焦炉煤气制氢新工艺模板

合集下载

氢气的基本性质及焦炉煤气制氢工艺

氢气的基本性质及焦炉煤气制氢工艺

氢气的基本性质及焦炉煤气制氢工艺氢气是无色并且密度比空气小的气体(在各种气体中,氢气的密度最小。

标准状况下,1升氢气的质量是0.0899克,相同体积比空气轻得多)。

因为氢气难溶于水,所以可以用排水集气法收集氢气。

另外,在101千帕压强下,温度-252.87℃时,氢气可转变成无色的液体;-259.1℃时,变成雪状固体。

常温下,氢气的性质很稳定,不容易跟其它物质发生化学反应。

但当条件改变时(如点燃、加热、使用催化剂等),情况就不同了。

如氢气被钯或铂等金属吸附后具有较强的活性(特别是被钯吸附)。

金属钯对氢气的吸附作用最强。

当空气中的体积分数为4%-75%时,遇到火源,可引起爆炸。

物理性质无色无味的气体,标准状况下密度是0.09克/升(最轻的气体),难溶于水。

在-252℃,变成无色液体,-259℃时变为雪花状固体。

分子式:H2沸点:-252.77℃(20.38K)熔点:-259.2℃密度:0.09 kg/m3化学性质氢气常温下性质稳定,在点燃或加热的条件下能多跟许多物质发生化学反应。

①可燃性(可在氧气中或氯气中燃烧)2H2+O2=点燃=2H2O(化合反应)(点燃不纯的氢气要发生爆炸,点燃氢气前必须验纯)]H2+Cl2=点燃=2HCl(化合反应)②还原性(使某些金属氧化物还原)H2+CuO=加热△=Cu+H2O(置换反应)3H2+Fe2O3=高温=2Fe+3H2O(置换反应)3H2+WO3=加热△W+3H2O(置换反应)焦炉煤气变压吸附制氢工艺1.1 工艺原理变压吸附工艺过程的工作原理是:利用吸附剂对气体混合物中各组份的吸附能力随着压力变化而呈现差异的特性,对混合气中的不同气体组份进行选择性吸附,实现不同气体的分离。

为了有效而经济地实现气体分离净化,除了吸附剂要有良好的吸附性能外,吸附剂的再生方法具有关键意义。

吸附剂的再生程度决定产品的纯度,也影响吸附剂的吸附能力;吸附剂的再生时间决定了吸附循环周期的长短,从而也决定了吸附剂的用量。

焦炉煤气制氢工艺流程

焦炉煤气制氢工艺流程

焦炉煤气制氢工艺流程焦炉煤气制氢工艺是一种用焦炉煤气为原料生产氢气的过程。

焦炉煤气是指焦炭燃烧产生的气体,主要成分是一氧化碳和氢气,含有少量的二氧化碳、氮气和其他杂质。

利用焦炉煤气制氢是一种高效、低成本的方法,可以用于工业生产、能源储存和环保等领域。

主要包括气体净化、变换反应、水煮和气体分离等步骤。

下面将详细介绍焦炉煤气制氢工艺的流程及各个步骤的原理和操作方法。

1. 气体净化焦炉煤气中含有杂质如硫化氢、苯、硫醛等,这些杂质会影响后续反应的进行,因此需要进行气体净化处理。

气体净化可以采用吸附剂或洗涤液来去除杂质,使焦炉煤气达到符合要求的纯度。

2. 变换反应气体净化后的焦炉煤气进入变换反应器,通过变换催化剂催化反应,将一氧化碳和水蒸气转化为氢气和二氧化碳。

变换反应是焦炉煤气制氢过程中的关键步骤,需要控制反应条件如温度、压力和催化剂性质等,以提高氢气产率和减少副产物。

3. 水煮变换反应产生的气体混合物经过冷凝和去除二氧化碳后,进入水煮塔。

在水煮塔中,气体混合物与热水接触,使氢气与水反应生成氢气和热能。

水煮塔的目的是通过水煮反应增加氢气的纯度和产量。

4. 气体分离水煮后得到的气体混合物含有水蒸气和氢气,需要进行气体分离。

气体分离可以采用冷凝、压缩、吸附和膜分离等方法,将氢气从水蒸气和其他气体分离出来,得到高纯度的氢气。

总结起来,焦炉煤气制氢工艺流程包括气体净化、变换反应、水煮和气体分离四个步骤。

通过这些步骤的组合应用,可以高效地生产出高纯度的氢气,满足不同领域的需求。

焦炉煤气制氢是一种成熟的工艺,具有较高的经济效益和环保性,是未来氢能源发展的重要途径之一。

焦炉煤气制氢操作规程

焦炉煤气制氢操作规程

储配分公司大青站制氢工段焦炉煤气提氢装置操作规程第一章工艺技术规程1.1 装臵概况1.1.1 装臵简介本装臵建成于2012年2月,焦炉煤气处理量≥4208.41Nm3/h( 干基)。

