高炉炼铁与非高炉炼铁技术比较
高炉炼铁工艺的演变与创新从传统到现代

高炉炼铁工艺的演变与创新从传统到现代随着科学技术的不断发展,高炉炼铁工艺也经历了漫长的历史发展。
从传统到现代,高炉炼铁工艺在不断演变与创新,以适应和满足时代的需求。
本文将从多个方面探讨高炉炼铁工艺的发展历程,并分析其演变和创新对于铁工业的影响。
一、传统高炉炼铁工艺的特点及问题传统高炉炼铁工艺是指早期的高炉炼铁方法,其特点是炉容相对较小,燃料多为木炭或焦炭,矿石和燃料由上部装料口输入,铁水由炉底出口排出。
传统高炉炼铁工艺在一定程度上满足了当时的铁产量需求,但也存在一些问题:1. 低炉容限制了生产能力:由于传统高炉容积较小,无法进行大规模的生产,限制了铁产量的增长。
2. 能源利用效率低:燃料多为木炭或焦炭,其燃烧效率较低,导致能源浪费。
3. 铁矿石利用率较低:传统高炉炼铁工艺无法充分利用矿石中的铁资源,大量铁含量较低的矿石无法被利用。
二、现代高炉炼铁工艺的创新与改进为了提高铁产量、能源利用效率和矿石利用率,现代高炉炼铁工艺进行了一系列的创新与改进。
1. 高炉容积的增大:现代高炉的炉容相对较大,能够进行大规模的生产,提高了铁产量。
2. 燃料的改进:现代高炉炼铁工艺多采用煤炭作为主要燃料,相比木炭或焦炭,煤炭的燃烧效率更高,能源利用效率得到提升。
3. 热交换技术的应用:现代高炉工艺中引入了热交换技术,将高温废气中的热能回收,用于预热进料和蒸汽发电,提高了能源利用效率。
4. 炉渣处理技术的改进:现代高炉炼铁工艺采用了先进的炉渣处理技术,通过加入矿粉、炼钢炉渣等辅助剂,可以调整炉渣的性质,提高铁矿石利用率。
5. 连续铸造技术的应用:现代高炉炼铁工艺中广泛使用了连续铸造技术,将熔融的铁水直接注入连续铸造机,实现了自动连续生产,提高了生产效率。
三、高炉炼铁工艺演变与创新的影响高炉炼铁工艺的演变与创新对铁工业产生了深远的影响。
1. 提高产量和效益:现代高炉的产能大大提高,生产效率显著提升,使得铁工业能够满足不断增长的市场需求。
炼铁技术

串讲概述一、炼铁生产的方法:1.高炉法炼铁.2.非高炉法炼铁:直接还原法,熔融还原法.二、钢和铁的区分:以含碳量区分:熟铁:C<0.02% 钢:C=0.02%~1.7% 生铁:C>1.7%三、炼铁生产工艺流程:1.高炉炼铁生产工艺流程: 简图2.高炉本体:内型:炉喉、炉身、炉腰、炉腹、炉缸。
外壳为金属结构,内衬耐火材料,中间是冷却设备。
3.除本体外,高炉还有以下几大系统:(1)上料系统:职责:储存、混匀、筛分、称量原、燃料,并运到炉顶受料漏斗。
(2)装料系统:职责:按要求将炉料装入炉内和煤气密封。
(3)送风系统:职责:提供和加热空气,并送入炉内,保证足够的风量和风温。
(4)喷吹系统:职责:将煤粉或重油送入炉内。
(5)煤气清洗系统:职责:收集和清洗煤气。
(6)渣铁处理系统:职责:定期排放炉内渣铁并运走,保证高炉连续生产。
(7)动力系统:职责:为高炉的正常生产提供"风、水、电、气"等能源.是高炉正常生产的保障.四、高炉炼铁主要经济技术指标:1.高炉利用系数:指每昼夜每立方米高炉有效容积生产的合格炼钢生铁量。
2.冶炼强度:指每昼夜、每立方米高炉有效容积消耗的干焦量。
干焦耗用量冶炼强度=—————————————(t/(m3.d))有效容积×实际工作日3.综合冶炼强度:除干焦外,还考虑有喷吹的其他类型的辅助燃料。
综合干焦耗用量综合冶炼强度=————————————(t/(m3.d))有效容积×实际工作日4.焦比:冶炼一吨铁消耗的干焦量。
干焦耗用量(kg)入炉焦比=————————合格生铁产量(t)5.综合焦比:生产每吨生铁所消耗的干焦数量以及各种辅助燃料折算为干焦之总和。
干焦数量+Σ喷吹燃料×折算系数综合焦比= —————————————————(kg/t)合格生铁产量综合干焦耗用量= ——————————(kg/t)合格生铁产量6.休风率:高炉休风停产时间占规定日历作业时间的百分数。
非高炉炼铁

