离散数学-命题逻辑基本概念

合集下载

离散数学第一章命题逻辑知识点总结

离散数学第一章命题逻辑知识点总结

数理逻辑部分第1章命题逻辑命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。

简单命题(原子命题):简单陈述句构成的命题复合命题:由简单命题与联结词按一定规则复合而成的命题简单命题符号化用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示简单命题用“1”表示真,用“0”表示假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“”定义设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作p. 符号称作否定联结词,并规定p为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既用功又聪明.(2) 王晓不仅聪明,而且用功.(3) 王晓虽然聪明,但不用功.(4) 张辉与王丽都是三好生.(5) 张辉与王丽是同学.解令p:王晓用功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧q.令r : 张辉是三好学生,s :王丽是三好学生(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句子是一个简单命题.3.析取式与析取联结词“∨”定义设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假.例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) 小元元只能拿一个苹果或一个梨.(5) 王晓红生于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.而 (4), (5) 为排斥或.令t :小元元拿一个苹果,u:小元元拿一个梨,则 (4) 符号化为 (t∧u) ∨(t∧u).令v :王晓红生于1975年,w:王晓红生于1976年,则 (5) 既可符号化为 (v∧w)∨(v∧w), 又可符号化为v∨w , 为什么?4.蕴涵式与蕴涵联结词“”定义设p,q为二命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p q,并称p是蕴涵式的前件,q为蕴涵式的后件. 称作蕴涵联结词,并规定,p q为假当且仅当p 为真q 为假.p q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除非q, 才p 或除非q, 否则非p.当p 为假时,p q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“”定义设p,q为二命题,复合命题“p当且仅当q”称作p与q的等价式,记作p q. 称作等价联结词.并规定p q为真当且仅当p与q同时为真或同时为假.说明:(1) p q 的逻辑关系:p与q互为充分必要条件(2) p q为真当且仅当p与q同真或同假联结词优先级:( ),, , , ,同级按从左到右的顺序进行以上给出了5个联结词:, , , , ,组成一个联结词集合{, , , , },联结词的优先顺序为:, , , , ; 如果出现的联结词同级,又无括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算.注意: 本书中使用的括号全为园括号.命题常项命题变项命题公式及分类命题变项与合式公式命题常项:简单命题命题变项:真值不确定的陈述句定义合式公式 (命题公式, 公式) 递归定义如下:(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1是合式公式(2) 若A是合式公式,则 (A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B), (A B)也是合式公式(4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式说明: 元语言与对象语言, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下面情况之一:(a) A=B, B是n层公式;(b) A=B C, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=B C, 其中B,C的层次及n同(b);(d) A=B C, 其中B,C的层次及n同(b);(e) A=B C, 其中B,C的层次及n同(b).例如公式p 0层p 1层p q 2层(p q)r 3层((p q) r)(r s) 4层公式的赋值定义给公式A中的命题变项p1, p2, … , p n指定一组真值称为对A的一个赋值或解释成真赋值: 使公式为真的赋值成假赋值: 使公式为假的赋值说明:赋值=12…n之间不加标点符号,i=0或1.A中仅出现p1, p2, …, p n,给A赋值12…n是指p1=1, p2=2, …, p n=nA中仅出现p,q, r, …, 给A赋值123…是指p=1,q=2 , r= 3 …含n个变项的公式有2n个赋值.真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q p) q p的真值表例 B = (p q) q的真值表例C= (p q) r的真值表命题的分类重言式矛盾式可满足式定义设A为一个命题公式(1) 若A无成假赋值,则称A为重言式(也称永真式)(2) 若A无成真赋值,则称A为矛盾式(也称永假式)(3) 若A不是矛盾式,则称A为可满足式注意:重言式是可满足式,但反之不真.上例中A为重言式,B为矛盾式,C为可满足式A= (q p)q p,B =(p q)q,C= (p q)r等值演算等值式定义若等价式A B是重言式,则称A与B等值,记作A B,并称A B是等值式说明:定义中,A,B,均为元语言符号, A或B中可能有哑元出现.例如,在 (p q) ((p q) (r r))中,r为左边公式的哑元.用真值表可验证两个公式是否等值请验证:p(q r) (p q) rp(q r) (p q) r基本等值式双重否定律 : A A等幂律:A A A, A A A交换律: A B B A, A B B A结合律: (A B)C A(B C)(A B)C A(B C)分配律: A(B C)(A B)(A C)A(B C) (A B)(A C)德·摩根律: (A B)A B(A B)A B吸收律: A(A B)A, A(A B)A零律: A11, A00同一律: A0A, A1A排中律: A A1矛盾律: A A0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若A B, 则(B)(A)等值演算的基础:(1) 等值关系的性质:自反、对称、传递(2) 基本的等值式(3) 置换规则应用举例——证明两个公式等值例1 证明p(q r) (p q)r证p(q r)p(q r) (蕴涵等值式,置换规则)(p q)r(结合律,置换规则)(p q)r(德摩根律,置换规则)(p q) r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出熟练后,基本等值式也可以不写出应用举例——证明两个公式不等值例2 证明: p(q r) (p q) r用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.方法一真值表法(自己证)方法二观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.方法三用等值演算先化简两个公式,再观察.应用举例——判断公式类型例3 用等值演算法判断下列公式的类型(1) q(p q)解q(p q)q(p q) (蕴涵等值式)q(p q) (德摩根律)p(q q) (交换律,结合律)p0 (矛盾律)0 (零律)由最后一步可知,该式为矛盾式.(2) (p q)(q p)解 (p q)(q p)(p q)(q p) (蕴涵等值式)(p q)(p q) (交换律)1由最后一步可知,该式为重言式.问:最后一步为什么等值于1?(3) ((p q)(p q))r)解 ((p q)(p q))r)(p(q q))r(分配律)p1r(排中律)p r(同一律)这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.总结:A为矛盾式当且仅当A0A为重言式当且仅当A1说明:演算步骤不惟一,应尽量使演算短些对偶与范式对偶式与对偶原理定义在仅含有联结词, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) A(p1,p2,…,p n) A* (p1, p2,…, p n) (2) A(p1, p2,…, p n) A* (p1,p2,…,p n) 定理(对偶原理)设A,B为两个命题公式,若A B,则A* B*.析取范式与合取范式文字:命题变项及其否定的总称简单析取式:有限个文字构成的析取式如p, q, p q, p q r, …简单合取式:有限个文字构成的合取式如p, q, p q, p q r, …析取范式:由有限个简单合取式组成的析取式A 1A2Ar, 其中A1,A2,,A r是简单合取式合取范式:由有限个简单析取式组成的合取式A 1A2Ar, 其中A1,A2,,A r是简单析取式范式:析取范式与合取范式的总称公式A的析取范式: 与A等值的析取范式公式A的合取范式: 与A等值的合取范式说明:单个文字既是简单析取式,又是简单合取式p q r, p q r既是析取范式,又是合取范式(为什么?)命题公式的范式定理任何命题公式都存在着与之等值的析取范式与合取范式.求公式A的范式的步骤:(1) 消去A中的, (若存在)(2) 否定联结词的内移或消去(3) 使用分配律对分配(析取范式)对分配(合取范式)公式的范式存在,但不惟一求公式的范式举例例求下列公式的析取范式与合取范式(1) A=(p q)r解 (p q)r(p q)r(消去)p q r(结合律)这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)(2) B=(p q)r解 (p q)r(p q)r(消去第一个)(p q)r(消去第二个)(p q)r(否定号内移——德摩根律)这一步已为析取范式(两个简单合取式构成)继续: (p q)r(p r)(q r) (对分配律)这一步得到合取范式(由两个简单析取式构成)极小项与极大项定义在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i(1i n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项).说明:n个命题变项产生2n个极小项和2n个极大项2n个极小项(极大项)均互不等值用m i表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用M i 表示第i个极大项,其中i是该极大项成假赋值的十进制表示, m i(M i)称为极小项(极大项)的名称.m与M i的关系: m i M i , M i m ii主析取范式与主合取范式主析取范式: 由极小项构成的析取范式主合取范式: 由极大项构成的合取范式例如,n=3, 命题变项为p, q, r时,(p q r)(p q r) m1m3是主析取范式(p q r)(p q r) M1M5 是主合取范式A的主析取范式: 与A等值的主析取范式A的主合取范式: 与A等值的主合取范式.定理任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的.用等值演算法求公式的主范式的步骤:(1) 先求析取范式(合取范式)(2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.(3) 极小项(极大项)用名称m i(M i)表示,并按角标从小到大顺序排序.求公式的主范式例求公式A=(p q)r的主析取范式与主合取范式.(1) 求主析取范式(p q)r(p q)r , (析取范式)①(p q)(p q)(r r)(p q r)(p q r)m 6m7,r(p p)(q q)r(p q r)(p q r)(p q r)(p q r)m 1m3m5m7③②, ③代入①并排序,得(p q)r m1m3m5m6m7(主析取范式)(2) 求A的主合取范式(p q)r(p r)(q r) , (合取范式)①p rp(q q)r(p q r)(p q r)M 0M2,②q r(p p)q r(p q r)(p q r)M 0M4③②, ③代入①并排序,得(p q)r M0M2M4 (主合取范式)主范式的用途——与真值表相同(1) 求公式的成真赋值和成假赋值例如 (p q)r m1m3m5m6m7,其成真赋值为001, 011, 101, 110, 111,其余的赋值 000, 010, 100为成假赋值.类似地,由主合取范式也可立即求出成假赋值和成真赋值.(2) 判断公式的类型设A含n个命题变项,则A为重言式A的主析取范式含2n个极小项A的主合取范式为1.A为矛盾式A的主析取范式为0A的主合取范式含2n个极大项A为非重言式的可满足式A的主析取范式中至少含一个且不含全部极小项A的主合取范式中至少含一个且不含全部极大项例某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去,钱也去;(2)李、周两人中至少有一人去;(3)钱、孙两人中有一人去且仅去一人;(4)孙、李两人同去或同不去;(5)若周去,则赵、钱也去.试用主析取范式法分析该公司如何选派他们出国?解此类问题的步骤为:①将简单命题符号化②写出各复合命题③写出由②中复合命题组成的合取式④求③中所得公式的主析取范式解①设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去.② (1) (p q)(2) (s u)(3) ((q r)(q r))(4) ((r s)(r s))(5) (u(p q))③ (1) ~ (5)构成的合取式为A=(p q)(s u)((q r)(q r))((r s)(r s))(u(p q))④ A (p q r s u)(p q r s u)结论:由④可知,A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).A的演算过程如下:A (p q)((q r)(q r))(s u)(u(p q)) ((r s)(r s)) (交换律) B1= (p q)((q r)(q r))((p q r)(p q r)(q r)) (分配律)B2= (s u)(u(p q))((s u)(p q s)(p q u)) (分配律)B 1B2(p q r s u)(p q r s u) (q r s u)(p q r s)(p q r u)再令B3 = ((r s)(r s))得A B1B2B3(p q r s u)(p q r s u)注意:在以上演算中多次用矛盾律要求:自己演算一遍推理理论推理的形式结构推理的形式结构—问题的引入推理举例:(1) 正项级数收敛当且仅当部分和有上界.(2) 若推理: 从前提出发推出结论的思维过程上面(1)是正确的推理,而(2)是错误的推理.证明: 描述推理正确的过程.判断推理是否正确的方法•真值表法•等值演算法判断推理是否正确•主析取范式法•构造证明法证明推理正确说明:当命题变项比较少时,用前3个方法比较方便, 此时采用形式结构“” . 而在构造证明时,采用“前提: , 结论: B”.推理定律与推理规则推理定律——重言蕴涵式构造证明——直接证明法例构造下面推理的证明:若明天是星期一或星期三,我就有课. 若有课,今天必备课. 我今天下午没备课. 所以,明天不是星期一和星期三.解设p:明天是星期一,q:明天是星期三,r:我有课,s:我备课推理的形式结构为例构造下面推理的证明:2是素数或合数. 若2是素数,则是无理数.若是无理数,则4不是素数. 所以,如果4是素数,则2是合数.用附加前提证明法构造证明解设p:2是素数,q:2是合数,r:是无理数,s:4是素数推理的形式结构前提:p∨q, p r, r s结论:s q证明① s附加前提引入②p r前提引入③r s前提引入④p s②③假言三段论⑤p①④拒取式⑥p∨q前提引入⑦q⑤⑥析取三段论请用直接证明法证明之。

