MATLAB编辑一维热传导方程的模拟程序
一维热传导MATLAB模拟
一维热传导MATLAB模拟昆明学院2015届毕业设计(论文)设计(论文)题目一维热传导问题的数值解法及其MATLAB模拟子课题题目无姓名伍有超学号 2所属系物理科学与技术系专业年级 2011级物理学2班指导教师王荣丽2015 年 5 月摘要本文介绍了利用分离变量法和有限差分法来求解一维传导问题的基本解,并对其物理意义进行了讨论。
从基本解可以看出,在温度平衡过程中,杠上各点均受初始状态的影响,而且基本解也满足归一化条件,表示在热传导过程中杆的总热量保持不变。
通过对一维杆热传导的分析,利用分离变量法和有限差分法对一维热传导进行求解,并用MATLAB 数学软件来对两种方法下的热传导过程进行模拟,通过对模拟所得三维图像进行取值分析,得出由分离变量法和有限差分法绘制的三维图基本相同,且均符合热传导过程中温度随时间、空间的变化规律,所以两种方法均可用来解决一维热传导过程中的温度变化问题。
关键词:一维热传导;分离变量法;有限差分法;数值计算;MATLAB 模拟AbstractIn this paper, the method of variable separation andfinite difference method are introduced to solve the problem of one-dimensional heat conduction problems, and the physical significance of numerical methods for heat conduction problems are discussed. From the basic solution, we can see the temperature on the bar are affected by the initial state during the process of temperature balance, and basic solution also satisfy the normalization condition which implied the invariance of the total heat in the bar during the heat conduction process. Through the analysis of the one-dimensional heat conduction, by taking use of variable separation method and finite difference method, we simulated the one-dimensional heat conduction problem by MATLAB. The three-dimensional images of the simulation results obtained by the method of separation of variables and finite difference method are similar to each other, and the temperature curve is in accordance with the law of temperature variation during heat conduction. Thus, we can go to the conclusion that both methods can be used to deal with the one-dimensional heat conduction problems.Keywords: One-dimensional heat conduction; method of variableseparation; finite difference method; numerical2method; MATLAB simulation目录第一章绪论11.1热传导的概念......................................................... .. (1)1.2热质的运动和传递......................................................... (1)第二章一维热传导问题的两种数值解法32.1一维热传导问题的初值问题32.2一维热传导问题的分离变量法42.3一维热传导问题的有限差分法63第三章一维有界杆热传导问题的MATLAB模拟9 3.1一维有界杆热传导问题93.2分离变量法的MATLAB模拟93.3有限差分法的MATLAB模拟12第四章总结与展望18参考文献19谢辞204第一章绪论1.1热传导的概念由于温度分布不均匀,热量从介质中温度高的地方流向温度低的地方称为热传导。
一维介质中的热传导问题 卡尔曼滤波 matlab
一维介质中的热传导问题一、概述热传导是物理学中的一个重要问题,特别是对于介质的热传导问题更是如此。
一维介质中的热传导问题是指介质在一维空间内热量的传导过程。
这一问题不仅在物理学中具有重要性,而且在工程领域中也有着广泛的应用。
在实际工程中,我们常常需要对介质中的热传导问题进行分析和研究,以便更好地设计和优化热传导设备,提高能源利用效率。
二、热传导方程介质中的热传导过程可以用热传导方程来描述。
一维情况下,热传导方程可以写为:其中,u(x, t)为介质中的温度分布,k为介质的热导率,c为介质的比热容,ρ为介质的密度,t为时间,x为空间坐标。
三、数值模拟对于介质中的热传导问题,我们常常需要进行数值模拟来解决热传导方程。
数值模拟可以采用有限差分法、有限元法等数值方法来进行。
在进行数值模拟时,我们通常需要借助计算机软件来进行计算,其中Matlab是一种非常实用的数学建模和仿真软件,特别适用于解决热传导问题。
四、卡尔曼滤波卡尔曼滤波是一种最优状态估计算法,可以用于对系统的状态进行预测和估计。
在介质中的热传导问题中,我们可以利用卡尔曼滤波算法来对系统的温度状态进行估计,从而更好地理解和分析热传导过程。
五、Matlab仿真在研究介质中的热传导问题时,我们可以利用Matlab软件进行仿真计算。
通过编写Matlab程序,我们可以对介质中的热传导过程进行模拟,并得到系统的温度分布。
我们也可以借助Matlab提供的工具,如ODE求解器等,对热传导方程进行数值求解,得到系统的温度变化规律。
六、结论介质中的热传导问题是一个具有重要意义的物理问题,对其进行深入的研究不仅有助于提高工程设备的效率,而且可以推动物理学领域的发展。
卡尔曼滤波和Matlab仿真技术的应用为介质中的热传导问题研究提供了新的方法和手段,可以更好地帮助我们理解和解决这一重要问题。
