高考数学模拟复习试卷试题模拟卷1354
高考模拟复习试卷试题模拟卷高三数学数学试卷文科
高考模拟复习试卷试题模拟卷高三数学数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=15.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1) C.(0,] D.(0,]∪[,]二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为.10.(5分)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料 A B C 甲 4 8 3乙 5 5 10现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.17.(13分)已知{an}是等比数列,前n项和为Sn(n∈N*),且﹣=,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(﹣1)nb}的前2n项和.18.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.天津市高考数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}【分析】根据题意,将集合B用列举法表示出来,可得B={1,3,5},由交集的定义计算可得答案.【解答】解:根据题意,集合A={1,2,3},而B={y|y=2x﹣1,x∈A},则B={1,3,5},则A∩B={1,3},故选:A.【点评】本题考查集合的运算,注意集合B的表示方法.2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.【分析】利用互斥事件的概率加法公式即可得出.【解答】解:∵甲不输与甲、乙两人下成和棋是互斥事件.∴根据互斥事件的概率计算公式可知:甲不输的概率P=+=.故选:A.【点评】本题考查互斥事件与对立事件的概率公式,关键是判断出事件的关系,然后选择合适的概率公式,属于基础题.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.【分析】根据主视图和俯视图作出几何体的直观图,找出所切棱锥的位置,得出答案.【解答】解:由主视图和俯视图可知切去的棱锥为D﹣AD1C,棱CD1在左侧面的投影为BA1,故选:B.【点评】本题考查了棱锥,棱柱的结构特征,三视图,考查空间想象能力,属于基础题.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=1【分析】利用双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,求出几何量a,b,c,即可求出双曲线的方程.【解答】解:∵双曲线﹣=1(a>0,b>0)的焦距为2,∴c=,∵双曲线的一条渐近线与直线2x+y=0垂直,∴=,∴a=2b,∵c2=a2+b2,∴a=2,b=1,∴双曲线的方程为=1.故选:A.【点评】本题考查双曲线的方程与性质,考查待定系数法的运用,确定双曲线的几何量是关键.5.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】直接根据必要性和充分判断即可.【解答】解:设x>0,y∈R,当x>0,y=﹣1时,满足x>y但不满足x>|y|,故由x>0,y∈R,则“x>y”推不出“x>|y|”,而“x>|y|”⇒“x>y”,故“x>y”是“x>|y|”的必要不充分条件,故选:C.【点评】本题考查了不等式的性质、充要条件的判定,考查了推理能力与计算能力,属于基础题.6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)【分析】根据函数的对称性可知f(x)在(0,+∞)递减,故只需令2|a﹣1|<即可.【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减.∵2|a﹣1|>0,f(﹣)=f(),∴2|a﹣1|<=2.∴|a﹣1|,解得.故选:C.【点评】本题考查了函数的单调性,奇偶性的性质,属于中档题.7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:C.【点评】本题考查平面向量的数量积运算,考查向量加减法的三角形法则,是中档题.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1) C.(0,] D.(0,]∪[,]【分析】函数f(x)=,由f(x)=0,可得=0,解得x=∉(π,2π),因此ω∉∪∪∪…=∪,即可得出.【解答】解:函数f(x)=+sinωx﹣=+sinωx=,由f(x)=0,可得=0,解得x=∉(π,2π),∴ω∉∪∪∪…=∪,∵f(x)在区间(π,2π)内没有零点,∴ω∈∪.故选:D.【点评】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为 1 .【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+i)z=2,得,∴z的实部为1.故答案为:1.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.10.(5分)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为3 .【分析】先求导,再带值计算.【解答】解:∵f(x)=(2x+1)ex,∴f′(x)=2ex+(2x+1)ex,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.【点评】本题考查了导数的运算法则,属于基础题.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为 4 .【分析】根据循环结构,结合循环的条件,求出最后输出S的值.【解答】解:第一次循环:S=8,n=2;第二次循环:S=2,n=3;第三次循环:S=4,n=4,结束循环,输出S=4,故答案为:4.【点评】本题主要考查程序框图,循环结构,注意循环的条件,属于基础题.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为(x﹣2)2+y2=9 .【分析】由题意设出圆的方程,把点M的坐标代入圆的方程,结合圆心到直线的距离列式求解.【解答】解:由题意设圆的方程为(x﹣a)2+y2=r2(a>0),由点M(0,)在圆上,且圆心到直线2x﹣y=0的距离为,得,解得a=2,r=3.∴圆C的方程为:(x﹣2)2+y2=9.故答案为:(x﹣2)2+y2=9.【点评】本题考查圆的标准方程,训练了点到直线的距离公式的应用,是中档题.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.【分析】由BD=ED,可得△BDE为等腰三角形,过D作DH⊥AB于H,由相交弦定理求得DH,在Rt△DHE中求出DE,再由相交弦定理求得CE.【解答】解:如图,过D作DH⊥AB于H,∵BE=2AE=2,BD=ED,∴BH=HE=1,则AH=2,BH=1,∴DH2=AH•BH=2,则DH=,在Rt△DHE中,则,由相交弦定理可得:CE•DE=AE•EB,∴.故答案为:.【点评】本题考查与圆有关的比例线段,考查相交弦定理的应用,是中档题.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是[,).【分析】由减函数可知f(x)在两段上均为减函数,且在第一段的最小值大于或等于第二段上的最大值,作出|f(x)|和y=2﹣的图象,根据交点个数判断3a与2的大小关系,列出不等式组解出.【解答】解:∵f(x)是R上的单调递减函数,∴y=x2+(4a﹣3)x+3a在(﹣∞.,0)上单调递减,y=loga(x+1)+1在(0,+∞)上单调递减,且f(x)在(﹣∞,0)上的最小值大于或等于f(0).∴,解得≤a≤.作出y=|f(x)|和y=2﹣的函数草图如图所示:由图象可知|f(x)|=2﹣在[0,+∞)上有且只有一解,∵|f(x)|=2﹣恰有两个不相等的实数解,∴x2+(4a﹣3)x+3a=2﹣在(﹣∞,0)上只有1解,即x2+(4a﹣)x+3a﹣2=0在(﹣∞,0)上只有1解,∴或,解得a=或a<,又≤a≤,∴.故答案为[,).【点评】本题考查了分段函数的单调性,函数零点的个数判断,结合函数函数图象判断端点值的大小是关键,属于中档题.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.【分析】(1)利用正弦定理将边化角即可得出cosB;(2)求出sinA,利用两角和的正弦函数公式计算.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.【点评】本题考查了正弦定理解三角形,两角和的正弦函数,属于基础题.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料 A B C 甲 4 8 3乙 5 5 10现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.【分析】(Ⅰ)设出变量,建立不等式关系,即可作出可行域.(Ⅱ)设出目标函数,利用平移直线法进行求解即可.【解答】解:(Ⅰ)由已知x,y满足不等式,则不等式对应的平面区域为,(Ⅱ)设年利润为z万元,则目标函数为z=2x+3y,即y=﹣x+,平移直线y=﹣x+,由图象得当直线经过点M时,直线的截距最大,此时z最大,由得,即M(20,24),此时z=40+72=112,即分别生产甲肥料20车皮,乙肥料24车皮,能够产生最大的利润,最大利润为112万元.【点评】本题主要考查线性规划的应用,根据条件建立约束条件,作出可行域,利用平移法是解决本题的关键.17.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.【分析】(1)利用中位线定理,和平行公理得到四边形OGEF是平行四边形,再根据线面平行的判定定理即可证明;(2)根据余弦定理求出BD=,继而得到BD⊥AD,再根据面面垂直的判定定理即可证明;(3)先判断出直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,再根据余弦定理和解直角三角形即可求出答案.【解答】证明:(1)BD的中点为O,连接OE,OG,在△BCD中,∵G是BC的中点,∴OG∥DC,且OG=DC=1,又∵EF∥AB,AB∥DC,∴EF∥OG,且EF=OG,即四边形OGEF是平行四边形,∴FG∥OE,∵FG⊄平面BED,OE⊂平面BED,∴FG∥平面BED;(2)证明:在△ABD中,AD=1,AB=2,∠BAD=60°,由余弦定理可得BD=,仅而∠ADB=90°,即BD⊥AD,又∵平面AED⊥平面ABCD,BD⊂平面ABCD,平面AED∩平面ABCD=AD,∴BD⊥平面AED,∵BD⊂平面BED,∴平面BED⊥平面AED.(Ⅲ)∵EF∥AB,∴直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,过点A作AH⊥DE于点H,连接BH,又平面BED∩平面AED=ED,由(2)知AH⊥平面BED,∴直线AB与平面BED所成的角为∠ABH,在△ADE,AD=1,DE=3,AE=,由余弦定理得cos∠ADE=,∴sin∠ADE=,∴AH=AD•,在Rt△AHB中,sin∠ABH==,∴直线EF与平面BED所成角的正弦值【点评】本题考查了直线与平面的平行和垂直,平面与平面的垂直,直线与平面所成的角,考查了空间想象能力,运算能力和推理论证能力,属于中档题.18.(13分)已知{an}是等比数列,前n项和为Sn(n∈N*),且﹣=,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(﹣1)nb}的前2n项和.【分析】(1)根据等比数列的通项公式列方程解出公比q,利用求和公式解出a1,得出通项公式;(2)利用对数的运算性质求出bn,使用分项求和法和平方差公式计算.【解答】解:(1)设{an}的公比为q,则﹣=,即1﹣=,解得q=2或q=﹣1.若q=﹣1,则S6=0,与S6=63矛盾,不符合题意.∴q=2,∴S6==63,∴a1=1.∴an=2n﹣1.(2)∵bn是log2an和log2an+1的等差中项,∴bn=(log2an+log2an+1)=(log22n﹣1+log22n)=n﹣.∴bn+1﹣bn=1.∴{bn}是以为首项,以1为公差的等差数列.设{(﹣1)nbn2}的前2n项和为Tn,则Tn=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)=b1+b2+b3+b4…+b2n﹣1+b2n===2n2.【点评】本题考查了等差数列,等比数列的性质,分项求和的应用,属于中档题.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.【分析】(1)由题意画出图形,把|OF|、|OA|、|FA|代入+=,转化为关于a的方程,解方程求得a值,则椭圆方程可求;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得B的坐标,再写出MH所在直线方程,求出H的坐标,由BF⊥HF,得,整理得到M的坐标与k的关系,由∠MOA=∠MAO,得到x0=1,转化为关于k的等式求得k的值.