高中数学《导数在研究函数中的应用-函数的单调性与导数》教案1

合集下载

数学《函数单调性与导数》教案

数学《函数单调性与导数》教案

数学《函数单调性与导数》教案教学目标:1. 知道函数单调性的定义,掌握判断单调性的方法。

2. 知道导数的定义,掌握求导的方法。

3. 熟练掌握函数单调性与导数的关系,能够应用相关知识解决实际问题。

教学重点:1. 函数单调性与导数的概念及其关系。

2. 求导数的方法和技巧。

3. 应用函数单调性和导数解决实际问题。

教学难点:1. 求高阶导数,各种复杂函数的单调性判断。

2. 应用函数单调性与导数解决实际问题。

教学方法:1. 讲授法:讲解相关知识点,示范演示,点拨解释。

2. 实验法:以具体例子演示如何判断函数的单调性。

3. 问题解决法:提供丰富的例题及作业,引导学生自主思考,解决问题。

教学过程设计:Part 1:函数单调性的引入1. 通过一个具体的例子引入函数单调性的概念,让学生理解函数单调性的含义。

2. 介绍单调递增和单调递减的概念,以及如何判断一个函数的单调性。

3. 引导学生思考,研究不同类型函数单调性的特点和判断方法。

Part 2:导数的定义和求导方法1. 导数的概念:定义导数,解释导数的几何意义和物理意义。

2. 求导方法:讲解求导过程,引导学生掌握基本的求导技巧。

3. 常用函数的导数:讲解常用函数的导数公式,让学生记忆。

Part 3:函数单调性与导数1. 函数单调性与导数的关系:引导学生研究函数单调性与导数之间的关系。

2. 求解函数单调性:利用导数判断函数单调性,让学生掌握方法。

3. 应用导数求解实际问题:让学生通过实际问题应用导数,求解函数单调性问题。

Part 4:案例分析1. 给出一些实际问题,让学生通过函数单调性和导数的方法求解。

2. 分组讨论,展示各自的解题思路和方法,互相学习。

Part 5:练习与总结1. 提供一些例题给学生练习,巩固所学知识。

2. 学生自己整理笔记,总结函数单调性与导数的概念及其应用教具准备:1. 教师演示用的白板或黑板、彩色粉笔或白板笔。

2. 学生实验用的计算器。

3. 相关练习题和例题。

《4.3.1 利用导数研究函数的单调性》教案

《4.3.1 利用导数研究函数的单调性》教案

《4.3.1 利用导数研究函数的单调性》教案教学目标:知识与技能:借助函数的图象了解函数的单调性与导数的关系,能利用导数研究函数的单调性;过程与方法:通过本节的学习,掌握利用导数判断函数单调性的方法;情感、态度与价值观:通过实例探究函数的单调性与导数的关系的过程,体会知识间的相互联系和运动变化的观点,提高理性思维能力.教学重点:利用导数判断一个函数在其定义区间内的单调性;教学难点:利用导数的符号判断函数的单调性;判断复合函数的单调区间及应用. 教学过程:一、自学导航1.情境:(1) 必修一中,如何定义函数单调性的?(2)如何用定义判断一些函数的单调性?一般地,设函数f(x) 的定义域为I:如果对于属于定义域I内某个区间上的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.当x1<x2时,都有f(x1)>f(x2),那么就说f(x) 在这个区间上是减函数.问题:能否用定义法讨论函数()xf x e x=-的单调性?学生活动讨论函数342+-=x x y 的单调性. 解:取x1<x2,x1、x2∈R , 取值 f(x1)-f(x2)=(x12-4x1+3)-(x22-4x2+3) 作差 =(x1-x2)(x1+x2-4) 变形当x1<x2<2时,x1+x2-4<0,f(x1)>f(x2), 定号 ∴y =f(x)在(-∞, 2)单调递减. 判断 当2<x1<x2时, x1+x2-4>0,f(x1)<f(x2),∴y =f(x)在(2, +∞)单调递增.综上所述y =f(x)在(-∞, 2)单调递减,y =f(x)在(2, +∞)单调递增.2. 研究函数342+-=x x y 的导函数值的符号与单调性之间的关系. 二、探究新知1.导数符号与函数单调性之间的关系我们已经知道,曲线y=f(x)的切线的斜率就是函数y=f(x)的导数.从函数342+-=x x y 的图像可以看到:在区间(2,∞+)内,切线的斜率为正,函数y=f(x)的值随着x 的增大而增大,即y '>0时,函数y=f(x) 在区间(2,∞+)内为增函数;在区间(∞-,2)内,切线的斜率为负,函数y=f(x)的值随着x 的增大而减小,即y '<0时,函数y=f(x) 在区间(∞-,2)内为减函数.定义:一般地,设函数y=f(x) 在某个区间内有导数. 如果在这个区间内y '>0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内y '<0,那么函数y=f(x) 在为这个区间内的减函数.说明:(1)如果某个区间内恒有y '=0,则f(x)等于常数;(2)y '>0(或y '<0)是函数在(a ,b )上单调增(或减)的充分不必要条件.2.利用导数确定函数的单调性的步骤: (1) 确定函数f(x)的定义域; (2) 求出函数的导数;(3) 解不等式f '(x)>0,得函数的单调递增区间;解不等式f '(x)<0,得函数的单调递减区间.三、例题精讲:例1 求函数()23252x f x x x =--+的单调区间.解:()f x '=3x2-x -2=0,得x=1,23-.在(-∞,-32)和[1,+∞)上()f x '>0,f (x )为增函数;在[-32,1]上f '(x )<0,f (x )为减函数.所以所求f (x )的单调增区间为(-∞,-32]和[1,+∞),单调减区间为[-32,1].变式题1:求函数2()2ln f x x x =-的单调区间. 答案:增区间为1,2⎛⎫+∞ ⎪⎝⎭,减区间为10,2⎛⎫ ⎪⎝⎭ 变式题2:设函数()(0)kx f x xe k =≠.求函数()f x 的单调区间; 解:由()()'10kxf x kx e =+=,得()10x k k =-≠,若0k >,则当1,x k ⎛⎫∈-∞- ⎪⎝⎭时,()'0f x <,函数()f x 单调递减, 当1,,x k ⎛⎫∈-+∞ ⎪⎝⎭时,()'0f x >,函数()f x 单调递增,w.w.w.k.s.5.u.c.o.m若0k <,则当1,x k ⎛⎫∈-∞- ⎪⎝⎭时,()'0f x >,函数()f x 单调递增,当1,,x k ⎛⎫∈-+∞ ⎪⎝⎭时,()'0f x <,函数()f x 单调递减..w.k.s.5.u.c.o点评:(1)注意定义域和参数对单调区间的影响; (2)同一函数的两个单调区间不能并起来;(3)求函数的单调区间,求导的方法不是唯一的方法,也不一定是最好的方法,但它是一种一般性的方法.例2 若函数123+++=mx x x y 是R 上的单调函数,则实数m 的取值范围是答案:1[,)3+∞变式题1:若函数123+++=mx x x y 有三个单调区间,则实数m 的取值范围是 .答案:1(,)3-∞ 变式题2:若函数123+++=mx x x y 在(0,1)上单调递减,在(1,+∞)上单调递增,则实数m 的值是 . 答案:-5变式题3:若函数123+++=mx x x y 在1(0,)2上既不是单调递增函数也不是单调递减函数,则整数m 的值是 . 答案:-1.m 变式题4:若函数123+++=mx x x y 的单调递减区间是4[2,]3-,则则实数m 的值是 .答案:-8例3 设函数()y f x =在定义域内可导,()y f x =的图象如图1所示,则导函数()y f x '=可能为 答案:④变式题1:如果函数()y f x =的导函数的图象如下图所示,给出下列判断:①函数()y f x =在区间1(3,)2--内单调递增; ②函数()y f x =在区间1(,3)2-内单调递减;③函数()y f x =在区间(4,5)内单调递增; ④函数()y f x =的单调递增区间是xyO图xyO①xyO ② xyO ③yO④x-2 2xyO1-1 -11[2,2][4,)-+∞则上述判断中正确的是____________.答案:③变式题2:已知函数()y xf x '=的图象如右图所示(其中()f x '是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是 答案:③备选例题:已知函数()ln 3(R)f x a x ax a =--∈.(1)求函数()f x 的单调区间;(2)若函数()y f x =的图象在点(2,(2))f 处的切线的倾斜角为45︒,对于任意的]2,1[∈t ,函数32()['()]2mg x x x f x =++在区间)3,(t 上总不是单调函数,求m 的取值范围;(3)求证:ln 2ln3ln 4ln 1(2,N )234n n n n n *⨯⨯⨯⨯<≥∈.解:(1)(1)'()(0)a x f x x x -=>当0>a 时,)(x f 的单调增区间为(]0,1,减区间为[)1,+∞;当0<a 时,)(x f 的单调增区间为[)1,+∞,减区间为(]0,1;O-22xy1 -1-2 12Oxy-2-2 21-112O-2 4xy1-1 -212 O-22xy-124 ①② ③ ④当0=a 时,)(x f 不是单调函数(2)12)2('=-=a f 得2-=a ,()2ln 23f x x x =-+- ∴x x mx x g 2)22()(23-++=,∴2)4(3)('2-++=x m x x g ∵)(x g 在区间)3,(t 上总不是单调函数,且()02'g =-∴⎩⎨⎧><0)3('0)('g t g 由题意知:对于任意的]2,1[∈t ,'()0g t <恒成立,所以,'(1)0'(2)0'(3)0g g g <⎧⎪<⎨⎪>⎩,∴3793m -<<-(3)令1-=a 此时3ln )(-+-=x x x f ,所以2)1(-=f ,由(Ⅰ)知3ln )(-+-=x x x f 在),1(+∞上单调递增,∴当),1(+∞∈x 时)1()(f x f >,即01ln >-+-x x ,∴1ln -<x x 对一切),1(+∞∈x 成立,∵2,N*n n ≥∈,则有1ln 0-<<n n ,∴n n n n 1ln 0-<<ln 2ln 3ln 4ln 12311(2,N )234234n n n n n n n *-∴⋅⋅⋅⋅<⋅⋅⋅⋅=≥∈四、课堂精练1. 设f(x)=x2(2-x),则f(x)的单调增区间是 .答案:(0,)342. 已知函数()y f x =在定义域[4,6]-内可导,其图象如图,记()y f x =的导函数为'()y f x =,则不等式'()0f x ≥的解集为 .411[4,][1,]33-- 3. 若函数()321f x x ax =-+在(0,2)内单调递减,则实数a 的取值范围为 .答案:a≥3 讨论函数1()cos 2f x x x =-的单调性.答案:函数在7[2,2]()66k k k Z ππππ-+∈上单调递增;在711[2,2]()66k k k Z ππππ++∈上单调递增五、回顾小结判断函数单调性的方法;2.导数符号与函数单调性之间的关系;3.利用导数确定函数的单调性的步骤. 分层训练1.函数y=8x2-lnx 的单调递增区间是 . 答案:1[,)4+∞2.已知x R ∈,奇函数32()f x x ax bx c =--+在[1,)+∞上单调,则字母,,a b c 应满足的条件是 . 答案:a=c=0,3b ≤3.已知函数3221()(41)(1527)23f x x m x m m x =--+--+在(-∞,+∞)上是增函数,则m 的取值范围是 . 答案:2<m <44.若函数2()2ln f x x x =-在定义域内的一个子区间(1,1)k k -+内不是单调函数,则实数k 的取值范围是 .答案:33(,)22-5. 已知函数()ln f x x =,()a g x x =,设()()()F x f x g x =+.求函数()F x 的单调区间;解:()()()()ln 0aF x f x gx x=+=+>,()()221'0a x aF x x x x x -=-=>(1)若0a >,由()()'0,F x x a >⇒∈+∞,∴()F x 在(),a +∞上单调递增.由()()'00,F x x a <⇒∈,∴()F x 在()0,a 上单调递减.∴()F x 的单调递减区间为()0,a ,单调递增区间为(),a +∞.(2)若0a ≤,则()'0F x >在()0,+∞上恒成立,∴()F x 在()0,+∞上单调递增.6.已知函数32()(1)(2)(,)f x x a x a a x b a b R =+--++∈.若函数()f x 在区间(-1,1)上不单调,求a 的取值范围.答案:(-5,-1) 六、拓展延伸1.已知函数32()f x x bx cx d =+++在(,0)-∞上是增函数,在(0,2)上是减函数,且方程f (x)=0有三个根,它们分别是,2,αβ.(1)求c 的值; (2)求证:(1)2f ≥; (3)求||αβ-的取值范围.(1)解:2()32f x x bx c '=++,由条件知(0)0f '=,0c ∴=.(2)证明:由2()320f x x bx '=+=得1220,3bx x ==-,∵ f (x)在(0,2)上是减函数,2223b x ∴=-≥即3b ≤-,又(2)84f b d =++=(1)13f b d b ∴=++=--≥. (3)解:322()(84)(2)[(2)24]f x x bx b x x b x b =+-+=-++++由 f (x)=0有三个根分别是,2,αβ,,αβ∴是方程2(2)240x b x b ++++=的两根2||(2)16b αβ∴-=-+,由(2)可知3b ≤-||3αβ∴-≥. 2.已知a R ∈,函数3211()2()32f x x ax ax x R =-++∈. (1)当a=1时,求函数f (x)的单调递增区间;(2)函数f (x)是否在R 上单调递减,若是,求出a 的取值范围;若不是,请说明理由; (3)若函数f (x)在[1,1]-上单调递增,求a 的取值范围.解: (1) 当a=11a =时,3211()232f x x x x=-++,2()2f x x x ∴'=-++. 令()0,f x ∴'>即2()2f x x x ∴'=-++, 即220x x -++>, 解得12x -<<.所以函数f (x)的单调递增区间是(1,2)-.(2) 若函数f(x)在R 上单调递减,则()0f x ∴'≤对x R ∈都成立,所以220x ax a -++≤对x R ∈都成立, 即220x ax a --≥对x R ∈都成立.280a a ∴∆=+≤, 解得80a -≤≤.∴当80a -≤≤时, 函数f (x)在R 上单调递减.(3) 解法一:∵函数f(x)在[-1,1]上单调递增,()0f x ∴'≥对[1,1]x ∈-都成立, 220x ax a --≤对[1,1]x ∈-都成立.令2()2g x x ax a =--,则(1)120(1)120g a a g a a =--≤⎧⎨-=+-≤⎩, 解得1a ≥. 解法二: 函数f (x)在[1,1]-上单调递增,()0f x ∴'≥对[1,1]x ∈-都成立, 220x ax a --≤对[1,1]x ∈-都成立.即22x a x ≥+对[1,1]x ∈-都成立. 令2()2x g x x =+, 则2(4)()(2)x x g x x +'=+. 当10x -≤<时,()0g x '<;当01x <≤01x <≤时,()0g x '>. ()g x ∴在[1,0]-上单调递减,在[0,1]上单调递增.1(1)1,(1)3g g -==,()g x ∴在[1,1]-上的最大值是1.1a ∴≥.七、课后作业八、教学后记:。