希望未来能够有更多的研究者投入到介质中的热传导问题的研究中,共同推动科学技术的进步。
一维热传导方程数值解法及matlab实现分离变量法和有限差分法
一维热传导方程数值解法及matlab实现分离变量法和有限差分法一维热传导方程的Matlab解法:分离变量法和有限差分法。
问题描述:本实验旨在利用分离变量法和有限差分法解决热传导方程问题,并使用Matlab进行建模,构建图形,研究不同情况下采用何种方法从更深层次上理解热量分布与时间、空间分布关系。
实验原理:分离变量法:利用分离变量法,将热传导方程分解为两个方程,分别只包含变量x和变量t,然后将它们相乘并求和,得到一个无穷级数的解。
通过截取该级数的前n项,可以得到近似解。
有限差分法:利用有限差分法,将空间和时间分别离散化,将偏导数用差分代替,得到一个差分方程组。
通过迭代求解该方程组,可以得到近似解。
分离变量法实验:采用Matlab编写代码,利用分离变量法求解热传导方程。
首先设定x和t的范围,然后计算无穷级数的前n项,并将其绘制成三维图形。
代码如下:matlabx = 0:0.1*pi:pi;y = 0:0.04:1;x。
t] = meshgrid(x。
y);s = 0;m = length(j);for i = 1:ms = s + (200*(1-(-1)^i))/(i*pi)*(sin(i*x).*exp(-i^2*t));endsurf(x。
t。
s);xlabel('x')。
XXX('t')。
zlabel('T');title('分离变量法(无穷)');axis([0 pi 0 1 0 100]);得到的三维热传导图形如下:有限差分法实验:采用Matlab编写代码,利用有限差分法求解热传导方程。
首先初始化一个矩阵,用于存储时间t和变量x。
然后计算稳定性系数S,并根据边界条件和初始条件,迭代求解差分方程组,并将其绘制成三维图形。
代码如下:matlabu = zeros(10.25);s = (1/25)/(pi/10)^2;fprintf('稳定性系数S为:\n');disp(s);for i = 2:9u(i。
Matlab解热传导方程代码
Sample MATLAB codes1.%Newton Cooling Lawclear; close all; clc;h = 1;T(1) = 10; %T(0)error = 1;TOL = 1e-6;k = 0;dt = 1/10;while error > TOL,k = k+1;T(k+1) = h*(1-T(k))*dt+T(k);error = abs(T(k+1)-T(k));endt = linspace(0,dt*(k+1),k+1);plot(t,T),hold on, plot(t,1,'r-.')xlabel('Time'),ylabel('Temperature'),title(['T_0 = ',num2str(T(1)), ', T_\infty = 1']), legend('Cooling Trend','Steady State')2.%Boltzman Cooling Lawclear; close all; clc;h = 1;T(1) = 10; %T(0)error = 1;TOL = 1e-6;k = 0;dt = 1/10000;while error > TOL,k = k+1;T(k+1) = h*(1-(T(k))^4)*dt+T(k);error = abs(T(k+1)-T(k));endt = linspace(0,dt*(k+1),k+1);plot(t,T),hold on, plot(t,1,'r-.')xlabel('Time'),ylabel('Temperature'),title(['T_0 = ',num2str(T(1)), ', T_\infty = 1']), legend('Cooling Trend','Steady State')3.%Fourier Heat conductionclear; close all; clc;h = 1;n = 11;T = ones(n,1); Told = T;T(1) = 1; %Left boundaryT(n) = 10; %Right boundaryx = linspace(0,1,n);dx = x(2)-x(1);dt = dx^2/3; %cfl conditionerror = 1;TOL = 1e-6;k = 0;while error > TOL,Told = T;k = k+1;for i = 2:n-1T(i) = dt*(Told(i+1)-2*Told(i)+Told(i-1))/dx^2+Told(i);enderror = max(abs(T-Told));if mod(k,5)==0, out(k,:) = T; endendplot(x,out)xlabel('x'),ylabel('Temperature'),title(['Fourier Heat Conduction']),%legend('Cooling Trend','Steady State')4. 2D Heat Equation%2D Heat Equation.clear; close all; clcn = 10; %grid has n - 2 interior points per dimension (overlapping)x = linspace(0,1,n); dx = x(2)-x(1); y = x; dy = dx;TOL = 1e-6;T = zeros(n);T(1,1:n) = 10; %TOPT(n,1:n) = 1; %BOTTOMT(1:n,1) = 1; %LEFTT(1:n,n) = 1; %RIGHTdt = dx^2/4;error = 1; k = 0;while error > TOLk = k+1;Told = T;for i = 2:n-1for j = 2:n-1T(i,j) = dt*((Told(i+1,j)-2*Told(i,j)+Told(i-1,j))/dx^2 ... + (Told(i,j+1)-2*Told(i,j)+Told(i,j-1))/dy^2) ... + Told(i,j);endenderror = max(max(abs(Told-T)));endsubplot(2,1,1),contour(x,y,T),title('Temperature (Steady State)'),xlabel('x'),ylabel('y'),colorbar subplot(2,1,2),pcolor(x,y,T),shading interp,title('Temperature (Steady