离散数学-----命题逻辑

离散数学-----命题逻辑

离散数学-----命题逻辑逻辑:是研究推理的科学。

公元前四世纪由希腊的哲学家亚里斯多德首创。

作为一门独立科学,十七世纪,德国的莱布尼兹(Leibniz)给逻辑学引进了符号, 又称为数理逻辑(或符号逻辑)。

逻辑可分为:1. 形式逻辑(是研究思维的形式结构和规律的科学,它撇开具体的、个别的思维内容,从形式结构方面研究概念、判断和推理及其正确联系的规律。

)→数理逻辑(是用数学方法研究推理的形式结构和规律的数学学科。

它的创始人Leibniz,为了实现把推理变为演算的想法,把数学引入了形式逻辑中。

其后,又经多人努力,逐渐使得数理逻辑成为一门专门的学科。

)2. 辩证逻辑(是研究反映客观世界辩证发展过程的人类思维的形态的。

)一、命题及其表示方法1、命题数理逻辑研究的中心问题是推理,而推理的前提和结论都是表达判断的陈述句,因而表达判断的陈述句构成了推理的基本单位。

基本概念:命题:能够判断真假的陈述句。

命题的真值:命题的判断结果。

命题的真值只取两个值:真(用T(true)或1表示)、假(用F(false)或0表示)。

真命题:判断为正确的命题,即真值为真的命题。

假命题:判断为错误的命题,即真值为假的命题。

因而又可以称命题是具有唯一真值的陈述句。

判断命题的两个步骤:1、是否为陈述句;2、是否有确定的、唯一的真值。

说明:(1)只有具有确定真值的陈述句才是命题。

一切没有判断内容的句子,无所谓是非的句子,如感叹句、祁使句、疑问句等都不是命题。

(2)因为命题只有两种真值,所以“命题逻辑”又称“二值逻辑”。

(3)“具有确定真值”是指客观上的具有,与我们是否知道它的真值是两回事。

2、命题的表示方法在书中,用大写英文字母A,B,…,P,Q或带下标的字母P1,P2,P3 ,…,或数字(1),*2+, …,等表示命题,称之为命题标识符。

命题标识符又有命题常量、命题变元和原子变元之分。

命题常量:表示确定命题的命题标识符。

命题变元:命题标识符如仅是表示任意命题的位置标志,就称为命题变元。

离散数学复习纲要I(命题逻辑部分)