产品氢气流量2100Nm3/h。

本装臵主要采用6-2-2/V程序变压吸附工艺技术从焦炉煤气中提取高纯氢。

整个过程主要分为预净化工序、提纯氢气的PSA工序、氢气脱氧和干燥工序、产品压缩和装车五个工序。

1.1.2 工艺原理利用固体吸附剂对气体的吸附有选择性,以及气体在吸附剂上的吸附量随其分压的降低而减少的特性,实现气体混合物的分离和吸附剂的再生。

1.1.3工艺流程说明焦炉煤气经过压缩机加压至0.76MPa后进入预净化工序,经过预处理器脱除萘、焦油等杂质后进入变压吸附工序。

在吸附塔中氢气与其他杂质分离后进入脱氧干燥工序,纯度达99.99%的合格产品气经计量进入氢气压缩机压缩至20MPa后装车。

1.1.4 工艺原则流程图:焦炉煤气1.2 工艺指标: 1.2.1 原料气指标 原料气组成(干基) 组成H 2N 2CO 2CH 4 CO O 2 CnHm ΣV% 56.7 3.2 2.7 26.3 7.7 0.9 2.5 100 原料气中杂质含量(mg/Nm3) 组成 萘焦油 H 2S NH 3 mg/Nm 3冬≤50 夏≤100≤10≤20≤501.2.2 成品指标 组成H 2COO 2N 2CO 2CH 4 合计V% 99.992 0.0005 0.0005 0.006 0.0001 0.001 100 1.2.3 公用工程指标 项目 压力及规格 温度 流量及容量 蒸汽0.5MPa饱和温度夏天350kg/h 冬天430kg/h仪表空气 0.4-0.6MPa 常温 100Nm3/h 循环水给水0.4MPa回水0.25MPa 给水28℃回水40℃47t/h 电220V 50HZ 380V 50HZ安装容量:455KW 最大单台设备容预净化工序变压吸附单元 氢气加压单元脱氧、干燥单元产品装车单元量:132KW需要容量:382.86KW 低压氮气≧0.4MPa 常温开车初期一次1000Nm3/h 1.2.4 主要操作条件1. 预处理(100#)工序操作条件吸附压力(MPa)0.6-0.8吸附温度(℃)≦40再生压力(MPa)0.02-0.04再生温度(℃):进口150再生温度(℃):出口冷吹后温度达到110℃为标准切换周期(h/T)12其中:加热时间(h) 6冷吹时间(h) 6蒸汽压力(MPa)≧0.52. 变压吸附(200#)工序操作条件项目名称指标流量(Nm3/h)原料气4208.41(设计) 产品气2100(设计)浓度(%)原料气中氢56.7 产品气中氢99.9步骤设计压力(MPa)时间(S)A 吸附0.8 180E1D 一均降0.8→0.51 30E2D 二均降0.51→0.22 30D 逆放0.22→0.02 30V 抽空0.02→-0.08 120E2R 二均升-0.08→0.22 30E1R 一均升0.22→0.51 30FR 终升0.51→0.76 90循环周期540(设计)3. 脱氧干燥(300#)工序操作条件脱氧部分催化剂反应温度(℃)80-100 空塔速度(h-1)操作压力(MPa)0.8产品气中氧含量(ppm)≤5干燥塔部分操作压力(MPa)0.7-0.8温度(℃)40再生压力(MPa)0.8再生温度(℃):进口150出口≥环境温度+30切换时间(h)干燥4h,加热4h,冷吹4h蒸汽压力(MPa)0.6产品氢露点(℃)≤-60第二章工艺装臵操作指南2.1 100#工序操作要点2.1.1在操作中需定期取样分析净化后的原料气中C5组分的浓度,一般浓度控制在200ppm以下,否则要进行切换。