State)'),xlabel('x'),ylabel('y'),colorbar5. Wave Translation%Oscillations - translation left and rightclear; close all; clc;for c = [1 -1]cc = 0;n = 261;x = linspace(0,13,n);u = zeros(n,1);u(121:141) = sin(pi*x(121:141));dx = x(2)-x(1);dt = dx;error = 1;TOL = 1e-6;k = 0;while k < 110uold = u;k = k+1;for i = 2:n-1if c == 1, u(i) = dt*c*(uold(i+1)-uold(i))/dx+uold(i); end%c = 1if c == -1, u(i) = dt*c*(uold(i)-uold(i-1))/dx+uold(i); end%c = -1 enderror = max(abs(u-uold));if mod(k,10)==0, cc = cc+1; out(cc,:) = u;endendif c == 1subplot(2,1,1),for hh = 1:ccplot(x,out(hh,:)+hh),hold on,endu = zeros(n,1);u(121:141) = sin(pi*x(121:141)); plot(x,u)xlabel('u(x)'),ylabel('Time'),title('Translation to the Left')elseif c == -1subplot(2,1,2),for hh = 1:ccplot(x,out(hh,:)+hh),hold on,endu = zeros(n,1);u(121:141) = sin(pi*x(121:141)); plot(x,u)xlabel('u(x)'),ylabel('Time'),title('Translation to the Right')endend6.%wave equationclear; close all; clc;c = 1;n = 21;x = linspace(0,1,n);dx = 1/(n-1);dt = dx;u(:,1) = sin(pi*x);u(1,2) = 0;for i = 2:n-1u(i,2) = 0.5*(dt^2*c^2*(u(i+1,1)-2*u(i,1)+u(i-1,1))/dx^2+2*u(i,1));endu(n,2) = 0;error = 1; k = 1;while k < 100k = k+1;u(1,k+1) = 0;for i = 2:n-1u(i,k+1) = dt^2*c^2*(u(i+1,k)-2*u(i,k)+u(i-1,k))/dx^2+2*u(i,k)-u(i,k-1);endu(n,k+1) = 0;endplot(x,u), xlabel('x'),ylabel('y')如有侵权请联系告知删除,感谢你们的配合!。
matlab ode解一维热传导偏微分方程
matlab ode解一维热传导偏微分方程一维热传导偏微分方程是在众多领域中经常出现的一个方程,如何用数值方法求解这个方程一直是数学科学家们研究的一个方向。
在这篇文章中,我们将围绕Matlab的Ode求解器,介绍如何使用Matlab 来解决一维热传导偏微分方程。
首先,我们要了解一维热传导方程的形式。
一维热传导方程如下所示:ut = kuxx其中,u表示温度,t表示时间,k是热传导系数,x是空间坐标。
该方程描述了温度随时间和空间的变化情况。
接下来,我们将使用Matlab Ode求解器来解决这个方程。
一个很重要的问题是,我们需要将一维热传导方程转换为一个ODE系统。
这可以通过离散化方法来实现。
我们可以将空间x离散为N个点,用差分来近似求解uxx,进而得到一个差分方程组。
例如,我们可以使用中心差分来近似求解uxx,得到如下方程组:u0 = uN = 0ui,j+1 –ui,j = (kΔt/Δx^2)*(ui+1,j –2ui,j + ui-1,j)其中,ui,j 表示在时间j和位置 i 处的温度,Δx是网格宽度,Δt是时间步长。
现在,我们已经将一维热传导方程转换为一个差分方程组,可以使用Matlab的Ode求解器来解决。
首先,我们需要将差分方程组转换为ODE向量形式。
将所有的ui,j都展开成一个向量u,然后将等式转化为一个向量形式。
我们可以将每一个方程表示为:ui,j+1 – ui,j = F(ui,j)其中,F(ui,j) 表示u的时间导数在i, j的位置。
接下来,我们需要将这个ODE系统输入到Matlab Ode求解器中。
可以使用ODE45或ODE23等求解器解决。
首先,需要定义一个包含所有ODE的函数,该函数接受一个向量u和时间t作为输入,并返回u 的时间导数。
然后,需要指定初始条件 u0 和时间范围。
最后,调用ode45或ode23等求解器,将ODE函数传递给求解器,并得到解。
在得到解之后,可以将解绘制成一维热传导的温度分布图。
一维稳态导热数值解法matlab
一维稳态导热数值解法matlab 导热是物体内部热量传递的一种方式,对于一维稳态导热问题,我们可以使用数值解法来求解。
MATLAB是一种强大的数值计算软件,可以方便地实现一维稳态导热数值解法。
首先,我们需要了解一维稳态导热问题的基本原理。
一维稳态导热问题可以用一维热传导方程来描述,即:d²T/dx² = Q/k其中,T是温度,x是空间坐标,Q是热源的热量,k是热导率。
我们需要求解的是温度T在空间上的分布。
为了使用数值解法求解这个方程,我们需要将空间离散化。
假设我们将空间分成N个小区间,每个小区间的长度为Δx。
我们可以将温度T在每个小区间的位置上进行离散化,即T(i)表示第i个小区间的温度。
接下来,我们可以使用有限差分法来近似求解热传导方程。
有限差分法的基本思想是用差分代替微分,将微分方程转化为差分方程。
对于一维热传导方程,我们可以使用中心差分公式来近似求解:(T(i+1) - 2T(i) + T(i-1))/Δx² = Q(i)/k其中,Q(i)是第i个小区间的热源热量。
将上述差分方程整理后,可以得到:T(i+1) - 2T(i) + T(i-1) = (Q(i)/k) * Δx²这是一个线性方程组,我们可以使用MATLAB的矩阵运算功能来求解。
首先,我们需要构建系数矩阵A和常数向量b。
系数矩阵A是一个(N-1)×(N-1)的矩阵,其中A(i,i) = -2,A(i,i+1) = A(i,i-1) = 1。
常数向量b是一个(N-1)维的向量,其中b(i) = (Q(i)/k) * Δx²。
然后,我们可以使用MATLAB的线性方程组求解函数来求解这个方程组。
