高中数学必修五教案-等比数列的概念及通项公式示范新
高中数学《等比数列的概念和通项公式》教案
一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的通项公式。
2. 培养学生运用等比数列知识解决实际问题的能力。
3. 提高学生对数列这一数学思想的认知,培养学生的逻辑思维能力。
二、教学内容1. 等比数列的概念2. 等比数列的通项公式3. 等比数列的性质三、教学重点与难点1. 教学重点:等比数列的概念,等比数列的通项公式。
2. 教学难点:等比数列通项公式的推导和应用。
四、教学方法1. 采用问题驱动法,引导学生主动探索等比数列的概念和性质。
2. 运用案例分析法,让学生通过具体例子理解等比数列的通项公式。
3. 采用小组讨论法,培养学生的合作意识和团队精神。
五、教学过程1. 导入新课:通过回顾数列的概念,引导学生思考等比数列的特点。
2. 讲解等比数列的概念:借助具体例子,讲解等比数列的定义和性质。
3. 推导等比数列的通项公式:引导学生运用已知知识,推导出等比数列的通项公式。
4. 应用等比数列通项公式:通过实例,展示等比数列通项公式的应用。
5. 课堂练习:布置相关练习题,巩固所学知识。
6. 总结与拓展:对本节课内容进行总结,提出拓展问题,激发学生课后思考。
7. 课后作业:布置适量作业,巩固所学知识。
六、教学评价1. 通过课堂表现、作业和练习,评价学生对等比数列概念和通项公式的掌握程度。
2. 结合课后作业和课堂讨论,评估学生运用等比数列知识解决实际问题的能力。
3. 通过小组讨论和课堂提问,了解学生对数列思想的认知和逻辑思维能力的提升。
七、教学资源1. PPT课件:制作包含等比数列概念、性质和通项公式的PPT课件,以便于学生理解和记忆。
2. 练习题库:准备一定数量的等比数列练习题,包括基础题、应用题和拓展题,以供课堂练习和课后作业使用。
3. 教学视频:搜集相关的教学视频,如等比数列的动画演示、讲解等,以辅助教学。
八、教学进度安排1. 第一课时:介绍等比数列的概念和性质。
2. 第二课时:推导等比数列的通项公式,讲解应用实例。
高中数学《等比数列的概念和通项公式》教案
高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的性质。
2. 引导学生掌握等比数列的通项公式,并能运用通项公式解决实际问题。
3. 培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。
二、教学内容1. 等比数列的概念2. 等比数列的性质3. 等比数列的通项公式4. 等比数列的求和公式5. 运用通项公式解决实际问题三、教学重点与难点1. 教学重点:等比数列的概念、性质、通项公式及其应用。
2. 教学难点:等比数列通项公式的推导和运用。
四、教学方法1. 采用问题驱动法,引导学生主动探究等比数列的性质和通项公式。
2. 利用多媒体课件,生动展示等比数列的图形和性质,提高学生的直观认识。
3. 结合例题,讲解等比数列通项公式的应用,培养学生解决问题的能力。
4. 开展小组讨论,促进学生之间的交流与合作,提高学生的团队意识。
五、教学过程1. 引入新课:通过讲解现实生活中的例子,引出等比数列的概念。
2. 讲解等比数列的性质:引导学生发现等比数列的规律,总结等比数列的性质。
3. 推导等比数列的通项公式:引导学生利用已知的数列性质,推导出通项公式。
4. 讲解等比数列的求和公式:结合通项公式,讲解等比数列的求和公式。
5. 运用通项公式解决实际问题:选取典型例题,讲解等比数列通项公式的应用。
6. 课堂练习:布置适量习题,巩固所学知识。
7. 总结与反思:引导学生总结本节课所学内容,反思自己的学习过程。
8. 课后作业:布置课后作业,巩固所学知识,提高学生的应用能力。
9. 教学评价:对学生的学习情况进行评价,了解学生对等比数列知识的掌握程度。
10. 教学反思:总结本节课的教学效果,针对存在的问题,调整教学策略。
六、教学策略1. 案例分析:通过分析具体的等比数列案例,让学生深刻理解等比数列的概念和性质。
2. 互动教学:鼓励学生积极参与课堂讨论,提问引导学生思考,增强课堂的互动性。
人教课标版高中数学必修五《等比数列(第1课时)》教案(1)-新版
2.4.1等比数列第一课时一、教学目标1.核心素养通过学习等比数列提高从数学角度发现和提出、分析和解决问题的能力,锻炼数学抽象和逻辑推理能力.2.学习目标(1)由特殊到一般,理解并会判断等比数列.(2)掌握等比数列通项公式及证明.(3)应用等比数列知识解决相应问题.3.学习重点(1)等比数列定义及判断.(2)通项公式的推导.4.学习难点会用等比数列解决相应问题.二、教学设计(一)课前设计1.预习任务任务1阅读教材,思考:什么是等比数列?任务2观察等比数列,总结等比数列的规律,前后两项的比值可以是任意实数吗?任务3结合之前的探索,能写出其通项公式吗?等比数列何时递增,递减,或者变成等差数列?2.预习自测1.数列4,16,64,256…是什么数列?第五项是多少?答案:等比数列;1024.【知识点:等比数列】【解析】等比数列的通项公式是:11n n a a q -=2.在等比数列{}n a 中,472,16,a a ==则n a =________..23-n 答案:【知识点:等比数列通项公式】【解析】等比数列的通项公式是:11n n a a q -=,由题意求出n 和q 3.已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为( ) A .-3 B .±3 C .-3 3 D .±3 3 答案:C【解析】∵-1,x,y,z ,-3成等比数列,∴2y =xz =(-1)×(-3)=3,且2x y =->0,即y”的什么条件?有都”是“对任意正整数是公比,则“是首项,等比数列中n n a a n q a q a >>>+111,1,0,.4答案:充分不必要条件.【知识点:等比数列通项公式,充要条件的判断;数学思想:推理论证能力】【解析】充分不必要条件.由q >1,得1n n q q ->,又10a >得111n n a q a q -⋅>⋅即1n a +>n a 反之不然.取11n n a a q -==)21(n-,可得 1n a +>n a ,但1a =21-(二)课堂设计 1.知识回顾 (1)等差数列概念.(2)等差数列通项公式及推导. 2.问题探究问题探究一 借助等差数列的定义,类比得到等比数列定义 ●活动一 回顾旧知,夯实基础.之前我们学习了等差数列,我们是怎样定义并且判断等差数列?如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:1n n a a d +-= (n ∈N *,d 为常数),或1n n a a d --= (2,n d ≥为常数). ●活动二 探索规律,发现新知. 类比于等差数列,观察以下几个数列2,4,8,16,32…;1,1,1,1,1…;1,-1,1,-1,1,-1…;1,0,1,0,1,0,…;3,9,27,81,243,…;它们都有着怎样的规律 ●活动二 新旧整合,得出结论.结合活动一与活动二,能给出等比数列定义吗?如果一个数列从第2项起,每一项与它的前一项的比等于同一个非0常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示.数学语言表达式:1n n a q a -=(2,n ≥q 为非0常数),或1n naq a +=(n ∈N *,q 为非0常数).问题探究二 类比等差数列通项公式及性质,结合等比数列定义得到等比数列通项公式和性质,●活动一 温故知新,迎难而上. 回忆等差数列,写出通项公式.通项公式:()11n a a n d =+-.推广:()n m a a n m d =+-(m,n ∈N *). ●活动二 类比旧知得出新知.在等比数列中,是否只需确定某些量就可以写出通项公式?只需确定首项与公比即可得到通项公式11n n a a q -=.推广: n m n m a a q -=,公比为非0常数.●活动三 思维谨慎,扎实前进. 能否给出通项公式证明?借助定义,a na n -1=q (n ≥2,q 为非0常数),列出n -1个式子,累乘后得到通项公式. ●活动四 夯实基础,勇于探索.等差数列中,公差大于0时,数列递增;反之递减.等比数列也有相似结论吗?请归纳总结.首相大于0,公比大于1时递增;公比大于0小于1时递减;首项小于0时,公比大于0小于1时递增,公比大于1时递减;首项不等于0,公比等于1时,既是等差又是等比;公比小于0时,为摆动数列.问题探究三●活动一 初步运用 基础知识的掌握例1.在等比数列{}n a 中,253618,9,1n a a a a a +=+==,则n =________. 【知识点:等比数列通项公式】 答案:6例2.在等比数列{}n a 中, 1a <0, 若对正整数n 都有1n n a a +<,那么公比q 的取值范围是?【知识点:等比数列通项公式】答案:由1n n a a +<得1111,,01n n n n a q a q q q q --<∴>∴<< ●活动二 能力提升 通项公式性质的运用例1. 数列{}n a 是等差数列,若1351,3,5a a a +++构成公比为q 的等比数列,则q =________.【知识点:等比数列性质】 答案:1.例2.在正项等比数列{}n a 中, 1n n a a +>,28466,5a a a a ⋅=+=,则57a a =( ) A.56 B.65 C.23D.32【知识点:等比数列性质】 答案:D 3.课堂总结 【知识梳理】(1)等比数列定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个非0常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示. 数学语言表达式:1n n a q a -= (n ≥2,q 为非0常数),或1n naq a +=(n ∈N *,q 为非0常数).(2)等比数列通项公式: 11n n a a q -=;通项公式的推广: n m n m a a q -=. 【重难点突破】(1)等比数列通项公式运用时为了减少计算量可以尝试使用其推广式. (2)公比0≠q 这是必然的,不存在公比为0的等比数列,还可以理解为等比数列中,不存在数值为0的项,各项不为0的常数列既是等差数列又是等比数列;至于等比数列的增减,则可以从首项与公比的正负及范围,通过列不等式进行确定. (3)等比数列的定义中有“从第二项起”“同一个常数”的描述应与等差数列中的描述理解一致.(4)等比数列的通项公式可以用迭代法累乘法推导,其中累乘法与累加法相似,可做一做比较,便于掌握. 4.随堂检测 一、选择题1.在等比数列{}n a 中,64,852==a a ,则公比q 为( ) A .2 B .3 C .4 D .8 答案:A.解析:【知识点:等比数列的通项公式】 二、解答题1.