天津大学_第五版_物理化学下册习题答案
天津大学物理化学第五版(下)答案(完整版...[1]
第七章 电化学7.3 用银电极电解AgNO 3溶液。
通电一定时间后,测知在阴极上析出0.078g 的Ag ,并知阳极区溶液中23.376g ,其中含AgNO 30.236g 。
已知通电前溶液浓度为1kg 水中溶有7.39g AgNO 3。
求Ag +和3NO -迁移数。
解法1:解法1:解该类问题主要依据电极区的物料守恒(溶液是电中性的)。
显然阳极区溶液中Ag +的总量的改变如。
n 电解后(Ag +)= n 电解前(Ag +)+ n 电解(Ag +)- n 迁移(Ag +)则:n 迁移(Ag +)= n 电解前(Ag +)+ n 电解(Ag +)- n 电解后(Ag +)n 电解(Ag +)=()()4Ag 0.0787.22910mol Ag 107.9m M -==⨯()3323.3760.2367.3910(Ag) 1.00710mol 169.87n -+--⨯⨯==⨯解前电30.236(Ag ) 1.38910mol 169.87n +-==⨯电解后n 迁移(Ag +) = 1.007×10-3+7.229×10-4-1.389×10-3=3.403×10-4mol()44Ag 3.40310Ag 0.477.22910n t n +-+-⨯==⨯移解()=迁电 则:t (3NO -)= 1 - t (Ag +)= 1 – 0.471 = 0.53解法2:解该类问题主要依据电极区的物料守恒(溶液是电中性的)。
显然阳极区溶液中3NO -的总量的改变如下:n 电解后(3NO -)= n 电解前(3NO -) + n 迁移(3NO -)则:n 迁移(3NO -)=n 电解后(3NO -)- n 电解前(3NO -)n 电解后(3NO -)=30.236(Ag) 1.38910mol 169.87n +-==⨯解后电n 电解前(3NO-)=()3323.3760.2367.3910(Ag) 1.00710mol 169.87n -+--⨯⨯==⨯解前电n 迁移(3NO -) = 1.389×10-3-1.007×10-3 = 3.820×10-4moln 电解(Ag +)=()()4Ag 0.0787.22910mol Ag 107.9m M -==⨯()4334NO 3.82010NO 0.537.22910n t n ----⨯==⨯移解()=迁电 则: t (Ag +)= 1 - t (3NO -)= 1 – 0.528 = 0.477.5 已知25℃时0.02mol·dm -3KCl 溶液的电导率为0.2768S·m -1。
天津大学物理化学第五版(下)答案(完整版...
第七章电化学7.1用钳电极电解CuCl 2溶液。
通过的电流为20A,经过15min 后,问:(1) 在阴极上能析出多少质量的 Cu? (2)在的27C, 100kPa 下阳极上能析出多少体 积的的Cl 2 (g) ?解:电极反应为:阴极:Cu 2+ + 2e - t Cu 阳极:2Cl - — 2e- t CI 2 (g) 则:z= 2 根据:Q = nzF=ItIt 20 15 2n Cu =——= --------------- =9.326 10一molzF 2 96500因此:m (Cu) =n (Cu) xM (Cu) = 9.326 10-2>63.546 =5.927g 乂因为:n (Cu) = n (Cl 2) pV (C&) = n (Cb) RTn(Cl) RT 0.09326 8.314 300 3 因止匕:V(Cl) = --------------- =------- ; = 2.326dm 7.2用Pb (s )电极电解PbNO 3溶液。
已知溶液浓度为1g 水中含有PbNO 3 1.66 10-2g 。
通电一定时间后,测得与电解池申联的银库仑计中有 0.1658g 的银 沉积。
阳极区的溶液质量为62.50g,其中含有PbNO 31.151g,计算Pb 2+的迁移数<解法1:解该类问题主要依据电极区的物料守包(溶液是电中性的)。
