八年级下册数学直角三角形的性质和判定(1)
湘教版八年级下册数学
一、直角三角形1、直角三角形的性质定理①“直角三角形的两个锐角互余”②“直角三角形斜边上的中线等于斜边的一半”③“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半”④“直角三角形两直角边a ,b的平方和,等于斜边c的平方。
”【勾股定理】互余:直角三角形中,两个锐角互余。
(两角之和等于90°)互补:两直线平行,同旁内角互补。
(两角之和等于180°)2、直角三角形的判定定理①“有两个角互余的三角形是直角三角形”②“如果三角形的三条边长a ,b ,c满足关系:a²+b²=c²,那么这个三角形是直角三角形”【勾股定理的逆定理】3、直角三角形全等的判定“斜边、直角边定理斜边和一条直角边对应相等的两个直角三角形全等”【简称:斜边、直角边或“HL”】4、两个三角形全等的判定方法:【六种】①平移、旋转②AAS③ASA(两角及其夹边)④SSS (三边)⑤SAS(两边及其夹角)⑥HL(斜边、直角边)5、角平分线的性质①角平分线的性质定理:“角的平分线上的点到角的两边的距离相等”②角平分线的性质定理的逆定理:“角的内部到角的两边距离相等的点在角的平分线上”6、线段垂直平分线:垂直且平分一条直线的线段。
①线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等。
②线段垂直平分线的性质定理的逆定理:到线段两端点距离相等的点在线段的垂直平分线上7、等腰三角形的性质:①等腰三角形是轴对称图形,对称轴是顶角平分线所在的直线。
②等腰三角形底边上的高、中线及顶角平分线重合。
(简称:三线合一)③等腰三角形的两底角相等(简称:等边对等角)8、完全平方式:(a+b)²=a²﹢2ab+b²【(a+b)²=(a+b)╳(a+b)=a╳a+2╳a╳b+b╳b = a²﹢2ab+b²】(a-b)²=a²-2ab+b²平方差公式:a²-b²=(a+b)╳(a-b)二、四边形多边形:在平面内,由一些线段首尾顺次相接组成的封闭图形。
直角三角形(1)八年级数学下册同步备课系列(北师大版)
=
c2+4
1 2
ab
,
c
b a2+2ab+b2 = c2+2ab,
a
∴a2+b2=c2.
讲授新课
2.赵爽弦图
大正方形的面积可以表示为 c2 ;
也可以表示为
4
1 2
ab
+(b-a.)2
c a
b
b
b
b
c
c
∵ c2= 4 1 ab +(b-a)2,
2
c2 =2ab+b2-2ab+a2, c2 =a2+b2, ∴ a2+b2=c2.
观察上面两个定理,它们的条件与结论之间有怎样的关系?
讲授新课
再观察下面三组命题: 如果两个角是对顶角,那么它们相等, 如果两个角相等,那么它们是对顶角; 如果小明患了肺炎,那么他一定会发烧, 如果小明发烧,那么他一定患了肺炎; 三角形中相等的边所对的角相等, 三角形中相等的角所对的边相等. 上面每组中两个命题的条件和结论之间也有类似 的关系吗?与同伴进行交流.
解:原式可化为: a2-10a+25+b2-24b+144+c2-26c+169=0 (a-5)2+(b-12)2+(c-13)2=0 a=5,b=12,c=13. a2+b2=c2 ∴△ABC是直角三角形
当堂检测
16.指出下列命题的条件和结论,并说出它们的逆命题.
(1)如果一个三角形是直角三角形,那么它的两个 锐角互余.
4. 下列长度的三条线段能组成直角三角形的是 ( A )
A.3,4,5
B.2,3,4
C.4,6,7
湘教版数学八年级下册1.1直角三角形的性质和判定(一)课件
Байду номын сангаас.直角三角形的性质定理:
在直角三角形中,斜边上的中线等于斜边 的一半。 8.结合右边图形用数学符号表示直角三角形 的性质定理:
在RtABC中, ACB 900,CD是斜边AB上的中线,则有
CD
AB
或CD BD AD.
9.应用直角三角形性质定理的前提条件 是:在直角三角形中
10.教材中证明直角三角形性质定理的 方法称为: 同一法
再见
若A 400 ,则B
,
ACD
, BCD
.
6. 如右图所示,CD是RtABC斜边AB上的中线, 请用刻 度尺度量并比较CD, AB, AD, BD的长度.