焦炉煤气制氢工艺流程

焦炉煤气制氢工艺流程

焦炉煤气制氢工艺流程英文回答:The process of hydrogen production from coke oven gas involves several steps. First, the coke oven gas ispurified to remove impurities such as sulfur compounds, ammonia, and tar. This is usually done through a series of scrubbing and adsorption processes. The purified gas is then sent to a steam reformer, where it reacts with steam in the presence of a catalyst to produce a mixture of hydrogen, carbon monoxide, and carbon dioxide. This is known as the steam reforming reaction.The next step is to shift the carbon monoxide in the reformate gas to produce more hydrogen. This is done through the water-gas shift reaction, which involves reacting carbon monoxide with steam to produce carbon dioxide and hydrogen. The shift reaction is usually carried out in two stages: the high-temperature shift and the low-temperature shift. In the high-temperature shift, acatalyst is used to promote the reaction at temperatures around 400-500°C. In the low-temperature shift, adifferent catalyst is used to further convert the remaining carbon monoxide at temperatures around 200-250°C.After the shift reaction, the gas is cooled and passed through a series of purification steps to remove any remaining impurities. This may include processes such as pressure swing adsorption or membrane separation. The final product is high-purity hydrogen gas, which can be used for various applications such as fuel cells or ammonia production.中文回答:焦炉煤气制氢的工艺流程包括几个步骤。

焦炉煤气变压吸附制氢新工艺_宁红军

焦炉煤气变压吸附制氢新工艺_宁红军
3
体积分数 /% 55 . 5 0. 43 8 . 1 5. 86 2 . 86 23. 68 3. 2 0. 31
组成
m g/Nm
HCN
ቤተ መጻሕፍቲ ባይዱ
193
3 000 ~ 4 000
100 ~ 400
- 6
0 . 21 4 000~ 5 000
注 : NH 3 含 量为 ( 50 ~ 100) 10 。
- 6
10 , NO 含 量 为 1 . 6
48
河南化工 HENAN CH EM ICAL I NDU STRY
2007 年
第 24 卷
焦炉煤气变压吸附制氢新工艺
宁红军 , 赵新亮 , 曹晓宝
(平顶山市三源制氢有限公司 , 河南 平顶山 467001 )

要 : 变压吸附制氢气体分离技术在工业上得到 了广泛 应用 , 已逐步 成为一 种主要 的气体 分离技术 。 本文重 点
介绍变 压吸附技术在焦炉煤气制氢新工艺上的开发与利用 , 并 对变压吸附技术在焦炉煤气实际应用作详细说明 。 关键词 : 变压吸附 ( PSA 法 ) ; 压缩 ; 冷冻 ; 二段分离 中图分 类号 : TQ 116. 23 文献标识码 : B 文章编 号 : 1003- 3467( 2007) 11- 0048- 03
图 1 制氢装置工艺流程图
本装置工艺流程分为 5 个工序: 原料气压缩工 序 ( 简 称 100 工序 ); 冷冻净 化分离 ( 简称 200 工 序 ) ; PSA- C /R 工序及精脱硫 ( 简称 300 工序 ); 半 产品气压缩 (简称 400 工序 ) ; PSA - H 2 工序及脱氧 (简称 500 工序 )。 本装置所用原料气是 来自焦化公司的焦炉煤 气, 主要用于锅炉、 化工产品原料气及城市煤气; 因 净化难度高, 故气体质量较差 , 分离等级较低, 因此 杂质的净化分离均以该公司使用的这套工艺装置实 现的。原料煤气组分数据见下页表 1 。

焦炉煤气制氢新工艺

焦炉煤气制氢新工艺

焦炉煤气变压吸附制氢新工艺的开发与应用焦炉煤气变压吸附(PSA)制氢工艺利用焦化公司富余放散的焦炉煤气,从杂质极多、难提纯的气体中长周期、稳定、连续地提取纯氢,不仅解决了焦化公司富余煤气放散燃烧对大气的污染问题;而且还减少了大量焦炭能源的耗用及废水、废气、废渣的排污问题;是一个综合利用、变废为宝的环保型项目;同时也是一个低投入、高产出、多方受益的科技创新项目。

该装置首次采用先进可靠的新工艺,其经济效益、社会效益可观,对推进国内PSA技术进步也有重大意义。

1942年德国发表了第一篇无热吸附净化空气的文献、20世纪60年代初,美国联合碳化物(Union Carbide)公司首次实现了变压吸附四床工艺技术工业化,进入20世纪70年代后,变压吸附技术获得了迅速的发展。

装置数量剧增,装置规模不断扩大,使用范围越来越广,主要应用于石油化工、冶金、轻工及环保等领域。

本套大规模、低成木提纯氢气装罝,是用难以净化的焦炉煤气为原料,国内还没有同类型的装置,并且走在了世界同行业的前列。

1、焦炉煤气PSA制氢新工艺。

传统的焦炉煤气制氢工艺按照正常的净化分离步骤是:焦炉煤气首先经过焦化系统的预处理,脱除大部分烃类物质;经初步净化后的原料气再经过湿法脱硫、干法脱萘、压缩机、精脱萘、精脱硫和变温吸附(TSA)系统,最后利用PSA制氢工艺提纯氢气,整个系统设备投资大、工业处理难度大、环境污染严重、操作不易控制、生产成本高、废物排放量大,因此用焦炉煤气PSA制氢在某种程度上受到一定的限制,所以没有被大规模的应用到工业生产当中。