显然 阳极区溶液中Pb 2+的总量的改变如下:1 O_L1Qi1Qi1Qi2+2+2+2 +n 电解后(一Pb )= n 电解前(一Pb )+ n 电解(一Pb )- n 迁移(一Pb )r1o 11o 11o 11o 12+2+2+2+、贝U: n 迁移(—Pb )= n 电解前(一Pb )+ n 电解(一Pb )- n 电解后(一Pb )n 电解(]Pb 2+)= n 电解(Ag ) = ^A^ =01658 =1.537K10*mol 2M Ag 107.9(62.50-1.151) x 1.66^102 331.2 1 / 2 1 2. 1.151 qn 电解尸(—Pb ) = ------ =6.950勺0 mol解 2 7331.2 1, 12+-3 , -一-3 -3 -4 , n 迁移(—Pb )=6.150 10 +1.537 10 -6.950 10 =7.358 10 mol 2n迁移(12*+) 7.358乂10里.八2 = = 0.479Pb 2) 1.537 10一一 _ 3 100 10n 电解前(1Pb 2)2- _ _ _3 = 6.150 10 mol , 2 + .■迁移 t(Pb )=——解法2:解该类问题主要依据电极区的物料守包(溶液是电中性的)。
天津大学第五版物理化学习题参考解答12
天津大学第五版《物理化学》第十二章“胶体化学”P657-659习题参考解答:12-1.胶体系统是分散相粒子线度的大小在1~100nm之间的分散系统,包括溶胶(憎液溶胶)、高分子溶液(亲液溶胶)、缔合胶体(胶体电解质)、微乳液等(后三者都是热力学稳定的均相系统)。
狭义的胶体系统主要是指溶胶。
其主要特征是特有的分散程度、多相不均匀性、聚结不稳定性。
具体有扩散慢、不能透过半透膜、渗透压低、动力学稳定性强、乳光亮度强等性质。
12-2.丁铎尔效应的实质是光的散射。
产生的条件是分散相粒子的尺寸小于入射光的波长,分散相与分散介质的折射率相差较大。
12-3.斯特恩(Stern)双电层模型(如右图)的要点是:(1)在靠近质点表面1~2个分子厚的区域内,反离子由于受到强烈地吸引而牢固地结合在表面,形成一个紧密的吸附层(还有一些溶剂分子同时被吸附),即斯特恩层;(2)在斯特恩层,反离子的电性中心形成一假想面,即斯特恩面。
在斯特恩层内,电势呈直线下降;(3)其余反离子扩散分布在溶液中,构成双电层的扩散层部分。
斯特恩双电层由斯特恩层和扩散层构成;(4)当固、液两相发生相对移动时,斯特恩层与质点作为一个整体一起运动,其滑动面在斯特恩面稍靠外一些。
固体表面、斯特恩面、滑动面与ϕ、斯特恩电溶液本体之间的电势差分别称为热力学电势ϕ、ζ电势。
热力学电势是固液两相之间双电层的总电势δ势。
ζ电势在量值上比斯特恩电势略小,但它只有在固液两相发生相对移动时才能呈现出来,可以实验测定,反映胶粒带电的程度,极易受外加电解质的影响。
12-4.溶胶具有动力学稳定性的原因主要有三个:(1)胶粒带电。
静电斥力的存在使得胶粒难以互相靠近而引起聚结;(2)溶剂化作用。
由于扩散层反离子的溶剂化作用,使得胶粒周围形成了一个具有一定弹性的溶剂化薄膜层(外壳),增加了胶粒互相靠近时的机械阻力,使溶胶难以聚沉;(3)布朗运动。
布朗运动促使胶粒向四周扩散均匀分布(但也因此加剧胶粒之间的互相碰撞),克服重力达至沉降平衡,从而保持溶胶的稳定。
天津大学物理化学第五版上、下答案
天津大学物理化学第五版上、下答案第一章 气体pVT 性质1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1T T pV p V V T V V⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系? 解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯== 每小时90kg 的流量折合p 摩尔数为133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H C n/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
天津大学第五版-刘俊吉-物理化学课后习题答案(全)