【解答】解:(1)由+=,得+=,即=,∴a[a2﹣(a2﹣3)]=3a(a2﹣3),解得a=2.∴椭圆方程为;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),设B(x1,y1),M(x0,k(x0﹣2)),∵∠MOA=∠MAO,∴x0=1,再设H(0,yH),联立,得(3+4k2)x2﹣16k2x+16k2﹣12=0.△=(﹣16k2)2﹣4(3+4k2)(16k2﹣12)=144>0.由根与系数的关系得,∴,,MH所在直线方程为y﹣k(x0﹣2)=﹣(x﹣x0),令x=0,得yH=(k+)x0﹣2k,∵BF⊥HF,∴,即1﹣x1+y1yH=1﹣[(k+)x0﹣2k]=0,整理得:=1,即8k2=3.∴k=﹣或k=.【点评】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,体现了“整体运算”思想方法和“设而不求”的解题思想方法,考查运算能力,是难题.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.【分析】(1)求出f(x)的导数,讨论a≤0时f′(x)≥0,f(x)在R上递增;当a>0时,由导数大于0,可得增区间;导数小于0,可得减区间;(2)由条件判断出a>0,且x0≠0,由f′(x0)=0求出x0,分别代入解析式化简f (x0),f(﹣2x0),化简整理后可得证;(3)设g(x)在区间[﹣1,1]上的最大值M,根据极值点与区间的关系对a分三种情况讨论,运用f(x)单调性和前两问的结论,求出g(x)在区间上的取值范围,利用a的范围化简整理后求出M,再利用不等式的性质证明结论成立.【解答】解:(1)若f(x)=x3﹣ax﹣b,则f′(x)=3x2﹣a,分两种情况讨论:①、当a≤0时,有f′(x)=3x2﹣a≥0恒成立,此时f(x)的单调递增区间为(﹣∞,+∞),②、当a>0时,令f′(x)=3x2﹣a=0,解得x=或x=,当x>或x<﹣时,f′(x)=3x2﹣a>0,f(x)为增函数,当﹣<x<时,f′(x)=3x2﹣a<0,f(x)为减函数,故f(x)的增区间为(﹣∞,﹣),(,+∞),减区间为(﹣,);(2)若f(x)存在极值点x0,则必有a>0,且x0≠0,由题意可得,f′(x)=3x2﹣a,则x02=,进而f(x0)=x03﹣ax0﹣b=﹣x0﹣b,又f(﹣2x0)=﹣8x03+2ax0﹣b=﹣x0+2ax0﹣b=f(x0),由题意及(Ⅰ)可得:存在唯一的实数x1,满足f(x1)=f(x0),其中x1≠x0,则有x1=﹣2x0,故有x1+2x0=0;(Ⅲ)设g(x)在区间[﹣1,1]上的最大值M,max{x,y}表示x、y两个数的最大值,下面分三种情况讨论:①当a≥3时,﹣≤﹣1<1≤,由(I)知f(x)在区间[﹣1,1]上单调递减,所以f(x)在区间[﹣1,1]上的取值范围是[f(1),f(﹣1)],因此M=max{|f(1)|,|f(﹣1)|}=max{|1﹣a﹣b|,|﹣1+a﹣b|}=max{|a﹣1+b|,|a﹣1﹣b|}=,所以M=a﹣1+|b|≥2②当a<3时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)≥=f(),f(1)≤=,所以f(x)在区间[﹣1,1]上的取值范围是[f(),f(﹣)],因此M=max{|f()|,|f(﹣)|}=max{||,||}=max{||,||}=,③当0<a<时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)<=f(),f(1)>=,所以f(x)在区间[﹣1,1]上的取值范围是[f(﹣1),f(1)],因此M=max{|f(﹣1)|,|f(1)|}=max{|﹣1+a﹣b|,|1﹣a﹣b|}=max{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|>,综上所述,当a>0时,g(x)在区间[﹣1,1]上的最大值不小于.【点评】本题考查导数的运用:求单调区间和最值,不等式的证明,注意运用分类讨论的思想方法和转化思想,考查分析法在证明中的应用,以及化简整理、运算能力,属于难题.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
2024年高考数学模拟试题与答案解析
2024年高考数学模拟试题与答案解析一、选择题1.设集合A={x|x=2k,k∈Z},B={x|x=3k,k∈Z},则A∩B={()}A.{x|x=6k,k∈Z}B.{x|x=2k,k∈Z}C.{x|x=3k,k∈Z}D.{x|x=k,k∈Z}【答案】B解析:集合A包含所有2的倍数,集合B包含所有3的倍数。
A ∩B表示同时属于A和B的元素,即同时是2和3的倍数的数,也就是6的倍数。
所以A∩B={x|x=6k,k∈Z},故选B。
2.若函数f(x)=x²-4x+c的图像的对称轴是x=2,则c的值为()A.4B.3C.2D.1【答案】A解析:函数f(x)=x²-4x+c的图像的对称轴是x=-b/2a,即x=2。
根据对称轴的公式,得到-(-4)/(21)=2,解得c=4。
故选A。
3.已知等差数列的前n项和为Sn=n(a1+an)/2,若S3=18,S6-S3=24,则a4的值为()A.6B.8C.10D.12【答案】B解析:根据等差数列的前n项和公式,得到S3=3(a1+a3)/2=18,即a1+a3=12。
又因为S6-S3=24,得到a4+a5+a6=24。
由等差数列的性质,a3+a6=a4+a5。
将a3+a6替换为a4+a5,得到3a4+3a5=48,即a4+a5=16。
解方程组a1+a3=12和a4+a5=16,得到a4=8。
故选B。
二、填空题4.若|x-2|≤3,则|x+1|的取值范围是______【答案】-2≤x≤5解析:由|x-2|≤3,得到-3≤x-2≤3,即-1≤x≤5。
再由|x+1|的图像可知,当-3≤x≤5时,|x+1|的取值范围是-2≤x≤5。
5.已知函数f(x)=2x²-3x+1,求f(1/2)的值。
【答案】3/4解析:将x=1/2代入函数f(x),得到f(1/2)=2(1/2)²-3(1/2)+1=2/4-3/2+1=3/4。
三、解答题6.(1)求证:对任意正整数n,都有n²+2n+1≥n+2。
山东省临沂市2024高三冲刺(高考数学)人教版摸底(备考卷)完整试卷
山东省临沂市2024高三冲刺(高考数学)人教版摸底(备考卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题古希腊数学家欧几里得在《几何原本》中描述了圆锥曲线的共性,并给出了圆锥曲线的统一定义,只可惜对这一定义欧几里得没有给出证明.经过了500年,到了3世纪,希腊数学家帕普斯在他的著作《数学汇篇》中完善了欧几里得关于圆锥曲线的统一定义,并对这一定义进行了证明.他指出,到定点的距离与到定直线的距离的比是常数的点的轨迹叫做圆锥曲线:当时,轨迹为椭圆;当时,轨迹为抛物线;当时,轨迹为双曲线.现有方程表示的曲线是双曲线,则的取值范围为( )A .B .C .D .第(2)题从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率是A.B .C .D .第(3)题已知集合,,则( )A.B .C .D .第(4)题棱长为3的正方体中,点E ,F 满足,,则点E 到直线的距离为( )A .B .C .D .第(5)题定义两集合的差集:且,已知集合,,则的子集个数是( )个.A .2B .4C .8D .16第(6)题如图,有8个不同颜色的正方形盒子组成的调味盒,现将编号为的4个盖子盖上(一个盖子配套一个盒子),要求A ,B 不在同一行也不在同一列,C ,D 也是此要求.那么不同的盖法总数为( )12345678A .224B .336C .448D .576第(7)题已知一个几何体的三视图如图所示,则该几何体的表面积为( )A .B .C .D .第(8)题已知函数的定义域为,且,则( )A .B .C .D .二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知抛物线的焦点为,直线,过点与圆分别切于,,两点,交于点,和,,则( )A .与没有公共点B .经过,,三点的圆的方程为C.D.第(2)题若函数则()A.的最小正周期为10B.的图象关于点对称C.在上有最小值D.的图象关于直线对称第(3)题已知函数,则()A .的图象向右平移个单位长度后得到函数的图象B .的图象与的图象关于y轴对称C.的单调递减区间为D.在上有3个零点,则实数a的取值范围是三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题圆心为,且截直线所得弦长为的圆的方程为___________.第(2)题甲、乙两人进行象棋比赛,约定五局三胜制,假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立,则甲在4局以内(含4局)赢得比赛的概率______________;用表示比赛决出胜负时的总局数,则_____________.第(3)题展开式中的系数是______________.(用数字作答)四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)求的单调区间;(2)证明:(i);(ii).(备注:)第(2)题记的内角的对边分别为,已知.(1)若,求;(2)若,求的面积.第(3)题设数阵,其中.设,其中且.定义变换为“对于数阵的每一行,若其中有或,则将这一行中每个数都乘以;若其中没有且没有,则这一行中所有数均保持不变”表示“将经过变换得到,再将经过变换得到以此类推,最后将经过变换得到.记数阵中四个数的和为.(1)若,写出经过变换后得到的数阵,并求的值;(2)若,求的所有可能取值的和;(3)对任意确定的一个数阵,证明:的所有可能取值的和不超过.第(4)题已知函数.(1)当时,证明::(2)若函数在上单调递减,求的取值范围.第(5)题已知公差不为0的等差数列的前项和为成等差数列,且成等比数列.(1)求的通项公式;(2)若的前项和为.证明:.。
2024年高考数学精选模拟试卷及答案
2024年高考数学精选模拟试卷及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.现要完成下列2项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查;①东方中学共有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 较为合理的抽样方法是( )4.现将5个代表团人员安排至甲、乙、丙三家宾馆入住,要求同一个代表团人员住同一家宾馆,且每家宾馆至少有一个代表团入住.若这5个代表团中,A B 两个代表团已经入住甲宾馆且不再安排其他代表团入住甲宾馆,则不同的入住方案种数为( ) A .6B .12C .16D .185.下列命题中正确的个数是①命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠; ①“0a ≠”是“20a a +≠”的必要不充分条件; ①若p q ∧为假命题,则p ,q 为假命题;①若命题2000:,10p x R x x ∃∈++<,则:p x ⌝∀∈R ,210x x ++≥.二、多选题三、填空题四、解答题16.2018年茂名市举办“好心杯”少年美术书法作品比赛,某赛区收到200件参赛作品,为了解作品质量,现从这些作品中随机抽取12件作品进行试评.成绩如下:67,82,78,86,96,81,73,84,76,59,85,93. (1)求该样本的中位数和方差;(2)若把成绩不低于85分(含85分)的作品认为为优秀作品,现在从这12件作品中任意抽取3件,求抽到优秀作品的件数的分布列和期望.17.某市司法部门为了宣传《宪法》举办法律知识问答活动,随机对该市18~68岁的人群抽取一个容量为n 的样本,并将样本数据分成五组:[)1828,,[)2838,,[)3848,,[)4858,,[)5868,,再将其按从左到右的顺序分别编号为第1组,第2组,…,第5组,绘制了样本的频率分布直方图;并对回答问题情况进行统计后,结果如下表所示.(1)分别求出a,x的值;(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖概率.18.某食品公司在八月十五来临之际开发了一种月饼礼盒,礼盒中共有7个两种口味的月饼,其中4个五仁月饼和3个枣泥月饼.(1)一次取出两个月饼,求两个月饼为同一种口味的概率;(2)依次不放回地从礼盒中取2个月饼,求第1次、第2次取到的都是五仁月饼的概率;(3)依次不放回地从礼盒中取2个月饼,求第2次取到枣泥月饼的概率.19.在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,大于等于90分的选手将直接参加竞赛选拔赛.已知成绩合格的100名参赛选手成绩的60,70,80,90,90,100的频率构成等比数列.频率分布直方图如图所示,其中[)[)[](2)若试剂A在连续进行的三轮测试中,都有2X ,则认为该试剂对药品B的酸碱值检测效果是稳定的,求出出现这种现象的概率.参考答案:a4)中位数为81.5,方差为,x=9(2)。