CD 2.1 cm; AD 2.1 cm; BD 2.1 cm; AB 4.2 cm
CD AB.
根据刚才的探究, 你有什么发现?
合作探究一
1.如果三角形一边上的中线等于这条边的一半 求证:这个三角形是直角三角形. 已知: 如图,CD是ABC的AB边上的中线,
且CD 1 AB. 2
求证: ABC是直角三角形.
已知: 如图,CD是ABC的AB边上的中线,
且CD 1 AB. 2
求证: ABC是直角三角形.
合作探究二
2.如图, AB // CD, BAC和ACD的平分线相交于H点, E为AC的中点, 那么:
1 2, 3
4
1 2 3 4
则 1 3
AHC是 直角三角形 ( 有两个角) 互余的三角
若EH 3, 那么AC 6 形是直角三角形
在直角三角形中,斜边上的中
线等于(斜边的一半
)
课堂小结
本堂课我自己学会了: 同学 帮助我学会了: 我帮助同学学会了:
北师大版数学八年级下册.1直角三角形的性质与判定课件
新课讲授
证明:∵PE⊥OA,PF⊥OB, ∴∠OEP=∠OFP=90°. 在Rt△POE和Rt△POF中,由勾股定理易得OE=OF, ∴△POE≌△POF. ∴∠AOP=∠BOP,即OP是∠AOB的平分线. 即在角的内部,到角两边距离相等的点在这个角的 平分线上. 故定理“角平分线上的点到角的两边的距离相 等” 有逆定理.
新课讲授
(3)一个三角形中相等的边所对的角相等; 一个三角形中相等的角所对的边相等.
上面每组中两个命题的条件和结论也有类似的关系吗? 与同伴交流.
新课讲授
1.在两个命题中,如果一个命题的条件和结论分别 是另一个命题的结论和条件,那么这两个命题称 为互逆命题,其中一个命题称为另一个命题的逆 命题.
分析:根据题目要求,先判断原命题的真假,再将原命题 的题设和结论部分互换,写出原命题的逆命题,最 后判断逆命题的真假.
新课讲授
解:(1)原命题是真命题.逆命题为:如果两条直线只有 一个交点,那么它们相交.逆命题是真命题.
(2)原命题是假命题.逆命题为:如果a2>b2,那么a >b.逆命题是假命题.
新课讲授
练一练
1.小明把一副含45°,30°的直角三角尺如图摆放,其中 ∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等 于( B ) A.180° B.210° C.360° D.270°
新课讲授
知识点2 直角三角形中边角关系
勾股定理 直角三角形两条直角边的平方和等于 斜边的平方.
D.6
当堂小练
2.下列说法正确的是( B ) A.每个定理都有逆定理 B.每个命题都有逆命题 C.原命题是假命题,则它的逆命题也是假命题 D.真命题的逆命题是真命题
拓展与延伸
一直角三角形的两边长分别为3和4,则第三边的长为( D )
八年级下册数学直角三角形的性质和判定课件
图1-3
线段CD 比线段AB短.
1 我测量后发现CD = AB. 2
图1-3
1 如图1-3, 如果中线CD = AB,则有∠DCA = ∠A . 2 由此受到启发,在图1-4 的Rt△ABC中,过直角顶点C作 射线 CD交AB于D,使 ∠ DCA = ∠A , 则 CD = AD .
1.直角三角形的判定定理和性质定理;
2.应用定理进行推理论证解决有关问题.
首页
课后作业
见《学练优》本课“课后巩固提升”
1 AB. 2
图1-4
结论
由此得到:
直角三角形斜边上的中线等于斜边的一半.
例1 已知:如图1-5,CD是△ABC的AB边上的中 AB . 线,且 CD 1 2 求证:△ABC是直角三角形.
图1-5
证明:因为 CD 1 AB= BD= AD , 2 所以 ∠1=∠A,(等边对等角) ∠2=∠B .
3.如图所示,在锐角三角形ABC中,CD,BE分别是AB, AC边上的高,且CD,BE交于一点P,若∠A=50°,则∠BPC的 度数是( B ). A.150° B.130° C.120° D.100° 解 因为BE,CD是ABC的高, 所以∠BDP=90°,∠BEA=90°. 又∠A=50° , 所以∠ABE=90°-∠A=90°-50°= 40°. 所以∠BPC =∠ABE +∠BDP = 90° + 40°= 130°. 故应选择B.