物理化学上册习题解(天津大学第五版)第一章 气体的 pVT 关系1-1 物质的体膨胀系数V与等温压缩系数T的定义如下:1 V 1 VV TV T pV p T试导出理想气体的V 、 T 与压力、温度的关系?解:对于理想气体, pV=nRT1 V V T V1 V Tp VpT 1 (nRT / p) V T 1 ( nRT / p) Vp1nR 1 V T 1p V p V T 1 nRT 1 V p 1T V p 2V p31-2 气柜内有 121.6kPa 、27℃的氯乙烯( C2H3Cl )气体 300m ,若 以每小时 90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为n pV 121.6 10 3300RT 8.314 14618.623mol300.15每小时90kg 的 流 量折 合 p 摩 尔 数 为v 90 10 390 1031441.153mol h 1M C 2H 3Cl 62.45n/v= (14618.623 ÷1441.153 )=10.144 小时1-3 0 ℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:CH 4nM CH 4 p MCH 4 101325 16 103 0.714kg m 3VRT 8.314 273.151-4 一抽成真空的球形容器, 质量为 25.0000g 。
充以 4℃水之后,1物理化学上册习题解(天津大学第五版)总质量为 125.0000g 。
若改用充以25℃、 13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积V125.0000 25.000 100.0000 cm3100.0000cm3H 2 O (l ) 1n=m/M=pV/RTRTm 8.314 298.15 ( 25.0163 25.0000)30.31g molM13330 10 4pV1-5 两个体积均为 V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
天津大学物理化学教研室《物理化学》(第5版)笔记和课后习题(含考研真题)详解-热力学第一定律(圣才出
或
dU=δQ+δW
2.焦耳实验 虽然焦耳实验的设计是不精确的,但是并不影响“理想气体的热力学能仅仅是温度的函 数”这一结论的正确性。
3.体积功的定义和计算 由于系统体积的变化而引起的系统与环境交换的能量称为体积功,其定义式为:
δW=-pambdV (1)气体向真空膨胀时,pamb=0,得出
W=0 (2)恒外压过程体积功
W= -pamb(V2-V1)= -pambΔV (3)对于理想气体恒压变温过程
3 / 52
圣才电子书
十万种考研考证电子书、题库视频学习平台
W= -pambΔV= -nRΔT
(4)可逆过程体积功
Wr
=
−
V2 V1
pambdV
(5)理想气体恒温可逆过程体积功
Wr
=−
V2 V1
pambdV
= nRT ln(V1
V2 ) = nRT ln( p2
p1)
(6)可逆相变体积功
W=-pdV
三、恒容热、恒压热及焓 1.恒容热(QV) 指系统进行恒容且无非体积功的过程中与环境交换的热,它与过程的ΔU 在量值上相等。 而ΔU 只取决于始、末状态,故对一个微小的恒容且无非体积功的过程有如下关系:
=定值)、恒容过程(V=定值)、绝热(系统与环境之间无热交换)过程、循环过程等。
4.功 系统得到环境所作的功时,W>0;系统对环境作功时,W<0。功是途径函数,单位为 J。 (1)体积功(W):系统因其体积发生变化反抗环境压力(pamb)而与环境交换的能量,
定义式为W = −pambdV ;
(2)非体积功(W ):除了体积功以外的一切其他形式的功,如电功、表面功等。
焓为广度量,是状态函数,单位为 J。
天津大学《物理化学》第五版-习题及解答
及。
要确定 ,只需对第二步应用绝热状态方程
因此
,对双原子气体
由于理想气体的 U 和 H 只是温度的函数,
整个过程由于第二步为绝热,计算热是方便的。而第一步为恒温可逆
12 / 144
2.24 求证在理想气体 p-V 图上任 一点处,绝热可逆线的斜率的绝对值大于恒温可逆线的绝 对值。