利用导数研究函数的单调性教案

利用导数研究函数的单调性教案

利用导数研究函数的单调性教案教案:利用导数研究函数的单调性一、教学目标1.了解函数的单调性概念,以及单调递增和单调递减的定义;2.掌握利用导数研究函数的单调性的方法;3.能够通过导数的正负性分析函数的单调区间,并作出相应的图像。

二、教学准备1.教师准备:书本、黑板、白板、彩色粉笔、计算器、实例练习题;2.学生准备:笔记本、课本。

三、教学过程1.引入导入(10分钟)导师通过提问等方式,引导学生回顾函数的增减性、最值点等概念,为接下来的学习做铺垫。

2.学习讲解(25分钟)1)导师先通过实例展示导数与函数单调性之间的关系,比如分别给出函数f(x)=x^2和函数g(x)=-x^2的导数,并解释导数大于零时函数单调递增,导数小于零时函数单调递减。

2)导师详细讲解如何利用导数分析函数的单调性:首先,对函数f(x)求导,得到它的导函数f'(x);其次,求出f'(x)的零点,即导数为零的点。

这些点将把函数f(x)的定义域划分为若干个开区间;然后,对每个开区间分别求取f'(x)的正负性,从而得到导数f'(x)在各开区间的取值范围;最后,结合导数f'(x)的正负性来分析函数f(x)的单调性。

3.实例训练(35分钟)导师通过多个实例进行讲解和学生训练,帮助学生熟悉和掌握利用导数研究函数单调性的方法。

4.小结提问(10分钟)导师通过提问进行小结,确保学生对函数的单调性及利用导数分析函数单调性的方法有一个深入的理解。

五、作业布置给定函数f(x)=2x^3+3x^2-12x+1,设置一个问题,让学生利用导数分析函数的单调性,并解决问题。

六、板书设计函数的单调性单调递增:导数大于零单调递减:导数小于零怎样利用导数研究函数的单调性?1.求导函数2.导函数的零点3.导函数的正负性导函数的正负性与函数的单调性的关系七、教学反思通过本堂课的教学,学生基本能够理解函数的单调性概念,知道如何利用导数研究函数的单调性。

《导数在研究函数中的应用—函数的单调性与导数》说课稿

《导数在研究函数中的应用—函数的单调性与导数》说课稿

《导数在研究函数中的应用—函数的单调性与导数》说课稿周国会一、教材分析1教材的地位和作用“函数的单调性和导数”这节新知识是在教材选修1—1,第三章《导数及其应用》的函数的单调性与导数.本节计划两个课时完成。

在练习解二次不等式、含参数二次不等式的问题后,结合导数的几何意义回忆函数的单调性与函数的关系。

例题精讲强化函数单调性的判断方法,例题的选择有梯度,由无参数的一般问题转化为解关于导函数的不等式,再解关于含参数的问题,最后提出函数单调性与导数关系逆推成立。

培养学生数形结合思想、转化思想、分类讨论的数学思想。

能利用导数研究函数的单调性;会求函数的单调区间.在高考中常利用导数研究函数的单调性,并求单调区间、极值、最值、以及利用导数解决生活中的优化问题。

其中利用导数判断单调性起着基础性的作用,形成初步的知识体系,培养学生掌握一定的分析问题和解决问题的能力。

(一)知识与技能目标:1、能探索并应用函数的单调性与导数的关系求单调区间;2、能解决含参数函数的单调性问题以及函数单调性与导数关系逆推。

(二)过程与方法目标:1、通过本节的学习,掌握用导数研究函数单调性的方法。

2、培养学生的观察、比较、分析、概括的能力,数形结合思想、转化思想、分类讨论的数学思想。

(三)情感、态度与价值观目标:1、通过在教学过程中让学生多动手、多观察、勤思考、善总结,2、培养学生的探索精神,渗透辩证唯物主义的方法论和认识论教育。

激发学生独立思考和创新的意识,让学生有创新的机会,充分体验成功的喜悦,开发了学生的自我潜能。

(四)教学重点,难点教学重点:利用导数研究函数的单调性、求函数的单调区间。

探求含参数函数的单调性的问题。

二、教法分析针对本知识点在高考中的地位、作用,以及学生前期预备基础,应注重理解函数单调性与导数的关系,进行合理的推理,引导学生明确求可导函数单调区间的一般步骤和方法,无参数的一般问题转化为解关于导函数的不等式。

解关于含参数的问题,注意分类讨论点的确认,灵活应用已知函数的单调性求参数的取值范围。

《函数的单调性与导数》教学设计

《函数的单调性与导数》教学设计

《函数的单调性与导数》教学设计教学设计:函数的单调性与导数一、教学目标:1.了解函数的单调性的定义,并能够判断函数在给定区间内的单调性;2.理解导数的定义,了解导数与函数的单调性之间的关系;3.能够利用导数的性质判断函数在给定区间内的单调性;4.能够运用函数的单调性和导数的概念解决实际问题。