非高炉炼铁一、非高炉炼铁的发展高炉炼铁是炼铁生产的主题,经过长期的发展,它的技术已经非常成熟。
但它也存在固有的不足,即对冶金焦的强烈依赖。
但随着焦煤资源的日渐贫乏,冶金焦价格越来越高。
因此,使炼铁生产摆脱对冶金焦的依赖是开发非高炉炼铁的原动力。
经过数百年的发展,至今已形成了以直接还原和熔融还原为主的现代化非高炉炼铁工业体系。
现代化钢铁工艺流程主体由四部分构成,焦炉、造块设备(例如烧结机)、高炉和转炉。
高炉使用冶金焦为主题能源,他是由焦煤经炼焦得到。
高炉的产品是液态生铁,它经转炉冶炼成转炉钢。
熔融还原的产品相当于高炉铁水。
高炉使用冶金焦,熔融反应则使用非焦煤。
这样就使炼铁摆脱了对冶金焦的依赖。
直接还原的产品是在熔点以下还原得到固态金属铁,称为直接还原铁(DRI),又称海绵铁。
直接还原的流程可分为煤基直接还原、气基直接还原和电热直接还原三大类。
煤基直接还原以煤为主要能源,主要是使用回转炉为主体设备的流程。
气基直接还原以天然气为主题能源。
包括竖炉、反应罐和流化床流程。
电热直接还原以电力为主要能源,是使用电热竖炉直接还原流程。
熔融还原的主体能源主要分为三种:非焦煤,焦炭和电力。
熔炼设备是熔融还原流程的精华。
还原设备决定了适用原料的性质。
例如流化床可直接处理粉料,竖炉则适用于处理块状炉料。
二、重点设备分析直接还原的核心装置是一个还原单元。
占有重要地位的还原设备有竖炉,反应罐,回转炉和流化床。
熔融还原的核心装置时一个还。
原单元和一个熔炼造气单元。
最受重视的还原设备是竖炉和流化床,最重要的熔炼造气设备是煤炭流化床和铁浴炉。
竖炉是一种成熟的还原设备。
除了产量在海绵铁工业中高居榜首外,熔融还原也将它作为还原单元最实际的选择。
目前唯一的工业化二步法熔融还原流程COREX即使用竖炉还原单元。
作为还原设备,流化床的地位非常微妙。
海绵铁工业中流化床的生产能力并不大。
但他具有一个竖炉无法比拟的优点:可直接使用粉矿。
这个特点使流化床成为熔融还原中最受青睐的还原设备。
6-非高炉炼铁

6非高炉炼铁6.l概述非高炉炼铁法是高炉炼铁法之外,不用焦炭炼铁的各种工艺方法的总称。
按工艺特征,产品类型和用途,主要分为直接还原法和熔融还原法两大类。
6.1.1直接还原法与熔融还原法直接还原(DirectReduction)法是指不用高炉而将铁矿石炼制成海绵铁的生产过程。
直接还原铁是一种低温下固态还原的金属铁。
它未经熔化而仍保持矿石外形,但由于还原失氧形成大量气孔,在显微镜下观察形似海绵,因此也称海绵铁。
直接还原铁的含碳量低(〈2%),不含硅锰等元素,还保存了矿石中的脉石。
因此不能大规模用于转炉炼钢,只适于代替废钢作为电炉炼钢的原料。
熔融还原(SmeltingReduction)法指在熔融状态下把铁矿石还原成融态铁水的非高炉炼铁法。
它以非焦煤为能源,得到的产品是一种与高炉铁水相似的高碳生铁。
适合于作氧气转炉炼钢的原料。
近年来,非高炉炼铁法发展比较快,其原因是:(1)不用焦炭炼铁。
高炉冶炼需要高质量冶金焦,而从世界矿物燃料的总储量来看,煤炭占92%左右,而焦煤只占煤炭总储量的5%,且日渐短缺,价格越来越高。
非高炉炼铁可以使用非炼焦煤和天然气作燃料与还原剂,对缺少焦煤资源的国家和地区提供了发展钢铁工业的巨大空间。
(2)高炉炼铁要求强度好的焦炭和块状铁料。
必须有炼焦和铁矿粉造块等工艺配套,工艺环节多,经济规模大,需要大的原料基地和巨额投资。
非高炉炼铁法使用非焦煤或天然气,可使用矿块或直接使用粉矿,市场适应性强。
(3)科学技术的进步,对钢材质量和品种提出了更高的要求。
现代电炉炼钢技术为优质钢的生产提供了有效手段,但由于废钢的循环使用,杂质逐渐富集,而一些杂质元素在炼钢过程又很难去除,无法保证钢的质量,并限制了电炉法冶炼优质钢种的优势。
非高炉炼铁法能为炼钢提供成分稳定、质量纯净的优质原料,为炼钢设备潜能的发挥,提高企业的经济效益,提供了有力的支持。
(4)随着钢铁工业的发展,氧气转炉和电炉炼钢逐渐取代平炉,废钢消耗量迅速增加,废钢供用量日感紧张,非高炉生产的海绵铁、粒铁等是废钢的极好替代品。
高炉冶炼炼铁技术探讨

