矩阵理论试卷(整理版)

合集下载

矩阵试题及答案

矩阵试题及答案

矩阵试题及答案一、选择题(每题5分,共20分)1. 矩阵A的行列式为0,那么矩阵A是:A. 可逆的B. 不可逆的C. 正交的D. 单位的答案:B2. 如果矩阵B是正交矩阵,那么其逆矩阵是:A. B的转置B. B的负转置C. B的正转置D. B的负答案:A3. 对于任意矩阵C,下列哪个操作不会改变其行列式:A. 行交换B. 行乘以常数C. 行加到另一行D. 行乘以常数后加到另一行答案:C4. 矩阵D的秩为2,那么其行最简形矩阵的行数是:A. 1B. 2C. 3D. 4答案:B二、填空题(每题5分,共20分)1. 若矩阵E是3x3的单位矩阵,则E的行列式值为______。

答案:12. 矩阵F的转置矩阵记作F',则F'的转置矩阵是______。

答案:F3. 矩阵G的逆矩阵存在,则G的行列式值不能为______。

答案:04. 若矩阵H的秩为3,则其至少有______个非零行。

答案:3三、计算题(每题15分,共30分)1. 给定矩阵J:\[ J = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{bmatrix} \]求J的行列式。

答案:\[ \text{det}(J) = 1(5\cdot9 - 6\cdot8) - 2(4\cdot9 - 6\cdot7)+ 3(4\cdot8 - 5\cdot7) = 0 \]2. 已知矩阵K:\[ K = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \]求K的逆矩阵。

答案:\[ K^{-1} = \frac{1}{(2\cdot4 - 3\cdot1)} \begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -1.5 \\ -0.5 & 1 \end{bmatrix} \]四、简答题(每题10分,共20分)1. 简述矩阵的转置操作及其性质。

矩阵理论 (A-B卷)及答案

矩阵理论  (A-B卷)及答案

矩阵理论矩阵理论 2006-2007 学年第 一 学期末考试试题(A 卷)及答案一、 填空题(共20分,每空2分)1、 在欧氏空间4R 中,与三个向量(1,1,1,1),(1,1,1,1),(2,1,1,3)---都正交的单位向量为:)3,1,0,4(261-±2、 已知122212221A ⎛⎫⎪= ⎪ ⎪⎝⎭, 则12__________;__________;__________;F A A A A ∞====3、 已知三阶方阵A 的初等因子为()()21,1λλ--,则A 的约当标准形为:⎪⎪⎪⎭⎫⎝⎛1100100014、 已知cos sin ()sin cos t t A x t t ⎛⎫=⎪-⎝⎭,则1()______________;()______________;|()|______________;|()|______________.d dA t A t dt dtd dA t A t dt dt-====.1,0,s i n c o s c o s s i n ,s i n c o s c o s s i n ⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛---t t t t t t t t 二、解答下列各题((共48分,每小题8分)1. 用最小二乘法求解线性方程组121312312312021x x x x x x x x x x +=⎧⎪+=⎪⎨++=⎪⎪+-=-⎩解:⎪⎪⎪⎪⎪⎭⎫⎝⎛-=121111101011A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-=1021,111021011111b A T,-------------(3’) 所以b A x x x Ax A TT =⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=312311164144321-----------------------(7’)求得最小二乘解为.64,613,617321-=-==x x x -------------------------------------(8’) 2. 设111111111A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,试计算43()322A A A A E φ=-++。

矩阵引论试题及答案

矩阵引论试题及答案

矩阵引论试题及答案一、选择题(每题5分,共20分)1. 矩阵的元素全部为0的矩阵称为:A. 零矩阵B. 单位矩阵C. 对角矩阵D. 标量矩阵答案:A2. 矩阵的秩是指:A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行(列)的最大数目D. 矩阵的元素个数答案:C3. 矩阵的转置是指:A. 矩阵的行列互换B. 矩阵的行数变为列数C. 矩阵的列数变为行数D. 矩阵的元素不变答案:A4. 两个矩阵相乘的结果称为:A. 矩阵的和B. 矩阵的差C. 矩阵的积D. 矩阵的逆答案:C二、填空题(每题5分,共20分)1. 如果矩阵A的行列式为0,则称矩阵A为________。

答案:奇异矩阵2. 矩阵A的逆矩阵记作________。

答案:A^(-1)3. 矩阵A与矩阵B相乘,记作________。

答案:AB4. 对于任意矩阵A,矩阵A与单位矩阵相乘的结果仍然是________。

答案:A三、简答题(每题10分,共30分)1. 请简述矩阵的行列式是什么?答案:矩阵的行列式是一个标量值,它提供了关于矩阵的一些重要信息,如矩阵是否可逆(行列式非零则可逆)、线性方程组是否有解等。

2. 矩阵的逆矩阵有什么性质?答案:矩阵的逆矩阵具有以下性质:(A^(-1))^(-1) = A,(AB)^(-1) = B^(-1)A^(-1),以及单位矩阵I的逆矩阵仍然是I。

3. 矩阵的转置矩阵有什么特点?答案:矩阵的转置矩阵具有以下特点:(A^T)^T = A,(AB)^T =B^TA^T,以及矩阵A的转置矩阵的行列式等于矩阵A的行列式。

四、计算题(每题15分,共30分)1. 给定矩阵A = \[\begin{bmatrix} 1 & 2 \\ 3 & 4\end{bmatrix}\],计算A的行列式。

答案:\[ \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = (1)(4) - (2)(3) = 4 - 6 = -2 \]2. 给定矩阵B = \[\begin{bmatrix} 2 & 3 \\ 4 & 5\end{bmatrix}\],计算B的逆矩阵。

