(全国通用)19届高考数学大一轮复习第十二章概率、随机变量及其分布12.3几何概型学案
2019版高考数学大一轮复习江苏专版文档:第十二章 概率、随机变量及其概率分布12.5
§12.5二项分布及其应用考情考向分析以理解独立重复试验、二项分布的概念为主,重点考查二项分布概率模型的应用.识别概率模型是解决概率问题的关键.在高考中,常以解答题的形式考查,难度为中档.1.相互独立事件(1)对于事件A,B,若事件A的发生与事件B的发生互不影响,则称事件A,B是相互独立事件.(2)若A与B相互独立,则P(B|A)=P(B),P(AB)=P(B|A)P(A)=P(A)P(B).(3)若A与B相互独立,则A与B,A与B,A与B也都相互独立.(4)若P(AB)=P(A)P(B),则A与B相互独立.2.独立重复试验与二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记为X~B(n,p).题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)条件概率一定不等于它的非条件概率.(×)(2)相互独立事件就是互斥事件.(×)(3)对于任意两个事件,公式P(AB)=P(A)P(B)都成立.(×)(4)二项分布是一个概率分布,其公式相当于(a+b)n二项展开式的通项公式,其中a=p,b =1-p.(×)(5)P(B|A)表示在事件A发生的条件下,事件B发生的概率,P(AB)表示事件A,B同时发生的概率.(√)题组二教材改编2.[P66练习T2]天气预报,在元旦假期甲地降雨概率是0.2,乙地降雨概率是0.3.假设在这段时间内两地是否降雨相互之间没有影响,则这两地中恰有一个地方降雨的概率为________.答案0.38解析设甲地降雨为事件A,乙地降雨为事件B,则两地恰有一地降雨为A B+A B,∴P(A B+A B)=P(A B)+P(A B)=P(A)P(B)+P(A)P(B)=0.2×0.7+0.8×0.3=0.38.3.[P67习题T10]投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为________.答案0.648解析该同学通过测试的概率P=C23×0.62×0.4+0.63=0.432+0.216=0.648.题组三易错自纠4.两个实习生每人加工一个零件,加工成一等品的概率分别为23和34,两个零件能否被加工成一等品相互独立,则这两个零件恰好有一个一等品的概率为________. 答案512解析 因为两人加工成一等品的概率分别为23和34,且相互独立,所以两个零件恰好有一个一等品的概率为P =23×14+13×34=512.5.已知随机变量ξ~B ⎝⎛⎭⎫6,13,则P (ξ=2)=________.(用数字作答) 答案80243解析 P (ξ=2)=C 26⎝⎛⎭⎫132⎝⎛⎭⎫234=80243. 6.一射手对同一目标进行4次射击,且射击结果之间互不影响.已知至少命中一次的概率为8081,则此射手的命中率为________. 答案 23解析 设此射手未命中目标的概率为p ,则1-p 4=8081,所以p =13,故1-p =23.题型一 相互独立事件的概率典例 某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立. (1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元,求该企业可获利润的概率分布.解 记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题设知P (E )=23,P (E )=13,P (F )=35, P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则H =E F , 于是P (H )=P (E )P (F )=13×25=215,故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220, 因为P (X =0)=P (E F )=13×25=215,P (X =100)=P (E F )=13×35=315=15,P (X =120)=P (E F )=23×25=415,P (X =220)=P (EF )=23×35=615=25,故所求的概率分布为思维升华 求相互独立事件同时发生的概率的方法(1)首先判断几个事件的发生是否相互独立. (2)求相互独立事件同时发生的概率的方法①利用相互独立事件的概率乘法公式直接求解;②正面计算较烦琐或难以入手时,可从其对立事件入手计算.跟踪训练 为了纪念2017在德国波恩举行的联合国气候大会,某社区举办《“环保我参与”有奖问答比赛》活动.某场比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题.已知甲家庭回答正确的概率是34,甲、丙两个家庭都回答错误的概率是112,乙、丙两个家庭都回答正确的概率是14.若各家庭回答是否正确互不影响.(1)求乙、丙两个家庭各自回答正确的概率;(2)求甲、乙、丙三个家庭中不少于2个家庭回答正确的概率.解 (1)记“甲回答正确”、“乙回答正确”、“丙回答正确”分别为事件A ,B ,C ,则P (A )=34, 且有⎩⎨⎧P (A )·P (C )=112,P (B )·P (C )=14,即⎩⎨⎧[1-P (A )]·[1-P (C )]=112,P (B )·P (C )=14,所以P (B )=38,P (C )=23.(2)有0个家庭回答正确的概率为P 0=P (A B C )=P (A )·P (B )·P (C )=14×58×13=596,有1个家庭回答正确的概率为P 1=P (A B C +A B C +A B C )=34×58×13+14×38×13+14×58×23=724,所以不少于2个家庭回答正确的概率为P =1-P 0-P 1=1-596-724=2132.题型二 独立重复试验与二项分布命题点1 根据独立重复试验求概率典例 某市电视台举办纪念红军长征胜利知识回答活动,宣传长征精神,首先在甲、乙、丙、丁四个不同的公园进行支持签名活动.然后在各公园签名的人中按分层抽样的方式抽取10名幸运之星回答问题,从10个关于长征的问题中随机抽取4个问题让幸运之星回答,全部答对的幸运之星获得一份纪念品. (1)求此活动中各公园幸运之星的人数;(2)若乙公园中每位幸运之星对每个问题答对的概率均为22,求恰好2位幸运之星获得纪念品的概率;(3)若幸运之星小李对其中8个问题能答对,而另外2个问题答不对,记小李答对的问题数为X ,求X 的概率分布.