高炉冶炼炼铁技术探讨摘要:高炉冶炼炼铁技术是钢铁生产的关键工艺,高炉炼铁的技术水平不仅关系着钢铁冶炼质量,也影响着生产的能源资源消耗,对钢业工业发展有着重要意义。
高炉冶炼炼铁技术具有节约资源、减少污染排放的优点,为了进一步提高能源利用效率,实现低碳环保的高效率冶炼,在实际工作中还需要注意加强冶炼炼铁技术的分析。
高炉冶炼炼铁中应用热压含碳球、控制炉内顶压及含氧量、保持高风温、预防炉身结瘤以及燃烧焦炭等技术,可以进一步提升冶炼效率,减少能耗,促进钢铁工业的发展。
关键词:高炉冶炼;炼铁;技术探讨钢铁是工业发展中必要的原材料,而炼铁技术作为钢铁生产的关键技术条件,探讨高效、节能、环保的炼铁技术对促进工业发展具有重要意义。
高炉冶炼炼铁技术是借助高炉设备进行钢铁冶炼的生产技术,高炉炼铁技术的生产量大、生产效率高、能耗小,是目前钢铁冶炼中比较关键的技术类型。
为了更好发挥高炉冶炼炼铁技术的优势,在钢铁生产中还需要结合具体情况,对常用的技术类型与技术特点进行分析,加强高炉冶炼炼铁技术控制,从而提升炼铁的生产水平。
一、高炉冶炼炼铁技术1、高炉冶炼炼铁技术分析高炉冶铁炼铁技术是利用高炉这一冶炼设备进行炼铁的技术,高炉炉壳由钢板制成,壳内有耐火砖作为内衬,由炉喉、炉身、炉腰、炉缸几部分组成。
高炉外形为圆筒形,设置有出风口、排气口和炼铁进出口,可以将原材料从高炉上端入口投入,经过冶炼后由下端排出,实现钢铁的冶炼。
高炉冶炼炼铁具有一定专业性和复杂性,工作环节包括上料、装料、通风、废弃废渣排除与净化几个步骤[1]。
在实际应用中除了要考虑钢铁冶炼的效果,还要注意煤气净化等工作的重要性。
高炉冶炼炼铁技术是一种生产量大、效率高、能耗小的炼铁技术,可以在达到生产目标的情况下,明显的节约资源与能源,减少污染物排放,具有较强的环保效果,满足低碳生产的需求。
随着高炉冶炼炼铁技术的不断发展,高炉炼铁的工作质量也在不断提升,为钢铁生产提供了良好的技术条件。
非高炉炼铁

3.二步法-KR法(COREX法)工艺介绍
二步法: 将熔融还原
过程分为固相预还 原及熔态终还原并 分别在两个反应器 中完成; 优点:
改善了能量 利用,降低了渣中 FeO浓度。
12
六、非高炉炼铁技术经济指标
1.单位容积利用系数:
每立方米反应器有效容积每天的产品量,即 η=Q/Vu, t/(m3.d)
8
3.使用气体还原剂举例(Midrex法)
工艺过程: 天 然 气 + 净 化 炉 顶 气 (300-
400℃)→混合室→重整炉 (Ni 催 化 剂 ) →900-950 ℃反应:
CH4+H2O=CO+3H2 CH4+CO2=2CO+2H2 还原气→竖炉(炉料炉顶加入) →停留6h →冷却带N2冷却 至100℃ →炉料排出
主要内容
一、概 述 二、非高炉炼铁的特点 三、非高炉炼铁分类 四、直接还原法 五、熔融还原法 六、非高炉炼铁技术经济指标
1
一、概 述
1.概 念 非高炉炼铁法是高炉法之外,不用焦炭
炼铁的各种工艺方法的统称。
2.发展史 1770 年 第 一 个 直 接 还 原 法 专 利 诞 生
→1857 年 提 出 完 整 的 近 代 直 接 还 原 (Chenot)构思→1873建成第一座非高炉 装置→上世纪20年代电炉(矿热炉)炼铁 →70年代具备一定规模→近期又重新成为 研究热点
高炉流程: 矿石A在高炉内升温、
还原、熔化为铁水B→[C] 已达到饱和→在炼钢过程 脱C→再去除多余氧成为成 品钢液; 非高炉流程:
矿石被升温、还原为 海绵铁→在电炉中熔化还 原未还原部分→得到成品 钢液
4
钢铁生产过程产品中氧量、碳量的变化
高炉炼铁简述

(2)规模越来越大型化。 现在已有5000m3以上容积的高炉,日 产生铁万吨以上,日耗矿石近2万t,焦炭等 燃料5kt。 (3)机械化、自动化程度越来越高。 为了准确连续地完成每日成千上万吨原 料及产品的装入和排放,为了改善劳动条 件、保证安全、提高劳动生产率,要求有 较高的机械化和自动化水平。
品位即铁矿石的含铁量,它决定着矿石的 开采价值和入炉前的处理工艺。入炉品位 愈高,愈有利于降低焦比和提高产量,从 而提高经济效益。经验表明,若矿石含铁 量提高1%,则焦比降低2%,产量增加3%。
铁矿石分类及特性
矿石的贫富一般以其理论含铁量的 70% 来 评估。实际含铁量超过理论含铁量的 70% 称富矿。 但这并不是绝对固定的标准。因为它还与 矿石的脉石成分、杂质含量和矿石类型等 因素有关。如对褐铁矿、菱铁矿和碱性脉 石矿含铁量的要求可适当放宽。因褐、菱 铁矿受热分解出H2O和CO2后品位会提高。 碱性脉石矿含 CaO 高,冶炼时可少加或不 加石灰石,其品位应按扣去 CaO 的含铁量 来评价。
1.3 高炼铁原料和燃料
高炉炼铁原料
原料是高炉冶炼的物质基础,其质量 对冶炼过程及冶炼效果影响极大。目 前,炼铁的发展趋势之一就是采用精 料。
铁矿石分类及特性
一、矿石和脉石
矿石是矿物的集合体。但是,在当前科学技术条件 下,能从中经济合理地提炼出金属来的矿物才称为 矿石。矿石的概念是相对的。例如铁元素广泛地、 程度不同地分布在地壳的岩石和土壤中,有的比较 集中,形成天然的富铁矿,可以直接利用来炼铁, 堪称矿石;有的比较分散,形成贫铁矿,用于冶炼 既困难又不经济。
(4)生产的联合性。 从高炉炼铁本身来说,从上料到排放渣 铁,从送风到煤气回收,各系统必须有机 地协调联合工作。从钢铁联合企业中炼铁 工序的地位来说,炼铁工序也是非常重要 的一环,高炉休风或减产会给整个联合企 业的生产带来严重影响。因此,高炉工作 者要努力防止各种事故,保证联合生产的 顺利进行。
非高炉炼铁技术概述