矩阵论试题及答案

矩阵论试题及答案

一.(10分)已知n n C ⨯中的两种范数a ⋅和b ⋅,对于n n C A ⨯∈,证明b a A A A +=是n n C ⨯中的范数. 解:⑴非负性:由于b a ⋅⋅,是两种范数,故当A=0时,0,0==b a A A ,所以000=+=+=b a A A A ; 当A ≠0时,0,0>>b a A A ,所以0>+=b a A A A⑵齐性:()A A A A A A A A b a b a b a ααααααα=+=+=+= ⑶三角不等式:B A B A B A B A B A B A b b a a b a +=+++≤+++=+二.(每小题10分,共20分)已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101121103A ,()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=002t e t b , 1. 求At e2. 用矩阵函数方法求微分方程()()()()()⎪⎩⎪⎨⎧-=+=T x t b t Ax t x dt d1,0,10的解.解:1. ()1112113det ----=-λλλλA I ()()3211132-=----=λλλλ显然, )det(A I -λ的一阶子式的公因子为1, 容易知道)det(A I -λ 的二阶子式的公因子为2-λ,所以A的最小多项式为()()()23222-=--=λλλλm ,即()()022=-=I A A m ,设()()()b a g m e f t ++==λλλλλ,则()a te f t =='λλ 对于特征值2=λ有()()⎩⎨⎧=='+==a te f b a e f t t 22222,()⎩⎨⎧+-==ttet b te a 2212 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+=+=t t t t t t e bI aA e t At1010122. ()()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎰⎰--ds e s s s ss s e e ds s b e x e t x s t s At t As At 001010110102020 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=t t e t e t At 1001012三.(15分)用Givens 变换求⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2100421132403100A 的QR 分解. 解:()T01001=β,构造()s c T ,13=,1101sin ,0100cos 22232132223211=+=+===+=+==xx x s x x x c θθ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=210031002340421121421132403100100000010010010013A T⎥⎦⎤⎢⎣⎡--=21312A , 构造),(12s c T , ()21sin ,21111cos 222122222211=+==-=+--=+==x x x s x x x c θθ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡---=1052212131111121212A T⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=2/1002/12/1002/10010010013122T T I T ,⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==2/12/100000100102/12/100TT Q ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2/12/522344211R四.(10分)用Gerschgorin 定理证明⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=8110260110410100A 至少有两个实特征值. 解:A 的4个盖尔圆为:{}1|1≤=z z G ,{}2114|2=+≤-=z z G , {}3216|3=+≤-=z z G , {}2118|4=+≤-=z z G ,它们构成的两个连通部分为11G S =,4322G G G S =.易见,1S ,2S 都关于实轴对称且各含有1个和3个特征值,因为实矩阵的复特征值必成对出现, 故1S ,2S 必各含有一个实特征值,从而A 至少含有2个实特征值.五.(20分)已知⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=221221*********A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=44111b 1. 求A 的满秩分解.2. 求+A3. 用广义逆矩阵的方法判别方程组b Ax =是否相容.4. 求方程组b Ax =的极小范数解或极小范数最小二乘解并指出所求解的类型.解 1。

研究生矩阵论试题及答案与复习资料大全

研究生矩阵论试题及答案与复习资料大全

B.
1 2 1
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
0 0 0
五、(15 分)求矩阵
的满秩分解:
1 0 1 2 A 1 2 1 1
2 2 2 1
解:
A
E


1 1
0 2
1 1
2 1

1 0
0 1
0 0
2 2 2 1 0 0 1
1 0 1 2 1 0 0
令 g n n2 2 1 n2 2 1 2 1
2 1 n2 1 2 1 1 n3 n4 1 3
由 Hamilton-Cayley 定理知 gA 0
et e 2t
a0 a0
a1 2a1
于是解得:
a0 a1
2et e2t

e 2t et
从而:
f A e At gA a0 E a1 A

矩阵理论试题答案最终版

矩阵理论试题答案最终版


G

(2, 2) (2, t + 1) (2, t 2 − 1) 2 (t + 1, 2) (t + 1, t + 1) (t + 1, t − 1) (t 2 − 1, 2) (t 2 − 1, t + 1) (t 2 − 1, t 2 − 1)
1 ∫−1 4dt 1 = ∫ 2*(t + 1)dt −1 1 ∫ 2*(t 2 − 1)dt −1 −8 4 8 3 10 −4 = 4 3 3 −8 −4 16 3 15 3
2
x ' −1 0 x 1 = + y ' 0 2 y −1 求多项式 P(x)经此仿射变换所得到的曲线,变换后的曲线是什么曲线? 解:(1)由平面的四个点我们可得如下方程。
a0 + a1 *1 + a2 *12 = 0 2 −1 a0 + a1 *(−1) + a2 *(−1) = 2 1 a0 + a1 * 2 + a2 * 2 = a + a *(−3) + a *(−3) 2 = 2 2 0 1
∫ ∫ ∫
1 −1 1
1
−1
2*(t + 1)dt
−1
(t 2 + 2t + 1)dt
(t + 1) *(t 2 − 1)dt
1 2 ∫−1 (t + 1) *(t − 1)dt 1 2 2 t dt t ( 1) *( 1) − − ∫−1