本装置釆用的生产工艺是目前国内焦炉煤气PSA制氢工艺中较先进的生产工艺,它生产成本低、效率高,能解决焦炉煤气制氢过程中杂质难分离的问题,从而推动了焦炉煤气PSA制氢的发展。

该工艺的特点是:焦炉煤气压缩采用分步压缩法、冷冻净化及二段脱硫法等新工艺技术。

1.1工艺流程。

PSA制氢新工艺如图1所示。

该裝罝工艺流程分为5个工序:A、原料气压缩工序(简称100#工序),B、冷冻净化分离(简称200#工序),C、PSA-C/R工序及精脱硫工序(简称300#工序),D、半成品气压缩(简称400#工序)E、PSA-H2工序及脱氧工序(简称500#工序)。

焦炉煤气变压吸附制氢工艺流程

焦炉煤气变压吸附制氢工艺流程

焦炉煤气变压吸附制氢工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!焦炉煤气变压吸附制氢工艺流程一、设备准备阶段在进行焦炉煤气变压吸附制氢工艺之前,需要做好设备准备工作。

焦炉煤气提氢技术方案

焦炉煤气提氢技术方案

一、总则1、概述有限公司为满足生产的需要,拟上一套5000Nm3/h焦炉煤气变压吸附制取氢气装置。

本章所载内容必须满足买方的要求。

卖方提供的合同设备(焦炉煤气氢气制取装置)应满足技术先进、安全可靠、运行稳定、维修方便的要求。

卖方应对焦炉煤气氢气制取装置的整体技术性能向买方负责。

焦炉煤气氢气制取装置应能够在安全、可靠、长周期条件下运行,高产低耗,满足改变工况及负荷调整的要求。

2、装置名称及规模装置名称:焦炉煤气提氢变压吸附制氢装置。

装置规模:装置的氢气产量为5000Nm3/h。

4、分包范围(详见)上一套5000Nm3/h焦炉煤气变压吸附制取氢气装置。

此装置采用界区内部分承包形式包给卖方,卖方承包范围包含工程设计、设备购置(仅吸附剂、程控阀)、人员培训(外出培训费用买方自己承担)、设备制造(卖方提供设计参数图纸,买方采购)、工程安装指导、生产调试指导、装置开车指导,最后通过性能考核交给买方。

5、装置的工艺路线界定本装置以焦炉煤气为原料,通过变压吸附分离提纯,生产纯度为≥99.9%的产品氢气。

6、卖方技术人员的派遣为了使合同设备顺利而有序的进行安装和调试,卖方负责派遣合格的技术人员到施工现场进行技术服务。

卖方技术人员的实际参加人数、专业、预计到达和离开项目现场的日期,根据现场施工的实际进度,由买卖双方商定。

卖方应根据其经验在供货文件中做出技术服务的详细安排,其费用包括在报价中。

7、卖方技术人员的服务范围及职责卖方技术人员将代表卖方提供技术服务,在合同设备安装、试车、投料试生产、性能考核及验收、运行操作、维修等方面完成合同规定的卖方应履行的任务和职责。

卖方技术人员将详细进行技术交底,详细讲解图纸、工艺流程、操作规程、设备性能及有关注意事项等,解答合同范围内买方提出的技术问题。

二、装置指标1、技术指标1.2副产解吸气压力:~0.01MpaG流量:~6900Nm3/h热值:~4800Kcal/Nm32、装置寿命指标2.1硬件设备类1)吸附塔等静止设备设计寿命15年;2)PSA提氢程控阀门正常使用寿命15年(密封件寿命大于2年);2.2 三剂填料类寿命指标1)除焦油吸附剂正常使用寿命一年:一年更换一次2)压缩机后除油塔内除油剂设计使用年限为:1年更换一次;3) TSA预处理吸附剂正常使用寿命≥3年;4) 脱苯工段吸附剂设计正常使用寿命1年;5) PSA提氢工段吸附剂设计正常使用寿命15年;6) 脱氧工段催化剂设计正常使用寿命≥3年;3. 物料平衡参考:(氢气收率:> 80%)说明:以上物料以实际运行为准。