非高炉炼铁技术概述摘要:随着焦煤资源日益减少,高炉炼铁技术发展受到限制,非高炉炼铁成为了日益关注的冶炼技术。
文章阐述了非高炉炼铁技术的发展现状、分类,工艺流程及特点,同时展望了其未来的发展前景。
关键词:非高炉炼铁直接还原熔融还原非焦煤一、引言目前,生铁主要来源于高炉冶炼产品,高炉炼铁技术成熟,具有工艺简单,产量高,生产效率大等优点。
但其必须依赖焦煤,而且其流程长,污染大,设备复杂。
因此,世界各国学者逐渐着手研究和改进非高炉炼铁技术。
二、非高炉炼铁工艺非高炉炼铁是指以铁矿石为原料并使用高炉以外的冶炼技术生产铁产品的方法。
在当今焦煤资源缺乏,非焦煤资源丰富的情况下,非高炉炼铁以非焦煤为能源,不但环保,而且省去了烧结、球团等工序,缩短了流程。
因此非高炉炼铁一直被认为是一种环保节能、投资小、生产成本低的生产工艺。
非高炉炼铁可分为直接还原炼铁工艺和熔融还原炼铁工艺两种。
1.直接还原炼铁工艺直接还原炼铁工艺是一种以天然气、煤气、非焦煤粉为能源和还原剂,在铁矿石软化温度下,将铁矿石中铁氧化物还原成铁的生产工艺。
据统计直接还原冶炼工艺多达40余种,大部分已经实现了大规模工业化生产[1]。
目前,直接还原炼铁工艺主要有气基直接还原、煤基直接还原两大类。
1.1气基直接还原气基直接还原是指用CO或H2等还原气体作还原剂还原铁矿石的炼铁方法。
具有生产效率高、容积利用率高、热效率高、能耗低、操作容易等优点,是DRI(directly reduced iron)生产最主要的方法,约占DRI总产量的90%以上[2]。
气基直接还原代表工艺有HYL反应罐法、Midrex-竖炉法、流化床法等[3]。
HYL反应罐法是由墨西哥希尔萨(HojalataYLamina,HYLSA)公司于20世纪50年代初开发的,其工业化标志着现代化直接还原的开始。
HYL反应罐法具有作业稳定,设备可靠等优点,但其作业不连续,还原气利用差,能耗高及产品质量不均匀。
非高炉炼铁--重点设备介绍

非高炉炼铁--重点设备介绍
非高炉炼铁是指利用非高炉工艺进行炼铁的一种方法。
相比传统高炉炼铁,非高炉炼铁具有投资少、技术先进、环保等优点,因此受到了广泛关注和应用。
在非高炉炼铁的重点设备中,有几个主要的设备需要特别介绍。
首先是直接还原炼铁炉。
直接还原炼铁炉是非高炉炼铁的核心设备,其工作原理是将矿石和还原剂在高温下进行化学反应,最终得到铁水和渣。
这种炉子通常采用旋转式炉体结构,能够高效地进行还原反应,大大提高了炼铁效率。
其次是连续铁水生产系统。
这种系统主要由连续铁水生产装置和相关辅助设备组成,能够实现铁水的连续生产和输送。
相比传统的间歇式炼铁方法,连续铁水生产系统能够更加高效地进行生产,降低能耗和污染物排放。
此外,还有磁选设备。
磁选设备主要用于对原料进行磁选,将其中的铁矿石进行分离。
这些铁矿石经过磁选后可以直接用于炼铁,不需要经过破碎和磨矿等环节,节约了能源和原材料,也减少了对环境的污染。
最后是烧结设备。
烧结设备用于对铁矿石和其他原料进行烧结处理,增加其强度和耐高温性,以便于后续的炼铁过程。
总的来说,非高炉炼铁的重点设备主要包括直接还原炼铁炉、连续铁水生产系统、磁选设备和烧结设备等。
这些设备的运用
使得非高炉炼铁在提高炼铁效率、降低成本、减少环境污染等方面具有显著优势。
随着科技的不断发展,相信非高炉炼铁的设备和工艺会更加完善,为炼铁行业的可持续发展做出更大的贡献。
非高炉炼铁