解 (1)甲、乙、丙、丁四个公园幸运之星的人数分别为 45150×10=3,60150×10=4,30150×10=2,15150×10=1. (2)根据题意,乙公园中每位幸运之星获得纪念品的概率为C 44⎝⎛⎭⎫224=14, 所以乙公园中恰好2位幸运之星获得纪念品的概率为 C 24⎝⎛⎭⎫142⎝⎛⎭⎫342=27128.(3)由题意,知X 的所有可能取值为2,3,4,服从超几何分布,P (X =2)=C 28C 22C 410=215,P (X =3)=C 38C 12C 410=815,P (X =4)=C 48C 02C 410=13.所以X 的概率分布为命题点2 根据独立重复试验求二项分布典例 一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的概率分布; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少? 解 (1)X 可能的取值为10,20,100,-200. 根据题意,得P (X =10)=C 13×⎝⎛⎭⎫121×⎝⎛⎭⎫1-122=38, P (X =20)=C 23×⎝⎛⎭⎫122×⎝⎛⎭⎫1-121=38, P (X =100)=C 33×⎝⎛⎭⎫123×⎝⎛⎭⎫1-120=18, P (X =-200)=C 03×⎝⎛⎭⎫120×⎝⎛⎭⎫1-123=18. 所以X 的概率分布为(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3), 则P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为 1-P (A 1A 2A 3)=1-⎝⎛⎭⎫183=1-1512=511512. 因此,玩三盘游戏,至少有一盘出现音乐的概率是511512.思维升华 独立重复试验与二项分布问题的常见类型及解题策略(1)在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率.(2)在根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n 和变量的概率,求得概率.跟踪训练 为研究家用轿车在高速公路上的车速情况,交通部门随机选取100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100 km /h 的有40人,不超过100 km/h 的有15人;在45名女性驾驶员中,平均车速超过100 km /h 的有20人,不超过100 km/h 的有25人.(1)在被调查的驾驶员中,从平均车速不超过100 km/h 的人中随机抽取2人,求这2人恰好有1名男性驾驶员和1名女性驾驶员的概率;(2)以上述样本数据估计总体,从高速公路上行驶的家用轿车中随机抽取3辆,记这3辆车平均车速超过100 km/h 且为男性驾驶员的车辆为X ,求X 的概率分布.解 (1)平均车速不超过100 km/h 的驾驶员有40人,从中随机抽取2人的方法总数为C 240,记“这2人恰好有1名男性驾驶员和1名女性驾驶员”为事件A ,则事件A 所包含的基本事件数为C 115C 125,所以所求的概率P (A )=C 115C 125C 240=15×2520×39=2552.(2)根据样本估计总体的思想,从总体中任取1辆车,平均车速超过100 km/h 且为男性驾驶员的概率为40100=25,故X ~B ⎝⎛⎭⎫3,25. 所以P (X =0)=C 03⎝⎛⎭⎫250⎝⎛⎭⎫353=27125, P (X =1)=C 13⎝⎛⎭⎫25⎝⎛⎭⎫352=54125, P (X =2)=C 23⎝⎛⎭⎫252⎝⎛⎭⎫35=36125, P (X =3)=C 33⎝⎛⎭⎫253⎝⎛⎭⎫350=8125. 所以X 的概率分布为独立事件与互斥事件典例 (1)中国乒乓球队甲、乙两名运动员参加奥运乒乓球女子单打比赛,甲夺得冠军的概率是37,乙夺得冠军的概率是14,那么中国队夺得女子乒乓球单打冠军的概率为________. (2)某射手每次射击击中目标的概率都是23,这名射手射击5次,有3次连续击中目标,另外两次未击中目标的概率是________.现场纠错解析 (1)设“甲夺得冠军”为事件A ,“乙夺得冠军”为事件B ,则P (A )=37,P (B )=14.∵A ,B 是互斥事件,∴P (A ∪B )=P (A )+P (B )=37+14=1928.(2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则 P (A )=P (A 1A 2A 3A 4A 5)+P (A 1A 2A 3A 4A 5)+P (A1A 2A 3A 4A 5)=⎝⎛⎭⎫233×⎝⎛⎭⎫132+13×⎝⎛⎭⎫233×13+⎝⎛⎭⎫132×⎝⎛⎭⎫233=881. 答案 (1)1928 (2)881纠错心得 (1)搞清事件之间的关系,不要混淆“互斥”与“独立”.(2)区分独立事件与n 次独立重复试验.。
2019高考数学大一轮复习江苏专版课件:第十二章 概率、随机变量及其概率分布12-3
题型一
间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时
1 2 过 10分钟的概率是 _____. 解析 如图所示,画出时间轴 .
间不超
小明到达的时间会随机的落在图中线段AB中,而当他的到达时间落在
线段AC或DB上时,才能保证他等车的时间不超过10分钟,根据几何
10+10 1 得所求概率 P= 40 =2.
N
题组一 思考辨析
基础自 测
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)在一个正方形区域内任取一点的概率是零.( √ )
(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地
取一点,该区域中的每一点被取到的机会相等.( ) √ (3)在几何概型定义中的区域可以是线段、平面图形、立体图形.( √ (4)随机模拟方法是以事件发生的频率估计概率.( ) √ (5)与面积有关的几何概型的概率与几何图形的形状有关.( ) × (6)从区间[1,10]内任取一个数,取到1的概率是P= ) 1 .( ×
2.几何概型的概率计算公式
一般地,在几何区域 D中随机地取一点,记事件 “ 该点落在其内部
一个区域d内”为事件A,则事件A发生的概率P(A)= .