1 是否对于任意一个Rt△ABC,都有 CD = AB 成立呢? 2
图1-3
图1-4
又∵ ∠A +∠B=90° , DCA+ DCB 90 ,
∴ B DCB.
故得 CD = AD = BD = 1 AB. 2
八年级数学 第1章 直角三角形 1.1 直角三角形的性质与判定(ⅰ)(第1课时)
∠A=90°-∠B,
④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有
_____①__②__③__(填序号).
世纪金榜导学号
第十七页,共三十四页。
知识点二 直角三角形斜边上中线(zhōngxiàn)的性质 (P3探究拓展)
第十八页,共三十四页。
【典例2】 如图,△ABD是以BD为斜边的等腰直 角三角形,△BCD中,∠DBC=90°, ∠BCD=60°,DC中点为E,AD与BE的延长线交于点F,求∠AFB 度数(dù shu). 世纪金榜导学号
)
C
A.75° B.65° C.55° D.45°
第七页,共三十四页。
2.具备下列条件(tiáojiàn)的△ABC中,不是直角三角形的是 ( D) A.∠A+∠B=∠C
B.∠A-∠B=∠C
第八页,共三十四页。
C.∠A∶∠B∶∠C=1∶2∶3 D.∠A=∠B=3∠C
第九页,共三十四页。
3.(2019·睢宁县期中(qī zhōnɡ))已知一个直角三角形的斜边长 为12,则其斜边上的中线长为_____6_.
第十页,共三十四页。
知识点一直角三角形两锐角(ruìjiǎo)的关系及应用 (P2议一议拓展)
第十一页,共三十四页。
【典例1】如图,在△ABC中, ∠ACB=90°,CD是高. (1)图中有几个直角三角形?是哪几个? (2)∠1和∠A有什么(shén me)关系?∠2和∠A呢?还有哪些
锐角相等?
第二十五页,共三十四页。
【火眼金睛】 如图,△ABC为等腰直角三角形,AD为斜边BC上的高,E,F分 别(fēnbié)为AB和AC的中点,试判断DE和DF的关系.
第二十六页,共三十四页。
第二十七页,共三十四页。
湘教版数学八年级下册《1.1 直角三角形的性质和判定(I)》教学设计
湘教版数学八年级下册《1.1 直角三角形的性质和判定(I)》教学设计一. 教材分析湘教版数学八年级下册第1.1节直角三角形的性质和判定(I)是初中数学的重要内容,主要介绍了直角三角形的性质和判定方法。
本节课的内容是学生学习几何学的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
教材从直角三角形的定义入手,介绍了直角三角形的性质,如直角三角形的两个锐角互余,直角三角形的斜边最长等。
接着,教材介绍了直角三角形的判定方法,如HL判定法、ASA判定法、AAS判定法等。
这些性质和判定方法在实际应用中具有广泛的应用价值。
二. 学情分析学生在学习本节课之前,已经学习了三角形的基本概念和性质,对于三角形的分类和特点有一定的了解。
但是,对于直角三角形的特殊性质和判定方法,学生可能还没有完全掌握。
因此,在教学过程中,需要注重引导学生理解和掌握直角三角形的性质和判定方法。
三. 教学目标1.知识与技能:使学生理解和掌握直角三角形的性质和判定方法,能够运用这些性质和判定方法解决实际问题。
2.过程与方法:通过观察、操作、推理等数学活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣和好奇心,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:直角三角形的性质和判定方法。
2.难点:直角三角形的判定方法的灵活运用。
五. 教学方法1.引导发现法:通过提问、引导,让学生发现直角三角形的性质和判定方法。
2.实践操作法:让学生通过实际操作,加深对直角三角形性质和判定方法的理解。
3.合作交流法:鼓励学生分组讨论,培养学生的团队合作意识和沟通能力。
六. 教学准备1.教具准备:直角三角形模型、多媒体课件等。