离散数学复习纲要I(命题逻辑部分)

离散数学复习纲要I(命题逻辑部分)讲师:高晓沨制作:杨非课程:MA115-2012秋季学期第1章.命题逻辑的基本概念(Basic Concepts of Propositional Logic)1.命题:非真即假的陈述句。

(注意区分“尚未知真假”和“无法判定真假”)(a)真值:命题可能的取值,用T/F或0/1表示。

(有两种取值的命题逻辑称为二值逻辑)(b)命题常项:有确定真值的命题。

(c)命题变项:用大写字母如P,Q表示命题。

当P表示任意命题时,称为命题变项。

(d)简单命题:又称原子命题,是不可再分割的命题。

(e)复合命题:复合命题是一个或几个简单命题用联结词联结所构成的新命题。

2.命题联结词及真值表(a)命题联接词:定义复合命题的联接符号。

(常用联接词“¬,∧,∨,→,↔”)i.否定词:¬,一元联结词。

¬P表示对命题P的否定。

ii.合取词:∧,二元联结词。

P∧Q表示“P与Q”。

iii.析取词:∨,二元联结词。

P∨Q表示“P或Q”。

iv.蕴含词:→,二元联结词,表示命题间的推理。

P→Q表示“P蕴含Q”、“如果P那么Q”。

P称为前项/条件,Q称为后项/结论。

P→Q与¬P∧Q真值相同。

v.双条件词:↔,二元联结词,表示命题间的等价。

P↔Q表示“P等价于Q”。

P↔Q与(P→Q)∧(Q→P)真值相同。

(b)真值表:用表格表示命题之间的真值关系。

(复合命题的真值依赖命题变项的真值)P Q¬P P∧Q P∨Q P→Q P↔Q T T F T T T TT F F F T F FF T T F T T FF F T F F T T 注:自然用语里的联结词表示两种同类有关事物的并列关系,而逻辑语言中仅考虑命题间的形式关系,并不顾及自然用语中是否有此说,逻辑联结词是自然用语中联结词的抽象,两者并不等同。

(c)命题A依赖P1,...,P n时有2n种解释。

联结词∧,∨,¬与数字电路中与门,或门,非门对应。

《离散数学》命题逻辑

《离散数学》命题逻辑
由原子命题组合而成的命题称为复合 命题(compound proposition)。
例如:
和 e 都是无理数。 6和8至少有一个是合数。 说刘老师讲课不好是不正确的。 不下雨我就去买书。
7
命题与命题联结词
将命题连接起来的方式叫做命题联结词
( proposition connective ) 或 命 题 运 算 符
3
命题与命题联结词
逻辑
如何表示? 如何“操作”?
非真即假的陈述句称为命题(proposition)。 一个命题如果是对的或正确的,则称为真命
题,其真值为“真”(true),常用T或1表示; 一个命题如果是错的或不正确的,则称为假
命题,其真值为“假”(false),常用F或0表示。
4
命题与命题联结词
32
命题公式及其分类
为简化公式的形式,作如下规定:
(1) 优先级 , (∧, ∨), (, ) (2) 公式 (~p) 的括号可以省略,写成 ~p (3) 整个公式最外层的括号可以省略
例1
(((p)∧q)(q∨p)) p∧q q∨p
例2
p∧q∨r 不是 命题公式 应写作 (p∧q)∨r 或 p∧(q∨r)
例 判断下列句子哪些是命题,哪些不是
这门课程题为“离散数学”。 这门“离散数学”讲得好吗? X 这门“离散数学”讲得真好! X 请学习“离散数学” 。 X 5是素数。 太阳从西方升起。 如果明天晴,而且我有空,我就去踢球。 天王星上没有生命。 x + 3 > 5。 X 5 本命题是假的。X
俞伯牙和钟子期是好朋友。 俞伯牙是好朋友 ∧ 钟子期是好朋友 俞伯牙 ∧ 钟子期是好朋友 Friend (俞伯牙,钟子期)
23

离散数学笔记总结

离散数学笔记总结

离散数学笔记总结一、命题逻辑。

1. 基本概念。

- 命题:能够判断真假的陈述句。

例如“2 + 3 = 5”是真命题,“1 > 2”是假命题。

- 命题变元:用字母表示命题,如p,q,r等。

2. 逻辑联结词。

- 否定¬:¬ p表示对命题p的否定,若p为真,则¬ p为假,反之亦然。

- 合取wedge:pwedge q表示p并且q,只有当p和q都为真时,pwedge q才为真。

- 析取vee:pvee q表示p或者q,当p和q至少有一个为真时,pvee q为真。

- 蕴含to:pto q表示若p则q,只有当p为真且q为假时,pto q为假。

- 等价↔:p↔ q表示p当且仅当q,当p和q同真同假时,p↔ q为真。

3. 命题公式。

- 定义:由命题变元、逻辑联结词和括号按照一定规则组成的符号串。

- 赋值:给命题变元赋予真假值,从而确定命题公式的真值。

- 分类:重言式(永真式)、矛盾式(永假式)、可满足式。

4. 逻辑等价与范式。

- 逻辑等价:若A↔ B是重言式,则称A与B逻辑等价,记作A≡ B。

例如¬(pwedge q)≡¬ pvee¬ q(德摩根律)。

- 范式:- 析取范式:由有限个简单合取式的析取组成的命题公式。

- 合取范式:由有限个简单析取式的合取组成的命题公式。

- 主析取范式:每个简单合取式都是极小项(包含所有命题变元的合取式,每个变元只出现一次)的析取范式。

- 主合取范式:每个简单析取式都是极大项(包含所有命题变元的析取式,每个变元只出现一次)的合取范式。

二、谓词逻辑。

1. 基本概念。

- 个体:可以独立存在的事物,如人、数等。

- 谓词:用来刻画个体性质或个体之间关系的词。

例如P(x)表示x具有性质P,R(x,y)表示x和y具有关系R。

- 量词:- 全称量词∀:∀ xP(x)表示对于所有的x,P(x)成立。

- 存在量词∃:∃ xP(x)表示存在某个x,使得P(x)成立。

离散数学-第二章命题逻辑

离散数学-第二章命题逻辑

设A( P1,P2,…,Pn )是一个命题公式,
P1,P2,…,Pn是出现于其中的全部命题变元,对P1, P2,…,Pn分别指定一个真值,称为对P1,P2,…,Pn公式A 的一组真值指派。
列出命题公式A在P1,P2,…,Pn的所有2n种真值指 派下对应的真值,这样的表称为A的真值表。
16
例3
值表。
例12 用符号形式表示下列命题。
(1) (2) 如果明天早上下雨或下雪,那么我不去学校 如果明天早上不下雨且不下雪,那么我去学校。
(3)
(4)
如果明天早上不是雨夹雪,那么我去学校。
只有当明天早上不下雨且不下雪时,我才去学校。 解 令P:明天早上下雨; Q:明天早上下雪; R:我去学校。 (1)(P∨Q)→ ¬ R; (2)(¬ ∧¬ P Q)→R; (3)¬ (P∧Q)→R (4)R→(¬ ∧¬ Q) P
4
例4
2.合取“∧” 定义2.2.2
设P和Q是两个命题,则P和Q的合取 是一个复合命题,记作“P ∧ Q”(读作“P且Q”)。
当且仅当命题P和Q均取值为真时,P ∧ Q才取值为真。
P 0 0 1 1 Q 0 1 0 1 P∧Q 0 0 0 1
例5
设P:我们去看电影。Q:房间里有十张桌子。则
P ∧ Q表示“我们去看电影并且房间里有十张桌子。”
5
3. 析取“∨” 定义2.2.3
设P和Q是两个命题,则P和Q的析取是一个复 合命题,记作“P∨Q”(读作“P或Q”)。
当且仅当P和Q至少有一个取值为真时,P∨Q取值为真。
P
0 0 1 1 Q 0 1 0 1 P∨Q 0 1 1 1
例6 设命题P:他可能是100米赛跑冠军;
Q:他可能是400米赛跑冠军。