求下列各等比数列的通项公式: (1)21-=a ,83-=a . (2)51=a ,且12+n a n a 3-=. (3)51=a ,且11+=+n na a n n . 答案:(1)n n n n n n a a )2()2)(2(22)2(11-=--=-=-=--或.(2)1)23(5--⨯=n n a .(3)na n a n 311==.解析:【知识点:等比数列通项公式】 2.求以下等比数列的第4项与第5项: (1)5,-15,45,……. (2)1.2,2.4,4.8,…….(3)213,, (328).答案:(1)1354-=a ,4055=a . (2)6.94=a ,2.195=a . (3)4a =329,5a =12827. 解析:【知识点:等比关系的确定;数学思想:推理论证能力】3.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. 答案:这四个数为0, 4, 8, 16或15, 9, 3, 1.解析:【知识点:等比关系的确定;数学思想:推理论证能力】 设四个数依次为x,y,12-y,16-x .依题意,有 x +(12−y )=2y ①()()21612y x y -=-②由①式得x =3y -12 ③将③式代入②式得y (16-3y +12)=(12-y )2,整理得y 2-13y +36=0,解得124,9y y ==,代入③式得120,15x x ==.从而得所求四个数为0,4,8,16或15,9,3,1. 5.(1)已知{}n a 是等比数列,且2435460,225n a a a a a a a >++=, 求53a a +.(2)c a ≠,三数c a ,1,成等差数列,22,1,c a 成等比数列,求22ca ca ++. 答案:(1) 3a +55=a . (2)3122=++c a c a .解析:【知识点:等差数列的性质,等比数列】(1)∵{}n a 是等比数列,∴()224354635225a a a a a a a a ++=+=.又0n a >, ∴355a a +=.(三)课后作业基础型自主突破 一、填空题1.已知等比数列{}n a 的公比为正数,且248522,1,a a a a ⋅==则1a = .答案: 1a =解析:【知识点:等比关系的确定;数学思想:推理论证能力】设等比数列{}n a 的公比为q ,∵ 2482a a a ⋅=211a a ==,∴ 1a =2.设数列{}n a 是首项为1,公比为-3的等比数列12345||||||a a a a a ++++=______. 答案:121.解析:【知识点:等比数列】∵数列{}n a 是首项为1,公比为-3的等比数列,∴()1113n n n a a q --==-,∴123451,3,9,27,81,a a a a a ==-==-=∴则12345||||||1392781121a a a a a ++++=++++=. 3.等比数列{}214n +的公比为 ______ . 答案:16.解析:【知识点:等比数列的通项公式】 等比数列的通项公式是:11n n a a q -=4.若1、a 、b 、c 、9成等比数列,则b = ______ . 答案:3.解析:【知识点:等比数列】利用等比数列通用公式11n n a a q -=求出相应的值421531,9,3a a q a q b ======,3b ∴=5.公比为2的等比数列{}n a 的各项都是正数,且31116,a a =,则210log a = ______ . 答案:5.解析:【知识点:等比数列通项公式,对数的运算性质】∵公比为2的等比数列{}n a 的各项都是正数,且31116,a a =,∴7a =4,∴1a •26=4,解得1a =42-,∴9495101222a a q -==⨯=,∴52102log log 25a ==. 故答案为:5.能力型师生共研 一、选择题1.在数列{}n a 中,1111,,4n n a a a +==则99a =________. A.125504B.2500C.124504D.2401 答案:B解析:【知识点:等比关系的确定;数学思想:推理论证能力】 二、填空题1.设{}n a 为公比1q >的等比数列,若2004a 和2005a 是方程24830x x ++=的两根,则=+20072006a a _________. 答案:-18解析:【知识点:等比数列,根与系数的关系】根据{}n a 为公比q >1的等比数列, 2004a 和2005a 是方程4x 2+8x +3=0的两根,可得2004a =-2005=2006+2007a =-18. 三、证明题1.已知:b 是a 与c 的等比中项,且c b a ,,同号,求证:3a b c ++等比数列答案:见解析解析:【知识点:等比数列】 由题设:ac b =2得:22333)3(333ca bc ab bc b ab b c b a abc c b a ++=++=⨯++=⨯++ ∴3,3,3abc ca bc ab c b a ++++也成等比数列.探究型多维突破一、选择题1.已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是( )A .1(0,2+B .C .D .)251,251(++- 答案:D.解析:【知识点:等比关系的确定,解三角形;数学思想:推理论证能力】 设三边:a 、qa 、2q a 、q >0则由三边关系:两短边和大于第三边a +b >c ,即 (1)当q ≥1时a +qa >2q a ,等价于解二次不等式:21q q --<0,由于方程2q q --(2)当q <1时,a 为最大边,qa +2q a >a 即得2q q --⎭故选D . 二、证明题1.设d c b a ,,,均为非零实数,()()0222222=+++-+c b d c a b d b a ,求证:c b a ,,成等比数列且公比为d答案:见解析解析:【知识点:等比关系的确定;数学思想:推理论证能力,运算求解能力,创新意识,应用意识】证明:证一:关于d 的二次方程()()0222222=+++-+c b d c a b d b a 有实根, ∴()()0442222≥+-+=∆b a c a b ,∴()022≥--ac b则必有:02=-ac b ,即ac b =2,∴c b a ,,成等比数列设公比为q ,则aq b =,2aq c =代入()()024********=+++-+q a q a d aq a aq d q a a∵()0122≠+a q ,即0222=+-q qd d ,即≠=q d证二:∵()()0222222=+++-+c b d c a b d b a ∴()()022222222=+-++-c bcd d b b abd d a∴()()022=-+-c bd b ad ,∴b ad =,且c bd =∵d c b a ,,,非零,∴d bca b == 自助餐 一、选择题1.等比数列{}n a 中,6a 和10a 是方程2620x x ++=的两根,则8a =( )A.2±B.答案:C.解析:【知识点:等比数列,根与系数的关系】等比数列{}n a 中,6a 和10a 是方程2620x x ++=的两根, 6106a a +=-,可得261082a a a ⋅==,6a 和10a 都是负数,可得8a =-2..故选:C .2.已知等比数列{}n a 的公比为正数,且248522,1,a a a a ⋅==则1a =( )A. 0.5B. 22答案:C.解析:【知识点:等比数列】设公比为q ,由已知得()22841112a q a q a q ⋅=,即q 2=2,又因为等比数列{}n a 的公比为正数,所以q =2.22=,故选C.2.等比数列{}n a 的首项为1,项数是偶数,所有的奇数项之和为85,所有的偶数项之和为170,则10a =( )A.32 64.B C.512 D.1024 答案:C.解析:【知识点:等比关系的确定;数学思想:推理论证能力】设等比数列的项数为2n ,∵所有的奇数项之和为85,所有的偶数项之和为170, ∴S 奇:S 偶=1:2.∵S 奇=1321...n a a a -+++,S 偶=242...n a a a +++=q S 奇由题意可得,q =2,∴9910112512a a q ==⨯=.故选:C .3.在等比数列{}n a 中, 11,2,32n a q a ===,则n =( )A.5B.6C.7D.8 答案:B.解析:【知识点:等比数列的通项公式】11n n a a q -=,求得n =84.等比数列{}n a 中, 385,2a a ==,则数列{}lg n a 的前10项和等于( )A.2B.5C.1050D.lg答案:B.解析:【知识点:等比数列的通项公式,对数的运算性质】由题意得,等比数列{}n a 中, 385,2a a ==,所以385610,a a a a ⋅=⋅=,由等比数列的性质得, ()551231056...10a a a a a a ⋅⋅⋅=⋅=,所以数列{}lg n a 的前10项和1210l g l g ...l g 5n S a a a =+++=,故选:B . 6.数列{}n a 的首项1,数列{}n b 为等比数列且1n n na b a +=,若10112b b ⋅=,则21a =( ) A.20 B.512 C.1013 D.1024 答案.D.解析:【知识点:等比数列的通项公式】由1n n n a b a +=可知202120232121,,,a a b a a b a a b === ,所以202123122021a a a a a a b b b ⋅⋅⋅=⋅⋅⋅ ,又数列{}n b 为等比数列,所以1202191011b b b b b b ===L ,于是有121102a a =,即110212a a =,又11=a ,所以102421021==a ,故答案选D. 二、填空题1.已知数列{}n a 为等比数列,且5a =4,9a =64,则7a =____________. 答案:16.解析:【知识点:等比数列的通项公式】11n n a a q -=,由已知条件求出通项公式1124n n a -=⋅,所以716a =.2.数列{}n a 中, 112,n n a a a cn +==+(c 是常数,n =1,2,3,…),且123,,a a a 成公比不为1的等比数列.则c 的值是 ______ .答案:2.解析:【知识点:等比数列】∵112,n n a a a cn +==+,∴232,23,a c a c =+=+又∵123,,a a a 成公比不为1的等比数列,∴()()22c 223c +=+,即c 2-2c=0解得c=2,或c=0,故答案为23.若公比不为1的等比数列{}n a 满足()21213•13log a a a ⋯=,等差数列{}n b 满足77b a =,则1213b b b +⋯+的值为 ______ . 答案:26.