假设我们将求解得到的温度向量为T_solve,那么T_solve就是我们所求的稳态温度分布。
最后,我们可以使用MATLAB的绘图功能来可视化温度分布。
通过绘制温度随空间坐标的变化曲线,我们可以直观地观察到温度的分布情况。
最新利用matlab程序解决热传导问题
哈佛大学能源与环境学院课程作业报告作业名称:传热学大作业——利用matlab程序解决热传导问题院系:能源与环境学院专业:建筑环境与设备工程学号:5201314姓名:盖茨比2015年6月8日一、题目及要求1.原始题目及要求2.各节点的离散化的代数方程3.源程序4.不同初值时的收敛快慢5.上下边界的热流量(λ=1W/(m℃))6.计算结果的等温线图7.计算小结题目:已知条件如下图所示:二、各节点的离散化的代数方程各温度节点的代数方程ta=(300+b+e)/4 ; tb=(200+a+c+f)/4; tc=(200+b+d+g)/4; td=(2*c+200+h)/4te=(100+a+f+i)/4; tf=(b+e+g+j)/4; tg=(c+f+h+k)/4 ; th=(2*g+d+l)/4ti=(100+e+m+j)/4; tj=(f+i+k+n)/4; tk=(g+j+l+o)/4; tl=(2*k+h+q)/4tm=(2*i+300+n)/24; tn=(2*j+m+p+200)/24; to=(2*k+p+n+200)/24; tp=(l+o+100)/12三、源程序【G-S迭代程序】【方法一】函数文件为:function [y,n]=gauseidel(A,b,x0,eps)D=diag(diag(A));L=-tril(A,-1);U=-triu(A,1);G=(D-L)\U;f=(D-L)\b;y=G*x0+f;n=1;while norm(y-x0)>=epsx0=y;y=G*x0+f;n=n+1;end命令文件为:A=[4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0; -1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0; 0,-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0; 0,0,-2,4,0,0,0,-1,0,0,0,0,0,0,0,0;-1,0,0,0,4,-1,0,0,-1,0,0,0,0,0,0,0;0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0,0;0,0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0;0,0,0,-1,0,0,-2,4,0,0,0,-1,0,0,0,0;0,0,0,0,-1,0,-1,0,4,0,0,0,-1,0,0,0;0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0,0;0,0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0;0,0,0,0,0,0,0,-1,0,0,-2,4,0,0,0,-1;0,0,0,0,0,0,0,0,-2,0,0,0,24,-1,0,0;0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1,0;0,0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1;0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,12];b=[300,200,200,200,100,0,0,0,100,0,0,0,300,200,200,100]'; [x,n]=gauseidel(A,b,[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]',1.0e-6) xx=1:1:4;yy=xx;[X,Y]=meshgrid(xx,yy);Z=reshape(x,4,4);Z=Z'contour(X,Y,Z,30)Z =139.6088 150.3312 153.0517 153.5639108.1040 108.6641 108.3119 108.1523 84.1429 67.9096 63.3793 62.4214 20.1557 15.4521 14.8744 14.7746【方法2】>> t=zeros(5,5);t(1,1)=100;t(1,2)=100;t(1,3)=100;t(1,4)=100;t(1,5)=100;t(2,1)=200;t(3,1)=200;t(4,1)=200;t(5,1)=200;for i=1:10t(2,2)=(300+t(3,2)+t(2,3))/4 ;t(3,2)=(200+t(2,2)+t(4,2)+t(3,3))/4;t(4,2)=(200+t(3,2)+t(5,2)+t(4,3))/4;t(5,2)=(2*t(4,2)+200+t(5,3))/4;t(2,3)=(100+t(2,2)+t(3,3)+t(2,4))/4;t(3,3)=(t(3,2)+t(2,3)+t(4,3)+t(3,4))/4; t(4,3)=(t(4,2)+t(3,3)+t(5,3)+t(4,4))/4; t(5,3)=(2*t(4,3)+t(5,2)+t(5,4))/4;t(2,4)=(100+t(2,3)+t(2,5)+t(3,4))/4;t(3,4)=(t(3,3)+t(2,4)+t(4,4)+t(3,5))/4;t(4,4)=(t(4,3)+t(4,5)+t(3,4)+t(5,4))/4;t(5,4)=(2*t(4,4)+t(5,3)+t(5,5))/4;t(2,5)=(2*t(2,4)+300+t(3,5))/24;t(3,5)=(2*t(3,4)+t(2,5)+t(4,5)+200)/24;t(4,5)=(2*t(4,4)+t(3,5)+t(5,5)+200)/24;t(5,5)=(t(5,4)+t(4,5)+100)/12;t'endcontour(t',50);ans =100.0000 200.0000 200.0000 200.0000 200.0000 100.0000 136.8905 146.9674 149.8587 150.7444 100.0000 102.3012 103.2880 103.8632 104.3496 100.0000 70.6264 61.9465 59.8018 59.6008 100.0000 19.0033 14.8903 14.5393 