离散数学(1)复习笔记

离散数学(1)复习笔记

离散数学(1)复习笔记Ch1 命题逻辑的基本概念1.1 命题命题:能判断真假且⾮真即假的陈述句。

命题的真值,真命题,假命题。

* 真值待定 *简单命题 | 原⼦命题,复合命题。

1.2 常⽤的5个命题联结词否定,合取,析取,蕴涵,双蕴涵。

* 异或 | 排斥或 | 不可兼或 * 注意语义判断。

* p→q = ﹁ p∨q ** 必要条件 * 只有……才……;仅当……,……;……,仅当……。

注意命题符号化的蕴涵⽅向。

* domain * A horse is white. (×)联结词集,⼀元联结词,⼆元联结词。

* 优先顺序 * (),﹁,∧,∨,→,↔1.3 合式公式及其赋值命题常项 | 命题常元(值是确定的),命题变项 | 命题变元(真值可以变化的陈述句)。

合式公式 | 命题公式 | 命题形式 | 公式(wff)(well formed formulas),原⼦命题公式(单个命题变项),⼦公式。

* 单个命题变项是合式公式,没说命题常项。

*赋值 | 解释,成真赋值,成假赋值。

真值表。

* 真值表要点:赋值从00…0开始,按照⼆进制加法,直到11…1为⽌;按照运算的优先次序写出各⼦公式。

*命题公式的分类:重⾔式 | 永真式,⽭盾式 | 永假式,可满⾜式。

1.4 重⾔式与代⼊规则代⼊规则。

* 1. 公式中被代换的只能是命题变项(原⼦命题),⽽不能是复合命题。

2.对公式中某命题变项施以代⼊,必须对该公式中出现的所有同⼀命题变项施以相同的代换。

* 1.5 命题形式化命题形式化 | 符号化。

* 注意充分条件和必要条件的区别 ** 注意语义是否考虑完整 *1.6 波兰表达式中置式 | 中缀式,前置式 | 前缀式 | 波兰式,后置式 | 后缀式 | 逆波兰式。

Ch2 命题逻辑的等值和推理演算2.1 等值定理等值 | 等价,等值定理:设A,B为两个命题公式,A = B的充分必要条件是 A↔B为⼀个重⾔式。

离散数学结构第1章命题逻辑基本概念

离散数学结构第1章命题逻辑基本概念

离散数学结构第1章命题逻辑基本概念第1章命题逻辑基本概念主要内容1. 命题与真值(或真假值)。

2. 简单命题与复合命题。

3. 联结词:否定联结词┐,合取联结词∧,析取联结词∨,蕴涵联结词→,等价联结词。

4. 命题公式(简称公式)。

5. 命题公式的层次和公式的赋值。

6. 真值表。

7. 公式的类型(重⾔式(或永真式),⽭盾式(或永假式),可满⾜式)。

学习要求1. 在5种联结词中,要特别注意蕴涵联结的应⽤,要弄清三个问题:① p→q的逻辑关系② p→q的真值③ p→q的灵活的叙述⽅法2. 写真值表要特别仔细认真,否则会出错误。

3. 深刻理解各联结词的逻辑含义。

4. 熟练地将复合命题符号化。

6. 会⽤真值表求公式的成真赋值和成假赋值。

1.1 命题与联结词 (2)⼀、命题的概念 (2)⼆、复合命题与联结词 (2)三、复合命题真假值 (5)1.2 命题公式及其赋值 (6)⼀、命题公式的定义 (6)⼆、公式的层次 (6)三、公式的赋值 (6)四、真值表 (7)五、公式的真假值分类 (8)1.1 命题与联结词⼀、命题的概念引⾔中的例⼦就是要对“我戴的是⿊帽⼦”进⾏判断。

这样的陈述句称为命题。

作为命题的陈述句所表达的判断结果称为命题的真值,真值只取两个值:真或假。

真值为真的命题称为真命题,真值为假的命题称为假命题。

真命题表达的判断正确,假命题表达的判断错误。

任何命题的真值都是唯⼀的。

判断给定句⼦是否为命题,应该分两步:⾸先判定它是否为陈述句,其次判断它是否有唯⼀的真值。

例1.1 判断下列句⼦是否为命题。

(1) 4是素数。

(2) 是⽆理数。

(3) x⼤于y。

(4) ⽉球上有冰。

(5) 2100年元旦是晴天。

(6) π⼤于吗?(7) 请不要吸烟!(8) 这朵花真美丽啊!(9) 我正在说假话。

解:本题的(9)个句⼦中,(6)是疑问句,(7)是祈使句,(8)是感叹句,因⽽这3个句⼦都不是命题。

剩下的6个句⼦都是陈述句,但(3)⽆确定的真值,根据x,y的不同取值情况它可真可假,即⽆唯⼀的真值,因⽽不是命题。

离散数学 第2章 命题逻辑

离散数学 第2章  命题逻辑

6
程序解法:
#include "stdio.h" #include "conio.h" main() { int p,q,r,A1,A2,A3,B1,B2,B3,C1,C2,C3,E; for(p=0;p<=1;p++) for (q=0;q<=1;q++) for(r=0;r<=1;r++) { A1=!p&&q;A2=(!p&&!q)||(p&&q);A3=p&&!q; B1=p&&!q;B2=(p&&q)||(!p&&!q);B3=!p&&q; C1=!q&&r;C2=(q&&!r)||(!q&&r);C3=q&&r; E=(A1&&B2&&C3)||(A1&&B3&&C2)||(A2&&B1&&C3)||(A2&&B3&&C1)||(A3&&B1&&C2)||(A3 &&B2&&C1); if (E==1) printf("p=%d\tq=%d\tr=%d\n",p,q,r); } getch(); }
复合命题: E=(A1 ∧B2 ∧C3) ∨ (A1 ∧B3 ∧C2) ∨ (A2 ∧B1 ∧C3) ∨ (A2 ∧B3∧C1) ∨ (A3 ∧B1 ∧C2) ∨ (A3 ∧B2 ∧C1)
A1 ∧B2 ∧C3 = (p ∧q ) ∧ ((p ∧ q) ∨(p ∧ q) ) ∧(q ∧ r) 0 A1 ∧B3 ∧C2 = (p ∧q ) ∧ ( p ∧ q) ∧( (q ∧ r) ∨(q ∧ r ) ) p ∧q ∧ r A2 ∧B1 ∧C3 =A2 ∧B3∧C1 = A3 ∧B2 ∧C1 = 0 A3 ∧B1 ∧C2 p ∧ q ∧ r E (p ∧q ∧ r) ∨ (p ∧ q ∧ r) 所以王教授是上海人。