解析:【知识点:等比数列通项公式,等差数列前n 项和】 ∵公比不为1的等比数列{a n }满足()21213•13log a a a ⋯=,∴()()()13212132727•1313log a a a log a log a ⋯===,解得7772,2,a b a ===,由等差数列的性质可得777121372,2,...1326a b a b b b b ===+++==,故答案为:26 三、解答题1.在等比数列{}n a 中, 5142-=15,-=6a a a a ,求3a 和q . 答案:见解析解析:【知识点:等比数列通项公式】,6=-,15=-}中中在等比数列{2415a a a a a n 答案:.4=,1=时,2=q 当31a a2.设{}n a 是一个公差为d (d ≠0)的等差数列,它的前10项和10110S =且124,,a a a 成等比数列,求数列{}n a 的通项公式. 答案: n a =2n .解析:【知识点:等差数列前n 项和,等比数列】∵124,,a a a 成等比数列,∴2214a a a =又∵{an}是等差数列,∴2141,3a a d a a d =+=+, ∴()()21113a d a a d +=+,即222111123a a d d a a d ++=+,化简可得1a d =,∵101101092110S a d =+⨯=,∴11045110a d +=.又∵1a d =,∴55d =110,∴d =2, ∴()112n a a n d n =+-=3.已知数列{}n a 的奇数项成等差数列,偶数项成等比数列,公差与公比均为2,并且2415798,a a a a a a a +=++=. (1)求数列{}n a 的通项公式;(2)求使得1212m m m m m m a a a a a a ++++⋅⋅=++成立的所有正整数m 的值. 答案:见解析解析:【知识点:等比数列,等比数列通项公式】31517142622,4,6,2,4a a a a a a a a a a =+=+=+==Q 2415798,a a a a a a a +=++=2211212124,2642a a a a a a a a ∴+=+++++=++121,2a a ∴==∴na =⎩⎨⎧为奇数为偶数n n n n,,22; (2)∵1212m m m m m m a a a a a a ++++⋅⋅=++成立, ∴由上面可以知数列{}n a 为:1,2,3,4,5,8,7,16,9,… 当m =1时等式成立,即1+2+3=-6=1×2×3;等式成立. 当m =2时等式成立,即2×3×4≠2+3+4;等式不成立. 当m =3、4时等式不成立; 当m ≥5时,∵12m m m a a a ++⋅⋅为偶数, 12m m m a a a ++++为奇数, ∴可得m 取其它值时,不成立, ∴m =1时成立.。
高中数学《等比数列的概念和通项公式》教案
高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的定义及其特点。
2. 引导学生推导等比数列的通项公式,并能运用通项公式解决实际问题。
3. 培养学生的逻辑思维能力、运算能力和解决问题的能力。
二、教学内容1. 等比数列的概念:介绍等比数列的定义、性质和判定方法。
2. 等比数列的通项公式:引导学生推导通项公式,并进行证明。
3. 等比数列的求和公式:介绍等比数列前n项和的公式。
三、教学重点与难点1. 教学重点:等比数列的概念、性质、通项公式和求和公式。
2. 教学难点:等比数列通项公式的推导和证明。
四、教学方法1. 采用问题驱动法,引导学生通过观察、分析和归纳等比数列的性质。
2. 运用类比法,让学生理解等比数列与等差数列的异同。
3. 利用多媒体辅助教学,展示等比数列的动态变化过程。
4. 开展小组讨论,培养学生的合作意识和解决问题的能力。
五、教学过程1. 导入新课:通过引入日常生活中的实例,如银行存款利息问题,引导学生思考等比数列的概念。
2. 讲解等比数列的定义和性质:让学生通过观察、分析和归纳等比数列的性质,得出等比数列的定义。
3. 推导等比数列的通项公式:引导学生利用已知条件,通过变换和代数运算,推导出等比数列的通项公式。
4. 证明等比数列的通项公式:让学生理解并证明等比数列通项公式的正确性。
5. 介绍等比数列的求和公式:引导学生运用通项公式,推导出等比数列前n项和的公式。
6. 课堂练习:布置一些有关等比数列的题目,让学生巩固所学知识。
7. 总结与反思:对本节课的内容进行总结,让学生反思自己的学习过程,提高学习效果。
8. 课后作业:布置一些有关等比数列的练习题,巩固所学知识。
六、教学策略1. 案例分析:通过分析具体的等比数列案例,让学生更好地理解等比数列的概念和性质。
2. 互动提问:在教学过程中,教师应引导学生积极参与课堂讨论,提问等方式来巩固学生对等比数列的理解。
等比数列的概念与通项公式
3.在等比数列中,已知首项为 ,末项为 ,公比为 ,则项数 等于( )。
课堂小结:在圆满地完成本节课的学习目标之后 ,教师进行总结性评价,鼓励学生再接再厉,完成相关思考题,获得更多的成功与收获更多的喜悦。
【设计意图】
两个问题情境均富有故事性,问题答案的更具有刺激性,这能大大激发学生的学习兴趣和学习热情。
变形1:已知{an}、{bn}为等比数列,c是非零常数,则{can}、{an+c}、{an+bn}是否为等比数列?
变形2:已知{an}为等比数列,问a2,a4,a6,…是否为等比数列?
变形3:已知{an}为等比数列,问a10,a20,a30,…是否为等比数列?
练习三:
1.某种细菌在培养过程中,每半个小时分裂一次(一个分裂为两个),经过4小时,这种细菌由一个可繁殖成个。
变形4:等比数列{an}中,a3+a6=36,a4+a7=18,an=,求n.
例3:袁隆平在培育某水稻新品种时,培育出第一代120粒种子,并且从第一代起,由以后各代的每一粒种子都可以得到下一代的120粒种子,到第5代时大约可以得到这个新品种的种子多少粒(保留两位有效数字)?
例4:已知{an}{bn}是项数相同的等比数列,试证{anbn}是等比数列.
(3)情感、态度与价值观目标:进一步培养学生对数学学习的积极情感,培养学生良好的学习习惯,使学生获得成功体验,激发学生学习数学的兴趣.
六、教学重难点:
教学重点:等比数列的概念及通项公式.
教学难点:应用等比数列概念及通项公式解决相关问题.
七、练习准备:课件
八、
教
学
过
程
教
高中数学《等比数列的概念和通项公式》教案
高中数学《等比数列的概念和通项公式》教案一、教学目标:1. 让学生理解等比数列的概念,掌握等比数列的定义及其特点。
2. 引导学生掌握等比数列的通项公式,并能灵活运用通项公式解决相关问题。
3. 培养学生的数学思维能力,提高学生分析问题和解决问题的能力。
二、教学内容:1. 等比数列的概念:介绍等比数列的定义,通过实例让学生理解等比数列的特点。
2. 等比数列的通项公式:引导学生推导等比数列的通项公式,并解释其意义。
3. 等比数列的性质:探讨等比数列的性质,如相邻项之比、公比等。
4. 等比数列的求和公式:介绍等比数列的求和公式,并解释其推导过程。
5. 应用:通过例题展示等比数列通项公式的应用,让学生学会解决实际问题。
三、教学重点与难点:1. 教学重点:等比数列的概念、通项公式、求和公式及其应用。
2. 教学难点:等比数列通项公式的推导和求和公式的理解。
四、教学方法:1. 采用问题驱动的教学方法,引导学生主动探究等比数列的性质和公式。
2. 利用多媒体辅助教学,通过动画和图形展示等比数列的特点,增强学生的直观感受。
3. 通过例题和练习题,让学生在实践中掌握等比数列的运用。
五、教学过程:1. 引入:通过生活中的实例,如银行利息计算,引出等比数列的概念。
2. 讲解:详细讲解等比数列的定义、特点和通项公式,引导学生理解并掌握。
3. 互动:学生提问,教师解答,共同探讨等比数列的相关问题。
4. 练习:布置练习题,让学生运用通项公式解决问题,巩固所学知识。
6. 作业:布置作业,让学生进一步巩固等比数列的知识。
六、教学评估:1. 课堂问答:通过提问的方式检查学生对等比数列概念和通项公式的理解程度。
2. 练习题:布置课堂练习题,评估学生运用通项公式解决问题的能力。
3. 作业批改:对学生的作业进行批改,了解学生对所学知识的掌握情况。
七、教学反思:1. 针对学生的反馈,反思教学过程中的不足之处,如讲解不清、学生理解困难等问题。
2. 针对教学方法的适用性,调整教学策略,以提高教学效果。
高中数学等比数列教案
高中数学等比数列教案
一、教学目标:
1. 掌握等比数列的定义及判断方法;
2. 掌握等比数列的通项公式及前 n 项和公式;
3. 能够灵活应用等比数列解决实际问题。
二、教学重点:
1. 等比数列的定义及判断方法;
2. 等比数列的通项公式及前 n 项和公式。
三、教学难点:
1. 灵活运用等比数列解决复杂问题;
2. 培养学生数学思维和逻辑推理能力。
四、教学内容:
1. 等比数列的定义及性质;
2. 等比数列通项公式及前 n 项和公式的推导;
3. 等比数列的应用实例。
五、教学过程:
1. 引入:通过生活中的实例引入等比数列的概念,让学生了解等比数列的特点和应用场景。
2. 学习等比数列的性质和判断方法,让学生能够判断一个数列是否为等比数列。
3. 学习等比数列的通项公式及前 n 项和公式的推导,让学生掌握这两个公式的用法和计算
方法。
4. 练习与巩固:让学生通过练习题巩固所学知识,培养他们的解题能力和推理思维。
5. 应用实例:通过一些实际问题,让学生运用等比数列解决实际问题,培养他们的数学建
模能力。
六、作业布置:
1. 课后练习:布置一些等比数列相关的习题,巩固学生所学知识。
2. 探究性问题:布置一些拓展性问题,让学生能够进一步应用所学知识解决问题。
七、课堂反馈:
1. 通过课堂讨论和作业批改,及时纠正学生的错误,加深他们对等比数列的理解和掌握。
八、教学总结:
1. 总结本节课所学知识,梳理等比数列的性质和应用场景,巩固学生的学习成果。
2. 展望下一节课内容,引导学生进行自主学习和提前预习。
高中数学《等比数列的概念和通项公式》教案
高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的定义及其性质。
2. 引导学生推导等比数列的通项公式,并能灵活运用通项公式解决相关问题。
3. 培养学生的逻辑思维能力、运算能力和解决实际问题的能力。
二、教学内容1. 等比数列的概念:介绍等比数列的定义,通过实例让学生理解等比数列的特点。
2. 等比数列的性质:探讨等比数列的性质,如相邻项的比值是常数,公比等。
3. 等比数列的通项公式:引导学生推导等比数列的通项公式,并解释其意义。
4. 运用通项公式解决实际问题:通过例题,让学生学会运用通项公式求等比数列的特定项、求和等。
5. 拓展与应用:引导学生思考等比数列在实际生活中的应用,如复利、生长速率等。