焦炉煤气制氢工艺流程

焦炉煤气制氢工艺流程

焦炉煤⽓制氢⼯艺流程⼀、引⾔随着全球能源结构的调整和环保要求的不断提⾼,氢⽓作为⼀种清洁、⾼效的能源,正⽇益受到⼈们的关注。

焦炉煤⽓作为钢铁⾏业的主要副产品,其⾼效利⽤和转化已成为⾏业研究的重点。

焦炉煤⽓制氢技术,不仅能有效回收利⽤煤⽓中的有效成分,还能为社会提供清洁的氢⽓能源,具有显著的环保和经济效益。

⼆、焦炉煤⽓成分与特性焦炉煤⽓主要由氢⽓、甲烷、⼀氧化碳等组成,其中氢⽓含量约为55%-60%,具有较⾼的热值。

通过焦炉煤⽓制氢,可以将煤⽓中的氢⽓提取出来,并转化为⾼纯度的氢⽓,满⾜⼯业和⽣活⽤氢的需求。

三、焦炉煤⽓制氢⼯艺流程焦炉煤⽓制氢⼯艺流程主要包括煤⽓净化、氢⽓提取和氢⽓纯化三个步骤。

1.煤⽓净化:由于焦炉煤⽓中含有⼤量的焦油、萘、硫等杂质,需要先进⾏净化处理。

净化过程主要包括除尘、脱硫、脱苯等步骤,以保证后续氢⽓提取和纯化的顺利进⾏。

2.氢⽓提取:净化后的焦炉煤⽓进⼊氢⽓提取阶段。

⽬前常⽤的氢⽓提取⽅法有蒸汽转化法、部分氧化法和⾃热转化法等。

这些⽅法都能有效地将煤⽓中的氢⽓提取出来,形成富含氢⽓的混合⽓体。

3.氢⽓纯化:提取出的富含氢⽓的混合⽓体需要进⼀步纯化,以满⾜不同⽤途对氢⽓纯度的要求。

氢⽓纯化⽅法主要有压⼒吸附法、低温液化法和膜分离法等。

这些⽅法能有效去除混合⽓体中的杂质,得到⾼纯度的氢⽓。

四、技术经济分析焦炉煤⽓制氢技术具有显著的经济效益和环保效益。

⼀⽅⾯,通过该技术可以有效回收利⽤焦炉煤⽓中的有效成分,减少资源浪费;另⼀⽅⾯,制得的氢⽓作为⼀种清洁能源,可⼴泛应⽤于化⼯、冶⾦、电⼒等领域,具有⼴阔的市场前景。

此外,焦炉煤⽓制氢过程中产⽣的副产物也可以进⼀步回收利⽤,形成循环经济。

五、发展趋势与挑战随着环保要求的不断提⾼和清洁能源的快速发展,焦炉煤⽓制氢技术正⾯临着巨⼤的发展机遇。

未来,该技术将朝着更⾼效、更环保的⽅向发展。

同时,也需要解决⼀些技术难题,如提⾼氢⽓提取和纯化的效率、降低能耗和排放等。

焦炉煤气制氢工艺流程

焦炉煤气制氢工艺流程

焦炉煤气制氢工艺流程随着社会对清洁能源的需求不断增加,氢能作为一种清洁能源备受瞩目。

而焦炉煤气制氢技术作为一种有效的氢能生产方式,受到了广泛关注。

焦炉煤气制氢工艺是指利用焦炉废气对焦化煤气进行蒸汽重整,产生高纯度氢气的一种生产方式。

下面将详细介绍焦炉煤气制氢的工艺流程。

一、焦炉煤气制氢的原理焦炉是将煤炭加热至高温进行干馏,产生焦炭、焦炉气和焦油等产品的设备。

焦炉废气中含有大量的一氧化碳和氢气,可以作为原料用于制氢。

该工艺流程利用了蒸汽重整法来转化含碳气体(一氧化碳和甲烷)成氢气和二氧化碳。

整个过程是一个热力学平衡的过程,同时需要一定的催化剂来提高反应效率。

利用高温蒸汽与一氧化碳发生水煤气反应生成氢气和二氧化碳,同时需要隔绝甲烷的反应,以保证氢气的纯度。

由此,得到高纯度的氢气,是能源的重要来源。

二、焦炉煤气制氢的工艺流程1. 原料准备焦炉煤气制氢的原料主要包括焦炉煤气和蒸汽。

焦炉煤气是焦化过程中产生的含有一氧化碳、氢气、一氧化碳、氮气等成分的气体,含氢量较高。

蒸汽则是从水中蒸发得到的水蒸气,以一定的流量、压力进入反应器。

2. 预处理在反应前,需要对焦炉煤气进行预处理,其中包括净化、除尘、除湿等阶段。

这是为了保证反应器内的气体纯度和稳定性。

3. 蒸汽重整蒸汽重整是焦炉煤气制氢工艺的核心步骤。

反应器内的蒸汽和焦炉煤气在一定的温度和压力下,通过催化剂的作用,发生水煤气反应,产生氢气和二氧化碳。

反应的主要化学方程式如下:CH4 + H2O → CO + 3H2CO + H2O → CO2 + H2这一步骤需要控制好反应温度和压力,以及催化剂的选择和使用,来保证反应的效率和产物的纯度。