离散数学知识点总结

离散数学知识点总结

离散数学知识点总结离散数学是数学中的一个分支,研究离散对象及其关系的数学理论。

它与连续数学形成鲜明的对比,连续数学主要研究连续对象和其性质。

离散数学在计算机科学、信息科学、电子工程等领域具有重要的应用价值。

下面将对离散数学的主要知识点进行总结。

1.命题逻辑:命题逻辑研究由命题符号组成的复合命题及其逻辑关系。

其中命题是一个陈述性的语句,可以是真或假。

命题逻辑包括命题的逻辑运算、真值表、命题的等价、充分必要条件等。

2.谓词逻辑:谓词逻辑是对命题逻辑的扩充,引入了量词、谓词和项。

它的研究对象是命题函数,可以表示个体之间的关系。

谓词逻辑包括谓词的运算、量词的运算、公理化和推理规则等。

3.集合论:集合论是研究集合及其操作的数学分支。

集合是一种由确定的对象组成的整体。

集合论包括集合的基本运算(交、并、差、补)、集合的关系(包含、相等、子集、真子集)以及集合的运算律和推导定理等。

5.组合数学:组合数学是研究物体的组合与排列问题的数学分支。

它包括排列、组合、分配、生成函数等内容,经常应用于计数和概率问题中。

6.图论:图论是用来描述物体间其中一种关系的图形结构的数学理论。

它研究的对象是由顶点和边构成的图,包括无向图、有向图、带权图等。

图论研究的内容包括图的性质、连通性、路径、回路、树、图的着色等。

7.代数系统:代数系统是一种由一组元素及其相应的运算规则构成的数学结构。

常见的代数系统有群、环、域、格等,它们分别研究了集合上的不同运算规律和结构。

8.布尔代数:布尔代数是一种应用于逻辑和计算机的代数系统。

它以真和假为基础,通过逻辑运算(与、或、非)构成了布尔代数。

布尔代数在计算机硬件设计和逻辑推理中广泛应用。

9.图的同构与图的着色:图的同构是指两个图在结构上相同,也就是说,它们具有相同的顶点和边的连接关系。

图的同构判断是一个NP难问题,需要借助于图的着色等方法来判断。

图的着色是给图的顶点分配颜色,使得相邻顶点的颜色不同。

离散数学之1—命题逻辑

离散数学之1—命题逻辑
pq 的逻辑关系:p为 q 的充分条件, 或者:q为 p 的必要条件。 注意:当 p 为假时,pq恒为真。 实例: 如果天气好,我就去游玩。 p → q 如果我得到这本小说,我将读完它。 p → q 如果雪是黑的,那么太阳从西方升起。 p → q
28
蕴涵联结词的实例
我将去旅游,仅当我有时间。 p: 我去旅游 q: 我有时间 p→q p: 不下雨 q: 我骑自行车上班 只要不下雨,我就骑自行车上班 p→q 只有不下雨,我才骑自行车上班。 q→p
说谎者悖论 亚里士多德,古希腊人,是世界
古典形式逻辑
如果这个人说的是假话,既 在中世纪,形式逻辑作为一门独 “我没有说谎”,既他说的是 立的科学得到了发展。 真话,矛盾。
第一篇 数理逻辑
6
数理逻辑创始人
德国哲学家和数学家莱布 尼茨是德国最重要的自然 科学家、数学家、物理学 家和哲学家,一个举世罕 见的科学天才,和牛顿同 为微积分的创建人。 莱布尼茨是现在公认的数 理逻辑创始人,他的目的 是建立一种“表意的符号 语言”,其中把一切思维 推理都化归为计算。实际 上这正是数理逻辑的总纲 领。
29
蕴涵联结词的实例
除非你努力,否则你不能成功。 表示p q的常用词: 除非你努力,你才能成功。 p是q的充分条件 p: 你努力 q: 你成功 q是p的必要条件 p → q 或 q → p 如果(若)p,则q p 0 0 1 1 q 0 1 0 1 p 1 1 0 0
只要p,就q q qp pq 只有q 才p 1因为p所以 1 q 1 0p仅当q0 0 才p 1除非q, 1 1 p 0除非q,否则非 1 1
数理逻辑
“事实上,它们(程 序设计)或者就是 数理逻辑,或者是 用计算机语言书写 的数理逻辑,或者 是数理逻辑在计算 机上的应用。”

离散数学第3章 命题逻辑

离散数学第3章 命题逻辑

0
0
0
1 1 0 0
1 0 1 0
0
13

一般来说, 只要不是非常明显的不可兼就使用.


例 p: 今天晚上我在寝室上自习, q :今天晚上我去电影 院看电影. 今天晚上我在寝室上自习或去电影院看电影。 p q.
14
5. 蕴涵(条件)联结词 : p q p: 我有时间, q : 我去看望我的父母. p q : 如果我有时间, 那么我去看望我的父母 . “”相当于“如果…那么…”, “若…则…”,等. p q 可读作“(若)p则q”. p称为前件, q称为后件.
p 1 1 0 0 q 1 0 1 0 pq 1 1 1 0
12
4. 异或联结词 : p q “不可兼或”, 它表示两者不能同时为真


例 p: 明天去深圳的飞机是上午八点起飞, q :明天去深圳 的飞机是上午八点半起飞. p q: 明天去深圳的飞机是上午八点或上午八点半起飞 . p 1 1 0 q 1 0 1 pq 0 1 1 p q pq 1 1 1


2









判断下列语句是否是命题. 2 + 3 = 5. √ 大熊猫产在我国东北. √ x > 3. 立正! 这朵花真漂亮! 你喜欢网络游戏吗? 1+1=10. √ 火星上有生物. √ 我说的都是假话. 小王和小李是同学. √ 你只有刻苦学习,才能取得好成绩. √
3
2. 命题的真值 命题的真值就是命题的逻辑取值. 经典逻辑值只有两个: 1和0 在数理逻辑中, 更多时候逻辑真是用 T(True) 或 t, 逻辑假用 F(False) 或 f 表示的.

离散数学 第6章 命题逻辑

离散数学 第6章 命题逻辑

(P Q) R m1 m3 m5 m6 m7 (1,3,5,6,7)
三、主合取范式
如组成合取范式的每一个括号中都包括所有的命题 变项或其否定形式,则该合取范式称为主合取范式。 在主合取范式中的每一个括号是一个包括所有的命题 变项或其否定形式的简单析取式,称为大项。 如果将大项中各命题变项看成为0,其否定看成为1, 按字母顺序排列后的二进制数为i,该大项表示为 M i , 注意:M 1不是 (P Q R) ,而是 ( P Q R) 例如,在某命题公式A中P,Q,R为(0,0,1)和(1,1,1)时真 值为0,则A的主合取范式可记作为:
(P Q R) (P Q R) (1,7)
由主析取范式可直接求出主合取范式
例如,上面的例3 ( P Q) R 主析取范式已经求得,为 那么,它的主合取范式为:
(1,3,5,6,7)
( P Q R) ( P Q R) (P Q R)
5。等价 如果两个命题P和Q有 P Q P Q 的真值表 同时又有 Q P 则记作 P Q P Q P Q P Q 就是 ( P Q) (Q P) 0 0 1 合取、析取和等价都满足交换 0 1 0 律,而蕴含是不满足交换律的。 1 0 0 P 例如, Q Q P , P Q Q P 1 1 1 P Q Q P 在一个命题公式中如果没有括号, 各种联结词的运算顺序从先到后依次为:
例题5: 用真值表证明命题公式P ( P Q R) 是重言式 解: P ( P Q R) P Q R PQ R 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1