14.5117【Jacobi迭代程序】函数文件为:function [y,n]=jacobi(A,b,x0,eps) D=diag(diag(A));L=-tril(A,-1);U=-triu(A,1);B=D\(L+U);f=D\b;y=B*x0+f;n=1;while norm(y-x0)>=epsx0=y;y=B*x0+f;n=n+1;end命令文件为:A=[4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0;-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0;0,-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0;0,0,-2,4,0,0,0,-1,0,0,0,0,0,0,0,0;-1,0,0,0,4,-1,0,0,-1,0,0,0,0,0,0,0;0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0,0;0,0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0;0,0,0,-1,0,0,-2,4,0,0,0,-1,0,0,0,0;0,0,0,0,-1,0,-1,0,4,0,0,0,-1,0,0,0;0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0,0;0,0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0;0,0,0,0,0,0,0,-1,0,0,-2,4,0,0,0,-1;0,0,0,0,0,0,0,0,-2,0,0,0,24,-1,0,0;0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1,0;0,0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1;0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,12];b=[300,200,200,200,100,0,0,0,100,0,0,0,300,200,200,100]'; [x,n]=jacobi(A,b,[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]',1.0e-6); xx=1:1:4;yy=xx;[X,Y]=meshgrid(xx,yy);Z=reshape(x,4,4);Z=Z'contour(X,Y,Z,30)n =97Z =139.6088 150.3312 153.0517 153.5639108.1040 108.6641 108.3119 108.152384.1429 67.9096 63.3793 62.421420.1557 15.4521 14.8744 14.7746四、不同初值时的收敛快慢1、[方法1]在Gauss迭代和Jacobi迭代中,本程序应用的收敛条件均为norm(y-x0)>=eps,即使前后所求误差达到e的-6次方时,跳出循环得出结果。
有限体积法 matlab代码
有限体积法(Finite Volume Method)是一种常用的数值计算方法,用于求解偏微分方程。
下面是一个简单的示例,展示如何使用MATLAB实现一维热传导方程的有限体积法。
```matlab% 参数设置nx = 50; % 空间离散点数L = 1; % 空间长度dx = L/nx; % 空间步长nt = 100; % 时间步数dt = 0.01; % 时间步长alpha = 0.1; % 热扩散率% 初始化温度场T = zeros(nx, 1);T(1) = 100; % 左边界温度T(nx) = 0; % 右边界温度% 时间迭代计算for t = 1:nt% 临时温度场变量T_tmp = T;% 空间迭代计算for i = 2:nx-1% 更新温度T(i) = T_tmp(i) + alpha * dt * (T_tmp(i+1) - 2*T_tmp(i) + T_tmp(i-1)) / dx^2;end% 边界条件T(1) = 100; % 左边界温度T(nx) = 0; % 右边界温度% 绘制温度分布图plot(linspace(0, L, nx), T, 'r-');xlabel('位置');ylabel('温度');title(['时间步: ', num2str(t)]);drawnow;end```上述代码实现了一维热传导方程的有限体积法求解过程。
其中,空间离散点数`nx`和时间步数`nt`可以根据需要进行调整。
`alpha`是热扩散率,依赖于材料的性质。
初始温度场通过设置边界条件和初始条件进行定义。
在每个时间步中,通过计算更新温度场的中心差分格式,同时保持边界条件不变。
绘制温度分布图可以实时观察温度的变化。
请注意,这只是一个简单的示例,实际问题可能涉及到更复杂的边界条件、非均匀网格、时间步长控制等。
具体实现需要根据具体问题进行调整和扩展。
matlab一维非稳态导热 -回复
matlab一维非稳态导热-回复Matlab是一种常用的科学计算软件,广泛应用于工程、物理、数学等领域。
在热传导研究中,非稳态导热问题是一个重要课题。
本文将以Matlab 为工具,介绍一维非稳态导热问题的求解方法。
首先,我们需要了解非稳态导热问题的基本概念。
非稳态导热问题是指热传导过程中温度场随时间的变化,即瞬态问题。
一维非稳态导热问题可以用下面的热传导方程描述:∂T/∂t = α∂²T/∂x²其中,T是温度,t是时间,x是空间坐标,α是热扩散系数。
为了求解上面的偏微分方程,我们需要确定边界条件和初始条件。
假设热导体的两端为x=0和x=L,边界条件可以是温度固定、热流固定或边界绝热(无热量流入或流出)。
初始条件是指在t=0时刻的温度场分布。
首先,我们需要定义问题的参数,包括热扩散系数α、热导体的长度L、时间范围tspan等等。
在Matlab中,可以使用类似下面的语句进行定义:alpha = 0.1; 热扩散系数L = 1; 热导体长度tspan = [0 10]; 时间范围接下来,我们需要定义初始条件和边界条件。
假设在t=0时刻,热导体的温度分布是一个高斯函数,可以使用下面的语句定义初始条件:x = linspace(0, L, 100); 在空间范围内生成100个均匀分布的点T0 = exp(-(x-L/2).^2); 初始温度分布对于边界条件,我们可以选择温度固定的情况,即热导体的两端温度为固定值T1和T2。
可以使用下面的语句定义边界条件:T1 = 1; 左端温度T2 = 0; 右端温度然后,我们可以使用Matlab的pdepe函数来求解一维非稳态导热问题。