二、教学内容:1.函数的单调性的概念与判断方法;2.导数的概念与计算方法;3.导数与函数的单调性之间的关系;4.运用函数的单调性和导数解决实际问题。

三、教学过程:第一课时:函数的单调性的概念与判断方法1.引入函数的单调性的概念:什么是单调函数?如何判断函数的单调性?2.通过绘制函数图像来观察函数的单调性,并引入函数的增减性的概念。

3.讲解函数单调性的判断方法:a.若在一些区间[a,b]上,对于任意x1,x2满足x1<x2,则f(x1)<f(x2),则函数在该区间上为递增函数;b.若在一些区间[a,b]上,对于任意x1,x2满足x1<x2,则f(x1)>f(x2),则函数在该区间上为递减函数;c.根据函数的单调性定义,讲解如何利用函数的增减性判断函数的单调性。

第二课时:导数的概念与计算方法1.引入导数的概念:什么是导数?为什么要引入导数?2.解释导数的物理意义:导数表示函数在其中一点的瞬时变化率。

3.讲解导数的计算方法:a. 介绍导数的定义:f'(x) = lim(h->0) [f(x+h) - f(x)] / h;b.使用导数的定义计算简单函数的导数;c.利用导数的性质计算复合函数的导数。

第三课时:导数与函数的单调性之间的关系1.引入导数与函数的单调性之间的关系:导数能够刻画函数的增减性。

2.介绍导数的几何意义:导数表示函数曲线在其中一点的斜率。

3.讲解导数与函数的单调性的关系:a.若函数在[a,b]上的导数大于0,则函数在该区间上是递增函数;b.若函数在[a,b]上的导数小于0,则函数在该区间上是递减函数;c.引入导数的零点定理,讲解如何利用导数的零点判断函数的单调性。

高中数学《导数在研究函数中的应用-函数的单调性与导数》教案

高中数学《导数在研究函数中的应用-函数的单调性与导数》教案

1.3.1函数的单调性与导数(一)一、教学目标:了解可导函数的单调性与其导数的关系.掌握利用导数判断函数单调性的方法.二、教学重点:利用导数判断一个函数在其定义区间内的单调性.教学难点:判断复合函数的单调区间及应用;利用导数的符号判断函数的单调性.三、教学过程(一)复习引入1.增函数、减函数的定义一般地,设函数f(x) 的定义域为I:如果对于属于定义域I内某个区间上的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.当x1<x2时,都有f(x1)>f(x2),那么就说 f(x) 在这个区间上是减函数.2.函数的单调性如果函数y=f(x) 在某个区间是增函数或减函数,那么就说函数y=f(x) 在这一区间具有(严格的)单调性,这一区间叫做y=f(x) 的单调区间.在单调区间上增函数的图象是上升的,减函数的图象是下降的.例1讨论函数y=x2-4x+3的单调性.解:取x1<x2,x1、x2∈R,取值f(x1)-f(x2)=(x12-4x1+3)-(x22-4x2+3) 作差=(x1-x2)(x1+x2-4) 变形当x1<x2<2时,x1+x2-4<0,f(x1)>f(x2),定号∴y=f(x)在(-∞, 2)单调递减.判断当2<x1<x2时, x1+x2-4>0,f(x1)<f(x2),∴y=f(x)在(2, +∞)单调递增.综上所述y=f(x)在(-∞, 2)单调递减,y=f(x)在(2, +∞)单调递增。

能否利用导数的符号来判断函数单调性?一般地,设函数y =f (x )在某个区间内可导,如果f (x )'>0,则f (x )为增函数; 如果f (x )'<0,则f (x )为减函数. 例2.教材P24面的例1。

例3.确定函数f(x)=x 2-2x +4在哪个区间内是增函数,哪个区间内是减函数. 解: f(x)'=2x -2.令2x -2>0,解得x >1.因此,当x ∈(1, +∞)时,f (x )是增函数. 令2x -2<0,解得x <1.因此,当x ∈(-∞, 1)时,f (x )是减函数.例4.确定函数f (x )=2x 3-6x 2+7在哪个区间内是增函数,哪个区间内是减函数. 解:f (x )'=6x 2-12x .令6x 2-12x >0,解得x <0或x >2.因此,当x ∈(-∞, 0)时,函数f(x)是增函数,当x ∈(2, +∞)时,f (x )也是增函数. 令6x 2-12x <0,解得0<x <2.因此,当x ∈(0, 2)时,f (x )是减函数. 利用导数确定函数的单调性的步骤: (1) 确定函数f (x )的定义域; (2) 求出函数的导数;(3) 解不等式f '(x )>0,得函数的单调递增区间;解不等式f '(x )<0,得函数的单调递减区间.练习1:教材P24面的例2 利用导数的符号来判断函数单调性: 设函数y =f (x )在某个区间内可导(1)如果f '(x )>0 ,则f (x )为严格增函数; (2)如果f '(x )<0 ,则f (x )为严格减函数. 思考:(1)若f '(x )>0是f (x )在此区间上为增函数的什么条件?若f '(x )>0是f (x )在此区间上为增函数的充分而非必要条件.例如 f (x )=x 3,当x =0,f'(x )=0,x ≠0时,f'(x )>0,函数f (x )=x 3在(-∞,+∞)上是增函数.(2)若f '(x ) =0在某个区间内恒成立,f (x )是什么函数?若某个区间内恒有f '(x )=0,则f (x )为常数函数.练习2. 教科书P.26练习(1)(三)课堂小结1.判断函数的单调性的方法; 2.导数与单调性的关系; 3.证明单调性的方法. (四)作业《习案》作业七。

函数单调性与导数教案 (1)

函数单调性与导数教案 (1)

3.3.1函数的单调性与导数【三维目标】知识与技能:1.探索函数的单调性与导数的关系2.会利用导数判断函数的单调性并求函数的单调区间2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想。

情感态度与价值观:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯。

【教学重点难点】教学重点:探索并应用函数的单调性与导数的关系求单调区间。

教学难点:探索函数的单调性与导数的关系。

【教 具】多媒体【教学方法】问题启发式【教学过程】一.复习回顾复习 1:导数的几何意义复习2:函数单调性的定义,判断单调性的方法,(图像法,定义法)问题提出:判断y=x 2的单调性,如何进行?(分别用图像法,定义法完成) 那么如何判断();,0,sin )(π∈-=x x x x f 的单调性呢?引导学生图像法,定义去尝试发觉有困难,引出课题:板书课题:函数的单调性与导数二.新知探究探究任务一:函数单调性与其导数的关系:问题1:如图(1)表示高台跳水运动员的高度h 随时间t 变化的函数105.69.4)(2++-=t t t h 的图像,图(2)表示高台跳水运动员的速度5.68.9)(')(+-==t t h t V h 的图像.通过观察图像, 运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?此时你能发现)(')(t h t h 和这两个函数图像有什么联系吗?启发: 函数)(t h 在(0,a)上位增函数,函数)('t h 在(0,a)上有何特点呢?函数)(t h 在(a,b)上为减函数,那么函数)('t h 在(a,b)上有何特点呢?问题2:观察图(1)~图(4),探讨函数与其导函数是否也存在问题(1)的关系呢?问题3:通过对问题1和问题2的观察,你能得到原函数的单调性与其导函数的正负号有何关系?你能得到怎样的结论?(形成初步结论,板书结论结论:函数的单调性与导数的关系:在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增;如果'()0f x <,那么函数()y f x =在这个区间内单调递减.)问题4:上述结论主要是通过观察得到的,你能结合导数的几何意义为切线的斜率,你能从这个角度给予说明吗?探究任务二:()0'=x f 与函数单调性的关系:问题5:若函数()x f 的导数()0'=x f ,那么()x f 会是一个什么函数呢?(板书:特别的,如果'()0f x =,那么函数()y f x =在这个区间内是常值函数.)问题6:在区间()b a ,上()0'≥x f ,则函数()x f 区间()b a ,必为增函数,你认为这句话对吗?请说明理由.问题7:函数()x f 在区间()b a ,上为增函数,则在区间()b a ,上()0'≥x f 成立.你认为这句话对吗?说明理由.问题8:平时我们遇到很多需要数形结合的题目,那么现在我们知道了导数的正负能帮助我们判断函数的单调性,那么我们能否利用导数信息画出函数的大致图像呢?例1:已知某函数的导函数的下列信息: 当;0)('41><<x f x 时,当;0)('1,4<<>x f x x 时,或当.0)('1,4===x f x x 时,或试画出函数()x f 图像的大致形状.问题9:根据我们得到的导数与单调性之间关系的结论,你能否利用此结论来求函数的单调区间呢?例3:判断下列函数的单调性,并求出单调区间:(1)();,0,sin )(π∈-=x x x x f (2);12432)(23+-+=x x x x f(3);3)(3x x x f +=(4);32)(2--=x x x f(对于(2)让学生课后探究尝试单调性的定义法和图象法)问:你对利用导数去研究函数的单调性有什么看法?你能总结出利用导数求单调区间的步骤吗?(简单易行)(板书“求解函数()y f x =单调区间的步骤:(1)确定函数()y f x =的定义域;(2)求导数''()y f x =;(3)解不等式'()0f x >,解集在定义域内的部分为增区间;(4)解不等式'()0f x <,解集在定义域内的部分为减区间.问题10:导数能帮助我们简洁的求出单调区间,画出大致图象,但我们知道就是递增(递减)也有快与慢的区别,在导数上如何体现呢?下面我们就来看一下下面这个问题例3.如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h 与时间t 的函数关系图像.分析:在导数几何意义那节我们就感受了增加与减少也由快慢之分,那么我们以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A )符合上述变化情况.同理可知其它三种容器的情况. 解:()()()()()()()()1,2,3,4B A D C →→→→思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.三,课堂练习1.确定下列函数的单调区间(1)y =xe x - (2)y =3x -x 32、设)x (f y '=是函数)x (f y =的导数, )x (f y '=的图象如图所示, 则)x (f y =的图象最有可能是( )小结:重点是抓住导函数的图象与原函数的图象从哪里发生联系?四,课堂小结1.函数导数与单调性的关系:若函数y =f (x )在某个区间内可导,如果f ′(x )>0, 则f (x )为增函数;如果f ′(x)<0, 则f (x )为减函数.2.本节课中,用导数去研究函数的单调性是中心,能灵活应用导数解题是目的,另外应注意数形结合在解题中的应用.3.掌握研究数学问题的一般方法:从特殊到一般,从简单到复杂.五,作业设计课本98页,A 组1,2课后思考:若将例3中高度h 和时间t 的关系变为横坐标为高度h 和纵坐标为体积V 的关系,那么此题结论又将如何?。