3.要切实理解并掌握几何概型试验的两个基本特点 (1)无限性:在一次试验中,可能出现的结果有 无限多个 (2)等可能性:每个结果的发生具有 等可能性 . ;
4-π 因此满足条件的概率是 4 .
1 2 3 4 5 6
解析
答案
题组三 易错自纠
5 5.在区间[-2,4]上随机地取一个数x,若x满足|x|≤m的概率为 ,
则m=______. 3 解析 由|x|≤m,得-m≤x≤m.
2019-2020年全国通用高考数学大一轮复习第十二章概率随机变量及其分布12
思维升华
求相互独立事件同时发生的概率的方法 (1)首先判断几个事件的发生是否相互独立. (2)求相互独立事件同时发生的概率的方法 ①利用相互独立事件的概率乘法公式直接求解; ②正面计算较烦琐或难以入手时,可从其对立事件入手计算.
跟踪训练 为了纪念 2017 在德国波恩举行的联合国气候大会,某社区举办 《“环保我参与”有奖问答比赛》活动.某场比赛中,甲、乙、丙三个家 庭同时回答一道有关环保知识的问题.已知甲家庭回答正确这道题的概率 是34,甲、丙两个家庭都回答错误的概率是112,乙、丙两个家庭都回答正 确的概率是14.若各家庭回答是否正确互不影响. (1)求乙、丙两个家庭各自回答正确这道题的概率;
(3)若 A 与 B 相互独立,则 A 与 B , A 与 B , A 与 B 也都相互独立. (4)若P(AB)=P(A)P(B),则A与B相互独立 . 3.独立重复试验与二项分布 (1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立 的一种试验,在这种试验中每一次试验只有 两 种结果,即要么发生, 要么不发生,且任何一次试验中发生的概率都是一样的. (2)在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中 事件A发生的概率为p,则P(X=k)=Cknpk(1-p)n-k(k=0,1,2,…,n),此 时称随机变量X服从 二项分布,记为 X~B(n,p) ,并称p为成功概率.
第四次取的球是白球的情况,此事件发生的概率为593×49.
123456
解析 答案
题型分类 深度剖析
题型一 条件概率
自主演练
1.已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形与功率都
相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取
一只且不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到
2019版高考数学大一轮复习人教B版全国通用文档:第十
§12.4 离散型随机变量及其分布列1.离散型随机变量如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. 2.离散型随机变量的分布列及性质 (1)离散型随机变量的分布列:若离散型随机变量X 所有可能取的值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率为p 1,p 2,…,p n ,则表称为离散型随机变量X 的概率分布或称为离散型随机变量X 的分布列. (2)离散型随机变量的分布列的性质:①p i ≥0_(i =1,2,3,…,n );②p 1+p 2+…+p n =1; ③P (x i ≤x ≤x j )=p i +p i +1+…+p j . 3.常见离散型随机变量的分布列 (1)二点分布如果随机变量X 的分布列为其中0<p <1,q =1-p ,则称离散型随机变量X 服从参数为p 的二点分布. (2)超几何分布设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件(n ≤N ),这n 件中所含这类物品件数X 是一个离散型随机变量,当X =m 时的概率为P (X =m )=C m M C n -m N -MC n N(0≤m ≤l ,l 为n 和M 中较小的一个),称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N ,M ,n 的超几何分布.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)抛掷均匀硬币一次,出现正面的次数是随机变量.( √ )(2)离散型随机变量的分布列描述了由这个随机变量所刻画的随机现象.( √ ) (3)某人射击时命中的概率为0.5,此人射击三次命中的次数X 服从两点分布.( × ) (4)从4名男演员和3名女演员中选出4名,其中女演员的人数X 服从超几何分布.( √ ) (5)离散型随机变量的分布列中,随机变量取各个值的概率之和可以小于1.( × ) (6)离散型随机变量的各个可能值表示的事件是彼此互斥的.( √ ) 题组二 教材改编2.设随机变量X 的分布列如下:则p 为( ) A.16 B.13 C.14 D.112 答案 C解析 由分布列的性质知,112+16+13+16+p =1, ∴p =1-34=14.3.有一批产品共12件,其中次品3件,每次从中任取一件,在取到合格品之前取出的次品数X 的所有可能取值是____________. 答案 0,1,2,3解析 因为次品共有3件,所以在取到合格品之前取到次品数为0,1,2,3.4.设随机变量X 的分布列为则P (|X -3|=1)=________. 答案512解析 由13+m +14+16=1,解得m =14,P (|X -3|=1)=P (X =2)+P (X =4) =14+16=512. 题组三 易错自纠5.袋中有3个白球、5个黑球,从中任取2个,可以作为随机变量的是( ) A .至少取到1个白球 B .至多取到1个白球 C .取到白球的个数 D .取到的球的个数 答案 C解析 选项A ,B 表述的都是随机事件;选项D 是确定的值2,并不随机;选项C 是随机变量,可能取值为0,1,2.6.随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,则n =________. 答案 10解析 由P (X <4)=P (X =1)+P (X =2)+P (X =3)=1n +1n +1n =3n=0.3,得n =10.7.一盒中有12个乒乓球,其中9个新的、3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值为______. 