•非高炉炼铁非高炉炼铁是指除高炉炼铁以外的其它还原铁矿石的方法。
非高炉炼铁可归纳为两大类:直接还原法和熔融还原法,都是炼铁冶金技术中的新工艺。
直接还原法是指在铁矿石熔化温度下把铁矿石还原成海绵铁的炼铁生产过程。
产品叫直接还原铁或海绵铁。
由于低温还原,得到的直接还原铁未能充分渗碳,因而含碳较低(<2%),实际生产中仍需要用电炉精炼成钢。
电炉精炼的主要任务是熔化脱除杂质和调整钢成分•熔融还原法是指一切不用高炉冶炼液态生铁的方法。
它是不用焦炭在一个容器中完成高炉炼铁过程的,基本上不改变目前传统钢铁生产的基本原理。
•非高炉炼铁法发展较快的原因:1 不用焦炭炼铁。
高炉冶炼需要高质量冶金焦,而焦煤从世界储量而言,只占煤总储量的5%,而且日渐短缺,价格越来越高。
非高炉炼铁可以使用非炼焦煤和其它能源作燃料与还原剂。
近几十年来,大量开发了天然气、石油、电和原子能等新能源,为高炉炼铁发展提供了条件。
•2 随着钢铁工业的发展,氧气转炉和电炉炼钢完全取代平炉,废钢消耗量迅速增加,废钢供应量日感紧张,非高炉生产的海绵铁、粒铁等是废钢的极好代用品。
•3 省去了炼焦设备,总的基建费用比高炉炼铁法少。
虽然非高炉炼铁法的生产效率远赶不上高炉,但对缺乏焦煤资源的国家和地区,用于中小型企业生产,前途是光明的。
中国的非高炉炼铁宝钢罗泾熔融还原COREX-30002 COREX炼铁技术概况•熔融还原炼铁技术是近代钢铁工业的前沿技术, 它是以富铁矿或球团矿与煤燃烧后还原成铁水的工艺,俗称无焦炼铁,包括COREX 、DIOS、HIsmelt 和Romelt 等工艺技术。
•COREX法自1989年底正式投产以来,经过15年的工业生产,已积累了大量生产经验,技术成熟,目前COREX 法的总生产能力已超过500 万吨,约占世界生铁产量的1 %,是唯一已用于工业化生产的熔融还原炼铁技术。
COREX炼铁技术概况•COREX 法的主要优点是投资和生产成本低,开停炉容易,特别适合与电炉或转炉短流程钢厂配套。
高炉炼铁

高炉炼铁高炉gaolu liantie高炉炼铁blast furnace ironmaking现代炼铁的主要方法,钢铁生产中的重要环节。
这种方法是由古代竖炉炼铁发展、改进而成的。
尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。
高炉生产时从炉顶装入铁矿石、焦炭、造渣用熔剂(石灰石),从位于炉子下部沿炉周的风口吹入经预热的空气。
在高温下焦炭(有的高炉也喷吹煤粉、重油、天然气等辅助燃料)中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气,在炉内上升过程中除去铁矿石中的氧,从而还原得到铁。
炼出的铁水从铁口放出。
铁矿石中不还原的杂质和石灰石等熔剂结合生成炉渣,从渣口排出。
产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。
简史和近况早期高炉使用木炭或煤作燃料,18世纪改用焦炭,19世纪中叶改冷风为热风(见冶金史)。
20世纪初高炉使用煤气内燃机式和蒸汽涡轮式鼓风机后,高炉炼铁得到迅速发展。
20世纪初美国的大型高炉日产生铁量达450吨,焦比1000公斤/吨生铁左右。
70年代初,日本建成4197米高炉,日产生铁超过1万吨,燃料比低于500公斤/吨生铁。
中国在清朝末年开始发展现代钢铁工业。
1890年开始筹建汉阳铁厂,1号高炉(248米,日产铁100吨)于1894年5月投产。
1908年组成包括大冶铁矿和萍乡煤矿的汉冶萍公司。
1980年,中国高炉总容积约8万米,其中1000米以上的26座。
1980年全国产铁3802万吨,居世界第四位。
[主要产铁国家产量和技术经济指标]70年代末全世界2000米以上高炉已超过120座,其中日本占1/3,中国有四座。
全世界4000米以上高炉已超过20座,其中日本15座,中国有1座在建设中。
50年代以来,中国钢铁工业发展较快,高炉炼铁技术也有很大发展,主要表现在:①综合采用精料、上下部调剂、高压炉顶、高风温、富氧鼓风、喷吹辅助燃料(煤粉和重油等)等强化冶炼和节约能耗新技术,特别在喷吹煤粉上有独到之处。
高炉炼铁

高炉炼铁:简介当今全世界几乎所有的钢材都是通过如下两种流程中的一种生产的:碱性氧气转炉炼钢(BOS) 电弧炉炼钢(EAF)"长流程" "短流程"100% 回收的废钢,固态生铁或直接还原铁75-80% 高炉铁水(生铁)20-25% 回收的废钢全球钢产量的64% (2005) 全球钢产量的33% (2005)很明显高炉炼铁仍然是为炼钢提供铁原料的主要方法。
下图说明了高炉在整个炼钢过程中的地位。
高炉使用铁矿石作为含铁原料,焦炭和煤粉作为还原剂以及石灰或石灰石作为熔剂。
高炉炼铁的主要目的是给BOS炼钢提供质量稳定的铁水。
通常炼钢厂要求铁水的条件为含硅0.3–0.7%,锰0.2–0.4%和磷0.06–0.13%,以及尽可能高的温度(出铁温度为1480-1520°C)。
一座内容积约为4500m3的现代大型高炉的炉缸直径为14-15m,高度为35m。
这样一座高炉每天能够生产10000吨铁水。
由于高炉需要消耗大量的冶金焦,因此出现了将来可替代高炉的其它炼铁工艺:用煤粉或者其它气态还原剂替代冶金焦的直接还原和熔融还原技术。
已经进行商业化生产的例子有Midrex(直接还原)和Corex(熔融还原)工艺。
高炉过程在高炉的炉腰和炉腹,热风与焦炭和煤粉发生反应生成CO和N2的混合气体。
炉内上升的混合气体与从炉顶下降的原料发生热交换和化学反应。
最后煤气从炉顶排出并且回收作为厂内的燃料。
在冶炼过程中要控制炉顶含铁原料与焦炭层厚度比以及它们的径向分布,以得到径向分布合适的煤气流。
炉料下降过程中,在高炉上部的低温区含铁原料与CO气体发生间接还原。
在高炉下部,还未反应的铁矿石与CO发生还原反应生成CO2,CO2又立即与焦炭反应生成CO,CO又用来还原氧化铁。
高炉下部高温区的整个反应步骤可以看作是铁矿石与固态C的直接还原。
被还原出的铁熔化,滴落,最后在炉缸汇聚成铁水。
然后按固定的时间间隔(一般2-5小时)打开炉墙上的铁口和渣口,排出铁水和熔渣。
高炉煤气、转炉煤气和焦炉煤气