导数在研究函数中的应用单调性教案

导数在研究函数中的应用单调性教案

导数在研究函数中的应用——单调性教学目标:①能探索并应用函数的单调性与导数的关系;②求一些简单的非初等函数的单调区间;③能由函数的单调性绘制函数图象.教学重点:利用导数研究函数的单调性,会求一些简单的非初等函数的单调区间.教学难点:导数与单调性之间的联系,利用导数绘制函数的大致图象.教学设计:一、问题情境问题一 求函数342+-=x x y 的单调区间.问题二 判断或证明函数的单调性常用方法有那些?问题三 你能确定函数762)(23+-=x x x f 的单调区间吗?问题四 除了单调性是对函数变化趋势(上升或下降的陡峭程度)的刻画,还有什么知识也刻画了函数变化的趋势?设计意图:以问题形式复习相关的旧知识,同时引出新问题:三次函数或非初等函数判断单调性,在用定义法、图象法很不方便时,如何思考、化未知为已知,让学生积极主动地参与到学习中来.二、数学建构问题五 能不能利用导数研究函数的单调性呢?问题六 导数与单调性有何联系?如何寻找?导数与函数的单调性的关系一般地, 对于函数y =f (x ),如果在某区间上f ′(x )>0,那么f (x )为该区间上的增函数;如果在某区间上f ′(x )<0,那么f (x )为该区间上的减函数.设计意图:通过观察、猜想到归纳、总结,让学生体验知识的发现、发生过程,变灌注知识为学生主动获取知识,从而使之成为课堂教学活动的主体.三、数学应用例1.确定下列函数的单调区间:(1)x x y ln -= (2)xx y ln =(3)x xe y =总结利用导数讨论函数单调性的步骤:①求函数的定义域;②求函数f (x )的导数f ′(x );③令f ′(x )>0解不等式,得x 的范围就是递增区间.令f ′(x )<0解不等式,得x 的范围,就是递减区间.④书写答案注意连接词.问题六 确定函数762)(23+-=x x x f 的单调区间,并作出草图.问题七 画出下列函数的草图①71862)(23++-=x x x x f ②7662)(23++-=x x x x f设计意图:通过具有开放性问题的设计,可以拓展学生思维,有利于学生对函数单调性与导数关系的更深层次的理解,进一步培养学生作函数图象与使用数形结合解决问题的意识.课后思考题 ①求函数xa x y +=)(R a ∈的单调区间. ②画出3x y =的图象,试问导函数0)(>'x f 是函数)(x f y =单调递增的 的条件.设计意图:这个问题是个难点,课上如果讲是讲不透的,课后让学生思考,可以有足够的时间去理解.另外,在给定函数下思考,可以使得问题的针对性更强,否则学生不知如何入手.对由已知单调增(减)的导数应该大于(小于)或等于零这个结论,只要让学生通过实例感受到为什么,在以后的使用中不漏解即可,而不必要做理论上的论证.四、课堂小结;通过本节课的学习,你学到了哪些新知识?能解决哪些问题?本节课我们用到了哪些数学思想方法?设计意图:通过小结,培养学生学习——总结——反思的良好习惯,使学习更上一个台阶.五、课堂练习1.确定下列函数的单调区间(1)2x x y -= (2)3x y -=2.讨论函数的单调性(1)b kx y += (2)xk y =(3))0(2≠++=a c bx ax y 3.用导数证明:(1)x e x f =)(在区间()+∞∞-,上是增函数; (2)x e x f x-=)(在区间()0,∞-上是减函数.。

部编《导数在研究函数单调性中的应用》教学设计

部编《导数在研究函数单调性中的应用》教学设计

部编《导数在研究函数单调性中的应用》教学设计一、教学目标:1.了解导数概念及其求法。

2.运用导数判断函数的单调性。

3.培养学生观察问题、分析问题和解决问题的能力。

二、教学重点:1.导数的概念和求法。

2.导数在研究函数单调性中的应用。

三、教学难点:解决实际问题时,如何应用导数判断函数的单调性。

四、教学过程:引入:1.引出本节课的主题,说明导数是研究函数变化规律的重要工具,导入函数单调性的研究。

导数概念及求法:2.回顾导数的定义及求法,通过讲解导数的概念和用函数的极限值来求导数的方法,让学生建立对导数的初步认识。

函数单调性的定义:3.给出函数单调性的定义,即函数在区间上递增或递减。

导数与函数单调性的关系:4.引导学生讨论导数与函数单调性的关系。

通过数值例子说明导数为正时,函数递增;导数为负时,函数递减。

函数单调性的判断:5.讲解如何通过函数的导数来判断函数在区间上的单调性。

通过讲解导数的图像来分析函数的单调性。

例题讲解:6.通过具体例题,讲解导数应用于函数单调性的判断。

例如,已知函数f(x)=x3在区间(-∞,0)上的导数恒小于0,所以函数在这个区间上递减。

练习:7.布置练习题,让学生通过计算导数并分析函数的单调性。

要求学生解决以下问题:(1)求函数f(x)=2x2-3x+1的导数,并判断函数在区间(-∞,+∞)上的单调性。

(2)若函数f(x)的导数恒大于0,那么f(x)在整个定义域上是否递增?解析与讨论:8.让学生分享和讨论他们的解题过程和答案,并根据学生的回答进行引导和点拨。

总结与归纳:9.总结导数在研究函数单调性中的应用,强调导数是判断函数单调性的重要工具。

五、板书设计:1.导数概念及求法2.函数单调性的定义3.导数与函数单调性的关系4.函数单调性的判断六、教学反思:通过这堂课的教学,我能够在引导学生理解导数的概念的基础上,让学生认识到导数在研究函数单调性中的应用。

通过具体例题的讲解,学生对导数的应用有了更深入的理解和掌握。

高中数学第三章导数及其应用3.3导数在研究函数中的应用3.3.1函数的单调性与导数教案1数学教案

高中数学第三章导数及其应用3.3导数在研究函数中的应用3.3.1函数的单调性与导数教案1数学教案

3.3.1函数的单调性与导数(2) 从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减函数.相应地,'()()0v t h t =<.2.函数的单调性与导数的关系观察下面函数的图像,探讨函数的单调性与其导数正负的关系.如图3.3-3,导数'0()f x 表示函数()f x 在点00(,)x y 处的切线的斜率.在0x x =处,'0()0f x >,切线是“左下右上”式的,这时,函数()f x 在0x 附近单调递增;在1x x =处,'0()0f x <,切线是“左上右下”式的,这时,函数()f x 在1x 附近单调递减.结论:函数的单调性与导数的关系在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增;如果'()0f x <,那么函数()y f x =在这个区间内单调递减.说明:(1)特别的,如果'()0f x =,那么函数()y f x =在这个区间内是常函数.3.求解函数()y f x =单调区间的步骤: (1)确定函数()y f x =的定义域; (2)求导数''()y f x =;(3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间. 三.典例分析例1.已知导函数'()f x 的下列信息:当14x <<时,'()0f x >; 当4x >,或1x <时,'()0f x <; 当4x =,或1x =时,'()0f x = 试画出函数()y f x =图像的大致形状.解:当14x <<时,'()0f x >,可知()y f x =在此区间内单调递增; 当4x >,或1x <时,'()0f x <;可知()y f x =在此区间内单调递减; 当4x =,或1x =时,'()0f x =,这两点比较特殊,我们把它称为“临界点”.综上,函数()y f x =图像的大致形状如图3.3-4所示. 例2.判断下列函数的单调性,并求出单调区间.(1)3()3f x x x =+; (2)2()23f x x x =-- (3)()sin (0,)f x x x x π=-∈; (4)32()23241f x x x x =+-+ 解:(1)因为3()3f x x x =+,所以, '22()333(1)0f x x x =+=+>因此,3()3f x x x =+在R 上单调递增,如图3.3-5(1)所示.(2)因为2()23f x x x =--,所以, ()'()2221f x x x =-=-当'()0f x >,即1x >时,函数2()23f x x x =--单调递增; 当'()0f x <,即1x <时,函数2()23f x x x =--单调递减; 函数2()23f x x x =--的图像如图3.3-5(2)所示.(3)因为()sin (0,)f x x x x π=-∈,所以,'()cos 10f x x =-< 因此,函数()sin f x x x =-在(0,)π单调递减,如图3.3-5(3)所示. (4)因为32()23241f x x x x =+-+,所以 .当'()0f x >,即 时,函数2()23f x x x =-- ; 当'()0f x <,即 时,函数2()23f x x x =-- ; 函数32()23241f x x x x =+-+的图像如图3.3-5(4)所示. 注:(3)、(4)生练例3.如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h 与时间t 的函数关系图像.分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A )符合上述变化情况.同理可知其它三种容器的情况.解:()()()()()()()()1,2,3,4B A D C →→→→思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.如图3.3-7所示,函数()y f x =在()0,b 或(),0a 内的图像“陡峭”, 在(),b +∞或(),a -∞内的图像“平缓”.例4.求证:函数3223121y x x x =+-+在区间()2,1-内是减函数.证明:因为()()()'22661262612y x x x x x x =+-=+-=-+当()2,1x ∈-即21x -<<时,'0y <,所以函数3223121y x x x =+-+在区间()2,1-内是减函数.说明:证明可导函数()f x 在(),a b 内的单调性步骤: (1)求导函数()'f x ;(2)判断()'fx 在(),a b 内的符号;(3)做出结论:()'0fx >为增函数,()'0f x <为减函数.例5.已知函数 232()4()3f x x ax x x R =+-∈在区间[]1,1-上是增函数,求实数a 的取值范围.解:'2()422f x ax x =+-,因为()f x 在区间[]1,1-上是增函数,所以'()0f x ≥对[]1,1x ∈-恒成立,即220x ax --≤对[]1,1x ∈-恒成立,解之得:11a -≤≤所以实数a 的取值范围为[]1,1-.说明:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则'()0f x ≥;若函数单调递减,则'()0f x ≤”来求解,注意此时公式中的等号不能省略,否则漏解.例6.已知函数y =x +x1,试讨论出此函数的单调区间.解:y ′=(x +x1)′ =1-1·x-2=222)1)(1(1x x x x x -+=-令2)1)(1(xx x -+>0. 解得x >1或x <-1. ∴y =x +x1的单调增区间是(-∞,-1)和(1,+∞). 令2)1)(1(xx x -+<0,解得-1<x <0或0<x <1. ∴y =x +x1的单调减区间是(-1,0)和(0,1)四.课堂练习。