证明:根据理想气体绝热方程,
T
及过程的
。
解:过程图示如下
显然,在过程中 A 为恒压,而 B 为恒容,因此
11 / 144
同上题,先求功 同样,由于汽缸绝热,根据热力学第一定律
2.23 5 mol 双原子气体从始态 300 K,200 kPa,先恒温可逆膨胀到压力为 50 kPa,在绝热可
逆压缩到末态压力 200 kPa。求末态温度 T 及整个过程的 解:过程图示如下
及。 解:先确定系统的始、末态
对于途径 b,其功为
根据热力学第一定律
2.6 4 mol 的某理想气体,温度升高 20 C°,求 解:根据焓的定义
的值。
2.10 2 mol 某理想气体,
。由始态 100 kPa, 50 dm 3,先恒容加热使压力体积
增大到 150 dm 3,再恒压冷却使体积缩小至 25 dm 3。求整个过程的
此
假设气体可看作理想气体,
,则
8 / 144
2.16 水煤气发生炉出口的水煤气的温度是
1100 °C,其中 CO(g)和 H2(g)的摩尔分数均为
0.5。若每小时有 300 kg 的水煤气由 1100 °C 冷却到 100 °C,并用所收回的热来加热水,是
水温由 25 °C 升高到 75 °C。求每小时生产热水的质 量。 CO(g)和 H2(g)的摩尔定压热容
天津大学物理化学教研室《物理化学》(第5版)(下册)配套题库
目 录第一部分 名校考研真题第7章 电化学第8章 量子力学基础第9章 统计热力学初步第10章 界面现象第11章 化学动力学第12章 胶体化学第二部分 课后习题第7章 电化学第8章 量子力学基础第9章 统计热力学初步第10章 界面现象第11章 化学动力学第12章 胶体化学答:分散相粒子直径d介于1~1000nm范围内的高分散系统称为胶体系统。
胶体系统的主要特征:高分散性、多相性和热力学不稳定性。
答:在暗室中,将一束经过聚集的光线投射到胶体系统上,在与入射光垂直的方向上,可观察到一个发亮的光锥,称为丁泽尔效应。
丁泽尔效应的实质是胶体粒子对光的散射。
可见光的波长在400~760nm的范围内,而一般胶体粒子的尺寸为1~1000nm。
当可见光投射到胶体系统时,如胶体粒子的直径小于可见光波长,则发生光的散射现象,产生丁泽尔效应。
答:胶体粒子带电、溶剂化作用和布朗运动是溶胶稳定存在的三个重要原因。
(1)胶体粒子表面通过以下两种方式而带电:①固体表面从溶液中有选择性地吸附某种离子而带电;②固体表面上的某些分子、原子在溶液中发生解离,使固体表面带电。
各胶体粒子带同种电荷,彼此之间相互排斥,有利于溶胶稳定存在。
(2)溶剂化作用:对于水为分散介质的胶体系统,胶粒周围存在一个弹性的水化外壳,增加了溶胶聚合的机械阻力,有利于溶胶稳定。
(3)布朗运动:分散相粒子的布朗运动足够强时,能够克服重力场的影响而不下沉,这种性质称为溶胶的动力稳定性。
答:胶体粒子带电、溶剂化作用及布朗运动是溶胶稳定的三个重要原因。
中和胶体粒子所带的电荷,降低溶剂化作用皆可使溶胶聚沉。
其中,加入过量的电解质(尤其是含高价反离子的电解质)是最有效的方法。
原因:增加电解质的浓度和价数,可以使扩散层变薄,斥力势能下降。
随电解质浓度的增加,使溶胶发生聚沉的势垒的高度相应降低。
当引力势能占优势时,胶体粒子一旦相碰即可聚沉。
答:乳化剂分子具有一端亲水而另一端亲油的特性,其两端的横截面通常大小不等。
物理化学下册第五版天津大学出版社第十二章胶体化学习题答案
物理化学下册第五版天津大学出版社第十二章胶体化学习题答案12.1 如何定义胶体系统?总结交替的主要特征。
解:分散相粒子在某方向上的线度在1~100nm范围内的高度分散系统成为胶体系统。
胶体系统的主要特征是高度分散、多相性和热力学不稳定性。
12.2 丁铎尔效应的实质及其产生的条件?解:丁铎尔效应实质是光的散射作用引起的。
粒子的半径小于入射光的波长时才能观察到丁铎尔效应。
12.3 简述斯特恩双电层模型的要点指出热力学电势、斯特恩(stern)电势和ζ电势的区别?解:Stern 模型:固定层+扩散层、三个面、三个电势。
具体如下:1924年斯特恩提出扩散双电层:离子有一定的大小;部分反离子被牢固吸附,形成固定吸附层或斯特恩固体面;Stern面:Stern层中反离子电性中心所形成的假想面;滑动面:固液两相发生相对移动时界面。