2.学具准备:直角三角形模型、剪刀、胶水等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过多媒体课件展示直角三角形的性质和判定方法,让学生初步了解这些知识。
湘教版八下数学1.1直角三角形的性质和判定(Ⅰ)第2课时含30°锐角的直角三角形的性质及其应用说课稿
湘教版八下数学1.1直角三角形的性质和判定(Ⅰ)第2课时含30°锐角的直角三角形的性质及其应用说课稿一. 教材分析湘教版八下数学1.1直角三角形的性质和判定(Ⅰ)第2课时含30°锐角的直角三角形的性质及其应用,这部分内容是初中数学的重要知识点,主要让学生了解含30°锐角的直角三角形的性质,并学会运用这些性质解决实际问题。
教材通过例题和练习,使学生掌握含30°锐角的直角三角形的性质,培养学生的运算能力和解决问题的能力。
二. 学情分析八年级的学生已经学习了直角三角形的基本概念和性质,对勾股定理也有了一定的了解。
但学生在解决实际问题时,往往不能灵活运用所学知识。
因此,在教学过程中,我将以学生为主体,引导学生主动探索、发现和运用含30°锐角直角三角形的性质,提高学生解决问题的能力。
三. 说教学目标1.知识与技能:使学生掌握含30°锐角的直角三角形的性质,能熟练运用这些性质解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,引导学生发现含30°锐角直角三角形的性质,培养学生的运算能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:使学生掌握含30°锐角的直角三角形的性质。
2.教学难点:如何引导学生发现含30°锐角直角三角形的性质,并运用这些性质解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组讨论法等,引导学生主动探索、发现和运用含30°锐角直角三角形的性质。
2.教学手段:利用多媒体课件、实物模型等,辅助教学,提高教学效果。
六. 说教学过程1.导入:通过回顾直角三角形的基本概念和性质,引导学生思考含30°锐角的直角三角形的性质。
2.探究:分组讨论,每组尝试找出含30°锐角直角三角形的性质,并归纳总结。
1.1 直角三角形的性质和判定(Ⅰ) 课件 2024-2025学年湘教版八年级数学下册
【思维切入】ED⊥AB→∠ADE=90°,直角三角形的性质→
∠1+∠A=90°,∠1=∠2→∠2+∠A=90°→△ABC是直角三角形.
【自主解答】△ABC是直角三角形,理由如下:
∵ED⊥AB,∴∠ADE=90°,∴∠A+∠1=90°,∵∠1=∠2,
∴∠A+∠2=90°,
∴△ABC是直角三角形.
【举一反三】
如图,在△ABC中,∠B=30°,∠C=62°,AE平分∠BAC.
(1)求∠BAE的度数;
(2)若AD⊥BC于点D,∠ADF=74°,
证明:△ADF是直角三角形.
【解析】略
重点3
利用直角三角形的性质求线段之间的关系
【典例3】如图所示,在△ABC中,AD是边BC上的高,CE是边AB上的中线,G是CE的
1
则AD与BC的数量关系是BC=2AD或AD= BC.
2
直角三角形的这个性质与等腰三角形的“三线合一”常结合在一起考查组成综合
性题目.
【触类旁通】
如图,在△ABC中,点D在AB上,且CD=CB,E为BD的中点,F为AC的中点,连接EF交CD
于点M,连接AM.
1
(1)求证:EF= AC;
2
(2)若EF⊥AC,求证:AM+DM=CB.
中点,AB=2CD,求证:DG⊥CE.
【自主解答】略
【举一反三】
如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,点E在BC上,且CE=AC,
75°
∠BAE=15°,则∠CDE的大小为________.
5+2思维赋能
【模型溯源】
湘教版八年级数学下册1.1直角三角形的性质和判定(Ⅰ)课件(共23张)
1.1 直角三角形的性质和判定(Ⅰ)
锦囊妙计
求直角三角形面积的常用 方法 (1)两直角边长度乘积的一半; (2)斜边长度与斜边上高的乘积的一半.