三、教学重点与难点1. 教学重点:等比数列的概念、性质和通项公式的推导及应用。
2. 教学难点:等比数列通项公式的理解和运用。
四、教学方法1. 采用问题驱动法,引导学生主动探究等比数列的性质和通项公式。
2. 用实例讲解等比数列的概念,让学生在实际问题中感受等比数列的应用。
3. 通过小组讨论、合作交流,培养学生的团队协作能力。
4. 利用多媒体课件,生动展示等比数列的性质和通项公式,提高学生的学习兴趣。
五、教学准备1. 多媒体课件:制作等比数列的概念、性质和通项公式的课件。
2. 教学素材:准备一些关于等比数列的实际问题,用于课堂练习。
3. 教学反思:对以往教学等比数列的经验进行总结,以便更好地指导学生学习。
六、教学过程1. 导入新课:通过一个实际问题,如复利计算,引出等比数列的概念。
2. 探究等比数列的性质:让学生通过观察、分析实例,发现等比数列的性质。
3. 推导等比数列的通项公式:引导学生运用已学的数学知识,如代数运算,推导出等比数列的通项公式。
4. 应用通项公式解决问题:通过例题,让学生学会运用通项公式求等比数列的特定项、求和等。
5. 总结与拓展:总结等比数列的概念、性质和通项公式的要点,提出一些拓展问题,激发学生的学习兴趣。
高中数学 第2章 数列 2.3.2.1 等比数列的概念及通项公式学案 苏教版必修5-苏教版高中必修5
第1课时等比数列的概念及通项公式1.理解等比数列的概念,能在具体情景中,发现数列的等比关系.(重点)2.会推导等比数列的通项公式,并能应用该公式解决简单的等比数列问题.(重点)3.会证明一个数列是等比数列.(难点)[基础·初探]教材整理1 等比数列的概念阅读教材P49的有关内容,完成下列问题.如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).判断(正确的打“√”,错误的打“×”)(1)等比数列中,各项与公比均不为零.( )(2)数列a,a,…,a一定是等比数列.( )(3)等比数列{a n}中,a1,a3,a5一定同号.( )【答案】(1)√(2)×(3)√教材整理2 等比数列的通项公式阅读教材P51~P52,完成下列问题.如果数列{a n}是等比数列,首项为a1,公比为q,那么它的通项公式为a n=a1q n-1(a1≠0,q≠0).1.在等比数列{a n}中,已知a1=2,a4=16,则a n=________.【解析】∵a4=a1q3,∴q3=8,∴q=2,∴a n=a1q n-1=2·2n-1=2n.【答案】2n2.在等比数列{a n}中,已知a1=3,q=3,若a n=729,则n=________.【解析】∵a n=a1q n-1,a1=3,q=3,∴729=3·3n -1=3n,∴n =6.【答案】 6教材整理3 等比中项阅读教材P 54第11题,完成下列问题.1.若a ,G ,b 成等比数列,则称G 为a 和b 的等比中项,且满足G 2=ab . 2.若数列{a n }是等比数列,对任意的正整数n (n ≥2),都有a 2n =a n -1·a n +1.1.若22是b -1,b +1的等比中项,则b =________.【解析】 ∵(b -1)(b +1)=(22)2,∴b 2-1=8,∴b 2=9,∴b =±3. 【答案】 ±32.若1,a,4成等比数列,则a =________. 【解析】 ∵1,a,4成等比数列, ∴a 2=1×4=4, ∴a =±2. 【答案】 ±2[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:_________________________________________________ 解惑:_________________________________________________ 疑问2:_________________________________________________ 解惑:_________________________________________________ 疑问3:_________________________________________________ 解惑:_________________________________________________[小组合作型]等比数列的判定与证明设数列{a n }满足a 1=1,a n +2a n -1+3=0(n ≥2).判断数列{a n +1}是否是等比数列?【精彩点拨】 只需证明a n +1+1a n +1=非零常数即可.【自主解答】 由题意知a n +1+2a n +3=0(n ≥2)成立,∴a n +1=-2a n -3, ∴a n +1+1a n +1=-2a n -3+1a n +1=-2(常数). 又a 1+1=2,∴数列{a n +1}是以2为首项,以-2为公比的等比数列.要判断一个数列{a n }是等比数列,其依据是a n a n -1=q (q 是非零常数)或a n +1a n=q ,对一切n ∈N *且n ≥2恒成立.[再练一题]1.判断下列数列是否为等比数列. (1)1,-1,1,-1,…; (2)1,2,4,6,8,…; (3)a ,ab ,ab 2,ab 3,….【解】 (1)是首项为1,公比为-1的等比数列. (2)64≠86,不是等比数列. (3)当ab ≠0时,是等比数列,公比为b ,首项为a ; 当ab =0时,不是等比数列.等比数列的通项公式(1)若{a n }为等比数列,且2a 4=a 6-a 5,则公比为________. (2)在等比数列{a n }中,若a 2+a 5=18,a 3+a 6=9,a n =1,则n =________.【导学号:91730035】【解析】 (1)∵a 6=a 4q 2,a 5=a 4q ,∴2a 4=a 4q 2-a 4q ,∴q 2-q -2=0,∴q 1=-1,q 2=2.(2)法一 因为⎩⎪⎨⎪⎧a 2+a 5=a 1q +a 1q 4=18,③a 3+a 6=a 1q 2+a 1q 5=9,④由④③得q =12,从而a 1=32,又a n =1, 所以32×⎝ ⎛⎭⎪⎫12n -1=1,即26-n=20,所以n =6.法二 因为a 3+a 6=q (a 2+a 5),所以q =12.由a 1q +a 1q 4=18,知a 1=32. 由a n =a 1qn -1=1,知n =6.【答案】 (1)-1或2 (2)6等比数列基本量的求法a 1和q 是等比数列的基本量,只要求出这两个基本量,其他量便可求出来,法一是常规解法,先求a 1,q ,再求a n ,法二是运用通项公式及方程思想建立方程组求a 1和q ,这也是常见的方法.[再练一题]2.(1)若等比数列的前三项分别为5,-15,45,则第5项是________.(2)一个各项均为正数的等比数列,每一项都等于它后面两项的和,则公比q =________.【解析】 (1)∵a 5=a 1q 4,a 1=5,∴q =-3,∴a 5=405. (2)由题意,a n =a n +1+a n +2,即a n =a n q +a n q 2,∴q 2+q -1=0,∴q =-1±52.∵q >0,∴q =5-12.【答案】 (1)405 (2)5-12[探究共研型]等比中项探究1 三个数满足G 2=xy ,则x ,G ,y 成等比数列吗? 【提示】 不一定.如0,0,0这三个数不成等比数列. 探究2 任何两个非零常数都有等比中项吗? 【提示】 不是.只有同号的两个数才有等比中项.在4与14之间插入3个数,使这5个数成等比数列,求插入的3个数.【精彩点拨】 法一:利用等比数列的通项公式求解; 法二:先设出这三个数,再利用等比中项求解.【自主解答】 法一:依题意,a 1=4,a 5=14,由等比数列的通项公式,得q 4=a 5a 1=116,q =±12.因此,插入的3项依次为2,1,12或-2,1,-12.法二:此等比数列共5项,a 3是a 1与a 5的等比中项,因此a 3=±a 1a 5=±1.a 2是a 1与a 3的等比中项,a 4是a 3与a 5的等比中项,因为一个正数和一个负数没有等比中项,所以a 3=1,a 2=±a 1a 3=±2,a 1=±a 3a 5=±12.因此,插入的3项依次为2,1,12或-2,1,-12.注意等比数列中各项的符号特点是隔项符号必须相同.从而,对于数a ,b 的等比中项G ,G 2=ab 一定成立,但G 的符号不一定正负都可取,如等比数列{a n }中,三项分别为a 1,a 4,a 7,则a 4是a 1与a 7的等比中项,此时a 4可取正值,也可取负值;而对于下面的三项a 2,a 4,a 6,也有a 4是a 2与a 6的等比中项,此时a 4只能与a 2和a 6同号.[再练一题]3.已知a ,-32,b ,-24332,c 这五个数成等比数列,求a ,b ,c 的值.【解】 由题意知b 2=⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-24332=⎝ ⎛⎭⎪⎫326,∴b =±278.当b =278时,ab =⎝ ⎛⎭⎪⎫-322,解得a =23;bc =⎝ ⎛⎭⎪⎫-243322=⎝ ⎛⎭⎪⎫-3210,解得c =⎝ ⎛⎭⎪⎫327. 同理,当b =-278时,a =-23,c =-⎝ ⎛⎭⎪⎫327. 综上所述,a ,b ,c 的值分别为23,278,⎝ ⎛⎭⎪⎫327或-23,-278,-⎝ ⎛⎭⎪⎫327.[构建·体系]1.下列各组数能组成等比数列的是________(填序号). ①13,16,19;②lg 3,lg 9,lg 27; ③6,8,10;④3,-33,9. 【解析】-333=9-33=- 3. 【答案】 ④2.若等比数列的首项为4,末项为128,公比为2,则这个数列的项数n =________. 【解析】 由等比数列的通项公式,得128=4×2n -1,2n -1=32,所以n =6.【答案】 63.在等比数列{a n }中,a 1=18,q =-2,则a 4与a 10的等比中项是________.【导学号:91730036】【解析】 a 4与a 10的等比中项为a 7,a 7=18×(-2)6=8.【答案】 84.已知{a n }是递增等比数列,a 2=2,a 4-a 3=4,则此数列的公比q =________. 【解析】 a 4-a 3=a 2q 2-a 2q =a 2(q 2-q )=2(q 2-q )=4,∴q 2-q -2=0, ∴q =2,或q =-1(舍去). 【答案】 25.在243和3中间插入3个数,使这5个数成等比数列,求这3个数. 【解】设插入的三个数为a 2,a 3,a 4,由题意得243,a 2,a 3,a 4,3成等比数列. 设公比为q ,则3=243·q 5-1,解得q =±13.当q =13时,a 2=81,a 3=27,a 4=9;当q =-13时,a 2=-81,a 3=27,a 4=-9.因此,所求三个数为81,27,9或-81,27,-9.