高中数学《导数在研究函数中的应用1.3.1单调性》教学设计

高中数学《导数在研究函数中的应用1.3.1单调性》教学设计

普通高中课程标准实验教科书数学选修2-21.3.1单调性【教学目标】1.借助几何直观,通过实例归纳函数的单调性与导数的关系;2.理解并掌握利用导数判断函数单调性的方法,会用导数求函数单调区间;3.通过用定义与用导数在研究函数单调性时的两种方法的比较,体会导数方法在研究函数性质中的一般性和有效性,同时感受和感悟数学自身发展的一般规律.【教学重点】利用导数研究函数的单调性.【教学难点】发现和揭示导数与函数单调性的关系.【教学方法】引导发现、合作学习、讲练结合的教学方法.【教学手段】借助几何画板、多媒体课件等工具让学生在教师的引导下,学会发现问题、探索问题、分析问题和解决问题.【教学过程】一、创设情境生活实例中导入1 情境:黑暗中,你是怎样通过远处汽车自身的灯光判断该车是上坡还是下坡的?【师生活动】(1)动画视频引入,直观感知;(2)几何画板演示,猜想结论.抽象出数学问题:山坡 灯光向上 上坡曲线 切线斜率k >0 上升函数()y f x = ()0f x '> ? 递增()x I ∈感知可以通过函数图象上每一点处的切线的斜率,即函数f (x )在该点处的导数来研究函数的单调性.2 猜想:导数与函数的单调性有什么联系呢?(再次播放函数图象上每一点处的切线斜率随函数单调性的变化情况) 从图象上,我们发现,单调递增区间上,每一点处的切线倾斜角均为锐角,斜率大于0,曲线呈上升趋势,函数单调递增;在单调递减区间上,每一点处的斜线倾斜角为钝角,斜率小于0,曲线呈下降趋势,函数单调递减.于是,可以猜想结论: 对于函数()y f x =,如果在某区间上()0f x '>,那么()f x 为该区间上的增函数; 如果在某区间上()0f x '<,那么()f x 为该区间上的减函数.【设计意图】本课的难点是引导学生发现导数与函数单调性之间的联系,而这两个概念都是非常抽象的,学生很难直接感知,所以这里利用生活中的常见问题汽车灯光的指向与上下坡之间的联系,引导学生发现道路可以抽象成函数的图象,灯光可以抽象为切线,这样问题就转化为切线斜率正负与函数增减之间的联系,从而轻松高效引入课题,成功激发学生的求知欲,也体现了“生活中处处有数学”的教学理念.二、动手操作 合作学习中探究3验证: 请举出几个常见的函数,探究导数与函数单调性之间的联系,验证前面猜想的结论.(1)独立验证,合作释疑,展示成果;(2)教师从学生中选择具有代表性的函数进行汇报展示.【设计意图】前面已经猜想出结论,但是该结论是否正确,还有待检验,学生首先想到的就是验证已经学过的常见函数,从而深化对所得结论的理解.“数”的角度:从函数单调性与导数的定义入手于是,从“数、形”两方面,我们都可以感知导数与函数单调性之间的关系. 【设计意图】从“形”的角度,对具体例子进行动态演示,通过观察、猜想到归纳、总结,让学生体验知识的发现、发生过程,又从“数”的角度,进一步引导学生经历从特殊到一般的过程,抓住导数和单调性的定义之间的联系来提炼一般性的结论,变灌注知识为学生主动获取知识,从而使之成为课堂教学活动的主体.三、知识建构 生成演练中应用 对于函数()y f x =,如果在某区间上()0f x '>,那么()f x 为该区间上的增函数; 如果在某区间上()0f x '<,那么()f x 为该区间上的减函数.注意:(1)如果在某区间上()0f x '=恒成立,则()f x 为该区间上的常函数. (2)“某区间”指的是定义域的子集,研究函数单调性问题“定义域优先”.例1 确定函数2()43f x x x =-+在哪个区间上是增函数,在哪个区间上是减函数.【教学预设】对于学生熟悉的二次函数,学生可能首先想到的是图象直观,然后再提出根据定义、利用导数,在合作学习中比较各种方法.法一:图象直观法二:根据定义任取12(2)x ,x ,∈+∞12,(2,+)x x ∈∞,且12x x <,12221122121212121212()()=(43)(43)()(4)2040()()<0.f x f x x x x x x x x x x x x x ,x x f x f x --+--+=-+-<<∴-<+->∴-所以,f (x )在(2,+)∞上单调递增,同理:f (x )在(2),-∞上单调递减. 法三:利用导数()24f x x '=-,令()0f x '>,解得2x >.因此,在区间(2,)+∞上,()0f x '>,()f x 是增函数;在区间(,2)-∞上,()0f x '<,()f x 是减函数.总结:利用导数判定函数单调性的步骤:①确定函数()f x 的定义域; ②求出函数的导数()f x ';③在定义域内解不等式()0()0f x f x ''><或; ④下结论,确定函数的单调区间. 【设计意图】(1)例题1,由“形”到“数”的解决了该函数的单调性问题,加强了对结论的应用和理解;(2)规范了利用导数研究函数单调性的书写;(3)例题1的解决说明,判定函数单调性增加了一种新的方法——导数法.例2 确定函数762)(23+-=x x x f 在哪些区间上是增函数.【教学预设】对于求解该三次函数的单调性而言,学生对于其图象不太熟悉, 定义法对代数变形的要求比较高、较繁琐,所以选择导数法比较方便.解:()f x 的定义域为R ,x x x f 126)(2-='.令0)(>'x f ,解得0<x 或2>x .因此,在区间(,0)-∞上()0f x '>,()f x 是增函数; 在区间(2,)+∞上()0f x '>,()0f x >也是增函数. 即()f x 的单调递增区间为)0,(-∞和),2(+∞.问题 能否根据三次函数所求的单调区间,画出这个函数的大致图象呢?原函数看增减导函数看正负【师生活动】先根据函数的单调性画出原函数的大致图象,同时对应作出导3 212x函数图象,行进比较,加深巩固导函数图象的正负与原函数增减之间的关系.【设计意图】(1)从图象上感知原函数与导函数的关系,加深对结论的认识; (2)例题2由“数”到“形”解决了该三次函数的单调性,强化了应用; (3)例题2体现了导数法研究函数单调性的优越性:当图象直观、根据定义不太容易解决函数单调性时,还可以利用导数来解决.例3 确定函数()sin ((0,2))f x x x =∈π的单调减区间.【教学预设】学生看到三角函数的单调性,首先想到的是利用图象直观解决,但是此时作三角函数图象只是建立在五点法作图的基础上,根据定义来解决时对代数变形要求也比较高,此时可以利用导数来解决.解: 定义域为(0,2π), x x f cos )(='.令0)(<'x f ,即cos 0x <.又(0,2)x ∈π,所以3(,)22x ππ∈.故所求的单调减区间是3(,)22ππ.【师生互动】 解三角不等式的时候,学生会有一定的困难,此时可以借助于导函数图象来解决,题目做完后再作正弦函数的图象时,不仅仅局限于五点法,还可以根据图象的性质来作图,会更加清晰明确.同时由学生对原函数图象与导函数图象进行比较,深化对结论的理解.【变式】证明函数()sin f x x =在区间3(,)22ππ上是单调减函数.证明: x x f cos )(='.因为322x ππ<<,所以cos 0x <,即0)(<'x f 在3(,)22ππ上恒成立, 故f (x )在区间3(,)22ππ上单调递减.【设计意图】(1)解三角不等式时,画出()cos '=f x x 的图象帮助解决.解完后再画出()sin ((0,2))=∈πf x x x 的图象,直观的验证答案的正确性.解题过程始终注意“数”“形”结合;(2)例题3和变式题再次体现利用导数来研究函数单调性的优越性:不能根据解决的,利用导数仍可以解决.(3)从二次函数、三次函数到三角函数,体现了导数法研究函数单调性的一般性和普遍适用性.四、课堂小结 回顾整理中提炼通过这节课的研究,你明确了什么问题?你的收获与感受是什么呢?【设计意图】培养学生学习——总结——学习——反思的良好习惯,同时通“形”“数”应 用确定函数单调区间证明函数单调性过自我的评价来获得成功的快乐,提高学生学习的自信心.五、自主作业巩固训练中拓展必做题:课本P29 第1、3、4题.选做题:如果f(x)在某区间上单调递增,那么在该区间上必有f(x)>0吗?【设计意图】知识巩固,反馈信息,同时注意个体差异,因材施教,必做题为基础训练,选做题既是对本节课的提升训练,也为下节课做好铺垫.六、教学设计说明导数这个概念是高等数学的基本概念,又是中学阶段数学学习的一个主干知识,它是进一步学习数学和其他自然科学的基础,更是研究函数相关性质的重要工具之一.单调性作为函数的主要性质之一,主要用来刻画图象的变化趋势,在必修1的学习中定义了单调性,并且在学习幂指对及三角函数时,能够借助于函数图象特征和单调性的定义来研究函数的单调性. 那为什么还要用导数研究函数的单调性?能不能用导数研究函数的单调性?怎样用导数研究函数的单调性?循着这样的思路,整个教学过程,从创设情境—实例验证—揭示本质—强化应用—回顾反思,五个方面入手,层层递进,螺旋上升.关注生活自然导入本课的难点是引导学生发现导数与函数单调性之间的联系,而这两个概念都是非常抽象的,学生很难直接感知,所以在引入阶段,利用生活中的常见问题汽车灯光的指向与上下坡之间的联系,第一次抽象:引导学生发现道路可以抽象成函数的图象,灯光可以抽象为切线,这样问题就转化为切线斜率正负与曲线上升下降的联系;适当建系后,第二次抽象:将曲线看做是函数y=f(x)上的一段图象,那么切线斜率即为函数在该点处的导数,顺势猜想结论,感知导数正负与函数单调性之间的联系,从而轻松高效引入课题,成功激发学生的求知欲,也体现了“生活中处处有数学”的教学理念.关注探究合作生成前面已经猜想出结论,但是该结论是否正确,还有待检验,学生首先想到的就是验证已经学过的常见函数,从而深化对所得结论的理解.再从“形”回到“数”,进一步引导学生经历从特殊到一般的过程,抓住导数和单调性的定义之间的联系来提炼一般性的结论,由学生自主探究、分组展示,互相点评,变灌注知识为学生主动获取知识,从而使之成为课堂教学活动的主体.关注应用数形结合在典例演练,强化应用的过程中,例题1由“形”到“数”,规范了用导数研究单调性的书写,加深了对结论的理解;例题2在了解函数的性质基础上,要求学生画出三次函数的大致图象,经历由“数”到“形”的过程,并对导函数图象与原函数图象进行对比、深化理解,突显了利用导数研究函数单调性的优越性;例题3由三角函数图象很快能得出结论,但在变式题中证明函数单调性又回到“数”,解三角不等式时,学生可以画出导函数图象辅助解题,题目解完后再次画出原函数图象加以验证,数形结合思想,贯穿始终,并且突显了利用导数研究函数单调性的一般性.三道例题逐层推进,体现了导数法在研究函数单调性中的一般性和有效性,由形到数,由数到形,数形结合贯穿始终.。