热力学电势0:固体面—溶液本体;Stern电势:Stern面—溶液本体;电势:滑动面—溶液本体12.4 溶胶能在一定时间内稳定存在的主要原因?解:分散相粒子的带电、溶剂化作用以及布朗运动是溶胶系统相当长得时间范围内可以稳定存在的主要原因。
12.5 破坏胶体最有效的办法是什么?说明原因。
解:破坏胶体最有效的办法是在溶胶中加入过量的含有高价相反号离子的电解质。
这主要是因为电解质的浓度或价数增加时,都会压缩扩散层,是扩散层变薄,电势降低,斥力势能降低,当电解质的浓度足够大时就会使溶胶发生聚沉;若加入的反号离子发生吸附,斯特恩层内的反离子数目增加,使胶体粒子的带电量降低,而导致碰撞聚沉。
过量的电解质加入,还将使胶体粒子脱水,失水化外壳而聚沉。
12.6 K、Na等碱金属的皂类作为乳化剂时,易于形成O/W型的乳状液;Zn、Mg等高价金属的皂类作为乳化剂时,易于形成W/O 型的乳状液。
解:乳化剂分子具有一端亲水而另一端亲油的特性,其两端的横截面不等。
当它吸附在乳状液的界面面层时,常呈现“大头”朝外,“小头”向里的几何构型,就如同一个个的锲子密集的钉在圆球上。
物理化学下册第五版天津大学出版社第十一章化学动力学习题答案
物理化学下册第五版天津大学出版社第十一章化学动力学习题答案11.1 反应SO2Cl2(g)→SO2Cl(g)+ Cl2(g)为一级气相反应,320 ℃时k=2.2×10-5s-1。
问在320℃加热90 min SO2Cl2(g)的分解分数为若干?解:根据一级反应速率方程的积分式即有:x = 11.20%11.2某一级反应A→B的半衰期为10 min。
求1h后剩余A的分数。
解:根据一级反应的特点又因为:即有:1-x = 1.56%11.3某一级反应,反应进行10 min后,反应物反应掉30%。
问反应掉50%需多少时间?解:根据一级反应速率方程的积分式当t=10min时:当x=50%时:11.4 25℃时,酸催化蔗糖转化反应的动力学数据如下(蔗糖的初始浓度c0为1.0023 mol·dm-3,时刻t的浓度为c)(1)使用作图法证明此反应为一级反应。
求算速率常数及半衰期;(2)问蔗糖转化95%需时若干?解:(1)将上述表格数据转化如下:对作图如下则:k = 3.58×10-3min-1(2)11.5 对于一级反应,使证明转化率达到87.5%所需时间为转化率达到50%所需时间的3倍。
对于二级反应又应为多少?解:对于一级反应而言有:即有:对于二级反应而言有:即有:11.6偶氮甲烷分解反应CH3NNCH3(g)→ C2H6(g)+ N2(g)为一级反应。
在287 ℃时,一密闭容器中CH3NNCH3(g)初始压力为21.332 kPa,1000 s后总压为22.732 kPa,求k及t1/2。
解:设在t时刻CH3NNCH3(g)的分压为p,即有:1000 s后2p0-p=22.732,即p = 19.932kPa。
对于密闭容器中的气相反应的组成可用分压表示:11.7 基乙酸在酸性溶液中的分解反应(NO2)CH2COOH→CH3 NO2(g)+ CO2(g)为一级反应。
25℃,101.3 kPa下,于不同时间测定放出的CO2(g)的体积如下:t/min 2.28 3.92 5.92 8.42 11.92 17.47 ∞V/cm3 4.09 8.05 12.02 16.01 20.02 24.02 28.94反应不是从t=0开始的。
天津大学第五版-刘俊吉-物理化学课后习题答案(全)
RT
8.314
273.15
1-4一抽成真空的球形容器, 质量为25.0000g。充以4℃水之后,
1
总质量为125.0000g。若改用充以25℃、13.33kPa的某碳氢化合物
气体,则总质量为25.0163g。试估算该气体的摩尔质量。
解:先求容器的容积V
125.0000 25.000
100.0000
3
氮气,二者均克视为理想气体。
N2
H
3dm
3
3
1dm
2
p
T
p
T
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略
不计,试求两种气体混合后的压力。
(2)隔板抽去前后,H2及N2的摩尔体积是否相同?