答案27220解析 由题意知取出的3个球必为2个旧球、1个新球,故P (X =4)=C 23C 19C 312=27220.题型一 离散型随机变量的分布列的性质1.离散型随机变量X 的概率分布规律为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝⎛⎭⎫12<X <52的值为( ) A.23 B.34 C.45 D.56 答案 D解析 ∵P (X =n )=a n (n +1)(n =1,2,3,4),∴a 2+a 6+a 12+a 20=1,∴a =54, ∴P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2) =54×12+54×16=56. 2.设离散型随机变量X 的分布列为求2X +1的分布列. 解 由分布列的性质知,0.2+0.1+0.1+0.3+m =1,得m =0.3. 列表为从而2X +1的分布列为引申探究1.若题2中条件不变,求随机变量η=|X -1|的分布列. 解 由题2知m =0.3,列表为∴P (η=1)=P (X =0)+P (X =2)=0.2+0.1=0.3, P (η=0)=P (X =1)=0.1,P (η=2)=P (X =3)=0.3,P(η=3)=P(X=4)=0.3.故η=|X-1|的分布列为2.若题2中条件不变,求随机变量η=X2的分布列.解依题意知η的值为0,1,4,9,16.列表为从而η=X2的分布列为思维升华(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数.(2)求随机变量在某个范围内的概率时,根据分布列,将所求范围内各随机变量对应的概率相加即可,其依据是互斥事件的概率加法公式.题型二离散型随机变量的分布列的求法命题点1与排列、组合有关的分布列的求法典例(2017·山东改编)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率;(2)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列.解(1)记接受甲种心理暗示的志愿者中包含A1但不包含B1的事件为M,则P(M)=C48C510=5 18.(2)由题意知,X可取的值为0,1,2,3,4,则P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142.因此X 的分布列为命题点2 与互斥事件有关的分布列的求法典例 已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列.解 (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,则P (A )=A 12A 13A 25=310.(2)X 的可能取值为200,300,400. P (X =200)=A 22A 25=110,P (X =300)=A 33+C 12C 13A 22A 35=310, P (X =400)=1-P (X =200)-P (X =300) =1-110-310=35.故X 的分布列为命题点3 与独立事件(或独立重复试验)有关的分布列的求法典例 设某人有5发子弹,他向某一目标射击时,每发子弹命中目标的概率为23.若他连续两发命中或连续两发不中则停止射击,否则将子弹打完.(1)求他前两发子弹只命中一发的概率; (2)求他所耗用的子弹数X 的分布列.解 记“第k 发子弹命中目标”为事件A k ,则A 1,A 2,A 3,A 4,A 5相互独立,且P (A k )=23,P (A k )=13,k =1,2,3,4,5.(1)方法一 他前两发子弹只命中一发的概率为 P (A 1A 2)+P (A 1A 2)=P (A 1)P (A 2)+P (A 1)P (A 2) =23×13+13×23=49. 方法二 由独立重复试验的概率计算公式知,他前两发子弹只命中一发的概率为P =C 12×23×13=49. (2)X 的所有可能值为2,3,4,5. P (X =2)=P (A 1A 2)+P (A 1 A 2) =23×23+13×13=59, P (X =3)=P (A 1A 2 A 3)+P (A 1A 2A 3) =23×⎝⎛⎭⎫132+13×⎝⎛⎭⎫232=29, P (X =4)=P (A 1A 2A 3A 4)+P (A 1A 2A 3 A 4) =⎝⎛⎭⎫233×13+⎝⎛⎭⎫133×23=1081,P (X =5)=P (A 1A 2A 3A 4)+P (A 1A 2A 3A 4) =⎝⎛⎭⎫232×⎝⎛⎭⎫132+⎝⎛⎭⎫132×⎝⎛⎭⎫232=881. 故X 的分布列为思维升华 求离散型随机变量X 的分布列的步骤 (1)理解X 的意义,写出X 可能取的全部值; (2)求X 取每个值的概率; (3)写出X 的分布列.求离散型随机变量的分布列的关键是求随机变量所取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识.跟踪训练 (2017·湖北部分重点中学联考)连续抛掷同一颗均匀的骰子,令第i 次得到的点数为a i ,若存在正整数k ,使a 1+a 2+…+a k =6,则称k 为你的幸运数字. (1)求你的幸运数字为3的概率;(2)若k =1,则你的得分为6分;若k =2,则你的得分为4分;若k =3,则你的得分为2分;若抛掷三次还没找到你的幸运数字,则记0分,求得分ξ的分布列.解 (1)设“连续抛掷3次骰子,和为6”为事件A ,则它包含事件A 1,A 2,A 3,其中A 1:三次恰好均为2;A 2:三次中恰好为1,2,3各一次;A 3:三次中有两次均为1,一次为4. A 1,A 2,A 3为互斥事件,则P (A )=P (A 1)+P (A 2)+P (A 3)=C 33⎝⎛⎭⎫163+C 13·16·C 12·16·C 11·16+C 23⎝⎛⎭⎫162·16=5108. (2)由已知得ξ的可能取值为6,4,2,0,P (ξ=6)=16,P (ξ=4)=⎝⎛⎭⎫162+2×C 12×16×16=536, P (ξ=2)=5108,P (ξ=0)=1-16-536-5108=3554.故ξ的分布列为题型三 超几何分布典例 (2018·济南模拟)某外语学校的一个社团中有7名同学,其中2人只会法语,2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.求: (1)在选派的3人中恰有2人会法语的概率;(2)在选派的3人中既会法语又会英语的人数X 的分布列. 