4. 分离和回收在经过蒸汽重整后,需要将产生的氢气和二氧化碳进行分离和回收。

通常采用物理吸附或化学吸附的方法来实现氢气和二氧化碳的分离,以获得高纯度的氢气。

5. 氢气储存最后,得到的高纯度氢气需要进行储存。

通常采用压缩氢气或者液化氢气的方式进行储存。

焦炉煤气变压吸附提氢典型工艺及选择

焦炉煤气变压吸附提氢典型工艺及选择
能耗和成本
不同行业对氢气纯度和产量的要求不同, 工艺选择需考虑产品纯度和产量的要求。
设备投资和运行维护
不同工艺的能耗和成本不同,工艺选择需 考虑经济性因素。
设备投资和运行维护也是工艺选择需要考 虑的因素。
不同工艺的比较和选择
变压吸附法
变压吸附法是一种常用的提氢工艺,具有产品纯 度高、能耗低等优点,适用于从焦炉煤气中提取 高纯度氢气。
THANK YOU
03
典型焦炉煤气变压吸 附提氢工艺流程
工艺流程一:预处理+变压吸附提氢
预处理
对焦炉煤气进行预处理,除去其中的杂质,如水分、硫化物 、氮化物等。
变压吸附提氢
利用变压吸附技术,从预处理后的焦炉煤气中提取氢气。
工艺流程二:变压吸附提氢+深冷分离
变压吸附提氢
从焦炉煤气中提取氢气。
深冷分离
将变压吸附提氢后的气体进行深冷分离,得到高纯度的氢气。
前景
随着环保要求的提高和能源结构的调整,焦 炉煤气变压吸附提氢技术将具有更加广阔的 应用前景,未来将不断改进和完善工艺技术 ,实现更加高效、环保的能源利用。
06
结论与展望
研究结论
经过对各种焦炉煤气变压吸附 提氢典型工艺的比较和分析, 可以得出以下结论
采用预处理+变压吸附提氢工艺 可以获得较高的氢气纯度和回 收率,同时工艺流程简单,易 于操作和维护。
适应性强
焦炉煤气成分复杂,含有多种 气体成分,变压吸附技术可实 现对其中氢气的有效分离和纯 化,适用于多种不同来源的焦
炉煤气。
环保性好
变压吸附提氢技术不产生废水、废 渣等污染物,可实现清洁生产。
经济性高
变压吸附提氢技术具有较高的能源 利用率和较低的运行成本,可实现 氢气的低成本生产。

焦炉煤气制氢操作手册

焦炉煤气制氢操作手册

得一化工股份有限公司600Nm3/h焦炉气提氢变压吸附装置操作运行说明书得一化工有限公司二00七年八月山西介休第一章前言一、概述本装置是采用变压吸附(简称PSA)法从焦炉煤气(简称COG)中提取氢气,改变操作条件可生产不同纯度的氢气。

本装置采用气相吸附工艺, 因此, 原料气中不应含有任何液体和固体。

在启动和运转这套装置之前, 要求操作人员透彻地阅读本操作运行说明书, 因为不适当的操作会导致运行性能低劣和吸附剂的损坏。

本说明书中涉及到的压力均为表压, 组成浓度均为体积百分数, 流量除专门标注外均为标准状态下的流量。

二、设计参数1、原料气组成:原料气压力: ≥3Kpa (表压);原料气温度: ≤40℃。

2、产品气压力: ≥1.2MPa (表压);产品气流量:600Nm3/h;产品气温度: ≤40℃;产品氢气纯度: H2≥99.9 % CO+CO2≤10PPmO2≤10PPm H2O≤30PPmS≤2PPm3、解吸气压力: ~0.02Mpa (表压);解吸气流量:~550Nm3/h;解吸气温度: ≤40℃。