(3)隔板抽去后,混合气体中H2及N2的分压力之比以及它们的
分体积各为若干?
解:(1)抽隔板前两侧压力均为p,温度均为T。
nC2H3Cl/ nC2H40.89 / 0.02
(2)
联立式(1)与式(2)求解得
pC2H3Cl96 .49kPa ; pC2H42.168 kPa
1-10室温下一高压釜内有常压的空气。为进行实验时确保安全,
采用同样温度的纯氮进行置换, 步骤如下向釜内通氮直到4倍于空气
的压力,尔后将釜内混合气体排出直至恢复常压。 这种步骤共重复三
m
yAMA
yBMB
0.3897
46.867 g
1
n
0.008315
mol
(1)
30.0694 yA
58.123yB
yAyB
1
(2)
联立方程(1)与(2)求解得yB0.599, yB
0.401
天津大学第五版-刘俊吉-物理化学课后习题答案(全)之欧阳治创编
第一章气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:试导出理想气体的V α、T κ与压力、温度的关系?解:对于理想气体,pV=nRT1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为每小时90kg 的流量折合p 摩尔数为 133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H C n/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CH ρ1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρ n=m/M=pV/RT1-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。
解:方法一:在题目所给出的条件下,气体的量不变。
并且设玻璃泡的体积不随温度而变化,则始态为 )/(2,2,1i i i i RT V p n nn =+= 终态(f )时⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=+=f f f f f f f f f f T T T T R V p T V T V R p n n n ,2,1,1,2,2,1,2,1 1-6 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。
天大物理化学(第五版)课后习题答案
天津大学物理化学(第五版)习题答案32.双光气分解反应为一级反应。
将一定量双光气迅速引入一个280 ºC的容器中,751 s后测得系统的压力为2.710 kPa;经过长时间反应完了后系统压力为4.008 kPa。
305 ºC时重复试验,经 320 s系统压力为2.838 kPa;反应完了后系统压力为3.554 kPa。
求活化能。
解:根据反应计量式,设活化能不随温度变化33.乙醛(A)蒸气的热分解反应如下518 ºC下在一定容积中的压力变化有如下两组数据:纯乙醛的初压100 s后系统总压53.329 66.66126.664 30.531(1)求反应级数,速率常数;(2)若活化能为,问在什么温度下其速率常数为518 ºC下的2倍:解:(1)在反应过程中乙醛的压力为,设为n级反应,并令m = n -1,由于在两组实验中kt相同,故有该方程有解(用MatLab fzero函数求解)m = 0.972,。
反应为2级。
速率常数(3)根据Arrhenius公式34.反应中,在25 ºC时分别为和,在35 ºC时二者皆增为2倍。
试求:(1)25 ºC时的平衡常数。
(2)正、逆反应的活化能。
(3)反应热。
解:(1)(2)(3)35.在80 % 的乙醇溶液中,1-chloro-1-methylcycloheptane的水解为一级反应。
测得不同温度t下列于下表,求活化能和指前因子A。
0 25 35 45解:由Arrhenius公式,,处理数据如下3.6610 3.3540 3.2452 3.1432-11.4547 -8.0503 -6.9118 -5.836236. 在气相中,异丙烯基稀丙基醚(A)异构化为稀丙基丙酮(B)是一级反应。