山东省临沂市2024年数学(高考)部编版摸底(押题卷)模拟试卷
山东省临沂市2024年数学(高考)部编版摸底(押题卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题已知抛物线的焦点为,准线为,过抛物线上一点作的垂线,垂足为,若在轴正方向上的投影为,则的面积为()A.B.C.D.6第(2)题将一枚质地均匀的骰子连续抛掷3次,则出现三个点数之和为6的概率为()A.B.C.D.第(3)题已知a=log23.6,b=log43.2,c=log43.6,则( ).A.a>b>c B.a>c>bC.b>a>c D.c>a>b第(4)题在区间[-1,1]上随机取一个数x,的值介于0到之间的概率为A.B.C.D.第(5)题正三棱锥的侧棱长和底面边长相等,如果E,F分别为SC,AB的中点,那么异面直线EF与SA所成角为 ( )A.B.C.D.第(6)题过双曲线的下顶点作某一条渐近线的垂线,分别与两条渐近线相交于两点,若,则C的离心率为()A.B.C.D.3第(7)题魏晋时期数学家刘徽(图a)为研究球体的体积公式,创造了一个独特的立体图形“牟合方盖”,它由完全相同的四个曲面构成,相对的两个曲面在同一圆柱的侧面上.如图,将两个底面半径为1的圆柱分别从纵横两个方向嵌入棱长为2的正方体时(如图b),两圆柱公共部分形成的几何体(如图c)即得一个“牟合方盖”,图d是该“牟合方盖”的直观图(图中标出的各点A,B,C,D,P,Q均在原正方体的表面上).由“牟合方盖”产生的过程可知,图d中的曲线PBQD为一个椭圆,则此椭圆的离心率为()A.B.C.D.第(8)题已知,,且,则下列不等式成立的是()A.B.C.D.二、多项选择题(本题包含3小题,每小题6分,共18分。
在每小题给出的四个选项中,至少有两个选项正确。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题某班语文老师对该班甲、乙、丙、丁4名同学连续7周每周阅读的天数(每周阅读天数可以是1,2,3,4,5,6,7)进行统计,根据统计所得数据对这4名同学这7周每周的阅读天数分别做了如下描述:甲:中位数为4,极差为3;乙:中位数为3,众数为5;丙:中位数为4,平均数为3;丁:平均数为3,方差为3.那么可以判断一周阅读天数一定没有出现7天的是()A.甲B.乙C.丙D.丁第(2)题在中,若,则()A.B.C.D.第(3)题已知函数满足,,,下列说法正确的是()A.B.C.时,D.三、填空(本题包含3个小题,每小题5分,共15分。
2024年高考数学模拟试题含答案(一)
2024年高考数学模拟试题含答案(一)一、选择题(每题5分,共40分)1. 若函数f(x) = 2x - 1在区间(0,2)上是增函数,则实数a的取值范围是()A. a > 0B. a ≥ 1C. a ≤ 1D. a < 0【答案】C【解析】由题意知,f'(x) = 2 > 0,所以函数在区间(0,2)上是增函数。
又因为f(0) = -1,f(2) = 3,所以f(x)在区间(0,2)上的取值范围是(-1,3)。
要使得f(x)在区间(0,2)上是增函数,只需保证a ≤ 1。
2. 已知函数g(x) = x² - 2x + 1,则下列结论正确的是()A. 函数g(x)在区间(-∞,1)上是增函数B. 函数g(x)在区间(1,+∞)上是减函数C. 函数g(x)的对称轴为x = 1D. 函数g(x)的顶点坐标为(1,0)【答案】D【解析】函数g(x) = x² - 2x + 1 = (x - 1)²,所以函数的顶点坐标为(1,0),对称轴为x = 1。
根据二次函数的性质,当x > 1时,函数g(x)递增;当x < 1时,函数g(x)递减。
3. 已知数列{an}的前n项和为Sn,且满足Sn =2an - 1,则数列{an}的通项公式是()A. an = 2^n - 1B. an = 2^nC. an = 2^n + 1D. an = 2^(n-1)【答案】D【解析】由Sn = 2an - 1,得an = (Sn + 1) / 2。
当n = 1时,a1 = (S1 + 1) / 2 = 1。
当n ≥ 2时,an = (Sn + 1) / 2 = (2an - 1 + 1) / 2 = 2an-1。
所以数列{an}是首项为1,公比为2的等比数列,通项公式为an = 2^(n-1)。
4. 已知函数h(x) = |x - 2| - |x + 1|,则函数h(x)的图像是()A. 两条直线B. 两条射线C. 一个三角形D. 一个抛物线【答案】B【解析】函数h(x) = |x - 2| - |x + 1|表示数轴上点x到点2的距离减去点x到点-1的距离。
2024年高考第三次模拟考试高三数学(考试版)
2024年高考第三次模拟考试高三数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{}4A x x =∈<N ,{}21,B x x n n A ==-∈,P A B = ,则集合P 的子集共有()A .2个B .3个C .4个D .8个2.古希腊数学家毕达哥拉斯通过研究正五边形和正十边形的作图,发现了黄金分隔率,黄金分割率的值也可以用2sin18°表示,即12sin182-=,设12m =,则2tan 811tan 81=+()A.4mB.2m C.m3.若5(4)(2)x m x --的展开式中的3x 的系数为600-,则实数m =()A.8.B.7C.9D.104.甲、乙、丙、丁、戊5位同学报名参加学校举办的三项不同活动,每人只能报其中一项活动,每项活动至少有一个人参加,则甲、乙、丙三位同学所报活动各不相同的概率为()A .518B .625C .925D .895.设n S 为正项等差数列{}n a 的前n 项和.若20232023S =,则4202014a a +的最小值为()A.52B.5C.9D.926.已知函数()()()sin f x x x ωω=+,若沿x 轴方向平移()f x 的图象,总能保证平移后的曲线与直线1y =在区间[]0,π上至少有2个交点,至多有3个交点,则正实数ω的取值范围为()A.82,3⎡⎫⎪⎢⎣⎭B.102,3⎡⎫⎪⎢⎣⎭C.10,43⎡⎫⎪⎢⎣⎭D.[)2,47.已知()6116,ln ,log 71ln 510115a b c =+==-,则()A.a b c >> B.b c a>> C.a c b >> D.c a b>>8.已知正方体1121ABCD A B C D -的棱长为2,P 为线段11C D 上的动点,则三棱锥P BCD -外接球半径的取值范围为()A.,24⎤⎥⎣⎦B.4⎣C.1⎣D.4⎣二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数123,,z z z ,下列说法正确的有()A.若1122z z z z =,则12||||z z =B.若22120z z +=,则120z z ==C.若1213z z z z =,则10z =或23z z =D.若1212||||z z z z -=+,则120z z =10.已知抛物线2:4C x =y 的焦点为F ,准线为l ,过F 的直线与抛物线C 交于A,B 两点,M 为线段AB 中点,,,A B M '''分别为A,B,M 在ι上的射影,且||3||AF BF =,则下列结论中正确的是A.F 的坐标为(1,0)B.||2||A B M F '''=C.,,,A A M F ''四点共圆D.直线AB 的方程为313y x =±+11.对于[]()0,1,x f x ∈满足()()()11,23x f x f x f x f ⎛⎫+-== ⎪⎝⎭,且对于1201x x ≤≤≤.恒有()()12f x f x ≤.则()A .10011011002i i f =⎛⎫=⎪⎝⎭∑B .112624f f⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭C .118080f ⎛⎫= ⎪⎝⎭D .1113216016f ⎛⎫≤≤⎪⎝⎭第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.某工厂生产的产品的质量指标服从正态分布2(100,)N σ.质量指标介于99至101之间的产品为良品,为使这种产品的良品率达到95.45%,则需调整生产工艺,使得σ至多为.(若2~(,)X N μσ,则{||2}0.9545)P X μσ-<=13.ABC △中,,,a b c ,分别为角,,A B C的对边,若3A π=,a b c +=+,则ABC △的面积S 的最小值为.14.函数sin cos ()e e x x f x =-在(0,2π)范围内极值点的个数为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)己知函数()ln f x x ax =-,其中a R ∈.(I)若曲线()y f x =在1x =处的切线在两坐标轴上的截距相等,求a 的值;(II)是否存在实数a ,使得()f x 在(0,]x e ∈上的最大值是-3?若存在,求出a 的值;若不存在,说明理由.16.(本小题满分15分)某景区的索道共有三种购票类型,分别为单程上山票、单程下山票、双程上下山票.为提高服务水平,现对当日购票的120人征集意见,当日购买单程上山票、单程下山票和双程票的人数分别为36、60和24.(1)若按购票类型采用分层随机抽样的方法从这120人中随机抽取10人,再从这10人中随机抽取4人,求随机抽取的4人中恰有2人购买单程上山票的概率.(2)记单程下山票和双程票为回程票,若在征集意见时要求把购买单程上山票的2人和购买回程票的m (2m >且*m ∈N )人组成一组,负责人从某组中任选2人进行询问,若选出的2人的购票类型相同,则该组标为A ,否则该组标为B ,记询问的某组被标为B 的概率为p .(i )试用含m 的代数式表示p ;(ii )若一共询问了5组,用()g p 表示恰有3组被标为B 的概率,试求()g p 的最大值及此时m 的值.17.(本小题满分15分)如图,在平行六面体1111ABCD A B C D -中,AC BD O = ,2AB AD ==,13AA =,11π3BAA BAD DAA ∠=∠=∠=,点P 满足1221333DP DA DC DD =++ .(1)证明:O ,P ,1B 三点共线;(2)求直线1AC 与平面PAB 所成角的正弦值.18.(本小题满分17分)已知椭圆22:11612x y E +=的左右焦点分别为12,F F ,点A 在椭圆E 上,且在第一象限内,满足1|| 5.AF =(1)求12F AF ∠的平分线所在的直线l 的方程;(2)在椭圆E 上是否存在关于直线l 对称的相异的两点,若存在,请找出这两点;若不存在请说明理由;(3)已知双曲线M 与椭圆E 有共同的焦点,且双曲线M 与椭圆E 相交于1234,,,P P P P ,若四边形1234P P P P 的面积最大时,求双曲线M 的标准方程.19.(本小题满分17分)已知数列{}n a ,记集合()(){}*1,,...,1,,N i i j T S i j S i j a a a i j i j +==+++≤<∈.(1)若数列{}n a 为1,2,3,写出集合T ;(2)若2n a n =,是否存在*,N i j ∈,使得(),512S i j =?若存在,求出一组符合条件的,i j ;若不存在,说明理由;(3)若n a n =,把集合T 中的元素从小到大排列,得到的新数列为12,,...,,...m b b b ,若2024m b ≤,求m 的最大值.。
2024高考数学模拟试卷附答案
2024高考数学模拟试卷附答案一、选择题(每题5分,共40分)1. 已知函数f(x) = x² - 2x + 1,则函数f(x)的对称轴方程是()A. x = 1B. x = -1C. x = 0D. x = 22. 已知函数f(x) = |x - 2| - |x + 1|,则f(x)在区间(-∞,0)上是()A. 递增函数B. 递减函数C. 先递增后递减的函数D. 先递减后递增的函数3. 若函数f(x) = (x - 1)² + k在区间(1,+∞)上是减函数,则实数k的取值范围是()A. k ≤ 0B. k ≤ 1D. k ≥ 14. 已知a = 3 + √5,b = 3 - √5,则a² - b²的值为()A. 4B. 6C. 8D. 105. 若函数f(x) = x² + bx + c在x = 1处取得极小值,且f(0) = 4,则b的值为()A. -2B. 2C. -4D. 46. 已知函数f(x) = x³ - 3x² + 3x - 1,则f(x)的极值点是()A. x = 0B. x = 1D. x = 37. 已知函数f(x) = x² + 2x + 3,则函数f(x)的图像与x轴的交点个数为()A. 0B. 1C. 2D. 无法确定8. 若函数f(x) = x² + k在区间(0,1)上是减函数,则实数k的取值范围是()A. k ≤ 0B. k ≤ 1C. k ≥ 0D. k ≥ 1二、填空题(每题5分,共30分)9. 若a = √3,b = √2,则a² - b²的值为__________。
10. 若函数f(x) = x² - 2x + 1的图像与x轴相切,则切点坐标为__________。
11. 若函数f(x) = |x - 2| + |x + 1|的最小值为3,则实数x的取值范围是__________。
高考数学模拟试题及答案