1.1 直角三角形的性质和判定(Ⅰ)
题型四 运用直角三角形中30°角的性质进行有关计算
例题4 如图 1- 1- 18 , 在 R t △ A B C 中 , ∠C=90°, ∠A=30°, BT是
第1章 直角三角形
1.1 直角三角形的性质和判定(Ⅰ)
第1章 直角三角形
1.1 直角三角形的性质 和判定(Ⅰ)
考场对接
1.1 直角三角形的性质和判定(Ⅰ)
考场对接
题型一 利用直角三角形两锐角之间的关系பைடு நூலகம்角度
例题1 如图1-1-14, 在 Rt△ABC中, ∠ACB=90°, CD是 AB边上的
高, 如果∠A=50°, 则 ∠DCB的度数为( ). A
A.50°
B.45°
C.40°
D.25°
图1-1-14
1.1 直角三角形的性质和判定(Ⅰ)
1.1 直角三角形的性质和判定(Ⅰ)
锦囊妙计
直角三角形中的经典图形
在直角三角形中, 斜边上的高分直角所得的 两个锐角与原
直角三角形的两个锐角之间存在 相等或互余的关系, 这是一个常
见的基本图形, 在 解题中应用广泛. 如图1-1-15, ∵∠B+∠A=90°,
例题3 如图1-1-17所示, 在Rt△ABC中, ∠ACB=90°, CD⊥AB 于点D, CE为斜边AB 上的中线, 且CD=4, CE=5, 求Rt△ABC的 面积.
图1-1-17
1.1 直角三角形的性质和判定(Ⅰ)
1.1 直角三角形的性质和判定(Ⅰ)
新湘教版八年级下册数学 《直角三角形的性质和判定(Ⅰ)(1)》导学案
(二)直角三角形的判定定理1
问题:“在△ABC中,∠A +∠B =90°,那么△ABC是直角三角形吗?”利用三角形内角和定理进行推理
归纳:有两个锐角互余的三角形是直角三角形
练习3:若∠A= 60°,∠B =30°,那么△ABC是三角形。
(三)直角三角形性质定理2
1、实验操作:拿出事先准备好的直角三角形的纸片
(l)量一量斜边AB的长度
(2)找到斜边的中点,用字母D表示
(3)画出斜边上的中线
(4)量一量斜边上的中线的长度
猜想斜边上的中线与斜边长度之间有何关系?
归纳:直角三角形斜边上的中线等于斜边的一半。
三、巩固训练:
练习4:在△ABC中,∠ACB=90°,CE是AB边上的中线,那么与CE 相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB= _________。
练习5:已知:∠ABC=∠ADC=90°,E是AC中点。
求证:(1)ED=EB
(2)∠EBD=∠EDB
(3)图中有哪些等腰三角形?
练习6 已知:在△ABC中,BD、CE分别是边AC、AB上的高,M是BC 的中点。
如果连接DE,取DE的中点 O,那么MO与DE有什么样的关系存在?
四、小结:
这节课主要学习直角三角形的哪两条性质定理和一条判定定理?
学习反思。
北师大版八年级数学下册《直角三角形》三角形的证明PPT(第1课时)
获取新知
知识点二:直角三角形的边的关系
B
勾股定理 直角三角形两条直角边的平方
和等于斜边的平方.
A
C
关于勾股定理的证明,可以欣赏“16页的读一读”, 并可以上网搜索,诸如美国第二十任总统的证法、赵 爽弦图法等
勾股定理反过来,怎么叙述呢?
如果一个三角形两边的平方和等于第三边的平方,那 么这个三角形是直角三角形.
一项指标.现测得AB=4 cm,BC=3 cm,AD=13 cm,CD=12 cm, ∠ABC=90°,根据这些条件,能否得出∠ACD等于90°?请说明理由.
解:能.理由:在Rt△ABC中,
∵AB=4 cm,BC=3 cm,∠ABC=90°,
∴AC=
=5(cm).
在△ACD中,∵AD=13 cm,CD=12 cm,AC=5 cm,
你来给出完整的 证明过程吧,试 一试
例题讲解 例1 如图,在△ABC中,∠C=70°,∠B=30°,AD⊥BC 于点D,AE为∠BAC的平分线,求∠DAE的度数. 解:由题意可知, ∠BAC=180°-∠B-∠C=80°. ∵AE为∠BAC的平分线, ∴∠CAE=∠BAE= ∠BAC=40°. ∵AD⊥BC,∴∠ADC=90°. ∴∠CAD=90°-∠C=90°-70°=20°. ∴∠DAE=∠CAE-∠CAD=40°-20°=20°.
原命题都存在逆命题 ,
但是互逆命题的真假 无法保证
如果一个定理的逆命题也是定理,那么这两个定理叫 做互逆定理,其中的一个定理叫做另一个定理的逆定理.
注意1:逆命题、互逆命题不一定是真命题, 但逆定理、互逆定理,一定是真命题.
注意2:不是所有的定理都有逆定理.