1
−1
2*(t 2 − 1)dt

矩阵论试题

矩阵论试题

矩阵论试题一、选择题1.设A是n阶方阵,若|A|=0,则A()。

A. 一定是可逆矩阵B. 一定是不可逆矩阵C. 可能是可逆矩阵,也可能是不可逆矩阵D. 以上说法均不正确答案:B2.若矩阵A与B相似,则A与B具有()。

A. 相同的特征值B. 相同的特征向量C. 相同的秩D. 相同的行列式答案:A、D(相似矩阵具有相同的特征值和行列式,但特征向量不一定相同,秩也一定相同,但此题只问具有什么,故A、D为正确答案)3.下列矩阵中,属于正交矩阵的是()。

A. 单位矩阵B. 对角矩阵C. 上三角矩阵D. 任意方阵答案:A(单位矩阵是正交矩阵的一种特殊情况)二、填空题1.设矩阵A=(1324),则A的行列式|A|=______。

答案:-2(根据行列式的定义和计算方法,有|A|=1×4-2×3=-2)2.若矩阵A与B满足AB=BA,则称A与B为______。

答案:可交换矩阵(或称为可交换的)3.设n阶方阵A的伴随矩阵为A,则|A|=______。

答案:|A|(n-1))三、计算题1.设矩阵A=(2113),求A的逆矩阵A^(-1)。

解答:首先求|A|,有|A|=2×3-1×1=5≠0,所以A可逆。

然后利用逆矩阵的公式A^(-1)=(1/|A|)×A*,其中A*是A的伴随矩阵。

A的伴随矩阵A=(3−1−12)(伴随矩阵的元素是A的每个元素的代数余子式构成的矩阵的转置)。

所以A^(-1)=(1/5)×A=(3/5−1/5−1/52/5)。

2.设矩阵A=147258369,求A的秩R(A)。

解答:对矩阵A进行初等行变换,将其化为行最简形。

通过初等行变换,可以得到A的行最简形为1002−303−60。

所以R(A)=2(非零行的个数)。

四、证明题1.证明:若矩阵A为n阶方阵,且|A|=0,则A不可逆。

证明:根据可逆矩阵的定义,若矩阵A可逆,则存在n阶方阵B,使得AB=BA=E(E为单位矩阵)。

(完整版)矩阵练习(带答案详解)

(完整版)矩阵练习(带答案详解)

6.设A二、判断题(每小题 2分,共12分)kk k1.设A 、B 均为n 阶方阵,则 (AB) A B (k 为正整数)。

..........................(x )2•设 A,B,C 为 n 阶方阵,若 ABC I ,则 C 1 B 1A 1。

........................... ( x ) 3. 设A 、B 为n 阶方阵,若 AB 不可逆,贝U A, B 都不可逆。

................. (x ) 4. 设A 、B 为n 阶方阵,且AB 0,其中A 0,则B 0。

............................ ( x ) 5•设 A 、B 、C 都是 n 阶矩阵,且 AB I ,CA I ,贝U B C 。

...................................... ( V )、填空题:1.若A , B 为同阶方阵,则 (A B)(A B) A 2 B 2的 充分必要条件2. 3. 4. 5.AB BA 。

若n 阶方阵A , B , C 满足ABC 设A = B 都是n 阶可逆矩阵,若 为n 阶单位矩阵,B ,则CAB 。

2B7.设矩阵-1,B, A T 为A 的转置, 1则 A T B =28. A 3B 为秩等于2 的三阶方阵,贝U AB 的秩等于_26. 若A是n阶对角矩阵,B为n阶矩阵,且AB AC,贝U B也是n阶对角矩阵。

••• ( x )7. 两个矩阵A与B,如果秩(A)等于秩(B),那么A与B等价。

.................... (x )8. 矩阵A的秩与它的转置矩阵A T的秩相等。

................................. (V )三、选择题(每小题3分,共12分)1. 设A为3 x 4矩阵,若矩阵A的秩为2,则矩阵3A T的秩等于(B )(A) 1 (B) 2 (C) 3 (D) 42. 假定A、B、C为n阶方阵,关于矩阵乘法,下述哪一个是错误的(C )(A) ABC A(BC) (B) kAB A( kB)(C)AB BA (D) C(A B) CA CB3.已知A、B为n阶方阵,则下列性质不正确的是( A )(A) AB BA (B) (AB)C A(BC)(C) (A B)C AC BC (D) C(A B) CA CB4.设PAQ I ,其中P、Q、A都是n阶方阵,则(D )(A) A 1P 1Q 1(B) A 1Q 1P 1(C) A 1PQ (D) A 1QP5. 设n阶方阵A,如果与所有的n阶方阵B都可以交换,即AB BA,那么A必定是(B )(A)可逆矩阵(B)数量矩阵(C)单位矩阵(D)反对称矩阵6. 两个n阶初等矩阵的乘积为( C )(A)初等矩阵(B)单位矩阵(C)可逆矩阵(D)不可逆矩阵7. 有矩阵A3 2 , B2 3 , C3 3,下列哪一个运算不可行(A )(A) AC (B) BC(C) ABC (D) AB C8.设A与B为矩阵且AC CB ,C为m n的矩阵,则A与B分别是什么矩阵(D )(A) n m m n (B) m n n m(C) n n mm (D) m m n n9. 设A 为n 阶可逆矩阵,则下列不正确的是 (B)2A 可逆(A ) A 0或 B 0(B) 代B 都不可逆13. 若A,B 都是n 阶方阵,且A,B 都可逆,则下述错误的是(14. A, B 为可逆矩阵,则下述不一定可逆的是(B ) A B(D ) BAB(A ) AB B (B ) AB BA(C )AA I(D )A 1 I16.设A,B 都是n 阶方阵,则下列结论正确的是(D )(A) 若A 和B 都是对称矩阵,则 AB 也是对称矩阵 (B) 若 A 0 且 B 0 ,则 AB 0(C) 若AB 是奇异矩阵,则 A 和B 都是奇异矩阵 (D) 若AB 是可逆矩阵,则 A 和B 都是可逆矩阵 17. 若A 与B 均为n 阶非零矩阵,且 AB 0,则(A )(A) A 1可逆 (B)I A 可逆10. A,B 均n 阶为方阵, F 面等式成立的是(A ) AB BA (B ) (A B)T A T B T(C ) (A B) 1A 1B 11(D ) (AB) A1B 111.设A,B 都是n 阶矩阵,且AB 0,则下列一定成立的是((C )代B 中至少有一个不可逆 (D ) A12.设A,B 是两个n 阶可逆方阵,则 AB T1等于T 1 T 1(A) A T B T(B) B T 1 A T 1(C ) B 1 T (A 1)T(D )A T 1(A ) A B 也可逆 (B ) AB 也可逆(C ) B 1也可逆(D )1B 1也可逆(C) 2A 可逆(D)(A) AB (C ) BA 15•设A, B 均为n 阶方阵,下列情况下能推出A 是单位矩阵的是实用标准文档(A) R(A) n(C ) R(A) 0(B ) R(A) n(D) R( B) 0四、解答题:1 1 11 2 31.给定矩阵A2 13 ,B2 2 1求B T A 及A 13443 4 3解:1 23 1 1 14 95B T A2 2 4 2 13 6 12 8 ............................ ..(53 133444 8 6分)1 0 1 解:1100 1 111 0 1 1 1 0 0 1 140 111 1 1 A- — — 2 2 2 5 1 12221 0 1 1 2.求解矩阵方程1 1 0 X 40 1 111 3 32 2 5(5分)1 1 1 1 1 1 3.求解矩阵方程XA B,其中A 02 2 , B 1 1 01 1 02 1 1解:因为 A 6 所以A 可逆(4分)0 10 1 0 0 1 4 34.求解下F 面矩f 阵方程中 卞的矩i 阵 X : 10 0 X 0 0 1 2 0 10 10 1 01 2 0解:0 11 0 01 4 3令A1 0 0 ,B0 0 1 7 C2 0 1,则 A,B 均可逆,且0 010 1 0120 1 01 0 0A 11 0 0 , B 10 0 10 0 10 1 02 1 1所以XA 1 CB 11 3 41 024 2 35.设矩 阵A1 1 0 ,求矩阵 B : ,使其满足矩阵方程 AB A 2B.1 12 3解: ABA 2B 即(A2I )B A........ 2分21231 4 3而(A 12I )1 1 0 1 53 .......3分12 11 64.(2 分)1-34-313 5-6••(41 4 3 42 3所以B (A 2I ) 1A 1 5 3 1 1 01 6 4 12 33 8 6=2 9 6 . ....3分2 12 9五、证明题1.若A是反对称阵,证明A是对称阵。