高考数学模拟试题及答案一、选择题(本题共8小题,每小题5分,共40分)1. 若函数f(x)=x^2-4x+3,下列说法正确的是:A. 函数f(x)的图像开口向上B. 函数f(x)的图像开口向下C. 函数f(x)的图像关于x=2对称D. 函数f(x)的图像关于y轴对称2. 已知集合A={x|x^2-5x+6=0},B={x|x^2-3x+2=0},则A∩B 为:A. {1, 2}B. {2, 3}C. {1, 3}D. {2}3. 若直线l:y=kx+b与圆x^2+y^2=1相切,则k的取值范围是:A. -1≤k≤1B. -√2≤k≤√2C. k=0D. k=±√24. 已知等差数列{an}的前三项为1,2,3,则该数列的通项公式为:A. an=nB. an=n+1C. an=2n-1D. an=3n-25. 若复数z满足|z|=2,且z的实部为1,则z的虚部为:A. 1B. -1C. √3D. -√36. 已知函数f(x)=x^3-3x^2+2,求f'(x):A. f'(x)=3x^2-6xB. f'(x)=x^2-6x+2C. f'(x)=3x-6D. f'(x)=x^3-9x^2+67. 若sinθ=1/2,且θ∈(0, π),则cosθ的值为:A. √3/2B. -√3/2C. 1/2D. -1/28. 已知双曲线C:x^2/a^2-y^2/b^2=1(a>0, b>0)的一条渐近线方程为y=x,则双曲线的离心率为:A. √2B. √3C. 2D. 3二、填空题(本题共4小题,每小题5分,共20分)9. 已知等比数列{bn}的前三项为2,6,18,则该数列的公比q 为______。
10. 若函数f(x)=x^2-4x+m,且f(1)=-3,则m的值为______。
11. 已知向量a=(1, -2),b=(2, 3),则向量a·b的值为______。
高考数学模拟试卷复习试题高三模拟卷文科数学
高考数学模拟试卷复习试题高三模拟卷文科数学本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求。
1.已知集合A={x|x23x<0},B={y|y=},则A∩B()A.(0,3)B.[1,3)C.(3,0)D.(3,1]2.若复数z满足z2=4,则复数z的实部为()A.2B.1C.2D.03.已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:“∃x0∈R,x0>0”的否定是“∀x∈R,x2x≤0”,则下列命题是真命题的是()A.p∨(¬q)B.p∧qC.p∨qD.(¬p)∧(¬q)4. 已知圆C过点A(2,4),B(4,2),且圆心C在直线x+y=4上,若直线x+2yt=0与圆C相切,则t的值为()A.6±2B.6±2C.2±6D.6±45.已知函数y=sinωx在[,]上是减函数,则ω的取值范围是()A.[−,0)B.[3,0)C.(0,]D.(0,3]6. 设x1=18,x2=19,x3=20,x4=21,x5=22,将这五个数据依次输入下边程序框进行计算,则输出的S值及其统计意义分别是()A.S=2,即5个数据的方差为2B.S=2,即5个数据的标准差为2C.S=10,即5个数据的方差为10D.S=10,即5个数据的标准差为107.若三角形ABC中,sinCsin(AB)=sin2(A+B),则此三角形的形状是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.某四棱锥的三视图如图所示,则该四棱锥的体积为()A.2B.3C.4D.69.如图,点A(2,m),B(n,2),均在双曲线y=(x>0)上,过点A,B分别作AG⊥y轴,BH⊥x轴,垂足为G,H,下列说法错误的是()A.AO=BO B.∠AOB可能等于30°C.△AOG与△BOH的面积相等D.△AOG≌△BOH10.已知平面区域D={(x,y)|},Z=.若命题“∀(x,y)∈D,Z≥m”为真命题,则实数m的最大值为()A.B.C.D.11.设点M,N为圆x2+y2=9上两个动点,且|MN|=4,若点P为线段3x+4y+15=0(xy≥0)上一点,则|+|的最大值为()A.4B.6C.8D.1212.已知e是自然对数的底数,函数f(x)=(ax2+x)ex,若f(x)在[1,1]上是单调增函数,则a的取值范围是()A.[,0]B.(∞,0)∪[,+∞)C.[0,]D.(∞,]∪[0,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.若函数y=的定义域为R,则k∈。
2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)
2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。
2024年河北高考数学模拟试卷及答案
2024年河北高考数学模拟试卷及答案(一)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知抛物线C :212y x = ,则C 的准线方程为 A . 18x =B .1-8x =C .18y =D .1-8y = 2.已知复数121z i=+ ,复数22z i =,则21z z -=A .1BC ..10 3.已知命题:(0,)ln xp x e x ∀∈+∞>,,则 A .p 是假命题,:(-)ln xp x e x ⌝∃∈∞≤,0,B .p 是假命题, :(0+)ln xp x e x ⌝∃∈∞≤,,C .p 是真命题,:(-)ln xp x e x ⌝∃∈∞≤,0,D .p 是真命题,:(0+)ln xp x e x ⌝∃∈∞≤,,4.已知圆台1O O 上下底面圆的半径分别为1,3,母线长为4,则该圆台的侧面积为 A .8πB .16πC .26πD .32π5.下列不等式成立的是A.66log 0.5log 0.7>B. 0.50.60.6log 0.5>C.65log 0.6log 0.5>D. 0.60.50.60.6>6.某校为了解本校高一男生身高和体重的相关关系,在该校高一年级随机抽取了7名男生,测量了他们的身高和体重得下表:由上表制作成如图所示的散点图:由最小二乘法计算得到经验回归直线1l 的方程为11ˆˆˆy b x a =+,其相关系数为1r ;经过残差分析,点(167,90)对应残差过大,把它去掉后,再用剩下的6组数据计算得到经验回归直线2l 的方程为22ˆˆˆy b x a =+,相关系数为2r .则下列选项正确的是 A .121212ˆˆˆˆ,,b b a a r r <>< B .121212ˆˆˆˆ,,b b a a r r <<> C .121212ˆˆˆˆ,,b b a a r r ><> D .121212ˆˆˆˆ,,b b a a r r >>< 7.函数()y f x =的导数()y f x '=仍是x 的函数,通常把导函数()y f x '=的导数叫做函数的二阶导数,记作()y f x ''=,类似地,二阶导数的导数叫做三阶导数,三阶导数的导数叫做四阶导数一般地,n-1阶导数的导数叫做 n 阶导数,函数()y f x =的n 阶导数记为()n y fx =(),例如xy e =的n 阶导数()()n xx ee =.若()cos 2xf x xe x =+,则()500f =()A .49492+B .49C .50D .50502-8.已知函数()cos()f x x ωϕ=+的部分图象如下,12y =与其交于A ,B 两点. 若3AB π=,则ω=A .1B .2C .3D .4二、选择题:本题共3小题,每小题6分,共18分。
全国高考数学模拟试卷(4套)
全国高考数学模拟试卷(4套)一、选择题(共30题,每题2分,共60分)1. 已知函数 $ f(x) = x^2 4x + 3 $,则下列哪个选项是正确的?A. $ f(x) $ 在 $ x = 2 $ 处取得最小值B. $ f(x) $ 在 $ x = 2 $ 处取得最大值C. $ f(x) $ 在 $ x = 2 $ 处取得极值D. $ f(x) $ 在 $ x = 2 $ 处无极值2. 若 $ \log_2 8 = x $,则 $ x $ 的值为多少?A. 3B. 4C. 5D. 63. 已知等差数列 $ \{a_n\} $,若 $ a_1 = 3 $,$ a_3 = 9 $,则 $ a_5 $ 的值为多少?A. 12B. 15C. 18D. 214. 若 $ \sin^2 x + \cos^2 x = 1 $,则下列哪个选项是正确的?A. $ \sin x $ 和 $ \cos x $ 必须同时为正B. $ \sin x $ 和 $ \cos x $ 必须同时为负C. $ \sin x $ 和 $ \cos x $ 一正一负D. $ \sin x $ 和 $ \cos x $ 可以同时为零5. 若 $ \frac{a}{b} = \frac{c}{d} $,则下列哪个选项是正确的?A. $ a + c = b + d $B. $ ad = bc $C. $ a c = b d $D. $ \frac{a}{c} = \frac{b}{d} $6. 已知 $ a $、$ b $、$ c $ 是等边三角形的三边长,则下列哪个选项是正确的?A. $ a^2 + b^2 = c^2 $B. $ a^2 + c^2 = b^2 $C. $ b^2 + c^2 = a^2 $D. $ a = b = c $7. 若 $ \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 $,则下列哪个选项是正确的?A. 该方程表示椭圆B. 该方程表示双曲线C. 该方程表示抛物线D. 该方程表示圆8. 已知 $ \sqrt{3} $ 是方程 $ x^2 2x + 1 = 0 $ 的根,则该方程的另一根为多少?A. $ 1 \sqrt{3} $B. $ 1 + \sqrt{3} $C. $ 2 \sqrt{3} $D. $ 2 + \sqrt{3} $9. 若 $ a $、$ b $、$ c $ 是三角形的三边长,且 $ a^2 +b^2 = c^2 $,则下列哪个选项是正确的?A. 该三角形是等腰三角形B. 该三角形是等边三角形C. 该三角形是直角三角形D. 该三角形是钝角三角形10. 若 $ \frac{1}{x} + \frac{1}{y} = \frac{1}{z} $,则下列哪个选项是正确的?A. $ x + y = z $B. $ xy = z $C. $ \frac{1}{x} + \frac{1}{y} = z $D. $ x + y + z = 0 $二、填空题(共10题,每题2分,共20分)11. 已知 $ f(x) = 2x + 1 $,若 $ f(3) = 7 $,则 $ f(1)$ 的值为______。
全国高考数学模拟试卷(4套)
全国高考数学模拟试卷(4套)试卷一:基础能力测试一、选择题(每题5分,共50分)1. 若函数 $ f(x) = \sqrt{3x 1} $ 在区间 $[0, 2]$ 上有定义,则 $ x $ 的取值范围是:A. $[0, 1]$B. $[0, 2]$C. $[1, 2]$D. $[1, 3]$2. 已知集合 $ A = \{x | x^2 3x + 2 = 0\} $,则集合 $ A $ 的元素个数是:A. 1B. 2C. 3D. 43. 若 $ a, b $ 是方程 $ x^2 4x + 3 = 0 $ 的两个根,则$ a + b $ 的值是:A. 1B. 2C. 3D. 44. 已知函数 $ f(x) = 2x^3 3x^2 + x $,则 $ f'(1) $ 的值是:A. 2B. 3C. 4D. 55. 若 $ \log_2 8 = x $,则 $ x $ 的值是:A. 2B. 3C. 4D. 56. 已知等差数列 $ \{a_n\} $ 的首项 $ a_1 = 2 $,公差 $ d = 3 $,则第10项 $ a_{10} $ 的值是:A. 29B. 30C. 31D. 327. 若 $ \sin 45^\circ = x $,则 $ x $ 的值是:A. $ \frac{\sqrt{2}}{2} $B. $ \frac{\sqrt{3}}{2} $C. $ \frac{1}{2} $D. $ \frac{1}{\sqrt{2}} $8. 已知函数 $ f(x) = \frac{1}{x} $,则 $ f^{1}(x) $ 的表达式是:A. $ x $B. $ \frac{1}{x} $C. $ x $D. $ \frac{1}{x} $9. 若 $ a^2 = b^2 $,则 $ a $ 和 $ b $ 的关系是:A. $ a = b $B. $ a = b $C. $ a = b $ 或 $ a = b $D. $ a $ 和 $ b $ 无关10. 已知等比数列 $ \{a_n\} $ 的首项 $ a_1 = 1 $,公比 $ q = 2 $,则第5项 $ a_5 $ 的值是:A. 8B. 16C. 32D. 64二、填空题(每题5分,共20分)1. 若 $ x^2 5x + 6 = 0 $,则 $ x $ 的值是 ________。
高考数学模拟试题及答案 (二十套)
【解析】
【分析】
以点 为坐标原点, 、 、 所在直线分别为 、 、 轴建立空间直角坐标系 ,利用空间向量法可判断A选项的正误;证明出 平面 ,分别取棱 、 、 、 、 、 的中点 、 、 、 、 、 ,比较 和六边形 的周长和面积的大小,可判断B选项的正误;利用空间向量法找出平面 与棱 、 的交点 、 ,判断四边形 的形状可判断C选项的正误;将矩形 与矩形 延展为一个平面,利用 、 、 三点共线得知 最短,利用平行线分线段成比例定理求得 ,可判断D选项的正误.