我还有这些不足:(1)_________________________________________________ (2)_________________________________________________ 我的课下提升方案:(1)_________________________________________________ (2)_________________________________________________学业分层测评(十) (建议用时:45分钟)[学业达标]一、填空题1.在等比数列{a n }中,a 4=2,a 7=8,则a n =________.【解析】 因为⎩⎪⎨⎪⎧a 4=a 1q 3,a 7=a 1q 6,所以⎩⎪⎨⎪⎧a 1q 3=2 ①a 1q 6=8 ②由②①得q 3=4,从而q =34,而a 1q 3=2, 于是a 1=2q 3=12,所以a n =a 1q n -1=22n -53.【答案】 22n -532.等比数列x,3x +3,6x +6,…的第四项等于________.【解析】 由题意知(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-3或x =-1(舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24.【答案】 -243.如果-1,a ,b ,c ,-9成等比数列,那么b =________,ac =________.【解析】 ∵b 2=(-1)×(-9)=9,且b 与首项-1同号,∴b =-3,且a ,c 必同号. ∴ac =b 2=9.【答案】 -3 94.在等比数列{a n }中,a 3=3,a 10=384,则公比q =________.【解析】 由a 3=a 1q 2=3,a 10=a 1q 9=384,两式相除得,q 7=128,所以q =2. 【答案】 25.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=________. 【解析】 ∵{a n }为等比数列, ∴a 2+a 3a 1+a 2=q =2. 又∵a 1+a 2=3, ∴a 1=1. 故a 7=1·26=64. 【答案】 646.若{a n }是等比数列,下列数列中是等比数列的所有代号为________.①{a 2n };②{a 2n };③⎩⎨⎧⎭⎬⎫1a n ;④{lg|a n |}.【解析】 考查等比数列的定义,验证第n +1项与第n 项的比是否为常数. 【答案】 ①②③7.在160与5中间插入4个数,使它们同这两个数成等比数列,则这4个数依次为________.【解析】 设这6个数所成等比数列的公比为q ,则5=160q 5,∴q 5=132,∴q =12,∴这4个数依次为80,40,20,10. 【答案】 80,40,20,108.在等比数列{a n }中,|a 1|=1,a 5=-8a 2,a 5>a 2,则a n =________.【导学号:91730037】【解析】 记数列{a n }的公比为q ,由a 5=-8a 2,得a 1q 4=-8a 1q ,即q =-2.由|a 1|=1,得a 1=±1,当a 1=-1时,a 5=-16<a 2=2,与题意不符,舍去;当a 1=1时,a 5=16>a 2=-2,符合题意,故a n =a 1qn -1=(-2)n -1.【答案】 (-2)n -1二、解答题9.在等比数列{a n }中,a 2-a 1=2,且2a 2为3a 1和a 3的等差中项,求数列{a n }的首项,公比.【解】 设该数列的公比为q .由已知,得⎩⎪⎨⎪⎧a 1q -a 1=2,4a 1q =3a 1+a 1q 2,所以⎩⎪⎨⎪⎧a 1q -1=2,q 2-4q +3=0,解得⎩⎪⎨⎪⎧a 1=1,q =3q =1舍去,故首项a 1=1,公比q =3.10.数列{a n }满足a 1=-1,且a n =3a n -1-2n +3(n =2,3,…). (1)求a 2,a 3,并证明数列{a n -n }是等比数列; (2)求a n .【解】 (1)a 2=3a 1-2×2+3=-4,a 3=3a 2-2×3+3=-15.下面证明{a n -n }是等比数列: 由a 2=-4,a 3=-15可知,a n ≠n . ∵a n +1-n +1a n -n=3a n -2n +1+3-n +1a n -n=3a n -3n a n -n=3(n =1,2,3,…).又a 1-1=-2,∴{a n -n }是以-2为首项,以3为公比的等比数列. (2)由(1)知a n -n =-2·3n -1,∴a n =n -2·3n -1.[能力提升]1.在等差数列{a n }中,公差d ≠0,且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10等于________.【解析】 由题意知a 3是a 1和a 9的等比中项, ∴a 23=a 1a 9,∴(a 1+2d )2=a 1(a 1+8d ), 得a 1=d ,∴a 1+a 3+a 9a 2+a 4+a 10=13d 16d =1316.【答案】13162.已知{a n }是等比数列,a n >0,又知a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5=________. 【解析】 ∵a 2a 4=a 23,a 4a 6=a 25,∴a 23+2a 3a 5+a 25=25,∴(a 3+a 5)2=25,又∵a n >0,∴a 3+a 5=5.【答案】 53.若数列{a n }的前n 项和为S n ,且a n =2S n -3,则{a n }的通项公式是________. 【解析】 由a n =2S n -3,得a n -1=2S n -1-3(n ≥2),两式相减得a n -a n -1=2a n (n ≥2), ∴a n =-a n -1(n ≥2),a na n -1=-1(n ≥2). 故{a n }是公比为-1的等比数列,令n =1,得a 1=2a 1-3, ∴a 1=3,故a n =3·(-1)n -1.【答案】 a n =3·(-1)n -14.互不相等的3个数之积为-8,这3个数适当排列后可以组成等比数列,也可组成等差数列,求这3个数组成的等比数列.【解】 设这3个数分别为a q,a ,aq ,则a 3=-8,即a =-2. (1)若-2为-2q和-2q 的等差中项,则2q+2q =4,∴q 2-2q +1=0,解得q =1,与已知矛盾,舍去; (2)若-2q 为-2q和-2的等差中项,则1q +1=2q ,∴2q 2-q -1=0,解得q =-12或q =1(与已知矛盾,舍去), ∴这3个数组成的等比数列为4,-2,1; (3)若-2q 为-2q 和-2的等差中项,则q +1=2q,∴q 2+q -2=0,解得q =-2或q =1(与已知矛盾,舍去), ∴这3个数组成的等比数列为1,-2,4.故这3个数组成的等比数列为4,-2,1或1,-2,4.。
高中数学最新-等比数列的概念和通项公式教案 精品
听课随笔第11课时等比数列的概念和通项公式 【学习导航】知识网络学习要求1.灵活应用等比数列的定义及通项公式;2.熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法; 3.灵活应用等比数列定义、通项公式、性质解决一些相关问题.【自学评价】1. 等比数列的性质:(1)n m n m a a q -=(,m n N +∈);(2)对于k 、l 、m 、n ∈N *,若m n p q +=+,则a k a l =a m a n .;(3)每隔k 项(k N +∈)取出一项,按原来顺序排列,所得的新数列为等比数列; 4)在等比数列中,从第二项起,每一项都是与它等距离的前后两项的等比中项。
2. (1) 若{a n }为等比数列,公比为q ,则{a 2n }也是等比数列,公比为q 2.(2) 若{a n }为等比数列,公比为q (q ≠-1),则{a 2n -1+a 2n }也是等比数列,公比为q 2. (3) 若{a n }、{b n }是等比数列,则{a n b n }也是等比数列.(4) 三个数a 、b 、c 成等比数列的,则⎩⎨⎧≠=02abc acb【精典范例】【例1】已知四个数前3个成等差,后三个成等比,中间两数之积为16,前后两数之积为-128,求这四个数.【解】 设所求四个数为q a 2-aq ,qa,aq ,aq 3 由①得a 2=16 ∴a =4或a =-4由②得2a 2q 2-a 2q 4=-128 将a 2=16代入整理得 q 4-2q 2-8=0解得q 2=4∴q =2或q =-2 因此所求的四个数为-4,2,8,32或4,-2,-8,-32.【点评】 根据四个数前3个成等差,后三个成等比,列方程可利用a 、q 表示四个数,根据中间两数之积为16,将中间两个数设为qa,aq 这样既可使未知量减少,同时解方程也较为方便.【例2】若a 、b 、c 成等比数列,试证:a 2+b 2,ac +bc ,b 2+c 2也成等比数列. 【证明】 由a 、b 、c 成等比数列, 则a ·b ·c ≠0且b 2=ac(a 2+b 2)(b 2+c 2)=(a 2+ac )(ac +c 2)=ac (a +c )2=b 2(a +c )2=(ab +bc )2 显然a 2+b 2、b 2+c 2都不等零,且ab +bc ≠0∴a 2+b 2,ab +bc ,b 2+c 2成等比数列.【点评】 证明数列成等比数列,可利用等比数列的定义,而证明三个数a ,b ,c 成等比,可证明b 2=ac ,要注意说明a 、b 、c 全不为零.追踪训练一1.在等比数列{a n }中,a 1=81,q =2,则a 4与a 8的等比中项是( B )A.±4B.4C.±41D. 412.在等比数列{a n }中,已知a 5=-2,则这个数列的前9项的乘积等于( B )A.512B.-512C.256D.-2563.2,x ,y ,z ,162是成等比数列的五个正整数,则z 的值等于( A )A.54B.27C.9D.34.已知{a n }是等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5的值等于( A )A.5B.10C.15D.205.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 9成等比数列,则1042931a a a a a a ++++的值为1613.