导数在研究函数中应用-单调性教案

导数在研究函数中应用-单调性教案

课题:导数在研究函数中的应用—单调性教材:苏教版 选修2-2 1.3.1导数在研究函数中的应用第1课时单调性1.教学目标:(1)知识与技能:了解函数单调性与导数的关系,会求不超过3次的多项式函数的单调区间.(2)过程与方法:通过初等方法与导数方法在研究函数过程中的比较,体会导数方法在研究函数性质中的一般性与有效性,同时感受和体会数学自身发展的一般规律.(3)情感、态度与价值观:使学生对变量数学的思想方法有新的感悟,进一步发展学生的思维能力、应用意识,促进学生全面认识数学价值,体会数学的广泛应用!2.教学重点:利用导数研究函数的单调性.教学难点:引导学生发现函数的单调性与其导数的关系.3.教学方法:本节课采用以问题为主线引发学生数学思维活动,探索概念并加以完善和应用.教学手段:运用多媒体辅助教学.4.教学过程:(一)课前导入,巩固已学方法概念,点明课题问题1:我们刚刚经过二十四节气的大雪,那下一个节气是什么?冬至:俗话说‘夏至短,冬至长’,所以,冬至这一天白昼时间最短,夜的时间最长,从冬至起,夜间变短,白天变长。

师点明课题:函数是描述客观世界变化规律的重要数学模型,刻画函数变化趋势的知识就是函数的单调性,这节课我就和同学们一起来再研究函数的单调性(板书:单调性)问题2:我们已学过的函数有哪些?教师从中选取几个,并列表呈现出来: y x =,2y x =,1y x=,ln y x = 问题3:已学过哪些确定函数单调区间的方法?问题4:函数单调性的定义内容是什么?(学生活动:思考,并回答)设计意图:引导学生复习巩固已学过的函数以及确定函数单调区间的方法、函数单调性的定义——刻画函数变化趋势的本质和理论依据!(二)创设情境,引出问题.问题1:你能确定函数:3y x x =-,ln x y x=的单调区间吗? (学生活动:利用定义法和图像法去尝试!)教师点明:这些简单函数通过四则运算构造出的函数拓宽了我们研究的范围,但是已有的研究函数单调性方法呈现了局限性,看来我们要寻找—新的解决方法!设计意图:奥苏贝尔认为,有意义的学习需要把学生的学习建立在已有的学习经验基础上,本节课的情境设置着眼于学生最近发展区,以学生熟悉的函数通过简单的四则运算组合出新函数去研究单调性,制造强烈认知冲突,从而引发学生积极思考,体现了用导数研究函数单调性的必要性,同时也让学生感受数学自身发展的一般规律。

高中数学第一章《函数的单调性与导数》【教案】

高中数学第一章《函数的单调性与导数》【教案】

1.3。

1函数的单调性与导数
教学目标:
(1)知识目标:能探索并应用函数的单调性与导数的关系求单调区间,
能由导数信息绘制函数大致图象。

(2)能力目标:培养学生的观察能力、归纳能力,增强数形结合的思维意识。

(3)情感目标:通过在教学过程中让学生多动手、多观察、勤思考、善总结,引导学生养成自主学习的学习习惯。

教学重点:探索并应用函数单调性与导数的关系求函数的单调区间。

教学难点:利用导数信息绘制函数的大致图象。

教学方法:发现式、启发式
教学手段:多媒体课件等辅助手段。

教学过程预设:
教学环

师生活动设计意图
一、回顾
与思考

问1.判断函数的单调性有哪
些方法?
(引导学生回答“定义法
",“图象法”。

)
2.比如,要判断y=x2+1的
单调性,如
何进行?(引导学生回顾分
以问题形式复
习相关旧知识,
同时引出新问
题:三次函数判
断单调性,定义
法、图象法很不
方便,有没有捷。

高中数学教学设计--课题:导数在研究函数中的应用——单调性

高中数学教学设计--课题:导数在研究函数中的应用——单调性

课题:导数在研究函数中的应用——单调性教材:苏教版选修2-2第1章 1.3.1教学目标1. 通过实例,借助函数图象直观探索并了解函数的单调性与导数的关系,体会数形结合思想,培养合情推理的能力;2. 通过实例的解决初步熟悉应用导数解决单调性问题的步骤,感受数形结合思想的重要性;3. 通过初等方法与导数方法在研究函数性质过程中的比较,体会导数方法在研究函数性质中的一般性和有效性,同时感受和体会数学自身发展的一般规律.教学重点、难点探究函数的单调性与其导数的关系,深化对单调性的理解.教学方法与教学手段探究发现式教学法、多媒体辅助教学.教学过程导数作为函数的变化率刻画了函数变化的趋势(上升或下降的陡峭程度),而函数的单调性也是对函数变化趋势的一种刻画,那么,导数与函数的单调性有什么联系呢?一、情景引入高山有起有伏,运动员的运动轨迹有上升,有下降,在我们的数学中函数的哪种性质也刻画了这种上升、下降的变化趋势?通过高山滑雪的精彩场景,引导学生联想雪山的上升(下降)同函数单调性的关联.回顾必修1对函数单调性的定义.以函数的单调性与导数两条主线的交汇切入,通过问题串的形式,让学生充分探究,启发学生发现在给定区间导数值的正负与函数的单调性的联系,并给出结论.二、学生活动与师生互动问题1该函数为定义域上的增函数,还是减函数?问题2该曲线上的任意一点处的切线斜率是正,还是负?问题3该曲线上的任意一点处的导数值是正,还是负?问题4 结合以上两组探究,在给定区间导数值的正负与函数的单调性有什么联系?(引导学生讨论并写出自己的结论)三、建构数学对于函数()y f x =,如果在某区间上0)('>x f ,那么()f x 为该区间上的增函数;如果在某区间上'()0f x <,那么()f x 为该区间上的减函数.(上述结论是否具有一般性呢? )四、数学运用运用1例1 确定函数34)(2+-=x x x f 在哪个区间上是增函数,在哪个区间上是减函数.解 42)(/-=x x f ,令0)(/>x f ,解得2>x .因此,在区间),(∞+2上,0)(/>x f,)(x f 是增函数;在区间)(2,∞-上,0)(/<x f ,)(x f 是减函数.例1起到验证结论的作用.学生运用结论求解此题,与运用以前的知识得到的结果一致.运用2例2 确定函数32()267f x x x =-+在哪些区间上是增函数. 解 /2()612f x x x =-.令0)(/>x f ,解得0x <或2x>. 因此,在区间(,0)-∞上,0)(/>x f ,()f x 是增函数;在区间(2,)+∞上,0)(/>x f ,()f x 也是增函数.通过该例题进一步让学生理解导数和函数的单调性的关系,将知识技能化,形成解题的方法和步骤.完成课堂练习第29页练习的第1题.例3 确定函数x x f sin )(= ))2,0((π∈x 的单调减区间.(三个例题逐层推进,体会导数在研究函数单调性中的一般性.)完成课堂练习第29页练习第3, 4题.五、回顾小结1.通过本节课的学习,同学们学到了什么?2.通过本节课的学习,你能解决什么问题?(试结合3y x =进行思考:如果()f x 在某区间上单调递增,那么在该区间上必有/()0f x >吗?)六、课后作业课本第34页习题1.3的第1,2题.设计说明:在必修1和必修4中,我们研究过函数、三角函数,知道函数是描述客观世界变化规律的重要数学模型.变化规律可以用函数的性质来描述,函数的单调性是函数的重要性质之一.之前我们直接根据函数单调性的定义,研究函数的单调性,现在我们运用导数这个工具研究函数的单调性,体会导数在研究函数中的应用,并与必修1、必修4中的方法进行验证、比较,体会导数在研究函数中的优越性.函数单调性的定义在必修1中已经介绍,当时直接根据单调性的定义研究函数的单调性,进一步将函数单调性的定义改写成平均变化率的形式.导数是在研究变化现象中产生的,我们可由函数的某段平均变化率逐步逼近函数在某点的瞬时变化率,即导数.这两条线的交汇处,即知识生成,得出结论.结合学生学过的指数函数、对数函数,借助函数的图象(几何直观),让学生观察,然后探讨导数值的正负与函数单调性的关系.在学生观察、探讨的基础上归纳出导数值的正负与函数单调性之间的关系.继而利用学生学习过的二次函数来验证结论,归纳解题步骤,进一步将结论运用到三次函数和其它函数模型,来确定它们在哪些区间上是增函数,在哪些区间上是减函数.通过初等方法与导数方法在研究函数性质的过程中的比较,体会导数方法在研究函数性质中的一般性和有效性,同时感受和体会数学自身发展的一般规律.。