其速率常数k于热力学温度T的关系为150 ºC时,由101.325 kPa的A开始,到B的分压达到40.023 kPa,需多长时间。
天津大学物理化学教研室《物理化学》(下册)课后习题(界面现象)
第10章界面现象10.1 请回答下列问题:(1)常见的亚稳态有哪些?为什么产生亚稳态?如何防止亚稳态的产生?(2)在一个封闭的钟罩内,有大小不等的两个球形液滴,问长时间放置后,会出现什么现象?(3)下雨时,液滴落在水面上形成一个大气泡,试说明气泡的形状和理由。
(4)物理吸附与化学吸附最本质的区别是什么?(5)在一定温度、压力下,为什么物理吸附都是放热过程?答:(1)常见的亚稳态有过饱和蒸气、过热和过冷液体及过饱和溶液。
产生亚稳态的原因是新相种子难以生成。
如在蒸气冷凝、液体凝固和沸腾以及溶液结晶等过程中,由于要从无到有生成新相,因而最初生成的新相的种子是极其微小的,其比表面积和表面吉布斯函数都很大,因此新相难以生成,进而会产生过饱和蒸气、过热和过冷液体以及过饱和溶液等亚稳状态。
为了防止亚稳状态的产生可预先在系统中加入将要产生的新相的种子。
(2)若钟罩内还有该液体的蒸气存在,则长时间恒温放置会出现大液滴越来越大,小液滴越来越小的现象,最终小液滴消失,大液滴不再变化。
其原因在于,一定温度下,液滴的半径不同,其饱和蒸气压不同,液滴越小,其饱和蒸气压越大,当钟罩内气体的饱和蒸气压达到大液滴的饱和蒸气压时,对于小液滴尚未达到饱和,小液滴会继续蒸发,则蒸气会在大液滴上凝结,因而出现了上述现象。
(3)气泡的形状近似于半球状,如不考虑重力影响,则应为半球状。
雨滴落在水面上形成气泡的过程基本上是恒温恒压生成内外表面的过程,当气泡达到稳定状态时,要求其表面吉布斯函数处于最低,而相同体积的气泡则以球状表面积最小,这就是气泡为半球状的原因。
(4)物理吸附与化学吸附最本质的区别在于吸附剂与吸附质间的相互作用力不同,前者是范德华力,而后者则为化学键力。
(5)在一定温度、压力下,物理吸附过程是一个自发过程,由热力学原理可知,此过程系统的G∆<0。
同时,气体分子吸附在固体表面,由三维运动变为二维运动,系统的混乱度减小,因此过程系统S∆的<0。
物理化学(天津大学第五版)第六章答案 相平衡
第六章相平衡6.1指出下列平衡系统中的组分数C,相数P及自由度F。
(1)I2(s)与其蒸气成平衡;(2)CaCO3(s)与其分解产物CaO(s)和CO2(g)成平衡;(3)NH4HS(s)放入一抽空的容器中,并与其分解产物NH3(g)和H2S(g)成平衡;(4)取任意量的NH3(g)和H2S(g)与NH4HS(s)成平衡。
(5)I2作为溶质在两不互溶液体H2O和CCl4中达到分配平衡(凝聚系统)。
解:(1)C = 1, P = 2, F = C–P + 2 = 1 – 2 + 2 = 1.(2)C = 3 – 1 = 2, P = 3, F = C–P + 2 = 2 – 3 + 2 = 1.(3)C = 3 – 1 – 1 = 1, P = 2, F = C–P + 2 = 1 – 2 + 2 = 1.(4)C = 3 – 1 = 2, P = 2, F = C–P + 2 = 2 – 2 + 2 = 2.(5)C = 3, P = 2, F = C–P + 1 = 3 – 2 + 1 = 2.6.2已知液体甲苯(A)和液体苯(B)在90 ︒C时的饱和蒸气压分别为=和。
两者可形成理想液态混合物。
今有系统组成为的甲苯-苯混合物5 mol,在90 ︒C下成气-液两相平衡,若气相组成为求:(1)平衡时液相组成及系统的压力p。
(2)平衡时气、液两相的物质的量解:(1)对于理想液态混合物,每个组分服从Raoult定律,因此(2)系统代表点,根据杠杆原理6.3单组分系统的相图示意如右图。
试用相律分析途中各点、线、面的相平衡关系及自由度。
解:单相区已标于图上。
二相线(F = 1):三相点(F = 0):图中虚线表示介稳态。
6.4已知甲苯、苯在90 ︒C下纯液体的饱和蒸气压分别为54.22 kPa和136.12 kPa。
两者可形成理想液态混合物。
取200.0 g甲苯和200.0 g苯置于带活塞的导热容器中,始态为一定压力下90 ︒C的液态混合物。