离散数学_屈婉玲_耿素云_张立昂_主编_高等教育出版社_课后最全答案

离散数学_屈婉玲_耿素云_张立昂_主编_高等教育出版社_课后最全答案

第一章命题逻辑基本概念课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.4.因为p与q不能同时为真.5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.返回第二章命题逻辑等值演算本章自测答案5.(1):∨∨,成真赋值为00、10、11;(2):0,矛盾式,无成真赋值;(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;7.(1):∨∨∨∨⇔∧∧;(2):∨∨∨⇔∧∧∧;8.(1):1⇔∨∨∨,重言式;(2):∨⇔∨∨∨∨∨∨;(3):∧∧∧∧∧∧∧⇔0,矛盾式.11.(1):∨∨⇔∧∧∧∧;(2):∨∨∨∨∨∨∨⇔1;(3):0⇔∧∧∧.12.A⇔∧∧∧∧⇔∨∨.第三章命题逻辑的推理理论本章自测答案6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*1)在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取A为p,B为q时,*1为假言推理定律,即(p→q)∧p→q ⇒ q(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*2)可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等(p→q)∧q→p⇔(┐p∨q) ∧q →p⇔q →p⇔┐p∨┐q⇔⇔∨∨从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.9.设p:a是奇数,q:a能被2整除,r:a:是偶数推理的形式结构为(p→q┐)∧(r→q)→(r→┐p) (记为*)可以用多种方法证明*为重言式,下面用等值演算法证明:(p→┐q)∧(r→q)→(r→┐p)⇔(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r) (使用了交换律)⇔(p∨q)∨(┐p∧r)∨┐q∨┐r⇔(┐p∨q)∨(┐q∧┐r)⇔┐p∨(q∨┐q)∧┐r⇔110.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.推理的形式结构为(p→q)∧┐p→(┐q∧┐r)⇔(┐p∨q) ∧┐p→(┐q∧┐r)⇔┐p→(┐q∧┐r) (使用了吸收律)⇔p∨(┐q∧┐r)⇔∨∨∨由于主析取范式中只含有5个W极小项,故推理不正确.11.略14.证明的命题序列可不惟一,下面对每一小题各给出一个证明① p→(q→r)前提引入② P前提引入③ q→r①②假言推理④ q 前提引入⑤ r③④假言推理⑥ r∨s前提引入(2)证明:① ┐(p∧r)前提引入② ┐q∨┐r①置换③ r前提引入④ ┐q ②③析取三段论⑤ p→q前提引入⑥ ┐p④⑤拒取式(3)证明:① p→q前提引入② ┐q∨q①置换③ (┐p∨q)∧(┐p∨p) ②置换④ ┐p∨(q∧p③置换⑤ p→(p∨q) ④置换15.(1)证明:① S结论否定引入② S→P前提引入③ P①②假言推理④ P→(q→r)前提引入⑤ q→r③④假言推论⑥ q前提引入⑦ r⑤⑥假言推理(2)证明:① p附加前提引入② p∨q①附加③ (p∨q)→(r∧s)前提引入④ r∧s②③假言推理⑤ s④化简⑥ s∨t⑤附加⑦ (s∨t)→u前提引入⑧ u⑥⑦拒取式16.(1)证明:① p结论否定引入② p→ ┐q前提引入③ ┐q ①②假言推理④ ┐r∨q前提引入⑤ ┐r③④析取三段论⑥ r∧┐s前提引入⑦ r⑥化简⑧ ┐r∧r⑤⑦合取(2)证明:① ┐(r∨s)结论否定引入② ┐r∨┐s①置换③ ┐r②化简④ ┐s②化简⑤ p→r前提引入⑥ ┐p③⑤拒取式⑦ q→s前提引入⑧ ┐q④⑦拒取式⑨ ┐p∧┐q⑥⑧合取⑩ ┐(p∨q)⑨置换口p∨q前提引入⑾①口┐(p∨q) ∧(p∨q) ⑩口合取17.设p:A到过受害者房间,q: A在11点以前离开,r:A犯谋杀罪,s:看门人看见过A。

离散数学 第1章 命题逻辑的基本概念

离散数学 第1章 命题逻辑的基本概念

4. 蕴涵式与蕴涵联结词“→” 定义 1.4 设 p, q 为二命题,复合命题“如果 p, 则 q”称作 p 与 q 的 蕴涵式,记作 p→q,并称 p 是蕴涵式的前件,q 为蕴涵式的后件, →称作蕴涵联结词,并规定,p→q 为假当且仅当 p 为真 q 为假. 说明: (1)p→q 的逻辑关系:q 为 p 的必要条件 (2) “如果 p, 则 q 的不同表述法很多: 若 p,就 q 只要 p,就 q p 仅当 q 只有 q 才 p 除非 q, 才 p 或除非 q,否则非 p,…. (3)当 p 为假时,p→q 为真,可称为空证明 (4) 常出现的错误:不分充分与必要条件
3. 析取式与析取联结词“∨” 定义 1.3 设 p, q 为二命题,复合命题“p 或 q”称作 p 与 q 的析 取式,记作 p∨q,∨称作析取联结词,并规定 p∨q 为假当且仅 当 p 与 q 同时为假. 例 将下列命题符号化 (1)2 或 4 是素数. (2)2 或 3 是素数. (3)4 或 6 是素数. (4)小元元只能拿一个苹果或一个梨. (5)王小红生于 1975 年或 1976 年. (1)—(3)为相容或 (4)—(5)为排斥或 在符号化时(5)可有两种形式,而(4)则不能
离散数学
高等教育出版社
课程简介
• 离散数学是现代科学的一个重要分支。 离散数学是现代科学的一个重要分支。 • 离散数学的研究对象是离散量,一切以 离散数学的研究对象是离散量, 离散现象作为其研究对象或对象之一的数 学均称为离散数学, 学均称为离散数学,其研究各种各样的离 散量的结构及之间的关系。 散量的结构及之间的关系。 • 离散数学不仅在基础数学研究中具有极 其重要的地位,在其它如计算机科学、 其重要的地位,在其它如计算机科学、编 码和密码学、物理、化学、生物等学科中 码和密码学、物理、化学、 均有重要应用。 均有重要应用。

离散数学第一章 命题逻辑

离散数学第一章  命题逻辑
4/5/2014 8:53 PM chapter1 10
1.2 联结词
2、合取 ∧
Proposition Logic 命题逻辑
P∧Q是P和Q的合取, 读做“P与Q”或“P并且Q”。
P 0 0 1 1 Q 0 1 0 1 P ∧Q 0 0 0 1
如: P: 王华的成绩很好。
Q: 王华的品德很好。 P∧Q: 王华的成绩很好并且品德很好。
对,成立,则真值为真,T,1
错,不成立,则真值为假,F,0
断言是一陈述语句。一个命题是一个或真或假而不能 两者都是的断言。如果命题是真, 我们说它的真值为真; 如果命题是假,我们说它的真值是假。
4/5/2014 8:53 PM chapter1 2
1.1 命题及其表示法
【例1 】判定下列各语句是否为命题: (是) (a) 巴黎在法国。 (是) (是) (c) 3+2=5 (d) 别的星球上有生物。 (是) (b) 煤是白色的。 (e) 全体立正。 (f) 明天是否开大会?
从真值表可知P∨Q为真, 当且仅当P或Q至少有一为真。
4/5/2014 8:53 PM chapter1 12
1.2 联结词
Proposition Logic 命题逻辑
“或”字常见的含义有两种: 一种是“可兼或”, 如上
例中的或, 它不排除小王既喜欢唱歌又喜欢跳舞这种情况。
一种是“排斥或”(异或), 例如“人固有一死, 或重于泰 山, 或轻于鸿毛”中的“或”, 它表示非此即彼, 不可兼得。 运算符∨表示可兼或, 排斥或以后用另一符号表达。 如:(1)小李明天出差去上海或去广州。
所以,“如果P则Q”, “只要P则Q”,只有Q才P”, “仅当Q 则P”都可符号化为P→Q 的形式。

