同次幂的系数,得⎪⎩⎪⎨⎧=+--=-=.2652,10106,66C B A A B A解之得,.0,0,1===C B A .21x y =∴故所要求的通解为.23221x e C e C y x x ++=---------------------------------------------(2分)八.(本题8分)设L 是一条平面曲线,其上任意一点)0(),(>x y x 到坐标原点的距离恒等于该点处的切线在y 轴上的截距且L 经过点)0,21(. (1)试求曲线L 的方程;(2)求L 位于第一象限的一条切线,使该切线与L 以及两坐标轴所围图形的面积最小. 解(1)过曲线L 上点),(y x 处的切线方程为:)(x X y y Y -'=-, 令0=X ,得切线在y 轴上的截距:y x y Y '-=,由题意,得y x y y x '-=+22,即dx dy x y x y -=⎪⎭⎫⎝⎛+21,)0(>x ------------(2分)令u x y =,则,12x dx u du -=+)0(>x ,12⎰⎰-=+⇒x dxudu )0(>xC x u u ln ln )1ln(2+-=++⇒,C u u x =++⇒)1(2,将xyu =代入并化简,得 C y x y =++22,由L 经过点)0,21(,令21=x ,0=y ,得21=C ,故曲线L 的方程为:,2122=++y x y 即 241x y -=.----------------------------------(2分)(2)曲线L :241x y -=在点),(y x 处的切线方程为:)(x X y y Y -'=-,即)(2)41(2x X x x Y --=--,亦即 )210(4122≤<++-=x x X x Y , 切线与x 轴及y 轴的交点分别为:)0,241(2xx +,).41,0(2+x -----------------------(2分)所求面积⎰--+⋅=210222)41(2)41(21)(dx x xx x S ,)0(>x)413)(41(41)41(2)41(441)(22222222-+=+-+⋅='x x x x x x x x S ,)0(>x 令0)(='x S ,得)(x S 符合实际意义唯一驻点:63=x , 即63=x 为)(x S 在)21,0(内的最小值点, 故所求切线方程为: 41363632++⋅-=X Y ,即.3133+-=X Y ---------------------------------------------(2分)。

北京理工大学2014-2015学年第一学期《大学物理2》期末考试试卷及参考答案

北京理工大学2014-2015学年第一学期《大学物理2》期末考试试卷及参考答案

北京理工大学2014-2015学年第一学期大学物理II期末试题A卷班级学号姓名任课教师姓名物理常数:真空介电常量ε0 = 8.85×10-12 C2·N-1·m-2,真空磁导率μ0 =4π×10-7 N·A-2,普朗克常量h =6.63×10-34 J·s,基本电荷e =1.60×10-19 C,电子质量m e =9.11×10-31 kg,质子质量m p =1.67×10-27 kg。

一、填空题(共40分,请将答案写在卷面指定的横线上。

)1. (3分)两个点电荷在真空中相距为r1时的相互作用力等于它们在某一“无限大”向同性均匀电介质中相距为r2时的相互作用力,则该电介质的相对介电常量εr= 。

2. (3分)电容为C0的平板电容器,接在电路中,如图所示。

若将相对介电常量为εr的各向同性均匀电介质插入电容器中(填满空间),此时电场能量是原来的倍。

3. (3分)带电粒子穿过过饱和蒸汽时,在它走过的路径上,过饱和蒸汽便凝结成小液滴,从而显示出粒子的运动轨迹,这就是云室的原理。

今在云室中有磁感强度大小为1T 的均匀磁场,观测到一个质子的径迹是半径20cm的圆弧,该质子的动能为J。

4. (3分)真空中两只长直螺线管1和2,长度相等,单层密绕匝数相同,直径之比d1/d2=1/4。

当它们通以相同电流时,两螺线管贮存的磁能之比W1/W2= 。

5. (3分)一圆线圈的半径为R ,载有电流I ,置于均匀外磁场B 中,如图所示。

在不考虑载流圆线圈本身所激发的磁场的情况下,则线圈导线上的张力为 。

(载流线圈的法线方向规定与磁场B 的方向相同。

)6. (3分) 螺绕环中心周长l =10cm ,环上均匀密绕线圈N =200匝,线圈中通有电流I =0.1A ,管内充满相对磁导率μr =4200的磁介质。

则管内磁感应强度的大小为 T 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中北大学数值分析课程考试试题(课程名称须与教学任务书相同)2014/2015 学年第1 学期试题类别 A 命题期望值70拟题日期2014.12.12 拟题教师课程编号教师编号1120048 Array基层教学组织负责人课程结束时间2014.11.28 印刷份数使用班级2014级研究生备注:(1)试题要求用B5纸由计算机打印,并将其电子稿于课程结束后上传至考务管理系统内。

(2)试题类别指A卷或B卷。

(3)试题印制手续命题教师到院教务科办理。

2014/2015 学年 第 1 学期末考试试题(A 卷)课程名称 数值分析1 使用班级: 2014级研究生一、填空题(每空2分,共30分)1. 用1457ˆe536=作为常数e (自然对数的底)的近似值具有 6 位有效数字,用355ˆπ113=作为圆周率π的近似值的绝对误差限可取为72.66764110-⨯ ;用ˆπˆe u = 作为πe u =的近似值至少具有 5 位有效数字;(4也对)2. 已知求解某线性方程组的Jacobi 迭代公式为(k+1)(k)(k)123(k+1)(k)(k)213(k+1)(k)(k)3120.10.27.20.10.28.3,1,2,0.20.28.4x x x x x x k x x x ⎧=++⎪=++=⎨⎪=++⎩ 记其迭代矩阵为J G ,则J ∞=G 0.4 ,又设该线性方程组的解为*x ,取初始解向量为()T(0)0,0,0=x,则(1)=x ()T7.2,8.3,8.4,(20)*∞-≤xx 71.5410-⨯;3. 方程e 0xx +=的根*x ≈ -0.5671433 (要求至少具有7位有效数字);4. 用割线法求解方程ln 20x x --=的迭代公式为()()1111ln 2ln ln k k k k k k k k k k x x x x x x x x x x -+-----=---+;若取初始值03x =,14x =,则由该公式产生的迭代序列的收敛速度的阶至少是。