【选修延伸】【例3】在{}n a 中,23,111+==+n n a a a ,试求{}n a 的通项n a【解】设)(31αα+=++n n a a 则α231+=+n n a a 可得α=1 )1(311+=+∴+n n a a ,}1{+∴n a 为等比数列,首项为11+a =2,公比为31321-⋅=+∴n n a , 1321-⋅=∴-n n a【例4】在{}n a 中,3,111+==+n nn a a a a ,试求{}n a 的通项n a 【解】原式可变为:1311+=+nn a a ,∴可构造为)211(32111+=++n n a a听课随笔}211{+∴n a 为等比数列,首项232111=+a ,公比3 1323211-⋅=+∴n n a , 132-=∴n n a【例5】在{}n a 中111132n n n a a ++=+,15,6a =求{n a }的通项n a【解】法一: 原式变形为:1232211+⋅=⋅++n n n n a a ,设)2(32211αα+⋅=+⋅++n n n n a a , 即3232211α-⋅=⋅++n n n n a a , 3-=∴α,即)32(323211-⋅=-⋅++n n n n a a , }32{-⋅∴n n a 为等比数列,首项321-⋅a =34-,公比32132(3432--=-⋅∴n n n a ,n n n a 3223-=∴法二:设2(31211nn n n a a αα+=+++,即 1121331++-=n n n a a α3-=∴α 即)23(312311n n n n a a -=-++,}23{n n a -∴为等比数列,首项231-a =32-,公比31,1313223-⎪⎭⎫⎝⎛-=-∴n n n a ,n n n a 3223-=∴追踪训练二1.在等比数列{a n }中,若a 2·a 8=36,a 3+a 7=15,则公比q 值的可能个数为( D )A.1B.2C.3D.42.在各项都为正数的等比数列{a n }中,若a 5·a 6=9,则log 3a 1+log 3a 2+log 3a 3+…+log 3a 10等于( B )A.8B.10C.12D.2+log 353.已知一个直角三角形三边的长成等比数列,则( C )听课随笔A.三边边长之比为3∶4∶5 B.三边边长之比为1∶3∶3C.较小锐角的正弦为215-D.较大锐角的正弦为215- 4.公差不为0的等差数列第二、三、六项构成等比数列,则公比为( C ) A.1 B.2 C.3D.4 5.已知数列满足a 1=87,且a n +1=21a n +31,n ∈N * (1)求证{a n -32}是等比数列. (2)求数列{a n }的通项公式. 【解】(1)【证明】 由a n +1 =21a n +31得 a n +1-)32(2132-=n a 又a n -32≠∴2132321=--+n n a a 即,数列{a n -32}构成等比数列.(2)由(1)知a n -32=(a 1-32)(21)n -1,且a 1=87即a n =(a 1-21)(32n -1+32=32)21(2451+-n =32)21(352++n。
高中数学人教A版必修5《等比数列》教案
《等比数列》教案教学目标:1、通过实例,理解等比数列的概念2、探索并掌握等比数列的通项公式3、通过等比数列与指数函数的关系体会数列是一种特殊的函数。
教学重点:理解等比数列的概念,认识等比数列是反映自然规律的重要的数列模型之一,探索并掌握等比数列的通项公式。
教学难点:等比数列与其对应函数的关系。
教学过程:一 、复习旧知:1、等比数列的定义及通项公式2、等差数列的通项公式与一次函数之间的关系二、探究新知1、(1)有人说:如果能将一张厚度为 的报纸对折、再对折。
对折50次后,报纸的厚度超过了地球与月球间的距离,你信吗?每次对折后报纸的厚度依次构成数列:(2)《庄子》一书中说:“一尺之棰,日取其半,万世不竭!”(3)某人年初向银行贷款1万元,如果贷款年利率是6%,那么,5年内各年末应该还款总额依次为:1×1.06, 1×1.062, 1×1.063,1×1.064, 1×1.065结合实例分析上述几个数列的共同特点。
mm050、.2050 ...... 2050 ,2050.2050......2050,20502,050 2,05050325032⨯⨯⨯⨯⨯⨯⨯⨯、、、、、、、、 (32)1,161,81,41,21,12、探究等比数列的定义定义:如果一个数列从第2项起,每一项与它的前一项 的比等于同一个常数,那么这个数列叫做等比数列,这 个常数叫做等比数列的公比,通常用字母q 表示 (q ≠0).3、类比等差数列探究等比数列的通项公式(一)不完全归纳法 (二)累乘法4、探究通项公式与指数函数间的关系思考:教材第50页的探究题课后探究:当 满足什么条件时,等比数列 是递增数列、递减数列?三、例题精析例1:在等比数列{a n}中, (1)a 4=2,a 7=16,求a n ; (2)a 2+a 5=18,a 3+a 6=9,a n=1,求n . (3)a 3=2,a 2+a 4= ,求a n . 变式训练:变式训练:已知数列 满足 , (1)求证:数列 是等比数列 (2)求 的表达式. 四、课堂练习1.在等比数列{a n }中,a 1=8,a 4=64,则a 2等于( ) A .16 B.16或-16 C.32 D.32或-322.若等比数列的首项为4,末项为128,公比为2,则这个数列的项数为 ( ) 320 【例1】 在等比数列{a n }中,已知a 5-a 1=15,a 4-a 2=6,求a n . 分析:设公比q,列出关于a 1和q 的方程组来求解. 解:设等比数列{a n }的公比为q, 则有 a 5-a 1=a 1q 4-a 1=15,a 4-a 2=a 1q 3-a 1q =6,①② 由①÷②,得q=12或q=2. 当q=12时,a 1=-16. 当q=2时,a 1=1. 故a n =-16· 12 n -1或a n =2n-1. 【例2】 已知数列{a n }满足lg a n =3n+5,求证:{a n }是等比数列. 分析:可由lg a n =3n+5求出a n ,再证明a n+1a n 是与n 无关的常数. 证明:∵lg a n =3n+5,∴a n =103n+5. ∴a n+1=103(n+1)+5=103n+8.∴a n+1a n =103n+8103n+5=1 000. ∴数列{a n }是等比数列.{}n a 12,111+==+n n a a a {}1+n a {}n a q a 1和{}n aA.4 B.8 C.6 D.323.已知等比数列{a n}满足a1+a2=3,a2+a3=6,则a7等于() A.64 B.81 C.128 D.2434.若数列{a n}的前n项和S n=23an+13,则{a n}的通项公式是a n=________.。
等比数列的概念和通项公式教案
等比数列的概念和通项公式教案第一章:等比数列的概念1.1 引入:通过复习数列的基本概念,引导学生理解数列的定义和性质。
1.2 等比数列的定义:引导学生通过观察和分析一些具体的数列,总结等比数列的定义和特点。
1.3 等比数列的性质:引导学生探究等比数列的性质,如相邻两项的比值是常数,每一项可以表示为前一项与公比的乘积等。
1.4 等比数列的举例:给出一些等比数列的例子,让学生通过计算和分析加深对等比数列的理解。
第二章:等比数列的通项公式2.1 等比数列的通项公式的引入:通过一些具体的等比数列,引导学生观察和分析其通项公式。
2.2 等比数列的通项公式的推导:引导学生利用等比数列的性质和数学归纳法推导出通项公式。
2.3 等比数列的通项公式的应用:给出一些应用等比数列通项公式的例子,让学生通过计算和分析加深对通项公式的理解。
第三章:等比数列的前n项和3.1 等比数列的前n项和的定义:引导学生理解等比数列前n项和的含义和意义。
3.2 等比数列的前n项和的公式:引导学生利用等比数列的性质和数学归纳法推导出前n项和的公式。
3.3 等比数列的前n项和的应用:给出一些应用等比数列前n项和的例子,让学生通过计算和分析加深对前n项和的理解。
第四章:等比数列的性质和运算4.1 等比数列的性质:引导学生探究等比数列的性质,如公比的取值范围,等比数列的单调性等。
4.2 等比数列的运算:引导学生掌握等比数列的运算规则,如加减乘除等。
4.3 等比数列的性质和运算的应用:给出一些应用等比数列的性质和运算的例子,让学生通过计算和分析加深对等比数列的理解。
第五章:等比数列的综合应用5.1 等比数列的实际应用:引导学生将等比数列的概念和公式应用到实际问题中,如经济增长模型,放射性衰变等。
5.2 等比数列的解题策略:引导学生掌握解决等比数列问题的方法和技巧,如利用通项公式和前n项和公式等。
5.3 等比数列的综合练习:给出一些综合性的练习题,让学生通过计算和分析加深对等比数列的综合应用的理解。
高中数学第二章数列2.4.1等比数列的概念及通项公式人教A版必修5
2.等比中项 如果在 a 与 b 中间插入一个数 G,使 a,G,b 成等比数列,那么 G 叫做 a 与 b 的等比中项,这三个数满足关系式 ab=G2.
思考 1 若 G2=ab,则 a,G,b 一定成等比数列吗?
提示:不一定.因为若 G=0,则 a,b 中至少有一个为 0,使 G2=ab,根据等比 数列的定义,a,G,b 不成等比数列.当 a,G,b 全不为零时,若 G2=ab,则 a,G,b 成
探究四
探究二 等比中项的应用
若 a,G,b 成等比数列,则 G 叫做 a 与 b 的等比中项,此时 G=± ������������. 注意:(1)在 a,b 同号时,a,b 的等比中项有两个,异号时,没有等比中项. (2)在一个等比数列中,从第 2 项起,每一项(有穷数列的末项除外)都是 它的前一项与后一项的等比中项. (3)“a,G,b 成等比数列”等价于“G2=ab”(a,b 均不为 0),可以用它来判断 或证明三个数成等比数列. 同时还要注意到“a,G,b 成等比数列”与“G= ������������”不是等价的.
探究一
探究二
探究三
探究四
解:(1)∵a1=-1,an=3an-1-2n+3,∴a2=3a1-2×2+3=-4,a3=3a2-2×3+3=-15.
下面证明{an-n}是等比数列:
������������+1-(n + ������������-n
1)
=
3������������-2(n
+ 1) + ������������-n
是等比数列. (3)通项公式法:若数列{an}的通项公式为 an=a1qn-1(a1≠0,q≠0),则数列
等比数列的概念及通项公式 课件
等比数列的通项公式
[典例]
(1)在等比数列{an}中,a1=
1 2
,q=
1 2
,an=
1 32
,则
项数n为
()
A.3
B.4
C.5
D.6
(2)已知等比数列{an}为递增数列,且a
2 5
=a10,2(an+an+2)=
5an+1,则数列{an}的通项公式an=________.
[解析]
(1)因为an=a1qn-1,所以
式为an=2n.
[答案] (1)C (2)2n
等比数列通项公式的求法 (1)根据已知条件,建立关于a1,q的方程组,求出a1,q后 再求an,这是常规方法. (2)充分利用各项之间的关系,直接求出q后,再求a1,最 后求an,这种方法带有一定的技巧性,能简化运算.