离散数学命题逻辑知识点总结

离散数学命题逻辑知识点总结

离散数学命题逻辑知识点总结《离散数学命题逻辑知识点总结》命题逻辑是数理逻辑的一个分支,研究的是命题之间的关系以及它们的推理规则。

以下是离散数学命题逻辑的一些重要知识点的总结:1. 命题:命题是一个陈述句,它要么是真的,要么是假的,但不能同时既是真的又是假的。

2. 逻辑运算符:逻辑运算符用于组合和操作命题。

常见的逻辑运算符有:“与(∧)”、“或(∨)”、“非(¬)”、“蕴含(→)”和“等价(↔)”。

3. 真值表:真值表用于表示逻辑运算符的结果。

通过列出所有可能的命题组合,并在每个组合下计算逻辑运算符的结果,可以得到真值表。

4. 合取范式和析取范式:合取范式是通过将命题用“与”运算符连接起来得到的,析取范式是通过将命题用“或”运算符连接起来得到的。

将命题转化为它们的合取范式或析取范式,能方便地进行逻辑运算。

5. 重言式和矛盾式:重言式是指对于所有可能的命题组合,逻辑表达式都为真的命题。

矛盾式是指对于所有可能的命题组合,逻辑表达式都为假的命题。

重言式和矛盾式具有重要的推理性质。

6. 推理规则:推理规则是用来推导逻辑表达式的一些基本规则。

常见的推理规则有“假言推理法”、“逆命题推理法”、“逆否命题推理法”和“拒取式推理法”。

7. 等价关系和等价演算:等价关系是指两个逻辑表达式具有相同的真值。

等价演算是一种通过运用逻辑等价关系来简化逻辑表达式的方法。

通过应用等价演算,可以将复杂的逻辑表达式简化为更简单的形式。

8. 形式化证明:在命题逻辑中,形式化证明是用推理规则和等价演算来推导出逻辑表达式的一系列步骤。

形式化证明的目的是证明一个逻辑表达式的正确性。

离散数学命题逻辑是理解和应用数理逻辑的基础。

通过掌握上述知识点,我们能够准确地分析和推理命题逻辑问题,并在解决问题时运用逻辑规律和推理方法。

对于计算机科学、人工智能和数学等领域的研究和应用,命题逻辑具有重要的理论和实际意义。

离散数学命题逻辑公式

离散数学命题逻辑公式

离散数学命题逻辑公式1. 命题逻辑的基本概念命题逻辑是离散数学的一个重要分支,主要研究命题之间的关系以及命题的推理规则。

命题逻辑中的基本概念包括:命题:命题是描述客观事实真假的句子。

命题的真假值只有两个:真和假。

命题联结词:命题联结词用于将两个或多个命题连接起来,形成新的命题。

常见的命题联结词有:否定(¬)、合取(∧)、析取(∨)、蕴含(→)和等价(↔)。

命题公式:命题公式是由命题和命题联结词组成的表达式。

命题公式的真假值取决于其组成命题的真假值。

2. 命题逻辑的推理规则命题逻辑的推理规则是用于从给定的命题公式推导出新命题公式的规则。

常见的推理规则有:三段论:三段论是一种由两个前提和一个结论组成的推理形式。

如果两个前提都是真的,那么结论也一定是真的。

例如:所有哺乳动物都是恒温动物。

猫是哺乳动物。

所以,猫是恒温动物。

假言推理:假言推理是一种由一个条件句和一个结论组成的推理形式。

如果条件句是真的,那么结论也一定是真的。

例如:如果今天下雨,那么我就不出门。

今天下雨。

所以,我不出门。

选言推理:选言推理是一种由两个或多个分支组成的推理形式。

如果其中一个分支是真的,那么结论也一定是真的。

例如:要么今天下雨,要么明天下雨。

今天下雨。

所以,明天不会下雨。

3. 命题逻辑的应用命题逻辑在计算机科学、人工智能、哲学等领域有着广泛的应用。

在计算机科学中,命题逻辑用于设计和分析逻辑电路、编译器和操作系统等。

在人工智能中,命题逻辑用于知识表示和推理。

在哲学中,命题逻辑用于研究逻辑的本质和推理的有效性。

4. 结语命题逻辑是离散数学的一个重要分支,主要研究命题之间的关系以及命题的推理规则。

命题逻辑的应用非常广泛,包括计算机科学、人工智能、哲学等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学(第3版) 屈婉玲 耿素云 张立昂 编著 清华大学出版社出版
第2章
命题逻辑
上海大学 谢 江
1
Hale Waihona Puke 第2章命题逻辑• 2.1 命题逻辑基本概念 • 2.2 命题逻辑等值演算 • 2.3 范式
• 2.4 推理
2
2.1 命题逻辑基本概念
• 2.1.1 命题与联结词
– 命题与真值(简单命题, 复合命题) – 联结词(¬ , , , , )
pq 的逻辑关系: p与q互为充分必要条件: (p→q)∧(q→p)
例如 这件事张三能做好, 且只有张三能做好 设 p:张三做这件事, q: 这件事做好了。形式化为: pq
20
2.1.1 命题与联结词
实例
例6 求下列复合命题的真值 (1) 2+2=4 当且仅当 3+3=6. (2) 2+2=4 当且仅当 3是偶数. (3) 2+2=4 当且仅当 太阳从东方升起. (4) 2+2=5 当且仅当 美国位于非洲. 1 0 1 1
15
2.1.1 命题与联结词
联结词与复合命题(续)
定义2.4 “如果 p,则 q” 称作 p与q 的蕴涵式, 记作 p q, 并称 p是蕴涵式的前件, q为蕴涵式的后件. 称作蕴涵 联结词, 规定, p q 为假当且仅当 p 为真且 q 为假.
例如 如果明天天气好, 我们就出去郊游 设 p:明天天气好, q: 我们出去郊游, pq 形式化为
实例
例3 将下列命题符号化 (1) 2或4是素数. (2) 2或3是素数. (3) 4或6是素数. (4) 元元只能拿一个苹果或一个梨. (5) 王晓红生于1975年或1977年. 解 记 p:2是素数, q:3是素数, r: 4是素数, s: 6是素数 (1) p∨r, 真值: 1 (2) p∨q, 真值:1 (3) r∨s, 真值: 0 (4) 记 t: 元元拿一个苹果,u:元元拿一个梨 t∨ u ? × (5) 记v:王晓红生于1975年,w:王晓红生于1977年 (v∧w)∨(v∧w) v∨ w ? √
(1) pq,真值为 1 (2) pq, 真值为 1
19
(3) pq ,真值为0 (4) p q, 真值为 1
2.1.1 命题与联结词
联结词与复合命题(续)
定义2.5 “p当且仅当q”称作p与q的等价式, 记作 pq, 称作等价联结词. 并规定 pq 为真当且仅当 p与q同时 为真或同时为假.
不是!
p,q,r,…是命题常数还是命题变项? 根据上下文来确定 具体的简单命题为命题常项,如p: 3+3=6; q: 雪是白色的
24
2.1.2 命题公式及其分类
合式公式(续)