9.Keep是一款具有社交属性的健身APP,致力于提供健身教学、跑步、骑行、交友及健身饮食指导、装备购买等一站式运动解决方案.Keep可以让你随时随地进行锻炼,记录你每天的训练进程.不仅如此,它还可以根据不同人的体质,制定不同的健身计划.小明根据Keep记录的2019年1月至2019年11月期间每月跑步的里程(单位:十公里)数据整理并绘制了下面的折线图.根据该折线图,下列结论正确的是()
,则 , ,所以B正确.
对于选项C、D, ,
令 ,即 ,所以 ,则令 ,
,令 ,得
由函数 的图像性质可知:
时, , 单调递减.
时, , 单调递增.
所以 时, 取得极小值,
即当 时 取得极小值,
又 ,即
又因为在 上 单调递减,所以
所以 时, 取得极小值,
即当 时 取得极大值,
又 ,即
所以
当 时,
所以当 ,即 时,f(x)在(-π,+∞)上无零点,所以C不正确.
A.月跑步里程最小值出现在2月
B.月跑步里程逐月增加
C.月跑步里程的中位数为5月份对应的里程数
D. 1月至5月的月跑步里程相对于6月至11月波动性更小
1. 《2024年高考数学模拟试题及答案》
1. 《2024年高考数学模拟试题及答案》一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)1、已知集合 A ={x |-2 < x < 3},B ={x | x² 5x + 4 <0},则A ∩ B =()A {x | 1 < x < 3}B {x |-2 < x < 1}C {x | 1 < x < 4}D {x |-2 < x < 4}2、复数 z =(1 + i)(2 i)在复平面内对应的点位于()A 第一象限B 第二象限C 第三象限D 第四象限3、已知向量 a =(1, 2),b =(m, -1),若 a ⊥ b,则 m =()A -2B 2C -1/2D 1/24、某中学高一年级有学生 1000 人,高二年级有学生 800 人,高三年级有学生 600 人,现采用分层抽样的方法从该校抽取一个容量为 n的样本,若从高二年级抽取了 80 人,则 n 的值为()A 200B 240C 280D 3205、函数 f(x) = log₂(x² 4x + 3)的单调递增区间是()A (∞, 1)B (∞, 2)C (2, +∞)D (3, +∞)6、若直线 l₁:ax + 2y + 6 = 0 与直线 l₂:x +(a 1)y + a² 1= 0 平行,则 a =()A -1B 2C -1 或 2D 17、已知等差数列{aₙ}的前 n 项和为 Sₙ,若 a₁= 2,S₃= S₅,则公差 d =()A -2B 0C 2D 48、已知圆 C:(x 1)²+(y 2)²= 4 与直线 l:x y + 1 = 0 相交于 A,B 两点,则弦长|AB| =()A 2√2B 2√3C 4D 69、一个几何体的三视图如图所示,则该几何体的体积为()(正视图和侧视图是等腰三角形,底边为 4,高为 4;俯视图是边长为 4 的正方形)A 32B 64C 128/3D 256/310、设函数 f(x) =sin(ωx +φ)(ω > 0,|φ| <π/2)的最小正周期为π,且f(π/8) =√2/2,则()A f(x)在(0, π/2)上单调递减B f(x)在(π/8, 3π/8)上单调递增C f(x)在(0, π/2)上单调递增D f(x)在(π/8, 3π/8)上单调递减11、已知函数 f(x) = x³ 3x,若过点 M(2, t)可作曲线 y = f(x)的三条切线,则实数 t 的取值范围是()A (-6, -2)B (-4, -2)C (-6, 2)D (0, 2)12、已知双曲线 C:x²/a² y²/b²= 1(a > 0,b > 0)的左、右焦点分别为 F₁,F₂,过 F₂作双曲线 C 的一条渐近线的垂线,垂足为 H,若|F₂H| = 2a,则双曲线 C 的离心率为()A √5B 2C √3D √2二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)13、已知函数 f(x) = 2sin(2x +π/6),则 f(x)的最小正周期为_____14、若 x,y 满足约束条件 x +y ≥ 1,x y ≥ -1,2x y ≤ 2,则 z= x + 2y 的最大值为_____15、已知抛物线 y²= 2px(p > 0)的焦点为 F,点 A(4, 2)在抛物线上,且|AF| = 5,则 p =_____16、已知数列{aₙ}满足 a₁= 1,aₙ₊₁= 2aₙ + 1,则 a₅=_____三、解答题(本大题共 6 小题,共 70 分)17、(10 分)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c,已知 a = 3,b = 5,c = 7、(1)求角 C 的大小;(2)求△ABC 的面积18、(12 分)已知数列{aₙ}是等差数列,a₁= 1,a₃+ a₅=14、(1)求数列{aₙ}的通项公式;(2)设数列{bₙ}满足 bₙ = aₙ × 2ⁿ,求数列{bₙ}的前 n 项和 Sₙ19、(12 分)如图,在四棱锥 P ABCD 中,底面 ABCD 是平行四边形,PA ⊥底面 ABCD,PA = AB = 2,AD = 4,∠BAD = 60°(1)证明:BD ⊥平面 PAC;(2)求二面角 P BD A 的余弦值20、(12 分)某工厂生产甲、乙两种产品,已知生产每吨甲产品要用 A 原料 3 吨,B 原料 2 吨;生产每吨乙产品要用 A 原料 1 吨,B原料 3 吨。
高三数学高考模拟试题及答案
高三数学高考模拟试题及答案第一部分选择题1. 已知函数 $f(x) = \dfrac{x^2 - 4}{x - 2}$,则 $f(x)$ 的极限为()A. $\dfrac{1}{2}$B. $-2$C. $+\infty$D. $-\infty$2. 如图,对数函数 $y=\log_{\frac{1}{2}}(x-1)$ 的图像经过两点 $P(4,3)$,$Q(8,y)$。
则 $y=$()A. 3B. 5C. 6D. 73. 在 $\triangle ABC$ 中,$AB=3$,$BC=\dfrac{5}{2}$,$\angle C=90^\circ$,$D$ 为 $BC$ 的中点,$E$ 为 $AC$ 上一点,$BE$ 延长线交 $AD$ 于点 $F$。
则 $EF=$()A. $\dfrac{5}{3}$B. $\dfrac{25}{24}$C. $\dfrac{7}{4}$D. $\dfrac{17}{8}$4. 已知函数 $f(x)=\dfrac{2\sin x+\cos x}{\sin x-2\cos x}$,则$f\left(\dfrac{\pi}{2}+x\right)=$()A. $1+f(x)$B. $1-f(x)$C. $f(x)-1$D. $-1-f(x)$5. 已知 $x>2$,$\log_2{(2x-3)}+\log_2{(x+1)}=4$,则 $x=$()A. 3B. 5C. 7D. 9答案:1. D2. B3. B4. A5. C第二部分简答题1. 证明 $x+y\geqslant 2\sqrt{xy}$ 为二次函数 $y=\left(x-\dfrac{y}{2}\right)^2-\dfrac{y^2}{4}$ 的非负性。
2. 已知 $a^2+b^2=1$,求 $\dfrac{5a+12b}{13}$ 的最大值。
3. 在动态规划中,解决问题的一般步骤是什么?4. 概率统计中,什么是贝叶斯公式?其应用场景有哪些?5. 对于某个事件的先验概率为 $p(A)$,我们观测到了该事件发生,且得到了一个新的条件概率,那么它的后验概率为什么?答案:1. 将二次函数化为顶点式 $y=\left(x-\dfrac{y}{2}\right)^2-\dfrac{y^2}{4}$,则$y\geqslant 0$。
高考模拟复习试卷试题模拟卷高三数学高考数学试卷理科
高考模拟复习试卷试题模拟卷高三数学高考数学试卷(理科)一、填空题(本大题共有14题,满分48分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.(4分)若复数z满足3z+=1+i,其中i是虚数单位,则z=.2.(4分)设全集U=R.若集合Α={1,2,3,4},Β={x|2≤x≤3},则Α∩∁UΒ=.3.(4分)若线性方程组的增广矩阵为解为,则c1﹣c2=.4.(4分)若正三棱柱的所有棱长均为a,且其体积为16,则a=.5.(4分)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=.6.(4分)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为.7.(4分)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为.8.(4分)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).9.已知点P和Q的横坐标相同,P的纵坐标是Q的纵坐标的2倍,P和Q的轨迹分别为双曲线C1和C2.若C1的渐近线方程为y=±x,则C2的渐近线方程为.10.(4分)设f﹣1(x)为f(x)=2x﹣2+,x∈[0,2]的反函数,则y=f(x)+f﹣1(x)的最大值为.11.(4分)在(1+x+)10的展开式中,x2项的系数为(结果用数值表示).12.(4分)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则Eξ1﹣Eξ2=(元).13.(4分)已知函数f(x)=sinx.若存在x1,x2,…,xm满足0≤x1<x2<…<xm≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(xm﹣1)﹣f(xm)|=12(m≥2,m∈N*),则m的最小值为.14.在锐角三角形 A BC中,tanA=,D为边 BC上的点,△A BD与△ACD的面积分别为2和4.过D作D E⊥A B于 E,DF⊥AC于F,则•=.二、选择题(本大题共有4题,满分15分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)设z1,z2∈C,则“z1、z2中至少有一个数是虚数”是“z1﹣z2是虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.(5分)已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,则点B的纵坐标为()A.B.C.D.17.记方程①:x2+a1x+1=0,方程②:x2+a2x+2=0,方程③:x2+a3x+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,下列选项中,能推出方程③无实根的是()A.方程①有实根,且②有实根B.方程①有实根,且②无实根C.方程①无实根,且②有实根D.方程①无实根,且②无实根18.(5分)设Pn(xn,yn)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()A.﹣1 B.﹣C.1 D.2三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,在长方体ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F分别是AB、BC的中点,证明A1、C1、F、E四点共面,并求直线CD1与平面A1C1FE所成的角的大小.20.(14分)如图,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警员同时从A地出发匀速前往B地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是AB,速度为5千米/小时,乙的路线是ACB,速度为8千米/小时.乙到达B地后原地等待.设t=t1时乙到达C地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米.当t1≤t≤1时,求f(t)的表达式,并判断f(t)在[t1,1]上的最大值是否超过3?说明理由.21.(14分)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B和C、D,记得到的平行四边形ACBD的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;(2)设l1与l2的斜率之积为﹣,求面积S的值.22.(16分)已知数列{an}与{bn}满足an+1﹣an=2(bn+1﹣bn),n∈N*.(1)若bn=3n+5,且a1=1,求数列{an}的通项公式;(2)设{an}的第n0项是最大项,即a≥an(n∈N*),求证:数列{bn}的第n0项是最大项;(3)设a1=λ<0,bn=λn(n∈N*),求λ的取值范围,使得{an}有最大值M与最小值m,且∈(﹣2,2).23.(18分)对于定义域为R的函数g(x),若存在正常数T,使得cosg(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f(x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f(T)=4π.(1)验证g(x)=x+sin是以6π为周期的余弦周期函数;(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;(3)证明:“u0为方程cosf(x)=1在[0,T]上得解,”的充要条件是“u0+T为方程cosf (x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).上海市高考数学试卷(理科)参考答案与试题解析一、填空题(本大题共有14题,满分48分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.(4分)若复数z满足3z+=1+i,其中i是虚数单位,则z=.【分析】设z=a+bi,则=a﹣bi(a,b∈R),利用复数的运算法则、复数相等即可得出.【解答】解:设z=a+bi,则=a﹣bi(a,b∈R),又3z+=1+i,∴3(a+bi)+(a﹣bi)=1+i,化为4a+2bi=1+i,∴4a=1,2b=1,解得a=,b=.∴z=.故答案为:.【点评】本题考查了复数的运算法则、复数相等,属于基础题.2.(4分)设全集U=R.若集合Α={1,2,3,4},Β={x|2≤x≤3},则Α∩∁UΒ={1,4}.【分析】本题考查集合的运算,由于两个集合已经化简,故直接运算得出答案即可.【解答】解:∵全集U=R,集合Α={1,2,3,4},Β={x|2≤x≤3},∴(∁UB)={x|x>3或x<2},∴A∩(∁UB)={1,4},故答案为:{1,4}.【点评】本题考查集合的交、并、补的混合运算,熟练掌握集合的交并补的运算规则是解本题的关键.本题考查了推理判断的能力.3.