4、解吸气组成:第二章工艺说明一、提氢工艺流程基本构成本装置采用变压吸附技术从焦炉煤气中提取氢气,焦炉煤气中杂质较多,组成十分复杂,随原料煤不同有较大变化,除有大量的CH4和一定量的N2、CO、CO2、O2外还有少量的高碳烃类、萘、苯、无机硫、焦油等,后者都是些高沸点、大分子量的组份,很难在常温下解吸,对变压吸附采用的吸附剂而言,吸附能力相当强,这些杂质组分会逐渐积累在吸附剂中而导致吸附剂性能下降,因此本装置采用两种不同的吸附工艺,变温吸附工艺和变压吸附工艺。

经过脱萘脱油后压缩的焦炉煤气首先通过变温吸附工艺除去C5以上的烃类和其它高沸点杂质组份,达到预净化焦炉煤气的目的,然后再经过变压吸附工艺除去除氮、甲烷、一氧化碳及二氧化碳等气体组份,获得纯度约为99.5%的氢气,最后再经过精脱硫、脱氧、干燥系统的净化得到99.9%的产品氢气。

焦炉煤气生产lng余气制氢工艺流程

焦炉煤气生产lng余气制氢工艺流程

焦炉煤气生产LNG余气制氢工艺流程随着化工工业的发展,氢气已经成为一种重要的能源和化工原料。

而焦炉煤气生产LNG(液化天然气)过程中产生的余气,可以通过合理的工艺流程转化为高纯度的氢气,具有重要的经济和环保意义。

本文将介绍焦炉煤气生产LNG余气制氢的工艺流程及其原理。

一、焦炉煤气生产LNG的余气组成及特点1. 余气组成焦炉煤气生产LNG的余气主要包括CO、CO2、CH4、H2和其他杂质气体,其中CO和CO2含量较高,CH4和H2含量较低,同时还含有少量的硫化氢、氨等有害气体。

2. 特点焦炉煤气生产LNG的余气具有高热值、低温、高烟气含量等特点,同时由于含有大量的CO和CO2,因此需要经过一系列的处理和转化才能得到高纯度的氢气。

二、焦炉煤气生产LNG余气制氢工艺流程1. 粗气处理首先对焦炉煤气生产LNG的余气进行粗气处理,包括除酸、除水、除尘等工艺,以保证后续制氢过程的稳定进行。

2. 变换反应经过粗气处理后的余气进入变换反应器,利用变换催化剂将CO和水蒸气转化为CO2和H2,即进行水煤气变换反应。

3. 吸附分离通过吸附剂对变换反应产物进行分离,得到高纯度的H2气体,并且可以实现CO2的再循环利用,提高氢气的产率。

4. 催化裂解可根据实际情况考虑采用催化裂解技术进一步提高H2产率。

5. 精气制备通过精气制备装置将得到的高纯度H2气体进行精制和纯化,以满足不同工艺和产品的要求。

这是焦炉煤气生产LNG余气制氢的工艺流程及原理,通过合理的工艺设计和操作控制,可以实现对焦炉煤气生产LNG余气的高效利用,提高生产效率,降低能源消耗,并且减少环境污染,具有重要的经济和社会价值。

需要指出的是,考虑到生产中的实际情况和技术水平,实际操作中可能会有所不同,需要根据具体情况进行调整和优化。

希望能够对相关工程技术人员和决策者提供一定的参考和借鉴价值。

随着焦炉煤气生产LNG余气制氢技术的不断完善和发展,其在工业生产中的应用也越来越广泛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焦炉煤气变压吸附制氢新工艺的开发与应用
焦炉煤气变压吸附(PSA)制氢工艺利用焦化公司富余放散的焦炉煤气, 从杂质极多、难提纯的气体中长周期、稳定、连续地提取纯氢, 不但解决了焦化公司富余煤气放散燃烧对大气的污染问题;而且还减少了大量焦炭能源的耗用及废水、废气、废渣的排污问题; 是一个综合利用、变废为宝的环保型项目; 同时也是一个低投入、高产出、多方受益的科技创新项目。

该装置首次采用先进可靠的新工艺, 其经济效益、社会效益可观, 对推进国内PSA技术进步也有重大意义。

1942年德国发表了第一篇无热吸附净化空气的文献、20世纪60年代初, 美国联合碳化物(Union Carbide)公司首次实现了变压吸附四床工艺技术工业化, 进入20世纪70年代后, 变压吸附技术获得了迅速的发展。

装置数量剧增, 装置规模不断扩大, 使用范围越来越广, 主要应用于石油化工、冶金、轻工及环保等领域。

本套大规模、低成木提纯氢气装罝, 是用难以净化的焦炉煤气为原料, 国内还没有同类型的装置, 而且走在了世界同行业的前列。

1、焦炉煤气PSA制氢新工艺。

传统的焦炉煤气制氢工艺按照正常的净化分离步骤是: 焦炉煤气首先经过焦化系统的预处理, 脱除大部分烃类物质; 经初步净化后的原料气再经过湿法脱硫、干法脱萘、压缩机、精脱萘、精脱硫和变温吸附(TSA)系统, 最后利用PSA制氢工艺提纯氢气, 整
个系统设备投资大、工业处理难度大、环境污染严重、操作不易控制、生产成本高、废物排放量大, 因此用焦炉煤气PSA制氢在某种程度上受到一定的限制, 因此没有被大规模的应用到工业生产当中。