定理
“两直线平行,内错角相等”
初中数学八年级下册第1章直角三角形1.1直角三角形的性质和判定Ⅰ
1.1.1 直角三角形的性质教学目标知识与技能:1.理解并掌握直角三角形的判定定理和斜边上的中线性质定理。
2.能运用直角三角形的判定与性质,解决有关的问题。
过程与方法:通过对几何问题的“操作—探究—讨论—交流—讲评”的学习过程,提高分析问题和解决问题的能力。
情感、态度与价值观:感受数学活动中的多向思维、合作交流的价值,主动参与数学思维与交流活动。
教学重点:直角三角形斜边上的中线性质定理的推导与运用。
教学难点:“操作—探究—讨论—交流—讲评”得出直角三角形斜边上的中线性质定理。
教学过程一、教学引入1、三角形的内角和是多少度。
学生回答。
2、什么是直角三角形?日常生活中有哪些物品与直角三角形有关?请举例说明。
3、 等腰三角形有哪些性质?二、探究新知1、探究直角三角形的判定定理:⑴ 观察小黑板上的三角形,由∠A +∠B 的度数,能说明什么?——两个锐角互余的三角形是直角三角形。
⑵ 讨论:直角三角形的性质和判定定理是什么关系?2、探究直角三角形的性质:⑴ 学生画出直角三角形ABC 斜边的中线CD 。
⑵ 测量并讨论斜边上的中线的长度与斜边长度之间的关系。
⑶ 学生猜想:在直角三角形中斜边上的中线等于斜边的一半。
3、 共同探究:例 已知:在Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线。
求证:CD =12AB 。
[教师引导:数学方法——倒推法、辅助线]三、应用迁移 巩固提高练习:如果三角形一边上的中线等于这条边的一半,求证:这个三角形是直角三角形。
即已知CD 是△ABC 的AB 边上的中线,且CD =12AB 。
求证:△ABC 是直角三角形。
提示:倒推法,要证明△ABC 是直角三角形,只有通过定义和判定定理,定义与判定定理都与角有关系。
现在我们只有边的关系,我们学过的边与角能联系起来的就是等腰三角形。
还要找到与90°有关的角,但是我们只知道三角形的内角和为180°。
八年级下册数学复习专题
八年级下册数学复习专题八年级下册数学复资料第一章直角三角形1、直角三角形的性质:①直角三角形的两锐角互余。
②直角三角形斜边上的中线等于斜边上的一半。
例如,在直角三角形ABC中,CD是斜边AB的中线,因此CD等于AB的一半。
③在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
例如,在直角三角形ABC中,如果∠A=30°,那么BC等于AB的一半。
例如,在Rt△ABC中,∠C=90°,∠A=30°,则正确的结论是AC²+BC²=AB²。
④在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
例如,在直角三角形ABC 中,如果BC等于AB的一半,那么∠A=30°。
例如,如果等腰三角形一腰上的高等于腰长的一半,那么顶角的度数是60°。
⑤勾股定理及其逆定理1)勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方,即a²+b²=c²。
求斜边的长度,可以用c=√(a²+b²);求直角边的长度,可以用a=√(c²-b²)或b=√(c²-a²)。
例如,在图中的拉线电线杆示意图中,已知CD⊥AB,∠CAD=60°,那么拉线AC的长度是6m。
例如,如果一个直角三角形的两边长分别为6和10,那么这个三角形的第三条边长是√136.2)逆定理:如果三角形的三边长a、b、c有关系,那么这个三角形是直角三角形。
可以分别计算“a²+b²”和“c²”,如果相等就是直角三角形,不相等就不是直角三角形。
例如,在Rt△ABC中,如果AC=2,BC=7,AB=3,那么正确的结论是∠C=90°。
例如,如果一块木板如图所示,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,那么这块木板的面积是18.例如,某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?直角三角形性质及勾股定理的应用常见于各种图形中。
北师大版数学八年级下册第1课时直角三角形的性质与判定课件(共21张)
问题1:直角三角形的两个锐角有怎样的关系?为什么?
△ABC 是直角三角形, ∵∠A +∠B +∠C = 180°, ∴∠A +∠B = 90°. 又∵∠C = 90°,
问题2:如果一个三角形有两个角互余,那 么这个三角形是直角三角形吗? 为什么?