(4分)若线性方程组的增广矩阵为解为,则c1﹣c2=16.【分析】根据增广矩阵的定义得到,是方程组的解,解方程组即可.【解答】解:由题意知,是方程组的解,即,则c1﹣c2=21﹣5=16,故答案为:16.【点评】本题主要考查增广矩阵的求解,根据条件建立方程组关系是解决本题的关键.4.(4分)若正三棱柱的所有棱长均为a,且其体积为16,则a=4.【分析】由题意可得(•a•a•sin60°)•a=16,由此求得a的值.【解答】解:由题意可得,正棱柱的底面是变长等于a的等边三角形,面积为•a•a•sin60°,正棱柱的高为a,∴(•a•a•sin60°)•a=16,∴a=4,故答案为:4.【点评】本题主要考查正棱柱的定义以及体积公式,属于基础题.5.(4分)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=2.【分析】利用抛物线的顶点到焦点的距离最小,即可得出结论.【解答】解:因为抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,所以=1,所以p=2.故答案为:2.【点评】本题考查抛物线的方程与性质,考查学生的计算能力,比较基础.6.(4分)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为.【分析】设圆锥的底面半径为r,高为h,母线长为l,由已知中圆锥的侧面积与过轴的截面面积之比为2π,可得l=2h,进而可得其母线与轴的夹角的余弦值,进而得到答案.【解答】解:设圆锥的底面半径为r,高为h,母线长为l,则圆锥的侧面积为:πrl,过轴的截面面积为:rh,∵圆锥的侧面积与过轴的截面面积之比为2π,∴l=2h,设母线与轴的夹角为θ,则cosθ==,故θ=,故答案为:.【点评】本题考查的知识点是旋转体,其中根据已知求出圆锥的母线与轴的夹角的余弦值,是解答的关键.7.(4分)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为2.【分析】利用对数的运算性质化为指数类型方程,解出并验证即可.【解答】解:∵log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2,∴log2(9x﹣1﹣5)=log2[4×(3x ﹣1﹣2)],∴9x﹣1﹣5=4(3x﹣1﹣2),化为(3x)2﹣12•3x+27=0,因式分解为:(3x﹣3)(3x﹣9)=0,∴3x=3,3x=9,解得x=1或2.经过验证:x=1不满足条件,舍去.∴x=2.故答案为:2.【点评】本题考查了对数的运算性质及指数运算性质及其方程的解法,考查了计算能力,属于基础题.8.(4分)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为120(结果用数值表示).【分析】根据题意,运用排除法分析,先在9名老师中选取5人,参加义务献血,由组合数公式可得其选法数目,再排除其中只有女教师的情况;即可得答案.【解答】解:根据题意,报名的有3名男老师和6名女教师,共9名老师,在9名老师中选取5人,参加义务献血,有C95=126种;其中只有女教师的有C65=6种情况;则男、女教师都有的选取方式的种数为126﹣6=120种;故答案为:120.【点评】本题考查排列、组合的运用,本题适宜用排除法(间接法),可以避免分类讨论,简化计算.9.已知点P和Q的横坐标相同,P的纵坐标是Q的纵坐标的2倍,P和Q的轨迹分别为双曲线C1和C2.若C1的渐近线方程为y=±x,则C2的渐近线方程为.【分析】设C1的方程为y2﹣3x2=λ,利用坐标间的关系,求出Q的轨迹方程,即可求出C2的渐近线方程.【解答】解:设C1的方程为y2﹣3x2=λ,设Q(x,y),则P(x,2y),代入y2﹣3x2=λ,可得4y2﹣3x2=λ,∴C2的渐近线方程为4y2﹣3x2=0,即.故答案为:.【点评】本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.10.(4分)设f﹣1(x)为f(x)=2x﹣2+,x∈[0,2]的反函数,则y=f(x)+f﹣1(x)的最大值为4.【分析】由f(x)=2x﹣2+在x∈[0,2]上为增函数可得其值域,得到y=f﹣1(x)在[]上为增函数,由函数的单调性求得y=f(x)+f﹣1(x)的最大值.【解答】解:由f(x)=2x﹣2+在x∈[0,2]上为增函数,得其值域为[],可得y=f﹣1(x)在[]上为增函数,因此y=f(x)+f﹣1(x)在[]上为增函数,∴y=f(x)+f﹣1(x)的最大值为f(2)+f﹣1(2)=1+1+2=4.故答案为:4.【点评】本题考查了互为反函数的两个函数图象间的关系,考查了函数的单调性,属中档题.11.(4分)在(1+x+)10的展开式中,x2项的系数为45(结果用数值表示).【分析】先把原式前两项结合展开,分析可知仅有展开后的第一项含有x2项,然后写出第一项二项展开式的通项,由x的指数为2求得r值,则答案可求.【解答】解:∵(1+x+)10 =,∴仅在第一部分中出现x2项的系数.再由,令r=2,可得,x2项的系数为.故答案为:45.【点评】本题考查了二项式系数的性质,关键是对二项展开式通项的记忆与运用,是基础题.12.(4分)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则Eξ1﹣Eξ2=0.2(元).【分析】分别求出赌金的分布列和奖金的分布列,计算出对应的均值,即可得到结论.【解答】解:赌金的分布列为ξ1 1 2 3 4 5P所以Eξ1=(1+2+3+4+5)=3,奖金的分布列为:若两张卡片上数字之差的绝对值为1,则有(1,2),(2,3),(3,4),(4,5),4种,若两张卡片上数字之差的绝对值为2,则有(1,3),(2,4),(3,5),3种,若两张卡片上数字之差的绝对值为3,则有(1,4),(2,5),2种,若两张卡片上数字之差的绝对值为4,则有(1,5),1种,则P(ξ2=1.4)==,P(ξ2=2.8)==,P(ξ2=4.2)==,P(ξ2=5.6)==ξ2 1.4 2.8 4.2 5.6P所以Eξ2=1.4×(×1+×2+×3+×4)=2.8,则Eξ1﹣Eξ2=3﹣2.8=0.2元.故答案为:0.2【点评】本题主要考查离散型随机变量的分布列和期望的计算,根据概率的公式分别进行计算是解决本题的关键.13.(4分)已知函数f(x)=sinx.若存在x1,x2,…,xm满足0≤x1<x2<…<xm≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(xm﹣1)﹣f(xm)|=12(m≥2,m∈N*),则m的最小值为8.【分析】由正弦函数的有界性可得,对任意xi,xj(i,j=1,2,3,…,m),都有|f(xi)﹣f(xj)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让xi(i=1,2,3,…,m)取得最高点,然后作图可得满足条件的最小m值.【解答】解:∵y=sinx对任意xi,xj(i,j=1,2,3,…,m),都有|f(xi)﹣f(xj)|≤f (x)max﹣f(x)min=2,要使m取得最小值,尽可能多让xi(i=1,2,3,…,m)取得最高点,考虑0≤x1<x2<…<xm≤6π,|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(xm﹣1)﹣f (xm)|=12,按下图取值即可满足条件,∴m的最小值为8.故答案为:8.【点评】本题考查正弦函数的图象和性质,考查分析问题和解决问题的能力,考查数学转化思想方法,正确理解对任意xi,xj(i,j=1,2,3,…,m),都有|f(xi)﹣f(xj)|≤f (x)max﹣f(x)min=2是解答该题的关键,是难题.14.在锐角三角形 A BC中,tanA=,D为边 BC上的点,△A BD与△ACD的面积分别为2和4.过D作D E⊥A B于 E,DF⊥AC于F,则•=﹣.【分析】由题意画出图形,结合面积求出cosA=,,然后代入数量积公式得答案.【解答】解:如图,∵△ABD与△ACD的面积分别为2和4,∴,,可得,,∴.又tanA=,∴,联立sin2A+cos2A=1,得,cosA=.由,得.则.∴•==.故答案为:.【点评】本题考查平面向量的数量积运算,考查了数形结合的解题思想方法,考查了三角函数的化简与求值,是中档题.二、选择题(本大题共有4题,满分15分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)设z1,z2∈C,则“z1、z2中至少有一个数是虚数”是“z1﹣z2是虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】根据充分条件和必要条件的定义结合复数的有关概念进行判断即可.【解答】解:设z1=1+i,z2=i,满足z1、z2中至少有一个数是虚数,则z1﹣z2=1是实数,则z1﹣z2是虚数不成立,若z1、z2都是实数,则z1﹣z2一定不是虚数,因此当z1﹣z2是虚数时,则z1、z2中至少有一个数是虚数,即必要性成立,故“z1、z2中至少有一个数是虚数”是“z1﹣z2是虚数”的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据复数的有关概念进行判断是解决本题的关键.16.(5分)已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,则点B的纵坐标为()A.B.C.D.【分析】根据三角函数的定义,求出∠xOA的三角函数值,利用两角和差的正弦公式进行求解即可.【解答】解:∵点 A的坐标为(4,1),∴设∠xOA=θ,则sinθ==,cosθ==,将OA绕坐标原点O逆时针旋转至OB,则OB的倾斜角为θ+,则|OB|=|OA|=,则点B的纵坐标为y=|OB|sin(θ+)=7(sinθcos+cosθsin)=7(×+)=+6=,故选:D.【点评】本题主要考查三角函数值的计算,根据三角函数的定义以及两角和差的正弦公式是解决本题的关键.17.记方程①:x2+a1x+1=0,方程②:x2+a2x+2=0,方程③:x2+a3x+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,下列选项中,能推出方程③无实根的是()A.方程①有实根,且②有实根B.方程①有实根,且②无实根C.方程①无实根,且②有实根D.方程①无实根,且②无实根【分析】根据方程根与判别式△之间的关系求出a12≥4,a22<8,结合a1,a2,a3成等比数列求出方程③的判别式△的取值即可得到结论.【解答】解:当方程①有实根,且②无实根时,△1=a12﹣4≥0,△2=a22﹣8<0,即a12≥4,a22<8,∵a1,a2,a3成等比数列,∴a22=a1a3,即a3=,则a32=()2=,即方程③的判别式△3=a32﹣16<0,此时方程③无实根,故选:B.【点评】本题主要考查方程根存在性与判别式△之间的关系,结合等比数列的定义和性质判断判别式△的取值关系是解决本题的关键.18.(5分)设Pn(xn,yn)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()A.﹣1 B.﹣C.1 D.2【分析】当n→+∞时,直线2x﹣y=趋近于2x﹣y=1,与圆x2+y2=2在第一象限的交点无限靠近(1,1),利用圆的切线的斜率、斜率计算公式即可得出.【解答】解:当n→+∞时,直线2x﹣y=趋近于2x﹣y=1,与圆x2+y2=2在第一象限的交点无限靠近(1,1),而可看作点Pn(xn,yn)与(1,1)连线的斜率,其值会无限接近圆x2+y2=2在点(1,1)处的切线的斜率,其斜率为﹣1.∴=﹣1.故选:A.【点评】本题考查了极限思想、圆的切线的斜率、斜率计算公式,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,在长方体ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F分别是AB、BC的中点,证明A1、C1、F、E四点共面,并求直线CD1与平面A1C1FE所成的角的大小.【分析】利用长方体的几何关系建立直角坐标系.利用向量方法求空间角.【解答】解:连接AC,因为E,F分别是AB,BC的中点,所以EF是△ABC的中位线,所以EF∥AC.由长方体的性质知AC∥A1C1,所以EF∥A1C1,所以A1、C1、F、E四点共面.以D为坐标原点,DA、DC、DD1分别为x、y、z轴,建立空间直角坐标系,易求得,设平面A1C1EF的法向量为则,所以,即,z=1,得x=1,y=1,所以,所以=,所以直线CD1与平面A1C1FE所成的角的大小arcsin.【点评】本题主要考查利用空间直角坐标系求出空间角的方法,属高考常考题型.20.(14分)如图,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警员同时从A地出发匀速前往B地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是AB,速度为5千米/小时,乙的路线是ACB,速度为8千米/小时.乙到达B地后原地等待.设t=t1时乙到达C地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米.当t1≤t≤1时,求f(t)的表达式,并判断f(t)在[t1,1]上的最大值是否超过3?说明理由.【分析】(1)由题意可得t1==h,由余弦定理可得f(t1)=PC=,代值计算可得;(2)当t1≤t≤时,由已知数据和余弦定理可得f(t)=PQ=,当<t≤1时,f(t)=PB=5﹣5t,综合可得当<t≤1时,f(t)∈[0,],可得结论.【解答】解:(1)由题意可得t1==h,设此时甲运动到点P,则AP=v甲t1=5×=千米,∴f(t1)=PC===千米;(2)当t1≤t≤时,乙在CB上的Q点,设甲在P点,∴QB=AC+CB﹣8t=7﹣8t,PB=AB﹣AP=5﹣5t,∴f(t)=PQ===,当<t≤1时,乙在B点不动,设此时甲在点P,∴f(t)=PB=AB﹣AP=5﹣5t∴f(t)=∴当<t≤1时,f(t)∈[0,],故f(t)的最大值没有超过3千米.【点评】本题考查解三角形的实际应用,涉及余弦定理和分段函数,属中档题.21.(14分)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B和C、D,记得到的平行四边形ACBD的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;(2)设l1与l2的斜率之积为﹣,求面积S的值.【分析】(1)依题意,直线l1的方程为y=x,利用点到直线间的距离公式可求得点C 到直线l1的距离d=,再利用|AB|=2|AO|=2,可证得S=|AB|d=2|x1y2﹣x2y1|;当l1与l2时的斜率之一不存在时,同理可知结论成立;(2)方法一:设直线l1的斜率为k,则直线l2的斜率为﹣,可得直线l1与l2的方程,联立方程组,可求得x1、x2、y1、y2,继而可求得答案.