矩阵试题及答案

矩阵试题及答案

矩阵试题及答案一、选择题(每题4分,共20分)1. 矩阵的秩是指:A. 矩阵中非零元素的个数B. 矩阵中最大的线性无关行(列)向量组的个数C. 矩阵的行数D. 矩阵的列数答案:B2. 若矩阵A与矩阵B相等,则下列说法正确的是:A. A和B的行列式相等B. A和B的迹相等C. A和B的行列式和迹都相等D. A和B的行列式和迹都不相等答案:C3. 矩阵的转置是指:A. 将矩阵的行变成列B. 将矩阵的列变成行C. 将矩阵的行和列互换D. 将矩阵的元素取相反数答案:C4. 对于任意矩阵A,下列说法正确的是:A. A的行列式等于A的转置的行列式B. A的行列式等于A的逆矩阵的行列式C. A的行列式等于A的逆矩阵的转置的行列式D. 以上说法都不正确答案:A5. 若矩阵A是可逆矩阵,则下列说法正确的是:A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式可以是任意非零值答案:A二、填空题(每题5分,共20分)1. 若矩阵A的行列式为-2,则矩阵A的逆矩阵的行列式为____。

答案:1/22. 设矩阵A为2x2矩阵,且A的行列式为3,则矩阵A的转置的行列式为____。

答案:33. 若矩阵A的秩为2,则矩阵A的行向量组的____。

答案:线性无关4. 设矩阵A为3x3矩阵,且A的行列式为0,则矩阵A是____。

答案:奇异矩阵三、解答题(每题10分,共30分)1. 已知矩阵A=\[\begin{bmatrix}1 & 2\\3 & 4\end{bmatrix}\],求矩阵A的行列式。

答案:\(\begin{vmatrix}1 & 2\\3 & 4\end{vmatrix} = (1)(4) - (2)(3) = 4 - 6 = -2\)2. 设矩阵B=\[\begin{bmatrix}2 & 0\\0 & 2\end{bmatrix}\],求矩阵B的逆矩阵。

数学矩阵理论单元测试

数学矩阵理论单元测试

数学矩阵理论单元测试本单元测试旨在考察学生对数学矩阵理论的理解和应用能力。

请同学们认真审题,仔细作答。

回答问题时,请尽量写出详细的解题步骤和推理过程。

一、选择题(共10题,每题2分,共计20分)1. 给定矩阵A = [2 4 -1],则A的转置矩阵是:a) [2][4][-1]b) [2 4 -1]c) [2 4 -1]Td) [2 -4 1]2. 已知矩阵A = [3 1],B = [2 4],求A + B的结果是:[5 5]a) [3 1][2 4]c) [5 5]3. 给定矩阵A = [2 -3],B = [4 1],求A × B的结果是:[5 -5][4 1]c) [5 -5]4. 若矩阵A为3×3的单位矩阵,即A = [1 0 0],则矩阵A的逆矩阵为:[0 1 0][0 0 1]a) [1 0 0][0 1 0][0 0 1]c) [0 1 0][0 0 1]5. 给定方阵A = [4 -3],则矩阵A的行列式为:[2 1]a) 7b) -7c) 116. 矩阵A的秩为2,矩阵A的行数和列数分别为:a) 2, 2c) 3, 27. 若矩阵A = [1 -1],则矩阵A的伴随矩阵是:[2 1]a) [1 1]b) [2 -1]c) [1 -1]8. 矩阵A的特征多项式为f(λ) = λ^2 - 3λ + 2,则矩阵A的特征值是:a) 1, 2b) 2, -1c) 1, -29. 若A × B = B × A,且A、B均为3×3的矩阵,下列哪个选项是正确的?a) A和B可逆b) A和B不可逆c) A和B相等d) A和B不相等10. 若矩阵A是对称矩阵,即A = AT,下列哪个选项是正确的?a) A的特征值都是实数b) A的特征向量都是实向量c) A的行列式为0d) A的秩一定小于等于n二、简答题(共4题,每题10分,共计40分)1. 请解释什么是矩阵的逆矩阵,并说明逆矩阵的性质。

矩阵理论试卷(整理版)

矩阵理论试卷(整理版)

山东科技大学2010研究生矩阵理论试卷 1、 在矩阵的四个空间中,行空间、列空间、零空间和左零空间中,维数与矩阵的秩相等的子空间是行空间和列空间.2、 在矩阵的四个基本子空间中,和列空间构成正交补的是 左零空间。

3、 利用QR 分解可以讲矩阵分解为正交阵和上三角形矩阵乘积。

4、 通过矩阵 svd 分解,可以获得矩阵四个基本子空间的标准正交基。

5、 将3×3矩阵的第一行加到第三行是初等变换,对应的初等矩阵式 ⎪⎪⎪⎭⎫ ⎝⎛1010100016、 当矩阵的零空间中有非零向量的时候,线性方程组Ax=b 有无穷多解。