pdepe函数是用于求解偏微分方程组的函数,其中包含了默认的边界条件和初始条件设置。
可以使用下面的语句进行求解:sol = pdepe(0,pdefun,icfun,bcfun,x,tspan);在上面的语句中,pdefun是一个用于计算偏微分方程右端项的函数句柄,icfun是一个用于计算初始条件的函数句柄,bcfun是一个用于计算边界条件的函数句柄。
Matlab解热传导方程代码
Sample MATLAB codes1.%Newton Cooling Lawclear; close all; clc;h = 1;T(1) = 10; %T(0)error = 1;TOL = 1e-6;k = 0;dt = 1/10;while error > TOL,k = k+1;T(k+1) = h*(1-T(k))*dt+T(k);error = abs(T(k+1)-T(k));endt = linspace(0,dt*(k+1),k+1);plot(t,T),hold on, plot(t,1,'r-.')xlabel('Time'),ylabel('Temperature'),title(['T_0 = ',num2str(T(1)), ', T_\infty = 1']), legend('Cooling Trend','Steady State')2.%Boltzman Cooling Lawclear; close all; clc;h = 1;T(1) = 10; %T(0)error = 1;TOL = 1e-6;k = 0;dt = 1/10000;while error > TOL,k = k+1;T(k+1) = h*(1-(T(k))^4)*dt+T(k);error = abs(T(k+1)-T(k));endt = linspace(0,dt*(k+1),k+1);plot(t,T),hold on, plot(t,1,'r-.')xlabel('Time'),ylabel('Temperature'),title(['T_0 = ',num2str(T(1)), ', T_\infty = 1']), legend('Cooling Trend','Steady State')3.%Fourier Heat conductionclear; close all; clc;h = 1;n = 11;T = ones(n,1); Told = T;T(1) = 1; %Left boundaryT(n) = 10; %Right boundaryx = linspace(0,1,n);dx = x(2)-x(1);dt = dx^2/3; %cfl conditionerror = 1;TOL = 1e-6;k = 0;while error > TOL,Told = T;k = k+1;for i = 2:n-1T(i) = dt*(Told(i+1)-2*Told(i)+Told(i-1))/dx^2+Told(i);enderror = max(abs(T-Told));if mod(k,5)==0, out(k,:) = T; endendplot(x,out)xlabel('x'),ylabel('Temperature'),title(['Fourier Heat Conduction']),%legend('Cooling Trend','Steady State')4. 2D Heat Equation%2D Heat Equation.clear; close all; clcn = 10; %grid has n - 2 interior points per dimension (overlapping) x = linspace(0,1,n); dx = x(2)-x(1); y = x; dy = dx;TOL = 1e-6;T = zeros(n);T(1,1:n) = 10; %TOPT(n,1:n) = 1; %BOTTOMT(1:n,1) = 1; %LEFTT(1:n,n) = 1; %RIGHTdt = dx^2/4;error = 1; k = 0;while error > TOLk = k+1;Told = T;for i = 2:n-1for j = 2:n-1T(i,j) = dt*((Told(i+1,j)-2*Told(i,j)+Told(i-1,j))/dx^2 ... + (Told(i,j+1)-2*Told(i,j)+Told(i,j-1))/dy^2) ...+ Told(i,j);endenderror = max(max(abs(Told-T)));endsubplot(2,1,1),contour(x,y,T),title('Temperature (Steady State)'),xlabel('x'),ylabel('y'),colorbar subplot(2,1,2),pcolor(x,y,T),shading interp,title('Temperature (Steady State)'),xlabel('x'),ylabel('y'),colorbar 5. Wave Translation%Oscillations - translation left and rightclear; close all; clc;for c = [1 -1]cc = 0;n = 261;x = linspace(0,13,n);u = zeros(n,1);u(121:141) = sin(pi*x(121:141));dx = x(2)-x(1);dt = dx;error = 1;TOL = 1e-6;k = 0;while k < 110uold = u;k = k+1;for i = 2:n-1if c == 1, u(i) = dt*c*(uold(i+1)-uold(i))/dx+uold(i); end%c = 1 if c == -1, u(i) = dt*c*(uold(i)-uold(i-1))/dx+uold(i); end%c = -1 enderror = max(abs(u-uold));if mod(k,10)==0, cc = cc+1; out(cc,:) = u;endendif c == 1subplot(2,1,1),for hh = 1:ccplot(x,out(hh,:)+hh),hold on,endu = zeros(n,1);u(121:141) = sin(pi*x(121:141)); plot(x,u)xlabel('u(x)'),ylabel('Time'),title('Translation to the Left')elseif c == -1subplot(2,1,2),for hh = 1:ccplot(x,out(hh,:)+hh),hold on,endu = zeros(n,1);u(121:141) = sin(pi*x(121:141)); plot(x,u)xlabel('u(x)'),ylabel('Time'),title('Translation to the Right')endend6.