将命题变项用联结词和圆括号按一定的逻辑关系联结起 来的符号串称为合式公式或命题公式,简称公式. 当使用联 结词集{, ∧, ∨, →, ↔}中的联结词时: 定义2.6 合式公式 (命题公式, 公式) 递归定义如下: (1) 单个命题常项或变项是合式公式,并称作原子合式公式 (2) 若A是合式公式, 则 (A)也是合式公式 (3) 若A, B是合式公式, 则(AB), (AB), (AB), (AB)也 是合式公式 (4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式
26
2.1.2 命题公式及其分类
合式公式的层次
定义2.7 (1) 单个命题变项或命题常项是 0 层公式 2) 称A是n+1(n≥0)层公式是指下面情况之一: (a) A=B, B是n层公式 (b) A=BC, 其中B,C分别为 i 层和 j 层公式, 且 n=max(i, j) (c) A=BC, 其中B,C的层次及n同(b) (d) A=BC, 其中B,C的层次及n同(b) (e) A=BC, 其中B,C的层次及n同(b) 3) 若公式A的层次为 k,则称A是 k层公式. 例如 p 0层 (pq)r 3层 命题公式的真值? p 1层 pq ((pq) r)(rs) 2层 4层
(1) p∧q
(2) p∧q
(3) p∧q
r∧ s
(4) 记 r:张辉是三好生, s:王丽是三好生, (5) 简单命题, 记 t:张辉与王丽是同学
12
2.1.1 命题与联结词
联结词与复合命题(续)
定义2.3 “p或q”称作p与q的析取式,记作p∨q, ∨称作析取 联结词, 并规定p∨q为假当且仅当p与q同时为假.
16
2.1.1 命题与联结词
蕴涵联结词(续)
pq 的逻辑关系: q为 p的必要条件, p为 q的充分条件
“如果 p,则 q” 的多种表述方式: 若 p,就 q 只要 p, 就 q p 仅当 q 只有q 才 p 除非 q, 才 p 除非 q, 否则非 p 当 p为假时,pq为真(不管q为真, 还是为假) 在自然语言中,“如果p,则q”中的前件和后件往往具有某 种内在联系,而在数理逻辑中,p与q可以无任何内在联系
9
p并且q
2.1.1 命题与联结词
联结词与复合命题
定义2.1 “非p”(或 “p的否定”)称为p的否定式, 记作 p, 称作否定联结词, 规定 p为真当且仅当 p为假
例如 p:2是合数, p: 2不是合数,
p为假, p为真
10
2.1.1 命题与联结词
联结词与复合命题
定义 2.2 “ p 并且 q”( 或“ p 与 q”) 称为 p 与 q 的合取式 , 记作 p∧q, ∧称作合取联结词, 规定 p∧q为真当且仅当 p与q 同时为真
17
2.1.1 命题与联结词
实例
例4 设 p:天冷, q: 小王穿羽绒服, 将下列命题符号化 (1) 只要天冷,小王就穿羽绒服. (2) 因为天冷,所以小王穿羽绒服. (3) 若小王不穿羽绒服,则天不冷. (4) 只有天冷,小王才穿羽绒服. (5) 除非天冷,小王才穿羽绒服. (6) 除非小王穿羽绒服,否则天不冷. (7) 如果天不冷,则小王不穿羽绒服. (8) 小王穿羽绒服仅当天冷的时候. pq pq qp 或 pq qp qp pq pq 或 qp qp
18
注意: pq 与 qp 等值(真值相同)
2.1.1 命题与联结词
实例
例5 将下列命题符号化,并指出真值 (1) 如果3+3=6,则雪是白色的. (2) 如果3+3≠6,则雪是白色的. (3) 如果3+3=6,则雪不是白色的. (4) 如果3+3 ≠ 6,则雪不是白色的.
解:设 p:3+3=6,p的真值为 1. q:雪是白色的,q的真值也为 1.
• 2.2.2 命题公式及其分类
–命题公式及其赋值 –真值表 –命题公式的分类
3
2.1.1 命题与联结词
推理
前提 => 结论 例如推理 若华盛顿是美国的首都,则多伦多是加拿大的 首都。华盛顿是美国的首都,所以多伦多是加拿大的首都. 推理的组成: 联结词 + 陈述句
4
2.1.1 命题与联结词
命题及其真值
例如 p: 多伦多是加拿大的首都. 真值为 0 q: ������是无理数. r:火星上有生命.
真值为1 真值现在未知
s:2050年元旦北京是晴天. 真值现在未知
8
2.1.1 命题与联结词
简单命题与复合命题
复合命题:由简单命题通过联结词联结而成的陈述句
例如 1. 如果明天天气好, 我们就出去郊游 设 p: 明天天气好, q: 我们出去郊游, 如果p, 则q 2. 张三一面喝茶一面看报 设 p: 张三喝茶, q: 张三看报, 3. 多伦多不是加拿大的首都 设 p:多伦多是加拿大的首都,不是 p 4. 2是素数当且仅当3也是素数 设 s:2是素数,t:3是素数, s 当且仅当 t
命题及其真值
说明: • 命题是命题逻辑中最小的单位(命题逻辑中,对命题的 成分不再细分(如主语、谓语等)了).. • 判定给定语句是否为命题,要分两步: 1)判断是否为陈述句; 2)判断是否有唯一的真值.
6
2.1.1 命题与联结词
实例
例1 下列句子中那些是命题? (1) 北京是中华人民共和国的首都. (2) 2 + 5 =8. (3) x + 5 > 3. (4) 你会开车吗? (5) 2050年元旦北京是晴天. (6) 这只兔子跑得真快呀! (7) 请关上门! (8) 我正在说谎话.
1.可以有多种自然语 言表达;2.不是所有 的“和”和“与”都 使用联结词∧
例如 p:2是偶数, q: 2是素数, p∧q: 2是偶素数, p为真, q为真, p∧q为真
11
2.1.1 命题与联结词
实例
例2 将下列命题符号化. (1) 王晓既用功又聪明. (2) 王晓不仅聪明,而且用功. (3) 王晓虽然聪明,但不用功. (4) 张辉与王丽都是三好生. (5) 张辉与王丽是同学. 解 记 p:王晓聪明, q:王晓用功
真命题 假命题 真值不确定 疑问句 真值确定, 但未知 感叹句 祈使句 悖论
7
(1),(2),(5) 是命题, (3),(4),(6)~(8) 都不是命题
2.1.1 命题与联结词
简单命题与复合命题
简单命题(原子命题):简单陈述句,无联结词成的命题
简单命题的符号化:用p, q, r, … ,pi,qi,ri (i≥1)表示 用“1”表示真,用“0”表示假
命题: 判断结果唯一的陈述句 命题的真值: 判断的结果,真或假 真命题: 真值为真的命题 假命题: 真值为假的命题
注意: 命题的两个特点 • 感叹句、祈使句、疑问句都不是命题 • 陈述句中的悖论以及判断结果不唯一确定的也不是命题 • 任何命题的真值都是唯一的
推理的基本要素:联结词+命题
5
2.1.1 命题与联结词
25
2.1.2 命题公式及其分类
合式公式(续)
说明: (1) 定义给出的合式公式的定义方式称为归纳定义方式. (2) 定义中的A,B是表示任意的合式公式,而不是某个 具体的公式. (3) 在不影响运算顺序时, 括号可以省去 例如 0, p, pq, (pq)(pr), pq r, (pq)r
相关文档
最新文档