等比中项
[典例]
(1)在等比数列{an}中,a1=
2.等比中项
如果在a与b中间插入一个数G,使a,G,b成 等比数列 ,那
么G叫做a与b的等比中项,这三个数满足关系式G=± ab. [点睛] (1)G是a与b的等比中项,则a与b的符号相同,符
号相反的两个实数不存在等比中项.
G=± ab,即等比中项有两个,且互为相反数. (2)当G2=ab时,G不一定是a与b的等比中项.例如02= 5×0,但0,0,5不是等比数列. 3.等比数列的通项公式 等比数列{an}的首项为a1,公比为q(q≠0),则通项公式 为:an= a1qn-1.
[典例] 在数列{an}中,若an>0,且an+1=2an+3(n∈N*).证 明:数列{an+3}是等比数列.
证明:[法一 定义法] ∵an>0,∴an+3>0. 又∵an+1=2an+3, ∴aan+n+1+33=2ana+n+3+ 3 3=2aann++33=2. ∴数列{an+3}是首项为a1+3,公比为2的等比数列.
等比数列的概念和通项公式教案
等比数列的概念和通项公式教案一、教学目标:1. 理解等比数列的概念。
2. 掌握等比数列的通项公式。
3. 能够运用等比数列的概念和通项公式解决实际问题。
二、教学内容:1. 等比数列的概念。
2. 等比数列的通项公式。
三、教学重点:1. 等比数列的概念。
2. 等比数列的通项公式。
四、教学难点:1. 等比数列的概念的理解。
2. 等比数列的通项公式的应用。
五、教学方法:1. 采用讲授法,讲解等比数列的概念和通项公式。
2. 采用例题解析法,通过具体例题讲解等比数列的通项公式的应用。
3. 采用小组讨论法,让学生分组讨论等比数列的概念和通项公式的应用。
一、等比数列的概念:1. 引导学生回顾数列的概念,即一组按照一定顺序排列的数。
2. 引入等比数列的概念,即从第二项起,每一项都是前一项与一个常数(比)的乘积的数列。
3. 举例说明等比数列的特点,如每一项都可以表示为前一项乘以一个常数。
二、等比数列的通项公式:1. 引导学生回顾等差数列的通项公式,即第n项等于首项加上(n-1)乘以公差。
2. 引导学生发现等比数列的通项公式与等差数列的通项公式的相似之处,都是第n项等于首项加上(n-1)乘以一个常数。
3. 引入等比数列的通项公式,即第n项等于首项乘以比乘以(n-1)次方。
四、等比数列的通项公式的应用:1. 让学生运用等比数列的通项公式计算具体等比数列的第n项。
2. 让学生运用等比数列的通项公式解决实际问题,如计算等比数列的前n项和、求等比数列的平均数等。
六、课堂练习:1. 让学生完成一些有关等比数列的概念和通项公式的练习题。
2. 让学生解决一些实际问题,如计算等比数列的前n项和、求等比数列的平均数等。
1. 回顾等比数列的概念和通项公式。
2. 强调等比数列的通项公式的应用。
八、作业:1. 让学生完成一些有关等比数列的概念和通项公式的练习题。
2. 让学生解决一些实际问题,如计算等比数列的前n项和、求等比数列的平均数等。
九、板书设计:1. 等比数列的概念。
等比数列的概念和通项公式教案
等比数列的概念和通项公式教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的定义及其性质。
2. 引导学生推导等比数列的通项公式,并能灵活运用通项公式解决相关问题。
3. 培养学生的逻辑思维能力、运算能力及解决实际问题的能力。
二、教学内容1. 等比数列的概念:介绍等比数列的定义、性质及判定方法。
2. 等比数列的通项公式:引导学生推导等比数列的通项公式,并解释其意义。
3. 等比数列的求和公式:介绍等比数列前n项和的公式,并解释其推导过程。
三、教学重点与难点1. 教学重点:等比数列的概念、性质、通项公式及求和公式。
2. 教学难点:等比数列通项公式的推导和应用。
四、教学方法1. 采用讲授法,讲解等比数列的概念、性质、通项公式及求和公式。
2. 利用案例分析,让学生通过实际问题理解等比数列的应用。
3. 开展小组讨论,引导学生探讨等比数列的性质和通项公式的推导过程。
五、教学安排1. 第一课时:介绍等比数列的概念和性质。
2. 第二课时:推导等比数列的通项公式,解释其意义。
3. 第三课时:讲解等比数列的求和公式,并进行案例分析。
4. 第四课时:开展练习,巩固等比数列的相关知识。
5. 第五课时:总结等比数列的概念、性质、通项公式及求和公式,进行拓展讲解。
六、教学策略与方法1. 案例分析:通过分析实际问题,让学生了解等比数列在生活中的应用,提高学生的兴趣和积极性。
2. 小组讨论:组织学生进行小组讨论,培养学生的团队合作意识和解决问题的能力。
3. 练习巩固:布置相关的练习题,让学生在实践中巩固等比数列的概念、性质和公式。
七、教学评价1. 课堂问答:通过提问,了解学生对等比数列概念、性质和公式的掌握情况。
2. 练习解答:检查学生练习题的完成情况,评估学生对等比数列知识的应用能力。
3. 小组讨论:评价学生在团队合作中的表现,包括分析问题、解决问题的能力。
八、教学拓展1. 探索等比数列的其他性质:引导学生深入研究等比数列的其他性质,如等比数列的项的符号规律、等比数列的项的绝对值规律等。
等比数列的通项公式教案
等比数列的通项公式教案一、教学目标:1. 理解等比数列的概念。
2. 掌握等比数列的通项公式。
3. 能够运用通项公式解决实际问题。
二、教学内容:1. 等比数列的概念介绍。
2. 等比数列的通项公式推导。
3. 等比数列通项公式的应用实例。
三、教学重点与难点:1. 等比数列的概念理解。
2. 等比数列通项公式的记忆与运用。
四、教学方法:1. 讲授法:讲解等比数列的概念和通项公式。
2. 案例分析法:分析等比数列的实际应用实例。
3. 练习法:让学生通过练习来巩固知识点。
五、教学过程:1. 引入:通过生活中的实例引入等比数列的概念。
2. 等比数列的概念介绍:讲解等比数列的定义和性质。
3. 等比数列的通项公式推导:引导学生通过观察和推理来推导通项公式。
4. 等比数列通项公式的应用实例:分析实际问题,引导学生运用通项公式解决问题。
【教学目标】1. 理解等比数列的概念。
2. 掌握等比数列的通项公式。
3. 能够运用通项公式解决实际问题。
【教学内容】1. 等比数列的概念介绍。
2. 等比数列的通项公式推导。
3. 等比数列通项公式的应用实例。
【教学重点与难点】1. 等比数列的概念理解。
2. 等比数列通项公式的记忆与运用。
【教学方法】1. 讲授法:讲解等比数列的概念和通项公式。
2. 案例分析法:分析等比数列的实际应用实例。
3. 练习法:让学生通过练习来巩固知识点。
【教学过程】1. 引入:通过生活中的实例引入等比数列的概念。
2. 等比数列的概念介绍:讲解等比数列的定义和性质。
3. 等比数列的通项公式推导:引导学生通过观察和推理来推导通项公式。
4. 等比数列通项公式的应用实例:分析实际问题,引导学生运用通项公式解决问题。
六、教学评价:1. 通过课堂问答、作业和练习题检查学生对等比数列概念和通项公式的理解程度。
2. 评估学生运用通项公式解决实际问题的能力。
3. 综合评价学生的学习效果和教学目标的达成情况。
七、教学拓展:1. 等比数列在实际生活中的应用:介绍等比数列在金融、经济学等领域的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4 等比数列2.4.1 等比数列的概念及通项公式从容说课本节内容先由师生共同分析日常生活中的实际问题来引出等比数列的概念,再由教师引导学生与等差数列类比探索等比数列的通项公式,并将等比数列的通项公式与指数函数进行联系,体会等比数列与指数函数的关系,既让学生感受到等比数列是现实生活中大量存在的数列模型,也让学生经历了从实际问题抽象出数列模型的过程教学中应充分利用信息和多媒体技术,给学生以较多的感受,激发学生学习的积极性和思维的主动性准备丰富的阅读材料,为学生提供自主学习的可能,进而达到更好的理解和巩固课堂所学知识的目的教学重点1.等比数列的概念2.等比数列的通项公式教学难点1.在具体问题中抽象出数列的模型和数列的等比关系2.等比数列与指数函数的关系教具准备多媒体课件、投影胶片、投影仪等三维目标一、知识与技能1.了解现实生活中存在着一类特殊的数列2.理解等比数列的概念,探索并掌握等比数列的通项公式3.能在具体的问题情境中,发现数列的等比关系,并能用有关的知识解决相应的实际问题;4.体会等比数列与指数函数的关系二、过程与方法1.采用观察、思考、类比、归纳、探究、得出结论的方法进行教学2.发挥学生的主体作用,作好探究性活动3.密切联系实际,激发学生学习的积极性三、情感态度与价值观1.通过生活中的大量实例,鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力2.通过对有关实际问题的解决,体现数学与实际生活的密切联系,激发学生学习的兴趣教学过程 导入新课师 现实生活中,有许多成倍增长的实例.如,将一张报纸对折、对折、再对折、…,对折了三次,手中的报纸的层数就成了8层,对折了5次就成了32层.你能举出类似的例子吗? 生 一粒种子繁殖出第二代120粒种子,用第二代的120粒种子可以繁殖出第三代120×120粒种子,用第三代的120×120粒种子可以繁殖出第四代120×120×120粒种子,师 非常好的一个例子!现实生活中,我们会遇到许多这类的事例教师出示多媒体课件一:某种细胞分裂的模型师 细胞分裂的个数也是与我们上述提出的问题类似的实例.细胞分裂有什么规律,将每次分裂后细胞的个数写成一个数列,你能写出这个数列吗?生 通过观察和画草图,发现细胞分裂的规律,并记录每次分裂所得到的细胞数,从而得到每次细胞分裂所得到的细胞数组成下面的数列: 1,2,4,8,教师出示投影胶片1:“一尺之棰,日取其半,万世不竭师 这是《庄子·天下篇》中的一个论述,能解释这个论述的含义吗? 生 思考、讨论,用现代语言叙述师 (用现代语言叙述后)如果把“一尺之棰”看成单位“1”,那么得到的数列是什么样的呢?