∵∠A +∠B +∠C = 180°, 又∵∠A +∠B = 90°, ∴∠C = 90°. ∴△ABC 是直角三角形 定理1 直角三角形的两个锐角互余.
b ca
S大正方形 = 4S直角三角形 + S小正方形 = 4× 1 ab + c2
2
cb a
= c2 + 2ab, ∴ a2 + b2 + 2ab = c2 + 2ab, ∴ a2 +b2 = c2.
证法2 赵爽弦图
大正方形的面积可以表示为 c 2 ;
也可以表示为
4×1
2
ab
+
(
b
-
a
)
2
.
a
c
一个三角形中相等的边所对的角相等; 一个三角形中相等的角所对的边相等.
视察上面三组命题,你发现了什么?
归纳总结
在两个命题中,如果一个命题的条件和结论 分别是另一个命题的结论和条件,那么这两个命 题称为互逆命题.
如果把其中一个命题叫做原命题,那么另一个命题 就叫做它的逆命题.
想一想
你能写出命题“如果两个有理数相等,那么它们
上面两个定理的条件和结 论有什么关系?
3 互逆命题与互逆定理
合作探究
视察上面第一个定理和第二个定理,它们的条件 和结论之间有怎样的关系?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学过程:
共案
个案
(一)知识回顾:
1.在前面我们学习了三角形的哪些概念及性质?
2.三角形按角可分哪几类?什么叫做直角三角形?
3.直角三角形的性质:
课练(一):1.△ABC中,∠A:∠B:∠C=1:2:3,则△ABC是__________三角形。
2.已知△ABC中,∠A=∠B,∠B=∠C,则∠A=________,∠B=_______,∠C=________。
②上述条件拼成的图形有什么特点?仔细观察,回答下面问题:
1.图中有哪些相等线段?
2.点D具备什么特征?
线段CD是△ABC的什么线?
△ABC中AB的中线CD与AB有什么数量关系?
3.△ABC是什么样的三角形?为什么?
结论:
性质定理:直角三角形斜边上的中线等于斜边的一半。
判定定理:如果三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。
∠C=_________。
3.动手操作及探究:
操作:①画一个Rt△ABC;②找到斜边AB的中点D;③连接CD(CD就是Rt△ABC斜边
上的中线。)④量一量DA、DB、DC的长度,你发现什么结论?
猜想:斜边上的中线与斜边的长度有何关系?怎么证明?
探究:①用两个腰相等,且顶角互补的等腰三角形能拼成一个三角形吗?
课练(三):1.Rt△ABC中,∠C=90°,O为AB的中点,若OC=5则AB=若AB=18,则OC=若AB+OC=18,则AB=OC=.
2.在△ABC中,CE是AB边上的中线,且CE=AE,则△ABC是_________三角形,若∠CEA=80°,则∠B=_________,
∠A=_________。
(2)Rt△ABC中,∠C=90°,∠B=28°,则∠A=_________
(3)在△ABC中,∠C=90°,∠A、∠B的平分线相交于O,
则∠AOB=_________
(4)在△ABC中,∠C=∠A+∠B,则△ABC是__________三角形。
(5)在△ABC中,∠A=90°,∠B=3∠C,则∠B=_________,
湘教2017版数学八年级下教案
1.1直角三角形的性质和判定(一)
教学目标:1.探索并掌握直角三角形的性质定理:直角三角形的两锐角互余;
直角三角形斜边上的中线等于斜边的一半。
2.掌握有两个锐角互余的三角形是直角三角形。
教学重、难点:
重点:直角三角形的性质定理和会判断一个三角形是直角三角形。
难点:直角三角形性质定理“斜边上的中线等于斜边的一半”的探索推导过程。
(二)交流探究:
1.如图:Rt△ABC中,∠C=90°,则∠A+∠B=______.
2.△ABC中,若∠A+∠B=90°,判断△ABC的形状.
结论:
性质定理:直角三角形的两锐角互余。
判定定理:有两个锐角互余的三角形是直角三角形。
共案
个案
课练(二):(1)△ABC,∠A=35°,∠B=55°,△ABC是______三角形。
3.教材P4/练习1.2.
(三)课堂小结:
这节课学习了直角三角形两性质定理及判定定理。
性质定理:1.直角三角形的两锐角互余。
2.直角三角形斜边上的中线等于斜边的一半
判定定理:3.两锐角互余的三角形是直角三角形。
4.如果三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。
(四)作业布置:教材P7/习题1.1A组T1.2,P8/B组T6