高炉煤气、转炉煤气和焦炉煤气的区别?冶金企业一、高炉煤气(高炉炼铁,转炉炼钢)高压鼓风机鼓风,并且通过热风炉加热后进入了高炉,这种热风和焦炭助燃,产生的是CO2和CO,CO2又和炙热的焦炭产生CO,CO在上升的过程中,还原了铁矿石中的铁元素,使之成为生铁,这就是炼铁的化学过程。
铁水在炉底暂时存留,定时放出用于直接炼钢或铸锭。
这时候在高炉的炉气中,还有大量的过剩的CO,这种混和气体,就是高炉煤气。
每炼1吨铁可产生2100-2200立方米的高炉煤气。
这种含有可燃CO的气体,是一种低热值的气体燃料,可以用于冶金企业的自用燃气,如加热热轧的钢锭、预热钢水包等。
也可以供给民用,如果能够加入焦炉煤气,就叫做“混和煤气”,这样就提高了热值。
高炉煤气为炼铁过程中产生的副产品,主要成分为:CO, C02, N2、H2、CH4等,其中可燃成分CO含量约占25%左右,H2、CH4的含量很少,CO2, N2的含量分别占15%,55 %,热值仅为3500KJ/m3左右。
高炉煤气的成分和热值与高炉所用的燃料、所炼生铁的品种及冶炼工艺有关,现代的炼铁生产普遍采用大容积、高风温、高冶炼强度、高喷煤粉量的生产工艺,采用这些先进的生产工艺提高了劳动生产率并降低能耗,但所产的高炉煤气热值更低,增加了利用难度。
高炉煤气中的CO2, N2既不参与燃烧产生热量,也不能助燃,相反,还吸收大量的燃烧过程中产生的热量,导致高炉煤气的理论燃烧温度偏低。
热风+焦炭﹦CO2+COCO2+焦炭﹦COCO上升过程中还原铁矿石中的铁元素使之成为生铁;从高炉炉顶出来的煤气含有大量粉尘(粉尘由焦末、矿末组成),不能直接使用,因为含尘煤气会堵塞煤气管道、燃烧装置的烧嘴等,同时高温燃烧情况下会软熔粘结在换热装置上,导致热效率降低,损坏设备等,所以,高炉煤气需要经过除尘后才能二次利用。
二、转炉煤气(转炉炼钢)转炉炼钢过程中,铁水中的碳在高温下和吹入的氧生成CO和少量CO2的混合气体。
比较分析高炉炼铁与非高炉炼铁技术

比较分析高炉炼铁与非高炉炼铁技术摘要:我国的焦煤资源供应日趋紧张,阻碍我国高炉炼铁技术的发展,非高炉炼铁成为关注度最高的冶炼技术。
文章重点就高炉炼铁与非高炉炼铁技术二者的比较分析进行研究,旨在为业内人士提供一些建议和帮助。
关键词:高炉炼铁;非高炉炼铁;技术比较分析前言:依据现阶段市场环境状况,高炉炼铁是炼铁生产的主体,高炉炼铁存在一个不足之处,对能源焦炭的依赖,同时冶炼焦炭也是环境污染的一个源头。
与高炉炼铁不同的是,非高炉炼铁的能耗和环境方面具有优势较强。
详细地说,非高炉炼铁在一定程度上可将焦煤的使用量降低,进而将高炉炼铁流程如球团、焦化工序等生成的污染物排放量降低。
对于原燃料,非高炉炼铁具有极高的要求,使原燃料只在较好生产指标的生铁生产企业中运用,这就表示着只能在特定的环境下,非高炉炼铁才能实施组织生产,这也是非高炉炼铁技术一直未被普及于全世界的关键原因。
基于此,文章主要对高炉炼铁与非高炉炼铁能耗进行了比较,然后分析了高炉炼铁与非高炉炼铁技术应用现状,最后展望了高炉炼铁与非高炉炼铁发展前景。
1能耗比较分析1.1相关高炉炼铁能耗分析高炉作为炼铁设备,是一个炼铁炉料和煤气反向运动的反应器,高炉属于一种高效化的反应竖炉。
在高炉这个特殊的竖炉中,炉料可以获得充分的物理过程和化学过程如原燃料预热、熔融、生铁改性等,同时炉料生产过程也伴随着粉尘等有害物质。
在高炉炼铁过程中,炉料会遇到选择间接还原与直接还原反应问题,相关分析证明,放热反应是铁矿石进行间接还原,而吸热反应则是直接还原。
所以在高炉中,进行间接还原反应的炉料大概有一半,这就表明了比起炉料在高炉中进行直接还原铁工艺过程的能源使用,要比间接还原的高出一部分。
1.2相关非高炉炼铁能耗分析非高炉炼铁划分为熔融还原和直接还原两大类。
在能源消耗方面,直接还原可以分为煤基、气基和电热三大类。
不论煤基、气基和电热,最终都是利用设备生产非高炉炼铁所需的气源。
例如煤基的直接还原生产工艺过程要求>90%的CO+H2含量,同时要构建专门的造气装置。
高炉炼铁技术工艺及应用分析