7、 所有的2×2实矩阵组成一个向量空间,这个空间的标准基是 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛1000010000100001 8、 通过施密特正交化可以获得矩阵的QR 分解。

9、 在选定一个基后,任何维数为n 的欧式空间与n R 同构。

10 如果将矩阵视为线性处理系统,矩阵有m 行,n 列,则输入空间的维数是n 。

二、判断题1、给定一个线性空间,他的基不是唯一的,但是各个基中的基向量个数是相等的。

(R )2、两个子空间的并集是一个子空间。

(F )3、在线性方程组Ax=b ,当矩阵A 式列满秩的时候,无论向量b 是什么,方程组都有解。

(F )4、线性变换在不同的基下的矩阵一般不同,同一线性变换的不同矩阵表示所对应的特征值都相同。

(R )5、线性变换在不同基下的矩阵一般不同,但是对应同一线性变换的各个矩阵的特征向量都相同。

(F )6、矩阵特征值的代数重数是该特征值对应的特征子空间的维数。

(F )7、任何N ×N 的实矩阵都可以对角化。

(F )8、矩阵的左逆就是矩阵的最小范数广义逆。

(F )9、任何M ×N 实矩阵都有奇异值分解。

(R )10、正交投影矩阵都是幂等矩阵。

(R )三、(矩阵的四个基本子空间和投影矩阵)设矩阵A 为 A=⎪⎪⎭⎫ ⎝⎛4242 1、求矩阵A 的四个基本子空间的基和维数初等变换 ⎪⎪⎭⎫ ⎝⎛0042 dim R (A )=dim R (T A )=1 dim N (A )=dim N (T A )=1 R(A)的基 ⎪⎪⎭⎫ ⎝⎛22 R(T A )的基 ⎪⎪⎭⎫ ⎝⎛42 N(A)的基⎪⎪⎭⎫ ⎝⎛-12 N(T A )的基 ⎪⎪⎭⎫⎝⎛-11 2、画出矩阵A 的四个基本子空间的示意图。

终极资料整理版-山东科技大学矩阵理论往年试卷

终极资料整理版-山东科技大学矩阵理论往年试卷

山东科技大学2006—2007学年第一学期《矩阵理论》考试试卷班级 姓名 学号一、单项选择题(每题2分,共8分)1、设1()kk A f A k∞==∑收敛,则A 可以取为 A. 0091⎡⎤⎢⎥--⎣⎦B. 0091⎡⎤⎢⎥-⎣⎦C. 1011⎡⎤⎢⎥-⎣⎦ D. 100.11⎡⎤⎢⎥⎣⎦2、设211112121M --⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦,则M 不存在 A. QR 分解 B. 满秩分解 C. 奇异值分解 D. 谱分解 3、设2222221212134400033t t t tt t Attt tte e e te e e ee e e e ⎛⎫-+-+ ⎪= ⎪ ⎪-+⎝⎭,则A =A. 214020031⎛⎫⎪ ⎪ ⎪⎝⎭ B. 114010061⎛⎫ ⎪⎪ ⎪⎝⎭C. 224020031⎛⎫ ⎪⎪ ⎪⎝⎭D. 204020061⎛⎫ ⎪ ⎪ ⎪⎝⎭4、设3阶矩阵A 满足多项式222(4)(3)A E A E O --=, 且其最小多项式m (x )满足条件(1)(3)1m m ==,则A 可以相似于A. 200130002M ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B. 20002002M ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦C.201202M ⎡⎤-⎢⎥=-⎢⎥⎢⎥-⎣⎦D. 200030013M -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦二、填空题(每题5分,共20分)1、设 220A A -=,则cos2A = 。

2.已知n nA C⨯∈,并且()1A ρ<,则矩阵幂级数kk kA∞=∑= 。

3.设矩阵1111A ⎡=⎥⎦,则A 的谱半径()A ρ= 。

4、设5阶复数矩阵A 的特征多项式为22()(1)(2)f λλλλ=-+,则2|A +E |= .三、(12分)设152010001A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭,试求矩阵B 使得5B A =。