方法二:设直线l1、l2的斜率分别为、,则=﹣,利用A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,可求得面积S的值.【解答】解:(1)依题意,直线l1的方程为y=x,由点到直线间的距离公式得:点C 到直线l1的距离d==,因为|AB|=2|AO|=2,所以S=|AB|d=2|x1y2﹣x2y1|;当l1与l2时的斜率之一不存在时,同理可知结论成立;(2)方法一:设直线l1的斜率为k,则直线l2的斜率为﹣,设直线l1的方程为y=kx,联立方程组,消去y解得x=±,根据对称性,设x1=,则y1=,同理可得x2=,y2=,所以S=2|x1y2﹣x2y1|=.方法二:设直线l1、l2的斜率分别为、,则=﹣,所以x1x2=﹣2y1y2,∴=4=﹣2x1x2y1y2,∵A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,∴()()=+4+2(+)=1,即﹣4x1x2y1y2+2(+)=1,所以(x1y2﹣x2y1)2=,即|x1y2﹣x2y1|=,所以S=2|x1y2﹣x2y1|=.【点评】本题考查直线与圆锥曲线的综合应用,考查方程思想、等价转化思想与综合运算能力,属于难题.22.(16分)已知数列{an}与{bn}满足an+1﹣an=2(bn+1﹣bn),n∈N*.(1)若bn=3n+5,且a1=1,求数列{an}的通项公式;(2)设{an}的第n0项是最大项,即a≥an(n∈N*),求证:数列{bn}的第n0项是最大项;(3)设a1=λ<0,bn=λn(n∈N*),求λ的取值范围,使得{an}有最大值M与最小值m,且∈(﹣2,2).【分析】(1)把bn=3n+5代入已知递推式可得an+1﹣an=6,由此得到{an}是等差数列,则an可求;(2)由an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1,结合递推式累加得到an=2bn+a1﹣2b1,求得,进一步得到得答案;(3)由(2)可得,然后分﹣1<λ<0,λ=﹣1,λ<﹣1三种情况求得an的最大值M和最小值m,再由∈(﹣2,2)列式求得λ的范围.【解答】(1)解:∵an+1﹣an=2(bn+1﹣bn),bn=3n+5,∴an+1﹣an=2(bn+1﹣bn)=2(3n+8﹣3n﹣5)=6,∴{an}是等差数列,首项为a1=1,公差为6,则an=1+(n﹣1)×6=6n﹣5;(2)∵an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2(bn﹣bn﹣1)+2(bn﹣1﹣bn﹣2)+…+2(b2﹣b1)+a1=2bn+a1﹣2b1,∴,∴.∴数列{bn}的第n0项是最大项;(3)由(2)可得,①当﹣1<λ<0时,单调递减,有最大值;单调递增,有最小值m=a1=λ,∴∈(﹣2,2),∴λ∈,∴.②当λ=﹣1时,a2n=3,a2n﹣1=﹣1,∴M=3,m=﹣1,(﹣2,2),不满足条件.③当λ<﹣1时,当n→+∞时,a2n→+∞,无最大值;当n→+∞时,a2n﹣1→﹣∞,无最小值.综上所述,λ∈(﹣,0)时满足条件.【点评】本题考查了数列递推式,考查了等差关系的确定,考查了数列的函数特性,训练了累加法求数列的通项公式,对(3)的求解运用了极限思想方法,是中档题.23.(18分)对于定义域为R的函数g(x),若存在正常数T,使得cosg(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f(x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f(T)=4π.(1)验证g(x)=x+sin是以6π为周期的余弦周期函数;(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;(3)证明:“u0为方程cosf(x)=1在[0,T]上得解,”的充要条件是“u0+T为方程cosf (x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).【分析】(1)根据余弦函数的周期定义,判断cosg(x+6π)是否等于cosg(x)即可;(2)根据f(x)的值域为R,便可得到存在x0,使得f(x0)=c,而根据f(x)在R上单调递增即可说明x0∈[a,b],从而完成证明;(3)只需证明u0+T为方程cosf(x)=1在区间[T,2T]上的解得出u0为方程cosf(x)=1在[0,T]上的解,是否为方程的解,带入方程,使方程成立便是方程的解.证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T),可讨论x=0,x=T,x∈(0,T)三种情况:x=0时是显然成立的;x=T时,可得出cosf(2T)=1,从而得到f(2T)=2k1π,k1∈Z,根据f (x)单调递增便能得到k1>2,然后根据f(x)的单调性及方程cosf(x)=1在[T,2T]和它在[0,T]上解的个数的情况说明k1=3,和k1≥5是不存在的,而k1=4时结论成立,这便说明x=T时结论成立;而对于x∈(0,T)时,通过考查cosf(x)=c的解得到f(x+T)=f (x)+f(T),综合以上的三种情况,最后得出结论即可.【解答】解:(1)g(x)=x+sin;∴==cosg(x)∴g(x)是以6π为周期的余弦周期函数;(2)∵f(x)的值域为R;∴存在x0,使f(x0)=c;又c∈[f(a),f(b)];∴f(a)≤f(x0)≤f(b),而f(x)为增函数;∴a≤x0≤b;即存在x0∈[a,b],使f(x0)=c;(3)证明:若u0+T为方程cosf(x)=1在区间[T,2T]上的解;则:cosf(u0+T)=1,T≤u0+T≤2T;∴cosf(u0)=1,且0≤u0≤T;∴u0为方程cosf(x)=1在[0,T]上的解;∴“u0为方程cosf(x)=1在[0,T]上得解”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”;下面证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T):①当x=0时,f(0)=0,∴显然成立;②当x=T时,cosf(2T)=cosf(T)=1;∴f(2T)=2k1π,(k1∈Z),f(T)=4π,且2k1π>4π,∴k1>2;1)若k1=3,f(2T)=6π,由(2)知存在x0∈(0,T),使f(x0)=2π;cosf(x0+T)=cosf(x0)=1⇒f(x0+T)=2k2π,k2∈Z;∴f(T)<f(x0+T)<f(2T);∴4π<2k2π<6π;∴2<k2<3,无解;2)若k1≥5,f(2T)≥10π,则存在T<x1<x2<2T,使得f(x1)=6π,f(x2)=8π;则T,x1,x2,2T为cosf(x)=1在[T,2T]上的4个解;但方程cosf(x)=1在[0,2T]上只有f(x)=0,2π,4π,3个解,矛盾;3)当k1=4时,f(2T)=8π=f(T)+f(T),结论成立;③当x∈(0,T)时,f(x)∈(0,4π),考查方程cosf(x)=c在(0,T)上的解;设其解为f(x1),f(x2),…,f(xn),(x1<x2<…<xn);则f(x1+T),f(x2+T),…,f(xn+T)为方程cosf(x)=c在(T,2T)上的解;又f(x+T)∈(4π,8π);而f(x1)+4π,f(x2)+4π,…,f(xn)+4π∈(4π,8π)为方程cosf(x)=c在(T,2T)上的解;∴f(xi+T)=f(xi)+4π=f(xi)+f(T);∴综上对任意x∈[0,T],都有f(x+T)=f(x)+f(T).【点评】考查对余弦周期函数定义的理解,充分条件的概念,方程的解的概念,知道由cosf(x)=1能得出f(x)=2kx,k∈Z,以及构造方程解题的方法,在证明最后一问时能运用第二问的结论.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.102.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度4.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<5.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.36.(5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种7.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2B.﹣1C.1D.28.(5分)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]9.(5分)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)复数=.12.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=.13.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.17.(12分)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.18.(12分)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.19.(12分)设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和Tn.20.(13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.21.(14分)已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.10【分析】利用二项展开式的通项公式求出(1+x)6的第r+1项,令x的指数为2求出展开式中x2的系数.然后求解即可.【解答】解:(1+x)6展开式中通项Tr+1=C6rxr,令r=2可得,T3=C62x2=15x2,∴(1+x)6展开式中x2项的系数为15,在x(1+x)6的展开式中,含x3项的系数为:15.故选:C.【点评】本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键.2.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}【分析】计算集合A中x的取值范围,再由交集的概念,计算可得.【解答】解:A={x|﹣1≤x≤2},B=Z,∴A∩B={﹣1,0,1,2}.故选:A.【点评】本题属于容易题,集合知识是高中部分的基础知识,也是基础工具,高考中涉及到对集合的基本考查题,一般都比较容易,且会在选择题的前几题,考生只要够细心,一般都能拿到分.3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度【分析】根据 y=sin(2x+1)=sin2(x+),利用函数y=Asin(ωx+φ)的图象变换规律,得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考模拟复习试卷试题模拟卷【考情解读】1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题.4.了解等比数列与指数函数的关系. 【重点知识梳理】 1.等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q≠0)表示.数学语言表达式:anan -1=q(n≥2,q 为非零常数),或an +1an =q(n ∈N*,q 为非零常数).2. 等比数列的通项公式及前n 项和公式(1)若等比数列{an}的首项为a1,公比是q ,则其通项公式为an =a1qn -1; 通项公式的推广:an =amqn -m.(2)等比数列的前n 项和公式:当q =1时,Sn =na1;当q≠1时,Sn =a1(1-qn ) 1-q =a1-anq1-q .3.等比数列及前n 项和的性质(1)如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇔G2=ab.(2)若{an}为等比数列,且k +l =m +n(k ,l ,m ,n ∈N*),则ak·al =am·an .(3)相隔等距离的项组成的数列仍是等比数列,即ak ,ak +m ,ak +2m ,…仍是等比数列,公比为qm .(4)当q≠-1,或q =-1且n 为奇数时,Sn ,S2n -Sn ,S3n -S2n 仍成等比数列,其公比为qn . 【高频考点突破】考点一 等比数列中基本量的求解【例1】 (1)设{an}是由正数组成的等比数列,Sn 为其前n 项和.已知a2a4=1,S3=7,则S5等于() A.152 B.314 C.334 D.172(2)在等比数列{an}中,a4=2,a7=16,则an =________.(3)在等比数列{an}中,a2+a5=18,a3+a6=9,an =1,则n =________.【答案】(1)B(2)2n-3(3)6规律方法等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)便可迎刃而解.【变式探究】在等比数列{an}中,a2-a1=2,且2a2为3a1和a3的等差中项,求数列{an}的首项、公比及前n项和.考点二等比数列的性质及应用【例2】 (1)公比为2的等比数列{an}的各项都是正数,且a3a11=16,则log2a10=()A.4 B.5 C.6 D.7(2)等比数列{an}的首项a1=-1,前n项和为Sn,若S10S5=3132,则公比q=________.【答案】(1)B(2)-12规律方法 (1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则am·an =ap·aq”,可以减少运算量,提高解题速度.(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.【变式探究】 (1)已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为() A .-3 B .±3 C .-3 3 D .±33(2)已知各项均为正数的等比数列{an}中,a1a2a3=5,a7a8a9=10,则a4a5a6等于() A .5 2 B .7 C .6 D .42【答案】(1)C(2)A考点三 等比数列的判定与证明【例3】已知数列{an}的前n 项和为Sn ,数列{bn}中,b1=a1,bn =an -an -1(n≥2),且an +Sn =n. (1)设cn =an -1,求证:{cn}是等比数列; (2)求数列{bn}的通项公式.