解 (1)设事件A :选派的3人中恰有2人会法语,则P (A )=C 25C 12C 37=47.(2)依题意知,X 服从超几何分布,X 的可能取值为0,1,2,3, P (X =0)=C 34C 37=435,P (X =1)=C 24C 13C 37=1835,P (X =2)=C 14C 23C 37=1235,P (X =3)=C 33C 37=135,∴X 的分布列为思维升华 (1)超几何分布的两个特点 ①超几何分布是不放回抽样问题; ②随机变量为抽到的某类个体的个数. (2)超几何分布的应用条件 ①两类不同的物品(或人、事); ②已知各类对象的个数; ③从中抽取若干个个体.跟踪训练 PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的可入肺颗粒物.根据现行国家标准GB3095-2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区2017年全年每天的PM2.5监测数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:(1)从这10天的PM2.5日均值监测数据中,随机抽出3天,求恰有一天空气质量达到一级的概率;(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列.解 (1)记“从10天的PM2.5日均值监测数据中,随机抽出3天,恰有一天空气质量达到一级”为事件A ,则P (A )=C 13C 27C 310=2140.(2)依据条件知,ξ服从超几何分布,其中N =10,M =3,n =3,且随机变量ξ的可能取值为0,1,2,3.P (ξ=k )=C k 3·C 3-k7C 310(k =0,1,2,3).∴P (ξ=0)=C 03C 37C 310=724,P (ξ=1)=C 13C 27C 310=2140,P (ξ=2)=C 23C 17C 310=740,P (ξ=3)=C 33C 07C 310=1120.故ξ的分布列为离散型随机变量的分布列典例 某射手有5发子弹,射击一次命中的概率为0.9.如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列. 错解展示:现场纠错解 由题意知ξ的取值为1,2,3,4,5, P (ξ=1)=0.9,P (ξ=2)=0.1×0.9=0.09, P (ξ=3)=0.1×0.1×0.9=0.009, P (ξ=4)=0.13×0.9=0.000 9, P (ξ=5)=0.14=0.000 1. ∴ξ的分布列为纠错心得 (1)随机变量的分布列,要弄清变量的取值,还要清楚变量的每个取值对应的事件及其概率.(2)验证随机变量的概率和是否为1.1.(2017·武汉江夏区模拟)若随机变量η的分布列如下:则当P (η<x )=0.8时,实数x 的取值范围是( ) A .x ≤2 B .1≤x ≤2 C .1<x ≤2 D .1<x <2答案 C解析 由离散型随机变量的分布列知P (η<-1)=0.1,P (η<0)=0.3,P (η<1)=0.5,P (η<2)=0.8, 则当P (η<x )=0.8时,实数x 的取值范围是1<x ≤2.2.(2017·邯郸模拟)从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P (ξ≤1)等于( ) A.15 B.25 C.35 D.45答案 D解析 P (ξ≤1)=1-P (ξ=2)=1-C 14C 22C 36=45.3.设X 是一个离散型随机变量,其分布列为则q 等于( ) A .1B.32±336C.32-336D.32+336答案 C解析 ∵13+2-3q +q 2=1,∴q 2-3q +43=0,解得q =32±336.又由题意知0<q 2<23,∴q =32-336.4.一只袋内装有m 个白球,n -m 个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了X 个白球,下列概率等于(n -m )A 2mA 3n 的是( ) A .P (X =3) B .P (X ≥2) C .P (X ≤3) D .P (X =2)答案 D解析 由超几何分布知P (X =2)=(n -m )A 2mA 3n. 5.从装有3个白球、4个红球的箱子中,随机取出了3个球,恰好是2个白球、1个红球的概率是( )A.435B.635C.1235D.36343 答案 C解析 如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布问题,故所求概率为P =C 23C 14C 37=1235.6.某班级在2017年国庆节晚会上安排了迎国庆演讲节目,共有6名选手依次演讲,则选手甲不在第一个也不在最后一个演讲的概率为( ) A.16 B.13 C.12 D.23答案 D解析 6名选手依次演讲有A 66种方法,选手甲不在第一个也不在最后一个演讲的安排方法有4A 55,所以6名选手依次演讲,则选手甲不在第一个也不在最后一个演讲的概率为4A 55A 66=23.7.口袋中有5只球,编号为1,2,3,4,5,从中任取3只球,以X 表示取出的球的最大号码,则X 的分布列为______________________. 答案解析 X 的取值为3,4,5.又P (X =3)=1C 35=0.1,P (X =4)=C 23C 35=0.3,P (X =5)=C 24C 35=0.6.所以X 的分布列为8.袋中有4只红球,3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P (ξ≤6)=________. 答案1335解析 P (ξ≤6)=P (取到3只红球1只黑球)+P (取到4只红球)=C 34C 13C 47+C 44C 47=1335.9.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=________,公差d 的取值范围是________. 答案 23 ⎣⎡⎦⎤-13,13 解析 ∵a ,b ,c 成等差数列,∴2b =a +c . 又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,∴-13≤d ≤13.10.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,则这两次取出白球数η的分布列为_________________________. 