生 发现等比关系,写出一个无穷等比数列:1,21,41,81,161,…教师出示投影胶片2:计算机病毒传播问题.一种计算机病毒,可以查找计算机中的地址簿,通过邮件进行传播.如果把病毒制造者发送病毒称为第一轮,邮件接收者发送病毒称为第二轮,依此类推.假设每一轮每一台计算机都感染20台计算机,那么在不重复的情况下,这种病毒感染的计算机数构成一个什么样的数列呢?师 (读题后)这种病毒每一轮传播的计算机数构成的数列是怎样的呢?引导学生发现“病毒制造者发送病毒称为第一轮”“每一轮感染20台计算机”中蕴涵的等比关系生发现等比关系,写出一个无穷等比数列:1,20,202,203,204,…教师出示多媒体课件二:银行存款利息问题师介绍“复利”的背景:“复利”是我国现行定期储蓄中的一种支付利息的方式,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,也就是通常说的“利滚利”.我国现行定期储蓄中的自动转存业务实际上就是按复利支付利息的给出计算本利和的公式:本利和=本金×(1+本金)n,这里n为存期生列出5年内各年末的本利和,并说明计算过程师生合作讨论得出“时间”“年初本金”“年末本利和”三个量之间的对应关系,并写出:各年末本利和(单位:元)组成了下面数列:10 000×1.019 8,10 000×1.019 82,10 000×1.019 83,10 000×1.019 84,10 000×1.019 85.师回忆数列的等差关系和等差数列的定义,观察上面的数列①②③④,说说它们有什么共同特点?师引导学生类比等差关系和等差数列的概念,发现等比关系引入课题:板书课题 2.4等比数列的概念及通项公式推进新课[合作探究]师从上面的数列①②③④中我们发现了它们的共同特点是:具有等比关系.如果我们将具有这样特点的数列称之为等比数列,那么你能给等比数列下一个什么样的定义呢?生回忆等差数列的定义,并进行类比,说出:一般地,如果把一个数列,从第2项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列[教师精讲]师同学们概括得很好,这就是等比数列n ce)的定义.有些书籍把等比数列的英文缩写记作G.P.(Geometric Progressio n).我们今后也常用G.P.这个缩写表示等比数列.定义中的这个常数叫做等比数列的公比(commo n r a tio),公比通常用字母q 表示(q≠0).请同学们想一想,为什么q≠0呢? 生 独立思考、合作交流、自主探究师 假设q=0,数列的第二项就应该是0,那么作第一项后面的任一项与它的前一项的比时就出现什么了呢? 生 分母为0了师 对了,问题就出在这里了,所以,必须师 那么,等比数列的首项能不能为0呢? 生 等比数列的首项不能为师 是的,等比数列的首项和公比都不能为0,等比数列中的任一项都不会是[合作探究]师类比等差中项的概念,请同学们自己给出等比中项的概念生 如果在a 与b 中间插入一个数G ,使a 、G 、b 成等比数列,那么G 叫做a 、b 的等比中项.师 想一想,这时a 、b 的符号有什么特点呢?你能用a 、b 表示G 吗? 生 一起探究,a 、b 是同号的Gba G ,G=±ab ,G 2=ab师 观察学生所得到的a 、b 、G 的关系式,并给予肯定补充练习:与等差数列一样,等比数列也具有一定的对称性,对于等差数列来说,与数列中任一项等距离的两项之和等于该项的2倍,即a n -k +a n +k =2a n .对于等比数列来说,有什么类似的性质呢?生 独立探究,得出:等比数列有类似的性质:a n -k ·a n +k =a n 2[合作探究]探究:(1)一个数列a 1,a 2,a 3,…,a n ,…(a 1≠0)是等差数列,同时还能不能是等比数列呢? (2)写出两个首项为1的等比数列的前5项,比较这两个数列是否相同?写出两个公比为2的等比数列的前5项,比较这两个数列是否相同? (3)任一项a n 及公比q 相同,则这两个数列相同吗? (4)任意两项a m 、a n 相同,这两个数列相同吗? (5)若两个等比数列相同,需要什么条件?师 引导学生探究,并给出(1)的答案,(2)(3)(4)可留给学生回答生 探究并分组讨论上述问题的解答办法,并交流(1)的解答[教师精讲]概括总结对上述问题的探究,得出:(1)中,既是等差数列又是等比数列的数列是存在的,每一个非零常数列都是公差为0,公比为1的既是等差数列又是等比数列的数列概括学生对(2)(3)(4)的解答(2)中,首项为1,而公比不同的等比数列是不会相同的;公比为2,而首项不同的等比数列也是不会相同的(3)中,是指两个数列中的任一对应项与公比都相同,可得出这两个数列相同;(4)中,是指两个数列中的任意两个对应项都相同,可以得出这两个数列相同; (5)中,结论是:若两个数列相同,需要“首项和公比都相同(探究的目的是为了说明首项和公比是决定一个等比数列的必要条件;为等比数列的通项公式的推导做准备[合作探究]师 回顾等差数列的通项公式的推导过程,你能推导出等比数列的通项公式吗? 生 推导等比数列的通项公式[方法引导]师 让学生与等差数列的推导过程类比,并引导学生采用不完全归纳法得出等比数列的通项公式具体的,设等比数列{a n }首项为a 1,公比为q ,根据等比数列的定义,我们有:a 2=a 1q,a 3=a 2q=a 1q 2,…,a n =a n -1q=a 1q n -1,即a n =a 1qn -1师 根据等比数列的定义,我们还可以写出q a a a a a a a a n n =====-1342312...进而有a n =a n -1q=a n -2q 2=a n -3q 3=…=a 1q n -1亦得a n =a 1q n -1师 观察一下上式,每一道式子里,项的下标与q 的指数,你能发现有什么共同的特征吗?生 把a n 看成a n q 0,那么,每一道式子里,项的下标与q 的指数的和都是n师 非常正确,这里不仅给出了一个由a n 倒推到a n 与a 1,q 的关系,从而得出通项公式的过程,而且其中还蕴含了等比数列的基本性质,在后面我们研究等比数列的基本性质时将会再提到这组关系式师 请同学们围绕根据等比数列的定义写出的式子q a a a a a a a a n n =====-1342312...,再思考 如果我们把上面的式子改写成qa a q a aq a a q a a n n ====-1342312,...,,,那么我们就有了n -1个等式,将这n -1个等式两边分别乘到一起(叠乘),得到的结果是11-=n nq a a ,于是,得a n =a 1q n -1师 这不又是一个推导等比数列通项公式的方法吗?师 在上述方法中,前两种方法采用的是不完全归纳法,严格的,还需给出证明.第三种方法没有涉及不完全归纳法,是一个完美的推导过程,不再需要证明师 让学生说出公式中首项a 1和公比q 的限制条件生 a 1,q 都不能为[知识拓展]师 前面实例中也有“细胞分裂”“计算机病毒传播”“复利计算”的练习和习题,那里是用什么方法解决问题的呢?教师出示多媒体课件三:前面实例中关于“细胞分裂”“计算机病毒传播”“复利计算”的练习或习题.某种储蓄按复利计算成本利息,若本金为a 元,每期利率为r ,设存期是x,本利和为y 元.(1)写出本利和y 随存期x 变化的函数关系式;(2)如果存入本金1 000元,每期利率为2.25%,试计算5期后的本利和.师 前面实例中关于“细胞分裂”“计算机病毒传播”“复利计算”的问题是用函数的知识和方法解决问题的生 比较两种方法,思考它们的异同[教师精讲]通过用不同的数学知识解决类似的数学问题,从中发现等比数列和指数函数可以联系起来. (1)在同一平面直角坐标系中,画出通项公式为a n =2 n -1的数列的图象和函数y=2x-1的图象,你发现了什么?(2)在同一平面直角坐标系中,画出通项公式为1)21(-=n n a 的数列的图象和函数y=(21)x-1的图象,你又发现了什么?生 借助信息技术或用描点作图画出上述两组图象,然后交流、讨论、归纳出二者之间的关系.师 出示多媒体课件四:借助信息技术作出的上述两组图象观察它们之间的关系,得出结论:等比数列是特殊的指数函数,等比数列的图象是一些孤立的点师 请同学们从定义、通项公式、与函数的联系3个角度类比等差数列与等比数列,并填充下列表格: 等差数列等比数列定 义从第二项起,每一项与它前一项的差都是同一个常数从第二项起,每一项与它前一项的比都是同一个常数首项、公差(公比)取值有无限制 没有任何限制首项、公比都不能为0通项公式 a n =a 1+(n -1)da n =a 1q n -1相应图象的特点 直线y=a 1+(x-1)d 上孤立的点函数y=a 1q x-1图象上孤立的点[例题剖析]【例1】 某种放射性物质不断变化为其他物质,每经过一年,剩留的这种物质是原来的84%,这种物质的半衰期为多长(精确到1年)?师 从中能抽象出一个数列的模型,并且该数列具有等比关系【例2】 根据右图中的框图,写出所打印数列的前5项,并建立数列的递推公式,这个数列是等比数列吗?师 将打印出来的数依次记为a 1(即A ),a 2,a 3,可知a 1=1;a 2=a 1×21;a 3=a 2×21于是,可得递推公式⎪⎩⎪⎨⎧==-)1(21,111>n a a a n n由于211=-n n a a ,因此,这个数列是等比数列生 算出这个数列的各项,求出这个数列的通项公式练习:1.一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项师 启发、引导学生列方程求未知量生 探究、交流、列式、求解2.课本第59页练习第1、2题课堂小结本节学习了如下内容: 1.等比数列的定义2.等比数列的通项公式3.等比数列与指数函数的联系布置作业课本第60页习题2.4 A 组第1、2题板书设计等比数列的概念及通项公式 1.等比数列的定义实例剖析2.等比数列的通项公式从三个角度类比等差数列表例1练习:1.(学生板演) 例2。