规律方法 证明数列{an}是等比数列常用的方法:一是定义法,证明anan -1=q(n≥2,q 为常数);二是等比中项法,证明a2n =an -1·an +1.若判断一个数列不是等比数列,则只需举出反例即可,也可以用反证法.【变式探究】成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{bn}中的b3,b4,b5.(1)求数列{bn}的通项公式;(2)数列{bn}的前n 项和为Sn ,求证:数列⎩⎨⎧⎭⎬⎫Sn +54是等比数列.【真题感悟】【高考广东,文13】若三个正数a ,b ,c 成等比数列,其中526a =+,526c =-,则b =. 【答案】1【高考新课标1,文13】数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n =. 【答案】61.(·重庆卷)对任意等比数列{an},下列说法一定正确的是( )A .a1,a3,a9成等比数列B .a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9,成等比数列【答案】D2.(·安徽卷)数列{an}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=________.【答案】13.(·广东卷)若等比数列{an}的各项均为正数,且a10a11+a9a12=2e5,则ln a1+ln a2+…+ln a20=________.【答案】504.(·全国卷)等比数列{an}中,a4=2,a5=5,则数列{lg an}的前8项和等于()A.6 B.5C.4 D.3【答案】C5.(·湖北卷)已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{an}的通项公式.(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.6.(·新课标全国卷Ⅱ)已知数列{an}满足a1=1,an +1=3an +1.(1)证明⎩⎨⎧⎭⎬⎫an +12是等比数列,并求{an}的通项公式;(2)证明1a1+1a2+…+1an <32.7.(·山东卷)已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.(1)求数列{an}的通项公式;(2)令bn=(-1)n-14nanan+1,求数列{bn}的前n项和Tn.8.(·陕西卷)△ABC的内角A,B,C所对的边分别为a,b,c.(1)若a,b,c成等差数列,证明:sin A+sin C=2sin(A+C);(2)若a,b,c成等比数列,求cos B的最小值.9.(·天津卷)设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1的值为________.【答案】-1210.(·天津卷)已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1}, 集合A ={x|x =x1+x2q +…+xnqn -1,xi ∈M ,i =1,2,…,n}. (1)当q =2,n =3时,用列举法表示集合A.(2)设s ,t ∈A ,s =a1+a2q +…+anqn -1,t =b1+b2q +…+bnqn -1,其中ai ,bi ∈M ,i =1,2,…,n.证明:若an<bn ,则s<t.11.(·新课标全国卷Ⅰ)若数列{an}的前n 项和Sn =23an +13,则{an}的通项公式是an =________. 【答案】(-2)n -112.(·北京卷)已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an+1,an+2,…的最小值记为Bn,dn=An-Bn.(1)若{an}为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n∈N*,an+4=an),写出d1,d2,d3,d4的值;(2)设d是非负整数,证明:dn=-d(n=1,2,3,…)的充分必要条件为{an}是公差为d的等差数列;(3)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.13.(·北京卷)若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q =________;前n 项和Sn =________.【答案】2 2n +1-214.(·江西卷)等比数列x ,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12 D .24 【答案】A15.(·江苏卷)在正项等比数列{an}中,a5=12,a6+a7=3. 则满足a1+a2+…+an>a1a2…an 的最大正整数n 的值为________.【答案】1216.(·湖南卷) 设Sn 为数列{an}的前n 项和,Sn =(-1)nan -12n ,n ∈N*,则 (1)a3=________;(2)S1+S2+…+S100=________.17.(·辽宁卷) 已知等比数列{}an 是递增数列,Sn 是{}an 的前n 项和,若a1,a3是方程x2-5x +4=0的两个根,则S6=________.【答案】6318.(·全国卷)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为 6.(1)求a,b;(2)设过F2的直线l与C的左、右两支分别交于A,B两点,且|AF1|=|BF1|,证明:|AF2|,|AB|,|BF2|成等比数列.19.(·全国卷)已知数列{an}满足3an +1+an =0,a2=-43,则{an}的前10项和等于( ) A .-6(1-3-10) B.19(1-310) C .3(1-3-10) D .3(1+3-10) 【答案】C20.(·陕西卷)设{an}是公比为q 的等比数列. (1)推导{an}的前n 项和公式;(2)设q≠1,证明数列{an +1}不是等比数列.21.(·四川卷)在等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{an}的首项、公差及前n 项和.22.(·新课标全国卷Ⅱ) 等比数列{an}的前n 项和为Sn ,已知S3=a2+10a1,a5=9,则a1=( ) A.13 B .-13 C.19 D .-19 【答案】C23.(·重庆卷)已知{an}是等差数列,a1=1,公差d≠0,Sn 为其前n 项和,若a1,a2,a5成等比数列,则S8=________.【答案】64【押题专练】1.在等比数列{an}中,an >0,且a1·a10=27,log3a2+log3a9= ()A .9B .6C .3D .2【答案】C2.记等比数列{an}的前n 项积为Ⅱn ,若a4·a5=2,则Ⅱ8=()A .256B .81C .16D .1【答案】C3.在正项等比数列{an}中,an +1<an ,a2·a8=6,a4+a6=5,则a5a7= () A.56B.65C.23D.32【答案】D4.已知等比数列{an}的前n 项和为Sn ,a4-a1=78,S3=39,设bn =log3an ,那么数列{bn}的前10项和为()A .log371B.692C .50D .55【答案】D5.已知数列{an}满足log3an +1=log3an +1(n ∈N*),且a2+a4+a6=9,则log 13(a5+a7+a9)的值是 () A .-15B .-5C .5D.15【答案】B6.数列{an}中,已知对任意n ∈N*,a1+a2+a3+…+an =3n -1,则a21+a22+a23+…+a2n 等于 () A .(3n -1)2B.12(9n -1)C .9n -1D.14(3n -1)【答案】B7.已知等比数列{an}的公比为q ,记bn =am(n -1)+1+am(n -1)+2+…+am(n -1)+m ,cn =am(n -1)+1·am(n -1)+2·…·am(n -1)+m(m ,n ∈N*),则以下结论一定正确的是()A .数列{bn}为等差数列,公差为qmB .数列{bn}为等比数列,公比为q2mC .数列{cn}为等比数列,公比为qm2D .数列{cn}为等比数列,公比为qmm【答案】C8.已知数列-1,a1,a2,-4成等差数列,-1,b1,b2,b3,-4成等比数列,则a2-a1b2的值是________.【答案】129.设数列{an}是各项均为正数的等比数列,若a1·a2n -1=4n ,则数列{an}的通项公式是______.【答案】an =2n10.已知各项均为正数的等比数列{an}的前n 项和为Sn ,若S4=3S2,a3=2,则a7=________.【答案】811.已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn -an}为等比数列.(1)求数列{an}和{bn}的通项公式; (2)求数列{bn}的前n 项和.12.已知在正项数列{an}中,a1=2,点An(an ,an +1)在双曲线y2-x2=1上,数列{bn}中,点(bn ,Tn)在直线y =-12x +1上,其中Tn 是数列{bn}的前n 项和.(1)求数列{an}的通项公式; (2)求证:数列{bn}是等比数列.13.等比数列{cn}满足cn+1+cn=10·4n-1(n∈N*),数列{an}的前n项和为Sn,且an=log2cn.(1)求an,Sn;(2)数列{bn}满足bn=14Sn-1,Tn为数列{bn}的前n项和,是否存在正整数m,k(1<m<k),使得T1,Tm,Tk成等比数列?若存在,求出所有m,k的值;若不存在,请说明理由.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】 1.了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义. 【热点题型】题型一平面向量的有关概念 【例1】给出下列命题: ①若|a|=|b|,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c. 其中正确命题的序号是()A .②③B .②④C .③④D .②③④【提分秘籍】(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a|的关系:a|a|是与a 同方向的单位向量.【举一反三】 给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③若λa =0 (λ为实数),则λ必为零;④已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为() A .1 B .2 C .3 D .4解析 ①错误.两向量共线要看其方向而不是起点与终点.②正确.因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误.当a =0时,不论λ为何值,λa =0.④错误.当λ=μ=0时,λa =μb ,此时,a 与b 可以是任意向量. 答案 C题型二 平面向量的线性运算【例2】 (1)在△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a·b =0,|a|=1,|b|=2,则AD →=() A.13a -13b B.23a -23b C.35a -35b D.45a -45b(2)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.解析 (1)∵a·b =0,∴∠ACB =90°,∴AB =5,CD =255, ∴BD =55,AD =455,∴AD ∶BD =4∶1. ∴AD →=45AB →=45(CB →-CA →)=45a -45b. (2)因为ABCD 为平行四边形, 所以AB →+AD →=AC →=2AO →, 已知AB →+AD →=λAO →,故λ=2.答案 (1)D(2)2 【提分秘籍】(1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.【举一反三】(1)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=()A .a -12b B.12a -b C .a +12b D.12a +b(2)如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则()A.AD →+BE →+CF →=0B.BD →-CF →+DF →=0C.AD →+CE →-CF →=0D.BD →-BE →-FC →=0解析 (1)连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a.(2)由题意知:AD →=FE →,BE →=DF →,CF →=ED →,而FE →+ED →+DF →=0,∴AD →+BE →+CF →=0. 答案 (1)D(2)A题型三共线向量定理的应用【例3】设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b).求证:A ,B ,D 三点共线; (2)试确定实数k ,使ka +b 和a +kb 共线.【提分秘籍】(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.【举一反三】(1)已知向量i 与j 不共线,且AB →=i +mj ,AD →=ni +j.若A ,B ,D 三点共线,则实数m ,n 应该满足的条件是()A .m +n =1B .m +n =-1C .mn =1D .mn =-1(2)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m 的值为________.解析 (1)由A ,B ,D 共线可设AB →=λAD →,于是有i +mj =λ(ni +j)=λni +λj.又i ,j 不共线,因此⎩⎪⎨⎪⎧λn =1,λ=m , 即有mn =1.(2)设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b),PQ →=OQ →-OP →=nb -ma ,PG →=OG →-OP →=⎝⎛⎭⎫13-m a +13b ,由P ,G ,Q 三点共线得,存在实数λ,使得PQ →=λPG →,即nb -ma =λ⎝⎛⎭⎫13-m a +13λb ,从而⎩⎨⎧-m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ得1n +1m =3.答案 (1)C(2)3 【高考风向标】1.【高考安徽,文15】ABC ∆是边长为2的等边三角形,已知向量b a 、满足a AB 2=→,b a AC+=→2,则下列结论中正确的是.(写出所有正确结论得序号)①a 为单位向量;②b 为单位向量;③b a ⊥;④→BC b // ;⑤→⊥+BC b a )4(。