%wave equationclear; close all; clc;c = 1;n = 21;x = linspace(0,1,n);dx = 1/(n-1);dt = dx;u(:,1) = sin(pi*x);u(1,2) = 0;for i = 2:n-1u(i,2) = 0.5*(dt^2*c^2*(u(i+1,1)-2*u(i,1)+u(i-1,1))/dx^2+2*u(i,1));endu(n,2) = 0;error = 1; k = 1;while k < 100k = k+1;u(1,k+1) = 0;for i = 2:n-1u(i,k+1) = dt^2*c^2*(u(i+1,k)-2*u(i,k)+u(i-1,k))/dx^2+2*u(i,k)-u(i,k-1); endu(n,k+1) = 0;endplot(x,u), xlabel('x'),ylabel('y')。
一维导热方程有限差分法matlab实现
第五次作业(前三题写在作业纸上)一、用有限差分方法求解一维非定常热传导方程,初始条件和边界条件见说明.pdf 文件,热扩散系数α=const ,22T T t xα∂∂=∂∂ 1. 用Tylaor 展开法推导出FTCS 格式的差分方程2. 讨论该方程的相容性和稳定性,并说明稳定性要求对求解差分方程的影响。
3. 说明该方程的类型和定解条件,如何在程序中实现这些定解条件。
4. 编写M 文件求解上述方程,并用适当的文字对程序做出说明。
(部分由网络搜索得到,添加,修改后得到。
)function rechuandaopde%以下所用数据,除了t 的范围我根据题目要求取到了20000,其余均从pdf 中得来 a=0.00001;%a 的取值xspan=[0 1];%x 的取值范围tspan=[0 20000];%t 的取值范围ngrid=[100 10];%分割的份数,前面的是t 轴的,后面的是x 轴的f=@(x)0;%初值g1=@(t)100;%边界条件一g2=@(t)100;%边界条件二[T,x,t]=pdesolution(a,f,g1,g2,xspan,tspan,ngrid);%计算所调用的函数[x,t]=meshgrid(x,t);mesh(x,t,T);%画图,并且把坐标轴名称改为x ,t ,Txlabel('x')ylabel('t')zlabel('T')T%输出温度矩阵dt=tspan(2)/ngrid(1);%t 步长h3000=3000/dt;h9000=9000/dt;h15000=15000/dt;%3000,9000,15000下,温度分别在T矩阵的哪些行T3000=T(h3000,:)T9000=T(h9000,:)T15000=T(h15000,:)%输出三个时间下的温度分布%不再对三个时间下的温度-长度曲线画图,其图像就是三维图的截面%稳定性讨论,傅里叶级数法dx=xspan(2)/ngrid(2);%x步长sta=4*a*dt/(dx^2)*(sin(pi/2))^2;if sta>0,sta<2fprintf('\n%s\n','有稳定性')elsefprintf('\n%s\n','没有稳定性')errorend%真实值计算[xe,te,Te]=truesolution(a,f,g1,g2,xspan,tspan,ngrid);[xe,te]=meshgrid(xe,te);mesh(xe,te,Te);%画图,并且把坐标轴名称改为xe,te,Texlabel('xe')ylabel('te')zlabel('Te')Te%输出温度矩阵%误差计算jmax=1/dx+1;%网格点数[rms]=wuchajisuan(T,Te,jmax)rms%输出误差function [rms]=wuchajisuan(T,Te,jmax)for j=1:jmaxrms=((T(j)-Te(j))^2/jmax)^(1/2)endfunction[Ue,xe,te]=truesolution(a,f,g1,g2,xspan,tspan,ngrid)n=ngrid(1);%t份数m=ngrid(2);%x份数Ue=zeros(ngrid);xe=linspace(xspan(1),xspan(2),m);%画网格te=linspace(tspan(1),tspan(2),n);%画网格for j=2:nfor i=2:m-1for g=1:m-1Ue(j,i)=100-(400/(2*g-1)/pi)*sin((2*g-1)*pi*xe(j))*exp(-a*(2*g-1)^2*pi^2*te(i)) endendendfunction [U,x,t]=pdesolution(a,f,g1,g2,xspan,tspan,ngrid)n=ngrid(1);%t份数m=ngrid(2);%x份数h=range(xspan)/(m-1);%x网格长度x=linspace(xspan(1),xspan(2),m);%画网格k=range(tspan)/(n-1); %t网格长度t=linspace(tspan(1),tspan(2),n);%画网格U=zeros(ngrid);U(:,1)=g1(t);%边界条件U(:,m)=g2(t);U(1,:)=f(x);%初值条件%差分计算for j=2:nfor i=2:m -1U(j,i)=(1-2*a*k/h^2)*U(j -1,i)+a*k/h^2*U(j -1,i -1)+a*k/h^2*U(j -1,i+1);endend5. 将温度随时间变化情况用曲线表示x t T6. 给出3000、9000、15000三个时刻的温度分布情况,对温度随时间变化规律做说明。
MATLAB编辑一维热传导方程的模拟程序