5. 取权函数()x ρ=[-1,1]上计算函数()1f x =与()221g x x =-的内积(),f g = 0 ;6. 设()()10.5,01,(1)2f f f -===,二阶差商[]1,0,1f -= 0.25 ;7.设()f x 在区间[,]a b 上具有连续的二阶导数,取等距节点(),0,1,,k x a kh k n =+= ,b ah n-=,则近似计算积分()d b a I f x x =⎰的复化梯形公式的截断误差T R = ()2[,]12b a h f a b ηη-''-∈;该公式具有 1 次代数精度; 8. 求解常微分方程初值问题()()000,,y f t y t t Ty t y '=≤≤⎧⎪⎨=⎪⎩的Euler 折线法的计算公式为()1,n n n n y y hf t y +=+;它是一个 1 阶方法。

二、(每小题12分,共24分)1. 用LU 分解法求解线性方程组12341234123412342435315261373282x x x x x x x x x x x x x x x x ++-=⎧⎪++-=⎪⎨+--=⎪⎪+++=-⎩;解:()11124111243223331531522135|26113731322312821121LU A b -⎛⎫-⎡⎤ ⎪-⎢⎥- ⎪--=−−→⎢⎥ ⎪--⎢⎥-- ⎪-⎢⎥⎣⎦ ⎪--⎝⎭10001112413100022331,,,2210001352313100221L U y x -⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪--====⎪⎪⎪⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭.......................................................................................... L U 矩阵(或对应元素每算对两个给1分) 2. 用Romberg 方法计算积分()12ln 1d I x x =+⎰的近似值,要求计算到第一个Romberg 值(3)0T ,并与准确值πln 222+-进行比较,说明计算的精度。

解:取()()20,1,ln 1a b f x x ===+进行计算()()00,10.6931472f f ==,(0)01((0)(1))0.34657362T f f =+= ................................................................................... 1分 ()0.5,0.50.2231436h f ==;(0)(0)101(0.5)0.28485862T T hf =+=,....................... 2分 (0)(0)(1)10040.26428693T T T -== .......................................................................................... 3分()()0.25,0.250.0606246, 0.750.4462871h f f ===()()(0)(0)211(0.25)0.750.26915722T T h f f =++=, .................................................... 4分(0)(0)(1)21140.26392343T T T -== .......................................................................................... 5分(1)(1)(2)100160.263899215T T T -==......................................................................................... 6分()()0.125,0.1250.0155042, 0.3750.1315764h f f ===()0.6250.3297533f =()0.8750.5685047f =,()3(0)(0)32010.1250.250.26524592k TT h f k =⎛⎫=++= ⎪⎝⎭∑ ..... 7分 (0)(0)(1)3224=0.26394223T T T -=, ....................................................................................... 8分(1)(1)(2)21116=0.263943415T T T -=, ...................................................................................... 9分(2)(2)(3)10064=0.263944163T T T -= ....................................................................................... 10分计算到(3)0T ,共计算了9个求积节点处的函数值; ...........................................................11分与准确值πln 220.263943507354842 (2)I =+-=进行比较,以(3)00.2639441T =作为I的近似值,至少有5位有效数字。

..................................................................................... 12分 三、(每小题10分,共40分)1. 取松弛因子 1.25ω=,写出求解线性方程组121232343163420412x x x x x x x +=⎧⎪+-=⎨⎪-+=-⎩的SOR 方法的迭代公式,并说明其收敛性(不要求进行迭代计算)。

解:方程组的系数矩阵430341014⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A 是正定矩阵,故用 1.25ω=的SOR 方法求解必收敛。

............................................... 4分迭代公式为()()()()()()()()()()()()()()()()110121110032123201(1)33231.250.20.7541.250.750.20.255,1.250.250.23k k k k k k k k k k x x x x x x x x x x R x x x x +++++⎧=--+⎛⎫⎪ ⎪⎪ ⎪=--++=∈⎨ ⎪⎪ ⎪⎪=--⎝⎭⎩任取 .......... 10分2. 利用函数ea xy c =拟合下表所列数据(),i i x y解:记ln u y =,则有01ln u c ax c c x =+=+,其中01ln ,c c c a == .............................. 1分把原数据(),i i x y 变换成(),i i x u 如下:分令01c c c ⎛⎫= ⎪⎝⎭,1011121314A ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭, ....................................................................................................... 4分 对应的正规方程组TTA Ac A y =为01510 6.1989103016.3097c c ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .............................................................. 6分 解此方程得010.45740.3912c c ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,01 1.5799e 0.3912c c c a ⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .................................... 8分即最终的拟合函数 0.39121.5799e x y = ................................................................................... 9分()0.39121.51.5 1.5799e 2.8410y ⨯≈≈ ................................................... 10分3. 写出用Newton 迭代法求解非线性方程组240.10.1e 110.408x x y x y x ⎧-+=⎪⎨-++=⎪⎩的步骤,并取初值00(,)(0.23,0.56)x y =计算近似解11(,)x y (即只进行一次迭代)。

相关文档
最新文档