本装置釆用的生产工艺是当前国内焦炉煤气PSA制氢工艺中较先进的生产工艺, 它生产成本低、效率高, 能解决焦炉煤气制氢过程中杂质难分离的问题, 从而推动了焦炉煤气PSA制氢的发展。

该工艺的特点是: 焦炉煤气压缩采用分步压缩法、冷冻净化及二段脱硫法等新工艺技术。

1.1工艺流程。

PSA制氢新工艺如图1所示。

该裝罝工艺流程分为5个工序: A、原料气压缩工序(简称100#工序), B、冷冻净化分离(简称200#工序) , C、PSA-C/R工序及精脱硫工序( 简称300#工序) , D、半成品气压缩( 简称400#工序) E、PSA-H2工序及脱氧工序(简称500#工序) 。

裝置所用的原料气来自焦炉煤气, 因净化难度高, 故气体质量较差, 分离等级较低。

表1为原料煤气组成。

100#工序中, 首先把焦炉煤气经过螺杆压缩机对煤气进行加压, 将煤气压力从0.010〜0.015MPa加压至0.580MPa, 并经冷却器冷却至40〜45℃后输出。

经压缩冷却后的煤气含有机械水、焦油、萘、苯等组分, 易对后工序吸附剂造成中毒或吸附剂性能下降, 该装置设计冰机冷冻分离200#工序( 冷却器为一开一备)对上述杂质进行脱除, 此时, 重组分物质被析出停留在分离器内, 当冷却器前后压差高于设定值或运行一段时间后, 自动切换至另一个系统, 对停止运行的系统进入加热吹扫, 利用低压蒸汽对冷却器和分离器内附着的重组分进行吹除, 完成后处于待用状态, 经分离后, 仍有微量重组分杂质蒸汽带入煤气中, 随着裝罝运行时间的增长, 会逐步造成后续工段吸附剂中毒, 因此, 在冷冻分离后增加了除油器,主要是精脱重组分及水蒸气。

煤气进入300#PSA-C/R工序, 该工序的主要目的是脱除煤气中强吸附组分HCN、C2+、CO2、H2S、NH3、NO、有机硫以及大部分CH4、CO、N2等;经过300#工序后的半成品气已得到净化, 对压缩机工作条件要求较低, 釆用一级活塞式压缩工艺, 将半成品气从0.50MPa压缩至1.25MPa, 再进
入PSA- H2工序(在PSA-C/R和提氢工序之间设有脱氧工序, 是因为经脱氧反应后会生成水分, 传统工艺需要等压干燥脱水系统, 该系统选用的二段法新工艺不但节约了投资, 而且降低了操作运行费。

500#工序PSA- H2在传统的PSA制氢工艺中是整套装置的核心部分, 而在本装置工艺中只是作为对氢气的提纯, 即从上道工序中经脱碳后得到氢体积分数为95%〜98%的原料气, 再提纯到99.99%后, 作为商品氢出售。

1.2工艺方案的选择。

1.2.1焦炉煤气压缩采用螺杆式压缩机。

焦炉煤气的压缩国内传统工艺流程中几乎均采用活塞式压缩机。

而该装置根据对制氢工艺新技术的掌握, 针对原料气的特点, 在焦炉煤气压缩的问题上, 经多方论证后, 确定采用分步压缩方案, 即低压段采用螺杆压缩机, 脱除杂质组分后, 再用活塞式压缩机升压, 这种低压段大气量将焦炉煤气压缩到0.55〜0.60MPa的螺杆压缩机在国内尚属首次使用。

釆用螺杆压缩机压缩焦炉煤气最大的优点是: 螺杆机结构简单、运行时间长, 能够保证裝置长周期安全稳定运行, 对原料气烃类杂质含量要求不高, 无需备用压缩机。

与活塞式压缩机相比, 无需维修频繁堵塞的气阀( 原料气中焦油及萘含量较高, 故需经常停车更换气阀内件) , 维修工作量几乎为零。

而传统的往复式压缩机辅助设备多、检修频率高, 若用于焦炉煤气压缩, 气阀更易堵塞, 维修工作量大, 还需备用压缩机。

相关文档
最新文档