天津大学物理化学第五版第六章相图答案
第六章 相平衡6-1 指出下列平衡系统中的组分数C ,相数P 及自由度数F : (1)I 2(s )与其蒸气成平衡;(2)CaCO 3(s )与其分解产物CaO (s )和CO 2(g )成平衡;(3)NH 4HS(s)放入一抽空的容器中,并与其分解产物NH 3(g)和H 2S(g)成平衡; (4)取任意量的NH 3(g)和H 2S(g)与NH 4HS(s)成平衡;(5) I 2作为溶质在两不相互溶液体H 2O 和CCl 4中达到分配平衡(凝聚系统)。
解:(1) S-R-R '=1-0-0=1;P=2;F=C-P+2=1 (2) S-R-R '=3-1-0=2;P=3;F=C-P+2=1 (3) S-R-R '=3-1-1=1;P=2;F=C-P+2=1 (4) S-R-R '=3-1-0=2;P=2;F=C-P+2=2 (5) S-R-R '=3-0-0=3;P=2;F=C-P+1=2 6-2常见的)(32s CO Na 水合物有)(10)(7),(232232232s O H CO Na s O H CO Na s O H CO Na ⋅⋅⋅和(1)下,与32CO Na 水溶液及冰平衡共存的水合物最多有几种? (2)20℃时,与水蒸气平衡共存的水合物最多可能有几种? 解 系统的物种数S=5,即H 2O 、)(32s CO Na 、)(10)(7),(232232232s O H CO Na s O H CO Na s O H CO Na ⋅⋅⋅和。
独立的化学反应式有三个:)()()(232232s O H CO Na l O H s CO Na ⋅=+)(7)(6)(2322232s O H CO Na l O H s O H CO Na ⋅=+⋅ )(10)(3)(72322232s O H CO Na l O H s O H CO Na ⋅=+⋅则R=3没有浓度限制条件 0'=R所以,组分数 C=S-R-'R =5-3-0=2在指定的温度或压力的条件下,其自由度数 F=C-P+1=3-P 平衡条件下F=0时相数最多,因此上述系统最多只能有3相共存。
天津大学高等教育出版社第五版《物理化学》课后习题答案第四章
天津⼤学⾼等教育出版社第五版《物理化学》课后习题答案第四章4.1有溶剂A与溶质B形成⼀定组成的溶液。
此溶液中B的浓度为c B,质量摩尔浓度为b B,此溶液的密度为。
以M A,M B分别代表溶剂和溶质的摩尔质量,若溶液的组成⽤B的摩尔分数x B表⽰时,试导出x B与c B,x B与b B之间的关系。
解:根据各组成表⽰的定义4.2D-果糖溶于⽔(A)中形成的某溶液,质量分数,此溶液在20℃时的密度。
求:此溶液中D-果糖的(1)摩尔分数;(2)浓度;(3)质量摩尔浓度。
解:质量分数的定义为4.3在25℃,1 kg⽔(A)中溶有醋酸(B),当醋酸的质量摩尔浓度b B介于和之间时,溶液的总体积求:(1)把⽔(A )和醋酸(B )的偏摩尔体积分别表⽰成b B 的函数关系。
(2)时⽔和醋酸的偏摩尔体积。
解:根据定义当时4.460℃时甲醇的饱和蒸⽓压是84.4 kPa ,⼄醇的饱和蒸⽓压是47.0 kPa 。
⼆者可形成理想液态混合物。
若混合物的组成为⼆者的质量分数各50 %,求60℃时此混合物的平衡蒸⽓组成,以摩尔分数表⽰。
解:甲醇的摩尔分数为58980049465004232500423250....x B =+=4.580℃时纯苯的蒸⽓压为100 kPa ,纯甲苯的蒸⽓压为38.7 kPa 。
两液体可形成理想液态混合物。
若有苯-甲苯的⽓-液平衡混合物,80℃时⽓相中苯的摩尔分数,求液相的组成。
解:4.6在18℃,⽓体压⼒101.352 kPa下,1 dm3的⽔中能溶解O2 0.045 g,能溶解N2 0.02 g。
现将 1 dm3被202.65 kPa空⽓所饱和了的⽔溶液加热⾄沸腾,赶出所溶解的O2和N2,并⼲燥之,求此⼲燥⽓体在101.325 kPa,18℃下的体积及其组成。
设空⽓为理想⽓体混合物。
其组成体积分数为:,解:显然问题的关键是求出O2和N2的亨利常数。
4.7 20℃下HCl 溶于苯中达平衡,⽓相中HCl 的分压为101.325 kPa 时,溶液中HCl 的摩尔分数为0.0425。