四、(10分)设221111122A -⎛⎫⎪=-- ⎪ ⎪--⎝⎭,求At e 。

矩阵论试题及答案可编辑全文

矩阵论试题及答案可编辑全文

2006矩阵论试题答案一.填空(每题4分,共40分)1. 设−−=41311221222832A ,则A 的值域4(){,R }R A y y Ax x ==∈的维数=)(dim A R 2 .2. 设A 的若当标准型−−−=10000011000001100000020000012000002J ,则A 的最小多项式=)(λψm 32(1)(2)λλ+−.3. 设110430102A −=−,则()5432333h A A A A A A =−++−=110430102−− −−. 4. 设埃尔米特阵为 −−+=2005111i i i i A , 则矩阵A 为 正定的 埃尔米特阵.5. 在3R 中有下列两组向量:()13,1,2Tα=−−,()21,1,1Tα=−,()32,3,1Tα=−; ()11,1,1Tβ=,()21,2,3Tβ=,()32,0,1Tβ=,则由321,,ααα到321,,βββ的过渡矩阵=P 619113421270−−−−−− −− .6.设33CA ×∈,21332211{}ij m j i A a ===∑∑,H AA 的非零特征值分别为15 ,5 ,3,则=2mA.7. 设12102101, 11111137A B −== −−,12,V V 分别为齐次线性方程组 0Ax =,0Bx =的解空间,则=)dim(21V V ∩ 1 .8. 设1(1)1(1)121()321nn n n n n n A n n n n +−−=++ −,则lim n n A →∞=1311e .9. 设213121202A −=,则A 的 LDU 分解为 A =100121012/51 2001123205200115004/5001−  −   − 10.设 −=5221A ,=0242B ,则2448204048102040100A B−−−⊗=. 二.(10分)设T 为n 维欧氏空间V 中的线性变换,且满足:),(),(Ty x y Tx −=,试证明:T 在标准正交基下的矩阵A 为反对称阵(T A A −=)证明:设n ααα,,,21 为V 的标准正交基,n n ij a A ×=}{,下证:ji ij a a −=: 由=),,,(21n T ααα A n ),,,(21ααα 知n ni i i i a a a T αααα+++= 2211,n nj j j j a a a T αααα+++= 2211, ),(),(j i j i T T αααα−=;=),(j i T ααji j n ni i i a a a a =+++),(2211αααα , =),(j i T ααij n nj j j i a a a a =+++),(2211αααα , 所以:ji ij a a −=.三.(10分)在复数域上求矩阵−−−=7137341024A 的若当标准形J ,并求出可逆矩阵P 使得J AP P =−1.解: A 的若当标准形210021002J=. 令123(,,)P p p p =,则有112123232,2,2Ap p Ap p p Ap p p ==+=+;1213262100621062104170,417,4173150315315p p p p p −−−−=−=−= −−−解得:123(2,1,1),(0,1,0),(1,2,1)T T Tp p p ===− , 201112101P=−.四. (10分)已知 =654321x x x x x xX ,162534()sin()x x f X e x x x x =++,求dXdf . 解答:16161234652543225516cos()cos()x x x x ff f x x x df dX ff f x x x x e x x x x x x x x x e ∂∂∂∂∂∂== ∂∂∂ ∂∂∂. 五.(10分)已知311202113A −=−−−,求4sin()A π,Ae .解:3||(2)E A λλ−=−,A 的最小多项式2)2()(−=λλϕ .待定系数一:令24sin ()(2)q a b πλλλλ=−++,则21,0a b b +==,4sin()A E π=;令2()(2)e q a b λλλλ=−++,则222,a b e b e +==.222211212112A e e e E e A −−=−+=− −−.待定系数二:令324sin ()(2)q a b c πλλλλλ=−+++,则22222414018,8,32216a b c b c a b c c ππππ ++=+=⇒=−==− =− ; 224sin()(44)32A E E A A E ππ=−−+=.令32()(2)e q a b c λλλλλ=−+++,则2222222414,,22a b c e b c e a e b e c e c e++= +=⇒==−== ; 2221()2211212112A e e E A A e −−− =− +−−= .六.(10分)设−=01200110A ,求A 的奇异值分解. 解答一:=5002A A H ,A 的奇异值为5,2; 00Σ= , 25H HV A AV = ,1001V =; 1100100100200100U AV −−− =Σ==; 00000000U− =; 0000010001 0 000 0 000A=.解答二:=5002A A H ,那么A 的奇异值为5,2,A A H对应于特征值5,2的标准特征向量为 = =01,1021x x ,=0110V ; 再计算H AA 的标准正交特征向量,解得分别与5,2,0,0对应的四个标准正交特征向量=0520511υ, −=2102102υ,−=0510523υ,=2102104υ,−−=210210051052210210052051U ; 所以=∆=HV UA 0000000000000110.七.(10分)设n n i A ×∈≠C 0,2rank rank i i A A =),,2,1(n i =,且当i j ≠时),,2,1,(0n j i A A j i ==.试用归纳法证明存在同一个可逆阵n n P ×∈C 使 得对所有的i ),,2,1(n i =有1−=P PE a A ii i i ,其中C ∈i a . 证明:1n =时,命题显然.假设n k ≤时,命题成立. 当1n k =+时,设1rank A r =.由若当分解11111000D A P P − =,其中1C r rD ×∈可逆; 当2,,j n = 时,由110j j A A A A ==可得1(1)(1)1100, C 0n n j jj A P P B B −−×− =∈(直接推出的j B 为()()n r n r −×−的) 再由0i j A A =得0i j B B =(,,2,,)i j i j n ≠= ;0j B ≠,2rank rank j j B B =也是明显的.由假设知存在可逆阵(1)(1)C n n Q −×−∈使得1j j jj B a QE Q −=,其中C j a ∈,2,,j n = .此时,再由110j j A A A A ==得到11111111110101010000000a A P P a P P Q Q −−− == ; 记1100P P Q =,则 11111111100000000 (2,,).0 j j j jj j j jj jj A P P P P B a QE Q a P P a P E P j n E −−−−− =====由归纳原理知命题为真.。

矩阵理论历年试题汇总及答案

矩阵理论历年试题汇总及答案

矩阵理论历年试题汇总及答案矩阵理论是线性代数中的一个重要分支,它涉及到矩阵的运算、性质以及矩阵在不同领域中的应用。

历年来的矩阵理论试题通常包括矩阵的基本运算、矩阵的特征值和特征向量、矩阵的分解等重要概念。

以下是对矩阵理论历年试题的汇总及答案解析。

矩阵的基本运算试题1:给定两个矩阵 \( A \) 和 \( B \),其中 \( A =\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \),\( B =\begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \),求 \( A + B \) 和 \( AB \)。

答案:首先计算矩阵的加法 \( A + B \),根据矩阵加法的定义,对应元素相加,得到 \( A + B = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix} \)。

接着计算矩阵乘法 \( AB \),根据矩阵乘法的定义,得到 \( AB = \begin{bmatrix} 1\cdot5 + 2\cdot7 & 1\cdot6 + 2\cdot8 \\ 3\cdot5 + 4\cdot7 & 3\cdot6 + 4\cdot8\end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50\end{bmatrix} \)。

特征值和特征向量试题2:已知矩阵 \( C = \begin{bmatrix} 4 & -2 \\ 1 & -1\end{bmatrix} \),求 \( C \) 的特征值和对应的特征向量。

答案:首先求特征值,我们需要解方程 \( \det(C - \lambda I) = 0 \),其中 \( I \) 是单位矩阵。

计算得到 \( \det(\begin{bmatrix}4-\lambda & -2 \\ 1 & -1-\lambda \end{bmatrix}) = (4-\lambda)(-1-\lambda) - (-2)(1) = \lambda^2 - 3\lambda - 2 \)。

矩阵论试题(整理)(完整版)实用资料

矩阵论试题(整理)(完整版)实用资料

矩阵论试题(整理)(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)矩阵论试题(06,12)一.(18分填空:设1.A-B的Jordan标准形为J=2.是否可将A看作线性空间V2中某两个基之间的过渡矩阵()。