答案解析 ∵η的所有可能值为0,1,2.P (η=0)=C 11C 11C 12C 12=14,P (η=1)=C 11C 11×2C 12C 12=12,P (η=2)=C 11C 11C 12C 12=14.∴η的分布列为11.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2 名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列.解 (1)由已知,有P (A )=C 22C 23+C 23C 23C 48=635. 所以,事件A 发生的概率为635. (2)随机变量X 服从超几何分布,X 的所有可能取值为1,2,3,4.P (X =k )=C k 5C 4-k 3C 48(k =1,2,3,4). P (X =1)=C 15C 33C 48=114,P (X =2)=C 25C 23C 48=37,P (X =3)=C 35C 13C 48=37,P (X =4)=C 45C 03C 48=114.所以,随机变量X 的分布列为12.(2017·成都诊断)某高校一专业在一次自主招生中,对20名已经选拔入围的学生进行语言表达能力和逻辑思维能力测试,结果如下表:由于部分数据丢失,只知道从这20名参加测试的学生中随机抽取一人,抽到语言表达能力优秀或逻辑思维能力优秀的学生的概率为25.(1)从参加测试的语言表达能力良好的学生中任意抽取2名,求其中至少有一名逻辑思维能力优秀的学生的概率;(2)从参加测试的20名学生中任意抽取2名,设语言表达能力优秀或逻辑思维能力优秀的学生人数为X ,求随机变量X 的分布列.解 (1)用A 表示“从这20名参加测试的学生中随机抽取一人,抽到语言表达能力优秀或逻辑思维能力优秀的学生”,∵语言表达能力优秀或逻辑思维能力优秀的学生共有(6+n )名, ∴P (A )=6+n 20=25,解得n =2,∴m =4,用B 表示“从参加测试的语言表达能力良好的学生中任意抽取2名,其中至少有一名逻辑思维能力优秀的学生”,∴P (B )=1-C 26C 29=712.(2)随机变量X 服从超几何分布,X 的可能取值为0,1,2.∵在20名学生中,语言表达能力优秀或逻辑思维能力优秀的学生共有8名, ∴P (X =0)=C 212C 220=3395,P (X =1)=C 18C 112C 220=4895,P (X =2)=C 28C 220=1495,∴X 的分布列为13.(2017·石家庄调研)为检测某产品的质量,现抽取5件产品,测量产品中微量元素x ,y 的含量(单位:毫克),测量数据如下:如果产品中的微量元素x ,y 满足x ≥175且y ≥75时,该产品为优等品.现从上述5件产品中随机抽取2件,则抽取的2件产品中优等品数X 的分布列为________. 答案解析 5件抽测品中有2件优等品,则X 的可能取值为0,1,2. P (X =0)=C 23C 25=0.3,P (X =1)=C 13C 12C 25=0.6,P (X =2)=C 22C 25=0.1.∴优等品数X 的分布列为14.(2017·长春模拟)某校校庆,各届校友纷至沓来,某班共来了n 位校友(n >8,且n ∈N +),其中女校友6位,组委会对这n 位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”.(1)若随机选出的2位校友代表为“最佳组合”的概率不小于12,求n 的最大值;(2)当n =12时,设选出的2位校友代表中女校友人数为X ,求随机变量X 的分布列. 解 (1)由题意可知,所选2人为“最佳组合”的概率为C 1n -6C 16C 2n =12(n -6)n (n -1), 则12(n -6)n (n -1)≥12.化简得n 2-25n +144≤0, 解得9≤n ≤16, 故n 的最大值为16.(2)由题意可得,X 的可能取值为0,1,2. 则P (X =0)=C 26C 212=522,P (X =1)=C 16C 16C 212=611,P (X =2)=C 26C 212=522,所以X 的分布列为15.设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1,则随机变量ξ的分布列是________. 答案解析 ξ的可能取值为0,1, 2. P (ξ=0)=8C 23C 212=411,P (ξ=2)=6C 212=111.P (ξ=1)=1-P (ξ=0)-P (ξ=2)=1-411-111=611.16.盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球. (1)求取出的3个球中至少有1个红色球的概率; (2)求取出的3个球得分之和恰为1分的概率;(3)设ξ为取出的3个球中白色球的个数,求ξ的分布列. 解 (1)P =1-C 37C 39=712.(2)记“取出1个红色球,2个白色球”为事件B ,“取出2个红色球,1个黑色球”为事件C ,则P (B +C )=P (B )+P (C )=C 12C 23C 39+C 22C 14C 39=542.(3)ξ可能的取值为0,1,2,3,ξ服从超几何分布,所以P (ξ=k )=C k 3C 3-k 6C 39,k =0,1,2,3. 故P (ξ=0)=C 36C 39=521,P (ξ=1)=C 13C 26C 39=1528,P (ξ=2)=C 23C 16C 39=314,P (ξ=3)=C 33C 39=184.所以ξ的分布列为。
2019高考数学人教A版理科一轮复习课件:第12章 概率、随机变量及其分布 第1讲
答案 A与B,A与C,B与C,B与D
2.(人教A必修3P121T4)一个人打靶时连续射击两次,事件“ 至少有一次中靶”的互斥事件是( A.至多有一次中靶 C.只有一次中靶 解析 ) B.两次都中靶 D.两次都不中靶
事件“至少有一次中靶”包括“中靶一次”和
“中靶两次”两种情况,由互斥事件的定义,可知“ 两次都不中靶”与之互斥. 答案 D
与事件B互斥
若A∩B为不可能事件,A∪B为必 然事件,那么称事件A与事件B互为 对立事件
对立
事件
1
4.概率的几个基本性质 (1)概率的取值范围: 0≤P(A)≤1 . (2)必然事件的概率P(E)= 1 . (3)不可能事件的概率P(F)= 0 . (4)互斥事件概率的加法公式
①如果事件A与事件B互斥,则P(A∪B)= P(A)+P(B) .