高炉炼铁技术工艺及应用分析高炉炼铁技术工艺及应用分析概述高炉炼铁是冶金工业中一种重要的冶炼过程,其主要目的是将铁矿石转化为熔融的铁液,在此过程中进行矿石还原、熔化和分离有用金属的工艺。
本文将对高炉炼铁技术工艺及应用进行分析,并探讨其在冶炼工业中的重要性。
高炉炼铁技术工艺高炉炼铁的主要工艺包括煤气化、还原熔铁、碳还原等步骤。
煤气化是将煤炭转化为可燃气体的过程,通过控制温度和压力,煤炭可以分解为一系列气体,包括一氧化碳(CO)和氢气(H2)。
这些气体是高炉冶炼过程中的重要还原剂,可以用来还原铁矿石中的氧化物。
同时,煤气化产生的副产物可用于其他工业应用。
还原熔铁是高炉炼铁过程中的关键步骤,其中铁矿石与还原剂反应,生成热量使铁矿石熔化。
在还原熔铁过程中,一氧化碳和氢气作为还原剂,将铁矿石中的氧化物还原为金属铁。
矿石在高炉中逐渐下降,并与煤气相互作用,产生还原反应,并释放出熔化金属铁并将其引出。
碳还原是高炉炼铁过程中的另一个重要步骤,其中固定碳作为还原剂,将铁矿石中的氧化物还原为金属铁。
在高炉中,矿石和焦炭混合,并经过高温反应,矿石中的氧化物被还原成纯铁。
高炉炼铁的应用高炉炼铁技术在冶金工业中具有广泛的应用。
以下是几个重要的应用领域:1. 钢铁生产:高炉炼铁是生产钢铁的主要工艺,通过将铁矿石转化为熔融的铁液,得到不同成分和用途的钢铁。
钢铁是现代工业中广泛使用的材料,应用于建筑、制造、交通运输等领域。
2. 炉渣利用:高炉冶炼过程中产生的炉渣含有一定的有用成分,如铁和非铁金属。
经过适当的处理,可以将这些成分提取出来并加以利用。
炉渣利用有助于资源回收和减少环境污染。
3. 能源生产:高炉炼铁过程中产生的煤气是一种可再生能源,可以通过适当的处理和利用,用于发电、热能供应等领域。
这有助于减少对传统能源的依赖,促进能源可持续发展。
4. 高炉扩建和升级:随着经济的发展和技术的进步,现有的高炉可能需要进行扩建和升级,以提高冶炼效率和产品质量。
比较分析高炉炼铁与非高炉炼铁技术

比较分析高炉炼铁与非高炉炼铁技术摘要:就目前而言,我国钢铁主要通过高炉进行生产和冶炼,从客观角度理解,这种高炉炼铁的形式还要持续相当长的一段时间。
对比来讲,非高炉炼铁技术实际上比高炉炼铁技术更具优势性和时代性。
在工艺优势方面,非高炉炼铁技术可以促使燃料燃烧完全,使得主焦煤的使用量大幅度降低,从根本意义上减少烧结、球团、焦化等作业工序中产生和排放各种污染物的现象。
整体而言,虽然非高炉炼铁技术优势显著,但由于该技术在我国还处于进步阶段,还具有一系列的问题和不足。
所以,对该技术进行更加深入研究,并比较其与传统炼铁技术的能耗,是本文即将研究和分析的主要内容。
关键词:高炉炼铁技术;非高炉炼铁技术;直接还原技术;熔融还原技术随着钢铁行业的不景气,与之对应的高炉炼铁技术发展呈现出停滞状态。
但在目前,其仍是全世界范围内,进行钢铁生产主要技术内容,这就意味着其利用焦炭生产造成的污染环境问题仍处在不断深化状态。
针对这一问题,相关人员应加大非高炉炼铁技术的研究应用,从而改进我国钢铁行业发展的产业结构。
然而,非高炉炼铁技术的研究成果存在一定局限,因而,相关建设人员应从能耗、技术应用现状以及未来发展角度,对高炉炼铁与非高炉炼铁两种技术进行对比,以找出优化控制的节点,进而提高非高炉炼铁技术的应用研究效率。
1高炉炼铁与非高炉炼铁技术分析比较就目前的市场环境来说,生铁的生产大多是以高炉炼铁的方式存在的,而非高炉炼铁与高炉炼铁不同,其在能耗方面具有一定优势。
具体来说,非高炉炼铁能够大幅度降低焦煤的使用量,这就降低了球团、烧结以及焦化工序等高炉炼铁流程生成的污染物排放量。
非高炉炼铁所需的原燃料条件较高,使其仅作用于生产指标较好的生铁生产企业。
这就意味着非高炉炼铁需要在特定的环境下才能进行组织生产,这是全世界范围内,非高炉炼铁技术始终没有得到普及的原因所在。
但随着市场经济发展进程的不断加快,人们对各行各业发展建设可持续性的要求越来越高,非高炉炼铁技术是实现降低生态环境污染目标的重要组成部分。
非高炉炼铁