3.是否可将B看作欧式空间V2中某个基的度量矩阵。

()4.(),其中。

5.若常数k使得kA为收敛矩阵,则k应满足的条件是()。

6.AB的全体特征值是()。

7.()。

8.B的两个不同秩的{1}-逆为。

二.(10分设,对于矩阵的2-范数和F-范数,定义实数,(任意)验证是中的矩阵范数,且与向量的2-范数相容。

三.(15分已知。

1.求;2.用矩阵函数方法求微分方程满足初始条件x(0的解。

四.(10分用Householder变换求矩阵的QR分解。

五.(10分)用Gerschgorin定理隔离矩阵的特征值。

(要求画图表示)六.(15分已知。

1.求A的满秩分解;2.求A+;3.用广义逆矩阵方法判断线性方程组Ax=b是否有解;4.求线性方程组Ax=b的极小范数解,或者极小范数最小二乘解x0。

(要求指出所求的是哪种解)七.(15分已知欧式空间R22的子空间R22中的内积为V中的线性变换为T(X=XP+XT, 任意XV,1.给出子空间V的一个标准正交基;2.验证T是V中的对称变换;3.求V的一个标准正交基,使T在该基下的矩阵为对角矩阵.八.(7分设线性空间V n的线性变换T在基下的矩阵为A,T e表示V n的单位变换,证明:存在x00,使得T(x0=(T e-T(x0的充要条件是为A的特征值.矩阵论试题(07,12)一.(18分填空:1.矩阵的Jordan标准形为J=2.设则3.若A是正交矩阵,则cos(A=4.设,A+是A的Moore-Penrose逆,则(-2A, A+=5.设,则AB+I2I3的全体特征值是()。

6.设向量空间R2按照某种内积构成欧式空间,它的两组基为和且与的内积为则基的度量矩阵为()。

矩阵论考试试题(含答案)精选全文

矩阵论考试试题(含答案)精选全文

可编辑修改精选全文完整版矩阵论试题一、(10分)设函数矩阵 ()⎪⎪⎭⎫⎝⎛-=t t t t t A sin cos cos sin 求:()⎰tdt t A 0和(()⎰20t dt t A )'。

解:()⎰t dt t A 0=()⎪⎪⎪⎭⎫ ⎝⎛-⎰⎰⎰⎰tttt tdt tdt dt t dtt 000sin cos cos sin =⎪⎪⎭⎫⎝⎛---t tt t cos 1sin sin cos 1 (()⎰2t dt t A )'=()⎪⎪⎭⎫⎝⎛-=⋅22222sin cos cos sin 22t t t t t t t A 二、(15分)在3R 中线性变换σ将基⎪⎪⎪⎭⎫ ⎝⎛-=1111α,⎪⎪⎪⎭⎫ ⎝⎛-=1202α,⎪⎪⎪⎭⎫⎝⎛-=1013α变为基 ⎪⎪⎪⎭⎫ ⎝⎛-=0111β,⎪⎪⎪⎭⎫ ⎝⎛-=1102β,⎪⎪⎪⎭⎫ ⎝⎛-=2303β(1)求σ在基321,,ααα下的矩阵表示A;(2)求向量()T 3,2,1=ξ及()ξσ在基321,,ααα下的坐标; (3)求向量()()ξσξ及T 3,2,1=在基321,,βββ下的坐标。

解:(1)不难求得:()2111ααβασ-==()32122αααβασ++-==()321332αααβασ++-== 因此σ在321,,ααα下矩阵表示为⎪⎪⎪⎭⎫ ⎝⎛---=110211111A(2)设()⎪⎪⎪⎭⎫ ⎝⎛=321321,,k k k αααξ,即⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛321111021101321k k k 解之得:9,4,10321-=-==k k k 所以ξ在321,,ααα下坐标为()T 9,4,10--。

()ξσ在321,,ααα下坐标可得⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛133223*********1111321y y y (3)ξ在基321,,βββ下坐标为⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---6151941001111110194101A()ξσ在基321,,βββ下坐标为⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---94101332230111111011332231A三、(20分)设⎪⎪⎪⎭⎫ ⎝⎛-=301010200A ,求At e 。

(完整版)线性代数试题库(矩阵)

(完整版)线性代数试题库(矩阵)
69.设 是4阶矩阵,则 ( )
A. B.
C. D.
答案:C
70.设 为 阶可逆矩阵,下列运算中正确的是( )
A. B.
C. D.
答案:A
71.设 是2阶方阵可逆,且 ,则 ( )
A. B.
C. D.
答案:B
72.设 均为3阶矩阵,若 可逆,秩 ,那么秩 ( )
A.0B.1
C.2D.3
答案:C
73.设 为 阶矩阵,若 与 阶单位矩阵等价,那么方程组 ( )
答案:
26.设 , , ,则 _____.
答案:
27. (5分)设 且满足 ,求
解: 可逆
由 ,得
所以:
28.设矩阵
其中, , .
为 的伴随矩阵.计算
解:
显然:
29.设 是两个 阶方阵,若 则必有()
A. 且 B. 或
C. 且 D. 或
答案:D
30.若 都是方阵,且 ,则 ()
A.-2B.2
C. D.
A.-6B.-2
C.2D.6
答案:B
50.设 ,则 的伴随矩阵 ()
A. B.
C. D.
答案:A
51. __________。
答案:
52.设 ,则 __________。
答案:
53.设 且 ,求 。
答案:
解:
,很容易得到: 是可逆的。所以:
54.设方阵 满足 ,证明 可逆,并求其逆阵。
证:
所以: 可逆,且其逆阵为 。
答案:A
64. , ,( 为3阶单位矩阵),则 ___________。
答案:
65.已知 ,且 ,则 ___________。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东科技大学2010研究生矩阵理论试卷 1、 在矩阵的四个空间中,行空间、列空间、零空间和左零空间中,维数与矩阵的秩相等的子空间是行空
间和列空间.
2、 在矩阵的四个基本子空间中,和列空间构成正交补的是 左零空间。