3.事件的关系与运算
定义 包含 关系 相等 关系 如果事件 A 发生,则事件 B 一定发生, 这时称事件 B 包含 事件 A(或称事件 A 包含于事件 B) 若 B⊇A 且 A⊇B 符号表示
B⊇A (或
A⊆B)
A=B
并事件 若某事件发生当且仅当事件 A 发生或 (和事 件) 事件 B 发生,称此事件为事件 A 与事 件 B 的 并事件 (或和事件)
解析 根据互斥与对立的定义作答, A∩B={出现点数 1 或 3}, 事件 A,B 不互斥更不对立;B∩C=∅,B∪C=Ω(Ω 为必然事件),故事件 B,C 是对立事件.
2019版高考数学大一轮复习人教B版全国通用文档:第十二章 概率、随机变量及其分布12-5 含答案 精品
§12.5条件概率与事件的独立性1.条件概率及其性质2.事件的独立性(1)相互独立的定义:事件A是否发生对事件B发生的概率没有影响,即P(B|A)=P(B).这时,称两个事件A,B 相互独立,并把这两个事件叫做相互独立事件.(2)概率公式:3.独立重复试验与二项分布(1)独立重复试验①定义:在相同的条件下,重复地做n次试验,各次试验的结果相互独立,那么一般就称它们为n次独立重复试验.②概率公式:在一次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P n(k)=C k n p k(1-p)n-k(k=0,1,2,…,n).(2)二项分布在n 次独立重复试验中,事件A 发生的次数设为X ,事件A 不发生的概率为q =1-p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是P (X =k )=C k n p k qn -k,其中k =0,1,2,…,n .于是得到X 的分布列此时称离散型随机变量X 服从参数为n ,p 的二项分布,记作X ~B (n ,p ).题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)条件概率一定不等于它的非条件概率.( × ) (2)相互独立事件就是互斥事件.( × )(3)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( × )(4)二项分布是一个概率分布,其公式相当于(a +b )n 二项展开式的通项公式,其中a =p ,b =1-p .( × )(5)P (B |A )表示在事件A 发生的条件下,事件B 发生的概率,P (AB )表示事件A ,B 同时发生的概率.( √ ) 题组二 教材改编2.天气预报,在元旦假期甲地降雨概率是0.2,乙地降雨概率是0.3.假设在这段时间内两地是否降雨相互之间没有影响,则这两地中恰有一个地方降雨的概率为( ) A .0.2 B .0.3 C .0.38 D .0.56答案 C解析 设甲地降雨为事件A ,乙地降雨为事件B ,则两地恰有一地降雨为A B +A B , ∴P (A B +A B )=P (A B )+P (A B ) =P (A )P (B )+P (A )P (B ) =0.2×0.7+0.8×0.3 =0.38.3.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,则在他第一次拿到白球的条件下,第二次拿到红球的概率为( ) A.310 B.13 C.38 D.29答案 B解析 设A ={第一次拿到白球},B ={第二次拿到红球}, 则P (AB )=C 12C 110×C 13C 19,P (A )=C 12C 110,所以P (B |A )=P (AB )P (A )=13.题组三 易错自纠4.两个实习生每人加工一个零件,加工成一等品的概率分别为23和34,两个零件能否被加工成一等品相互独立,则这两个零件恰好有一个一等品的概率为( ) A.12 B.512 C.14 D.16 答案 B解析 因为两人加工成一等品的概率分别为23和34,且相互独立,所以两个零件恰好有一个一等品的概率为P =23×14+13×34=512.5.从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则P (B |A )等于( ) A.18 B.14 C.25 D.12答案 B解析 P (A )=C 23+C 22C 25=25,P (AB )=C 22C 25=110, P (B |A )=P (AB )P (A )=14. 6.箱子里有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第4次取球之后停止的概率为( )A.C 35C 14C 45B.⎝⎛⎭⎫593×49 C 35×14 D .C 14×⎝⎛⎭⎫593×49答案 B解析 由题意知,第四次取球后停止是当且仅当前三次取的球是黑球,第四次取的球是白球的情况,此事件发生的概率为⎝⎛⎭⎫593×49.题型一 条件概率1.已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只且不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为( ) A.310 B.29 C.78 D.79答案 D解析 方法一 设事件A 为“第1次抽到的是螺口灯泡”,事件B 为“第2次抽到的是卡口灯泡”,则P (A )=310,P (AB )=310×79=730,则所求概率为P (B |A )=P (AB )P (A )=730310=79.方法二 第1次抽到螺口灯泡后还剩余9只灯泡,其中有7只卡口灯泡,故第2次抽到卡口灯泡的概率为C 17C 19=79.2.一个正方形被平均分成9个部分,向大正方形区域随机地投掷一个点(每次都能投中).设投中最左侧3个小正方形区域的事件记为A ,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B ,求P (AB ),P (A |B ). 解 如图,n (Ω)=9,n (A )=3,n (B )=4, ∴n (AB )=1,∴P (AB )=19,P (A |B )=n (AB )n (B )=14. 思维升华 条件概率的求法(1)定义法:先求P (A )和P (AB ),再由P (B |A )=P (AB )P (A )求P (B |A ). (2)基本事件法:借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件AB 所包含的基本事件数n (AB ),得P (B |A )=n (AB )n (A ).题型二 相互独立事件的概率典例 (2017·哈尔滨质检)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立. (1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元,求该企业可获利润的分布列.