高中数学第一章导数及其应用1.3.1导数在研究函数中的应用—单调性(1)教案2数学教案

高中数学第一章导数及其应用1.3.1导数在研究函数中的应用—单调性(1)教案2数学教案

导数在研究函数中的应用——单调性1.教学目标:(1)通过实例,借助几何直观探索并了解函数单调性与导数的关系; (2)会利用导数判断简单函数的单调区间。

2.教学重点、难点:探索并了解函数单调性与导数的关系3.教学方法与教学手段:启发与探究教学相结合4.教学过程: 一、问题情境:同学们,为了研究函数的变化趋势,我们引进了导数。

那么,导数对于我们研究函数的变化趋势到底有没有作用?作用有多大呢?带着这个问题,让我们开启今天的知识之旅吧! 二、知识建构:学生活动(一)——初步判断 问题1:什么叫导数?问题2:1)函数的变化趋势怎么体现?2)单调性定义是怎样的?问题3:请对比一下导数和单调性定义,你有何猜想? 学生讨论得:学生活动(二)——数学实验 1.请你以一个熟悉的函数为例,画出函数草图,探究该函数在单调区间上的导数符号与其单调性的关系。

(投影呈现学生的实验数据)参考实验数据,对猜想的真假进行判断,并获得如下结论:2.从图形上直观理解上述结论。

(动画演示)三、数学应用例13.例2、确定函数762)(23+-=x x x f 在哪个区间内是增函数,哪个区间内是减函数. 例3、确定函数)2,0(,sin )(π∈=xx x f 的单调减区间. 四、课堂小结 1.学生分享课堂感悟2.老师小结:今天,我们研究并获得了一个重要结论。

首先,我们从导数定义出发,发现xy∆∆与导数的关系;另一方面,我们又从函数单调性定义中发现:研究单调性就是研究xy∆∆的符号!结合两方面,我们得到了一个猜想,接着通过大量的实验,从数形两方面对猜想进行了验证和感受,最终获得了一个判断函数单调性的有效工具——导数!这种,由观察、猜想到验证并得到结论的过程,也是我们研究数学问题的一般方法! 介于此,与大家分享一句名言:最有价值的知识是关于方法的知识。

The most valuable knowledge is the knowledge of the method.——达尔文五、布置作业:习题1.3 第2题 六、课堂提升:回顾前面的动画演示过程,观察动画并思考:除了导数与单调性关系,你认为还有哪些方面值得我们研究与探讨的呢? 教学设计说明:1.导数是进一步学习数学和其他自然科学的基础,是现代科学技术研究必不可少的工具。

高中数学《函数的单调性与导数》教案

高中数学《函数的单调性与导数》教案

高中数学《函数的单调性与导数》教案教学目标:1.了解函数的单调性的定义及性质2.掌握函数单调性的判断方法3.熟练应用导数判定函数的单调性教学重点:1.函数单调性的判断方法2.导数在判断函数单调性中的应用教学难点:1.运用导数判断函数单调性真正理解导数的含义2.学生对导数概念的掌握教学过程:一、整体教学法二、导入1.引入函数单调性的概念,让学生熟悉函数的单调和非单调区间,提高学生对函数的整体认识。

2.通过教师提出两个例子来,让学生先模仿演示,了解什么是函数单调性,什么是「单调不降/递增」函数。

三、展开第一部分:1.什么是单调性?单调性是指函数在定义区间上的取值随自变量的增加或减小而增加或减小。

例如:如果函数f(x)随x增大而增大,则称f(x)在这个区间上是单调递增的。

如果函数f(x)随x减小而增大,则称f(x)在这个区间上是单调递减的。

2.单调性的性质?1.单调递增的函数一定不会有逆袭;2.单调递减的函数一定不会有逆袭。

第二部分:3.如何确定函数单调性?1.根据函数定义与图象的几何意义。

2.求导后加以分析。

第三部分:4.求导判断函数单调性。

1)函数单调性唯一性问题函数单调性问题是一个唯一性问题。

2)导数与函数单调递增与递减的判断当f ' ( a ) > 0 时,f(x)在定义域[a, +∞ )上单调递增;当f ' ( a ) = 0 时,f(x)在点a附近可能有极值(最大值/最小值),需考虑检验;当f ' ( a ) < 0 时,f(x)在定义域[a, +∞ )上单调递减。

三、总结通过本节课,我们学习了:1.函数单调性的定义及性质;2.掌握函数单调性的判断方法;3.学会应用导数判定函数的单调性。

四、作业(1)小组讨论:通过搜索资料、小组合作,查找更多有关函数单调性的例题,训练自己的能力。

(2)课外练习:补充做一些例题。

部编《导数在研究函数单调性中的应用》教学设计

部编《导数在研究函数单调性中的应用》教学设计

《5.3.1导数在研究函数单调性中的应用》教学设计一、内容和内容解析1.内容函数的单调性与函数导数的正负之间的关系,根据导数的正负性判断函数的单调性.2.内容解析单调性是函数的重要性质,它不仅反映了函数变化的趋势,还是研究函数极值与最大(小)值的基础性问题。

虽然可以通过函数图象的升降观察函数的单调性,但对大多数函数而言,画出其图象不是一件容易的事情。

至于根据函数单调性的定义去判断函数的单调性,则由于含字母的代数式值的大小比较通常较困难,所以也不是通性通法。

导数是关于瞬时变化率的数学表达,它定量地刻画了函数的局部变化,因而可以利用导数更加精确地研究函数的性质。

有了导数,可以把函数单调性的判断问题转化为导数的运算问题,通过函数导数的正负性判断出函数的单调性,这种方法在解决函数的单调性问题时具有“普适性”。

通过探究函数图象的升降与导数的正负之间的关系,得出可用导数判断函数单调性的结论与方法,这一过程中蕴含着数形结合的思想。

利用函数的导数及其运算,将判断函数的单调性这一复杂问题,转化为步骤明确的运算问题,这又蕴含了重要的算法思想。

用导数研究函数的单调性,对于培养学生利用函数模型描述客观事物的变化规律、解决优化等实际问题有着非常重要的意义,是提升学生的数学运算与数学建模素养的很好的载体。

基于以上分析,确定本节课的教学重点:建立函数的单调性与导数的正负之间的联系。

二、目标和目标解析1、目标(1)通过具体函数的图象,发现函数的单调性与导数的正负之间的关系,体会数形结合思想,发展直观想象素养。

(2)能根据函数导数的正负判断函数的单调性,体会算法思想,发展数学运算素养。

2.目标解析达成上述目标的标志是:(1)对于给定的具体函数的图象,能借助导数的几何意义判断出导数的正负与函数的单调性,并将二者关联起来.(2)对于给定的函数,能利用导数求出函数的单调递增(递减)区间;能根据导函数的正负信息画出简单函数的大致图象.三、教学问题诊断分析由于高中数学课程不安排拉格朗日中值定理的内容,所以说明“若导数符号为正(或负),则函数是单调递增(或递减)函数”是非常困难的事情,这是本节课的教学难点之一。

导数在研究函数中的应用 精品教案

导数在研究函数中的应用 精品教案

《导数在研究函数中的应用》【教材分析】导数及其应用内容分为三部分:1.函数的单调性与导数2.函数的极值与导数3函数的最值与导数。

在“利用导数判断函数的单调性”中介绍了利用求导的方法来判断函数的单调性;在“利用导数研究函数的极值”中介绍了利用函数的导数求极值和最值的方法。

【考纲解读】1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间。

2.了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极值,会求闭区间上函数的最值。

3.会利用导数解决某些实际问题。

【教学目标】1.能熟练应用导数的几何意义求解切线方程2.掌握利用导数知识研究函数的单调性及解决一些恒成立问题【教学重点】理解并掌握利用导数知识研究函数的单调性及解决一些恒成立问题【教学难点】原函数和导函数的图像“互译”,解决一些恒成立问题【学 法】本节课是在学习了导数的概念、运算、导数的应用的基础上来进行小结复习,学生已经了解了一些解题的基本思想和方法,应用导数的基本知识来解决实际问题对学生来说应该不会很陌生,所以对本节的学习应让学生能够多参与、多思考,培养他们的分析解决问题和解决问题的能力,提高应用所学知识的能力。

在课堂教学中,应该把以教师为中心转向以学生为中心,把学生自身的发展置于教育的中心位置,为学生创设宽容的课堂气氛,帮助学生确定适当的学习目标和达到目标的最佳途径,指导学生形成良好的学习习惯、掌握学习策略和发展原认知能力,激发学生的学习动机,培养学习兴趣,充分调动学生的学习积极性,倡导学生采用自主、合作、探究的方式学习。

【教 法】数学是一门培养人的思维、发展人的思维的重要学科,本节课的内容是导数的应用的复习课,所以应让学生多参与,让其自主探究分析问题、解决问题,尝试归纳总结,然后由老师启发、总结、提炼,升华为分析和解决问题的能力。