3、 利用QR 分解可以讲矩阵分解为正交阵和上三角形矩阵乘积。

4、 通过矩阵 svd 分解,可以获得矩阵四个基本子空间的标准正交基。

5、 将3×3矩阵的第一行加到第三行是初等变换,对应的初等矩阵式 ⎪⎪⎪⎭
⎫ ⎝⎛101010001
6、 当矩阵的零空间中有非零向量的时候,线性方程组Ax=b 有无穷多解。

7、 所有的2×2实矩阵组成一个向量空间,这个空间的标准基是 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫
⎝⎛1000010000100001 8、 通过施密特正交化可以获得矩阵的QR 分解。

9、 在选定一个基后,任何维数为n 的欧式空间与n R 同构。

10 如果将矩阵视为线性处理系统,矩阵有m 行,n 列,则输入空间的维数是n 。

二、判断题
1、给定一个线性空间,他的基不是唯一的,但是各个基中的基向量个数是相等的。

(R )
2、两个子空间的并集是一个子空间。

(F )
3、在线性方程组Ax=b ,当矩阵A 式列满秩的时候,无论向量b 是什么,方程组都有解。

(F )
4、线性变换在不同的基下的矩阵一般不同,同一线性变换的不同矩阵表示所对应的特征值都相同。

(R )
5、线性变换在不同基下的矩阵一般不同,但是对应同一线性变换的各个矩阵的特征向量都相同。

(F )
6、矩阵特征值的代数重数是该特征值对应的特征子空间的维数。

(F )
7、任何N ×N 的实矩阵都可以对角化。

(F )
8、矩阵的左逆就是矩阵的最小范数广义逆。

(F )
9、任何M ×N 实矩阵都有奇异值分解。

(R )
10、正交投影矩阵都是幂等矩阵。

(R )
三、(矩阵的四个基本子空间和投影矩阵)
设矩阵A 为 A=⎪⎪⎭
⎫ ⎝⎛4242 1、求矩阵A 的四个基本子空间的基和维数
初等变换 ⎪⎪⎭
⎫ ⎝⎛0042 dim R (A )=dim R (T A )=1 dim N (A )=dim N (T A )=1 R(A)的基 ⎪⎪⎭⎫ ⎝⎛22 R(T A )的基 ⎪⎪⎭⎫ ⎝⎛42 N(A)的基⎪⎪⎭⎫ ⎝⎛-12 N(T A )的基 ⎪⎪⎭

⎝⎛-11 2、画出矩阵A 的四个基本子空间的示意图。

自己画很好弄
3、写出投影到矩阵A 的列空间的正交投影矩阵,计算向量b=[0 1]T 在列空间上的投影矩阵。

IP =A(T A A)1-T A 因为 (T A A)1-不存在 不能用这种方法求解 求出列空间的基 B=⎪⎪⎭
⎫ ⎝⎛11得
IP=B(T B B)1-T B =2 ⎪⎪⎭⎫ ⎝⎛1111 投影矩阵 IP*b=2⎪⎪⎭
⎫ ⎝⎛11 4、写出投影到矩阵A 的左零空间的正交投影矩阵,计算向量b=[0 1]在左零空间上的投影向量。

N(T A )⊕R(A)=IR 3 N(T A )=R(A)⊥ 所以3IR ∈∀α )()(T A N A R IP IP ααα+= 所以
)()(A R A N IP I IP T -==⎪⎪⎭
⎫ ⎝⎛----1221 投影矩阵)(T A N IP *b=⎪⎪⎭⎫ ⎝⎛--12 四、(矩阵奇异值分解的伪逆)设矩阵A 为A=⎪⎪⎭

⎝⎛-1122 1、求矩阵A 的奇异值分解。

A T
A=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-11221212=⎪⎪⎭⎫ ⎝⎛5335=V ⎪⎪⎭⎫ ⎝⎛222100σσV T 所以821=σ 222=σ 归一化为特征向量⎪⎪⎪⎪⎭⎫ ⎝⎛2121和⎪⎪⎪⎪⎭⎫ ⎝⎛-2121 u 1=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭
⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=01212111228111σAv 同理的u 2=⎪⎪⎭⎫ ⎝⎛-10从而A 的svd 分解是A=⎪⎪⎭⎫ ⎝⎛-1001⎪⎪⎭
⎫ ⎝⎛2008⎪⎪⎪⎪⎭⎫ ⎝⎛-21212121 2、通过奇异值分解计算矩阵的M-P 伪逆。

A +=V +∑T U =⎪⎪⎪⎪⎭⎫ ⎝⎛-21212121⎪⎪⎪⎪⎭
⎫ ⎝⎛210081⎪⎪⎭⎫ ⎝⎛-1001=⎪⎪⎭⎫ ⎝⎛-212141 五、(基变换和坐标变换)在线性空间V=P 3(x)中,有三个向量
f1(x )=-3+2x-x 2
f2(x )=-x+2x 2
f3(x)=-1+2x-x 2
1、 证明B={f1(x ),f2(x ),f3(x )}构成V=P 3(x )的一个基。

设1k f 1+k 2f 2+k 3f 3=θ 解方程得矩阵满秩 所以k 1=k 2=k 3=0所以是基
2、 设V=P 3(x )中有标准基S={1,x ,x 2},写出由标准基S 到基B 的过渡矩阵。

(-3+2x-x 2 -x+2x 2 _1+2x-x 2)=(1 x x 2)⎪⎪⎪⎭⎫ ⎝⎛-----121212103 Q=⎪⎪⎪⎭
⎫ ⎝⎛-----121212103
计算出向量f (x )=3+12x+7x 2在基S 下的坐标向量。

⎪⎪⎪⎭
⎫ ⎝⎛7123
3、 根据前述结果,利用坐标变换,计算出向量f (x )=3+12x+7x 2在基B 下的坐标向量。

B=Q 1-⎪⎪⎪⎭⎫ ⎝⎛7123=⎪⎪⎪⎪⎪⎪⎭⎫
⎝⎛---2112
132310
613121⎪⎪⎪⎭⎫ ⎝⎛7123=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-17326320。

相关文档
最新文档