求解下列热传导问题: 【1 】()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧====-=≤≤=∂∂-∂∂1,10,,1,010,001222ααL t L T t T zz T L z t T z T程序:function heat_conduction() %一维齐次热传导方程options={'空间杆长L','空间点数N' ,'时光点数M','集中系数alfa','稳固前提的值lambda(取值必须小于0.5)',};topic='seting';lines=1;def={'1','100','1000','1','0.5'};h=inputdlg(options,topic,lines,def);L=eval(h{1});N=eval(h{2});M=eval(h{3});alfa=eval(h{4});lambda=eval(h{5});%lambda 的值必须小于%***************************************************h=L/N;%空间步长z=0:h:L;z=z';tao=lambda*h^2/alfa;%时光步长tm=M*tao;%热传导的总时光tmt=0:tao:tm;t=t';%盘算初值和边值T=zeros(N+1,M+1);Ti=init_fun(z);To=border_funo(t);Te=border_fune(t);T(:,1)=Ti;T(1,:)=To;T(N+1,:)=Te;%用差分法求出温度T与杆长L.时光t的关系for k=1:Mm=2;while m<=NT(m,k+1)=lambda*(T(m+1,k)+T(m-1,k))+(-2*lambda+1)*T(m,k); m=m+1;end;end;%设置立体网格for i=1:M+1X(:,i)=z;end;for j=1:N+1Y(j,:)=t;endmesh(X,Y,T);view([1 -1 1]);xlabel('Z');ylabel('t');zlabel('T');function y=init_fun(z)%初值前提y=1-z.^2;returnfunction y=border_funo(t)%z=0的鸿沟前提y=1+t.*0;returnfunction y=border_fune(t)%z=L的鸿沟前提y=t*.0;return运行情形:按“run”运行时,弹出窗口将图中相干数据更改为:点击图框中的“OK”,在“command window”中输出成果为:。
热传导方程以及matlab求解
热传导方程及matlab求解1. 热传导方程的概念热传导方程是描述物质内部温度分布随时间变化的数学模型。
它是热力学基本方程之一,描述了热能在物体内传递和扩散的过程。
热传导方程通常表示为:$$\frac{\partial u}{\partial t} = \alpha \nabla^2 u$$其中,u表示温度分布,t表示时间,$\alpha$表示热扩散系数,$\nabla^2$表示拉普拉斯算子。
热传导方程可以根据不同的物理条件和边界条件进行不同形式的推导和求解。
2. 热传导方程的重要性热传导方程在工程、地球科学、生物学和材料科学等领域都有着广泛的应用。
通过研究热传导方程,可以深入理解物质内部温度变化的规律,从而优化材料设计、改进能源利用效率,甚至预测地球内部热量分布等方面都有着重要的意义。
3. 热传导方程的matlab求解Matlab作为一种强大的科学计算软件,对热传导方程的求解有着很好的支持。
通过Matlab中的偏微分方程求解工具包,可以方便地对热传导方程进行数值求解。
一般来说,使用Matlab求解热传导方程的步骤包括定义方程、设定边界条件和初值条件、选择合适的数值求解方法,并进行模拟计算。
4. 个人观点和理解对于热传导方程及其在Matlab中的求解,我个人认为这是一个非常有意思且实用的课题。
热传导方程作为热力学基本方程之一,在工程领域有着很重要的应用,而Matlab作为科学计算软件的代表,在求解热传导方程时具有高效、准确的优势。
通过学习热传导方程及在Matlab中的求解,不仅可以深入理解热传导的物理过程,还能够提升数值计算及编程的能力。
总结通过本文的介绍,我们了解了热传导方程的基本概念、重要性以及在Matlab中的求解方法。
热传导方程作为描述物质内部温度分布变化的数学模型,对于研究物质热传导过程有着重要意义。
而Matlab作为强大的科学计算软件,对于求解热传导方程也有着很好的支持。
希望通过本文的介绍,读者能对热传导方程及其在Matlab中的求解有更深入的理解,并能够在相关领域应用这些知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求解下列热传导问题:
2T 1 T 门 c ,
2 0 0 z L
z t
T乙0 1 z2
T 0,t 1, T L,t 0
L 1, 1
程序:
fun ctio n heat_c on ductio n() % 一维齐次热传导方程
options={'空间杆长L','空间点数N','时间点数M','扩散系数alfa',' 件的值
稳定条lambda(取值必须小于0.5)',};
topic='set in g';
lin es=1;
def={'1','100','1000','1','0.5'};
h=in putdlg(opti on s,topic, lin es,def);
L=eval(h{1});
N=eval(h{2});
M=eval(h{3});
alfa=eval(h{4});
lambda=eval(h{5});%lambda 的值必须小于0.5
o%***************************************************
h=L/N;%空间步长
z=0:h:L;
z=z';
tao=lambda*h A2/alfa;% 时间步长
tm=M*tao;%热传导的总时间tm
t=0:tao:tm;
t=t';
%计算初值和边值
T=zeros(N+1,M+1);
Ti=i nit_fu n(z);
To=border_fu no (t);
Te=border_fu ne(t);
T(:,1)=Ti;-
T(1,:)=To;
T(N+1,:)=Te;
%用差分法求出温度T与杆长L、时间t的关系
for k=1:M
m=2;
while m<=N
T(m,k+1)=lambda*(T(m+1,k)+T(m-1,k))+(-2*lambda+1)*T(m,k);
m=m+1;
end;
end;
%设置立体网格
for i=1:M+1
X(:,i)=z;
end;
for j=1:N+1
Y(j,:)=t;
end
mesh(X,Y,T);
view([1 -1 1]);
xlabel('Z');
ylabel('t');
zlabel('T');
fun ctio n y=i nit_fun(z) % 初值条件
y=1-z.A2;
return
fun ctio n y=border_fu no(t)%z=0 的边界条件
y=1+t.*0;
return
fun cti on y=border_f un e(t)%z=L 的边界条件
y=t*.0;
return
运行情况:
按“run”运行时,弹出窗口
将图中相关数据更改为:
点击图框中的“ 0K”,在“ comma nd win dow”中输出结果为:。