1.6.3 炉内主要过程
炉内一般过程
炉料下降过程中,与上升的煤气流相互作用,被加热,发 生干燥、还原、熔化、造渣等一系列物理化学反应,最后 生成液态渣、铁,聚集于炉缸,周期地从高炉排出,上升 的煤气流将能量传给炉料,温度不断降低,成分不断变化, 最后变成高炉煤气从炉顶排出 实质:在尽量低能量消耗的条件下,通过受控的炉料及煤 气流的逆向运动,高效率地完成还原、造渣、传热及渣铁 反应等过程,得到化学成分与温度较为理想的液态铁
1.6.4 高炉炼铁原料及其他辅助材料
①灰分低,固体碳高 ②含硫低 ③可磨性好:易磨 ④粒度细:-200目占80% ⑤爆炸性弱:安全 ⑥燃烧性要弱、反应性要好
固体燃料: 煤 喷 吹 燃 料
天然气,石油气,焦炉和高炉煤气, 气体燃料:
转炉煤气,发生炉煤气
重油,柴油,焦油 液体燃料:
1.6.4 高炉炼铁原料及其他辅助材料
性能 ①物理性能 a.致密度,气孔率,吸水率 b.透气性 c.耐压强度 d.热膨胀性 ②使用性能 a.耐火度:抗高温熔化性能的指标,用耐火锥变 形的温度表示。它表征耐火材料的热性质,主要 取决于化学组成,杂质数量和分散程度。实际使 用温度要比耐火度低。
1.6.4 高炉炼铁原料及其他辅助材料
b.荷重软化点:在施加一定压力并以一定升温速度 加热时,当耐火材料塌毁时的温度。它表征耐火材料 的机械特性。耐火材料的实际使用温度不得超过荷重 软化点。 c.耐急冷急热性(抗热震性):是指在温度急剧变 化条件下,不开裂。不破碎的性能。 d.抗蠕变性能:荷重工作温度下,形变率 e,导热性及导电性 f.抗渣性:在使用过程中抵御渣化的能力。 耐火材料选择原则:使用的温度,使用的环境
高炉法 现 代 炼 铁 法 非高炉法
高钛型高炉渣提钛技术与非高炉炼铁技术对攀枝花钒钛磁铁矿综合利用的影响

组 分 T e F T O2 i V2 O5 S
表 1 攀 枝 花钒钛 磁铁 矿 多元 素分 析
P O5 2
含 量 2 .5 3 .8 . 2~1. 3 0 2 3 6 4 8 9 1 2O .2~03 0 5 .4 .6~06 00 2— .9 8 1 2 .7 . 4 .2 5 1 8 1 . 6 . 5 0 0 8 1 .8— 94 8 0 9 6 . 5~ .9
组分 Mg O Mn O Cz rO3 C o Ni G a S2 c O3 C “
含 量 56 ~ .7 02 O3 006 006 003~ .2 OO 1 003Oo3 .o 一 0 9 .1 . . 1 67 .8 .O .8 ~ .9 . 1 00 . l — .2 .o 0 3 n 0 n 0 006 0 06 0 3 0 2
提钛技 术和 国内外非 高炉炼铁技 术现状 , 对非高炉炼铁技术在攀枝花钒钛磁铁矿资源综合利用
中的研 发状 况进 行 了分析 , 价 了高钛 型 高 炉渣提 钛技 术和 非 高炉 炼铁 技 术在 攀枝 花 钒钛 磁铁 评 矿 资 源综合 利 用 中的前景 , 出 了攀枝 花应 加 快 高钛 型 高炉 渣 选 冶联 合提 钛 技 术攻 关 , 提 着手 引
( 位: ) 单 %
P 0 0 8 .05 SO i2 3.6 27
攀钢选钛厂原矿年处理 量为 6 0万 t年 边其 它小厂也采用该工艺 。钒 的提取工 艺依 2 ,
产量约 2 3 万 t 回收率约 2 % , 8~ O , 总 2 钛精矿 附于高炉一转 炉流 程 , 水平 基 本达 到 了巅 其 中 TO 品位为 4 . % , i 7 5 另有副产 品硫钴精 矿 峰 。因此 , 高炉流程处理 攀枝花钒钛磁铁矿 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高炉炼铁与非高炉炼铁技术比较
王维兴
中国金属学会,北京100711
1 目前我国高炉炼铁技术现状
1.1全国炼铁生产情况
2012年上半年全国生铁产量为3.3403亿吨,比上年同期增长2.90%。
全国生铁产量增幅减缓,这是因国家经济疲软,钢铁企业出现亏损所造成的;重点钢铁企业铁产量为2.91亿吨,与上年同期相比增长3.10%。
其它企业铁产量为0.4268亿吨,增长1.80%。
重点钢铁企业之中有50个企业铁产量是减产,有18个企业减产幅度大于10%,降幅最大的企业达36.45%。
主要原因是炼铁企业经济效益大幅下降,一批企业出现亏损,迫使炼铁厂减产、停高炉。
苦、经济性不好而2007年宝钢引趔厂比较好的状态,一
:产技术的技术经;
[的DRI,运布熟送装置、电女
H,O
!O%,煤压块和脱除(三修一次,每次约要】“—甘‘r+1。
亡1斗二C占厶,,^1
・恹T圳.L,丁日匕匀入炉焦比374
gce/t。
目前国陡
高炉炼铁与非高炉炼铁技术比较
作者:王维兴
作者单位:中国金属学会,北京100711
引用本文格式:王维兴高炉炼铁与非高炉炼铁技术比较[会议论文] 2012。