【授课类型】复习课【教学过程】一、要点梳理温馨提醒:若函数y =f (x )在(a ,b )内单调递增,则f ′(x )≥0,而f ′(x )>0是y =f (x )1.函数的单调性与导数在区间(a ,b )内,函数的单调性与其导数的正负有如下的关系: 如果__________,那么函数y =f (x )在这个区间单调递增;如果____________,那么函数y =f (x )在这个区间单调递减; f ′(x )>0 f ′(x )<0在(a ,b )内单调递增的充分不必要条件.2.函数的极值与导数函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧___f ′(x )<0_______,右侧__ f ′(x )>0_____,则点a 叫做函数y =f (x )的__极小值点___,f (a )叫函数y =f (x )的极小值.函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧__ f ′(x )>0_____,右侧___f ′(x )<0_______,则点b 叫做函数y =f (x )的极大值点,f (b )叫函数y =f (x )的极大值.极大值点、极小值点统称为极值点,极大值、极小值统称为极值.温馨提醒:导数为0的点不一定是极值点,只有在该点两侧导数的符号相反,即函数在该点两侧的单调性相反时,该 点 才是函数的极值点,另一方面,极值点处的导数 也不一定 为0,还要考察函数在该点处的导数是否存在.3.函数的最值与导数假设函数y =f(x)在闭区间[a ,b]上的图象是一条_连续不间断的曲线,则该函数在[a ,b]上一定能够取得最大值与最小值.若函数在(a ,b)内是可导 的,该函数的 最 值必在极值点或区间端点处取得.温馨提醒:最值与极值的区别与联系:(1)“极值”是个局部概念,是一些较邻近的点之间的函数值 大小的比较,具有相对性;“最值”是个整体概念,是整个 定 义域上的最大值和最小值,具有绝对性.(2)最值和极值都不一定存在,若存在,函数在其定义域上 的最值是唯一的,而极值不一定唯一.二、课前热身1.(2012·高考陕西卷)设函数f (x )=x e x ,则( )A .x =1为f (x )的极大值点B .x =1为f (x )的极小值点C .x =-1为f (x )的极大值点D .x =-1为f (x )的极小值点2.(2012·高考辽宁卷)函数y =12x 2-ln x 的单调递减区间为( ) A .(-1,1] B .(0,1]C .[1,+∞)D .(0,+∞)3.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则f (2)等于( )A .11或18B .11C .18D .17或184.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是________. 5.已知a >0,函数f (x )=x 3-ax 在[1,+∞)上是单调增函数,则a 的最大值是________. 答案:1.D; 2.B; 3.C; 4.-173 5.3 三、例题讲解考点一:利用导数研究函数的单调性例1、已知函数f (x )=4x 3+3tx 2-6t 2x +t -1,x ∈R ,其中t ∈R.(1)当t =1时,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)当t >0时,求f (x )的单调区间.【解】(1)当t =1时,f (x )=4x 3+3x 2-6x ,f (0)=0,f ′(x )=12x 2+6x -6,f ′(0)=-6.所以曲线y =f (x )在点(0,f (0))处的切线方程为y =-6x .(2)f ′(x )=12x 2+6tx -6t 2.令f ′(x )=0,解得x =-t 或x =t 2. 方法感悟:(1)导数法证明函数f (x )在(a ,b )内的单调性的步骤:①求f ′(x );②确认f ′(x )在(a ,b )内的符号;③作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.(2)导数法求函数单调区间的一般步骤:①确定函数f (x )的定义域;②求导数f ′(x );③在函数f (x )的定义域内解不等式f ′(x )>0和f ′(x )<0;④根据(3)的结果确定函数f (x )的单调区间.考点二:由函数的单调性求参数的取值范围因为t >0,则-t <t 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )的单调递增区间是(-∞,-t ),⎝⎛⎭⎫t 2,+∞;f (x )的单调递减区间是⎝⎛⎭⎫-t ,t 2.例2、(2014·安徽合肥市质量检测)已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=x 2·[f (x )-a ],且g (x )在区间[1,2]上为增函数,求实数a 的取值范围.【解】(1)设f (x )图象上任一点的坐标为P (x ,y ),点P 关于点A(0,1)的对称点P ′(-x ,2-y )在h (x )的图象上,∴2-y =-x +1-x+2, ∴y =x +1x ,即f (x )=x +1x. (2)g (x )=x 2·[f (x )-a ]=x 3-ax 2+x ,方法感悟:函数单调性确定参数范围的方法:(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题,即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.考点三:利用导数研究函数的极值(最值)例3、(2013·高考福建卷)已知函数f (x )=x -a ln x (a ∈R).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程;(2)求函数f (x )的极值.【解】函数f (x )的定义域为(0,+∞),f ′(x )=1-a x. (1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x(x >0), 因而f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A(1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0. 又g (x )在区间[1,2]上为增函数,∴g ′(x )=3x 2-2ax +1≥0在[1,2]上恒成立,即2a ≤3x +1x 对任意的x ∈[1,2]恒成立. 注意到函数r (x )=3x +1x 在[1,2]上单调递增, 故r (x )min =r (1)=4. 于是2a ≤4,a ≤2.即实数a 的取值范围是(-∞,2].(2)由f′(x)=1-ax=x-ax,x>0知:①当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a.又当x∈(0,a)时,f′(x)<0;当x∈(a,+∞)时,f′(x)>0,从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a-a ln a,无极大值.综上,当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=a处取得极小值a-a ln a,无极大值.方法感悟:(1)求函数f(x)极值的步骤:①确定函数的定义域;②求导数f′(x);③解方程f′(x)=0,求出函数定义域内的所有根;④列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号,如果左正右负,那么f(x)在x0处取极大值,如果左负右正,那么f(x)在x0处取极小值.(2)求函数f(x)在[a,b]上的最大值和最小值的步骤:①求函数在(a,b)内的极值;②求函数在区间端点的函数值f(a),f(b);③将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.【课堂小结】1.函数的单调性与导数2.函数的极值与导数3函数的最值与导数【布置作业】练习册60练 p19【板书设计】课题一、要点梳理三、例题讲解二、课前热身四、课堂小结【教学反思】以题目引导教学,让学生先有所思,思有所获,获有所感。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3.1函数的单调性与导数(一)
一、教学目标:了解可导函数的单调性与其导数的关系.掌握利用导数判断函数单调性的方法.
二、教学重点:利用导数判断一个函数在其定义区间内的单调性.
教学难点:判断复合函数的单调区间及应用;利用导数的符号判断函数的单调性.
三、教学过程
(一)复习引入
1.增函数、减函数的定义
一般地,设函数f(x) 的定义域为I:如果对于属于定义域I内某个区间上的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.当x1<x2时,都有f(x1)>f(x2),那么就说 f(x) 在这个区间上是减函数.
2.函数的单调性
如果函数y=f(x) 在某个区间是增函数或减函数,那么就说函数y=f(x) 在这一区间具有(严格的)单调性,这一区间叫做y=f(x) 的单调区间.
在单调区间上增函数的图象是上升的,减函数的图象是下降的.
例1讨论函数y=x2-4x+3的单调性.
解:取x1<x2,x1、x2∈R,取值
f(x1)-f(x2)=(x12-4x1+3)-(x22-4x2+3) 作差
=(x1-x2)(x1+x2-4) 变形
当x1<x2<2时,x1+x2-4<0,f(x1)>f(x2),定号
∴y=f(x)在(-∞, 2)单调递减.判断
当2<x1<x2时, x1+x2-4>0,f(x1)<f(x2),
∴y=f(x)在(2, +∞)单调递增.综上所述y=f(x)在(-∞, 2)单调递减,y=f(x)在(2, +∞)单调递增。

能否利用导数的符号来判断函数单调性?
一般地,设函数y =f (x )在某个区间内可导,
如果f (x )'>0,则f (x )为增函数; 如果f (x )'<0,则f (x )为减函数. 例2.教材P24面的例1。

例3.确定函数f(x)=x 2
-2x +4在哪个区间内是增函数,哪个区间内是减函数. 解: f(x)'=2x -2. 令2x -2>0,解得x >1.
因此,当x ∈(1, +∞)时,f (x )是增函数. 令2x -2<0,解得x <1.
因此,当x ∈(-∞, 1)时,f (x )是减函数.
例4.确定函数f (x )=2x 3-6x 2+7在哪个区间内是增函数,哪个区间内是减函数. 解:f (x )'=6x 2
-12x .
令6x 2-12x >0,解得x <0或x >2.
因此,当x ∈(-∞, 0)时,函数f(x)是增函数,
当x ∈(2, +∞)时, f (x )也是增函数.
令6x 2-12x <0,解得0<x <2.
因此,当x ∈(0, 2)时,f (x )是减函数. 利用导数确定函数的单调性的步骤: (1) 确定函数f (x )的定义域; (2) 求出函数的导数;
(3) 解不等式f '(x )>0,得函数的单调递增区间;解不等式f '(x )<0,得函数的单调递减区间.
练习1:教材P24面的例2
利用导数的符号来判断函数单调性: 设函数y =f (x )在某个区间内可导
(1)如果f '(x )>0 ,则f (x )为严格增函数; (2)如果f '(x )<0 ,则f (x )为严格减函数. 思考:(1)若f '(x )>0是f (x )在此区间上为增函数的什么条件?
若f '(x )>0是f (x )在此区间上为增函数的充分而非必要条件.
例如 f (x )=x 3
,当x =0,f '(x )=0,x ≠0时,f '(x )>0,函数 f (x )=x 3
在(-∞,+
∞)上是增函数.
(2)若f '(x ) =0在某个区间内恒成立,f (x )是什么函数 ?
若某个区间内恒有f '(x )=0,则f (x )为常数函数.
练习2. 教科书P.26练习(1)
(三)课堂小结
1.判断函数的单调性的方法; 2.导数与单调性的关系; 3.证明单调性的方法. (四)作业《习案》作业七。

相关文档
最新文档