解 记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题设知P (E )=23,P (E )=13,P (F )=35, P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则H =E F , 于是P (H )=P (E )P (F )=13×25=215,故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220, 因为P (X =0)=P (E F )=13×25=215,P (X =100)=P (E F )=13×35=315=15,P (X =120)=P (E F )=23×25=415,P (X =220)=P (EF )=23×35=615=25,故所求的分布列为思维升华 求相互独立事件同时发生的概率的方法 (1)首先判断几个事件的发生是否相互独立. (2)求相互独立事件同时发生的概率的方法 ①利用相互独立事件的概率乘法公式直接求解;②正面计算较烦琐或难以入手时,可从其对立事件入手计算.跟踪训练 为了纪念2017在德国波恩举行的联合国气候大会,某社区举办《“环保我参与”有奖问答比赛》活动.某场比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题.已知甲家庭回答正确这道题的概率是34,甲、丙两个家庭都回答错误的概率是112,乙、丙两个家庭都回答正确的概率是14.若各家庭回答是否正确互不影响.(1)求乙、丙两个家庭各自回答正确这道题的概率;(2)求甲、乙、丙三个家庭中不少于2个家庭回答正确这道题的概率.解 (1)记“甲回答正确这道题”、“乙回答正确这道题”、“丙回答正确这道题”分别为事件A ,B ,C , 则P (A )=34,且有⎩⎨⎧P (A )·P (C )=112,P (B )·P (C )=14, 即⎩⎨⎧[1-P (A )]·[1-P (C )]=112,P (B )·P (C )=14, 所以P (B )=38,P (C )=23.(2)有0个家庭回答正确的概率为 P 0=P (A B C )=P (A )·P (B )·P (C ) =14×58×13=596, 有1个家庭回答正确的概率为 P 1=P (A B C +A B C +A B C ) =34×58×13+14×38×13+14×58×23=724, 所以不少于2个家庭回答正确这道题的概率为 P =1-P 0-P 1=1-596-724=2132.题型三 独立重复试验与二项分布命题点1 根据独立重复试验求概率典例 某市电视台举办纪念红军长征胜利知识回答活动,宣传长征精神,首先在甲、乙、丙、丁四个不同的公园进行支持签名活动.然后在各公园签名的人中按分层抽样的方式抽取10名幸运之星回答问题,从10个关于长征的问题中随机抽取4个问题让幸运之星回答,全部答对的幸运之星获得一份纪念品. (1)求此活动中各公园幸运之星的人数;(2)若乙公园中每位幸运之星对每个问题答对的概率均为22,求恰好2位幸运之星获得纪念品的概率;(3)若幸运之星小李对其中8个问题能答对,而另外2个问题答不对,记小李答对的问题数为X ,求X 的分布列.解 (1)甲、乙、丙、丁四个公园幸运之星的人数分别为 45150×10=3,60150×10=4,30150×10=2,15150×10=1. (2)根据题意,乙公园中每位幸运之星获得纪念品的概率为C 44⎝⎛⎭⎫224=14, 所以乙公园中恰好2位幸运之星获得纪念品的概率为 C 24⎝⎛⎭⎫142⎝⎛⎭⎫342=27128.(3)由题意,知X 的所有可能取值为2,3,4,服从超几何分布,P (X =2)=C 28C 22C 410=215,P (X =3)=C 38C 12C 410=815,P (X =4)=C 48C 02C 410=13.所以X 的分布列为命题点2 根据独立重复试验求二项分布典例 一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少? 解 (1)X 可能的取值为10,20,100,-200. 根据题意,有P (X =10)=C 13×⎝⎛⎭⎫121×⎝⎛⎭⎫1-122=38,P (X =20)=C 23×⎝⎛⎭⎫122×⎝⎛⎭⎫1-121=38, P (X =100)=C 33×⎝⎛⎭⎫123×⎝⎛⎭⎫1-120=18, P (X =-200)=C 03×⎝⎛⎭⎫120×⎝⎛⎭⎫1-123=18. 所以X 的分布列为(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3), 则P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为 1-P (A 1A 2A 3)=1-⎝⎛⎭⎫183=1-1512=511512. 因此,玩三盘游戏,至少有一盘出现音乐的概率是511512.思维升华 独立重复试验与二项分布问题的常见类型及解题策略(1)在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率.(2)在根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n 和变量的概率,求得概率.跟踪训练 (2017·牡丹江模拟)为研究家用轿车在高速公路上的车速情况,交通部门随机选取100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100 km /h 的有40人,不超过100 km/h 的有15人;在45名女性驾驶员中,平均车速超过100 km /h 的有20人,不超过100 km/h 的有25人. (1)在被调查的驾驶员中,从平均车速不超过100 km/h 的人中随机抽取2人,求这2人恰好有1名男性驾驶员和1名女性驾驶员的概率;(2)以上述样本数据估计总体,从高速公路上行驶的家用轿车中随机抽取3辆,记这3辆车平均车速超过100 km/h 且为男性驾驶员的车辆为X ,求X 的分布列.解 (1)平均车速不超过100 km/h 的驾驶员有40人,从中随机抽取2人的方法总数为C 240,记“这2人恰好有1名男性驾驶员和1名女性驾驶员”为事件A ,则事件A 所包含的基本事件数为C 115C 125,所以所求的概率P (A )=C 115C 125C 240=15×2520×39=2552.(2)根据样本估计总体的思想,从总体中任取1辆车,平均车速超过100 km/h 且为男性驾驶员的概率为40100=25,故X ~B ⎝⎛⎭⎫3,25. 所以P (X =0)=C 03⎝⎛⎭⎫250⎝⎛⎭⎫353=27125, P (X =1)=C 13⎝⎛⎭⎫25⎝⎛⎭⎫352=54125, P (X =2)=C 23⎝⎛⎭⎫252⎝⎛⎭⎫35=36125, P (X =3)=C 33⎝⎛⎭⎫253⎝⎛⎭⎫350=8125. 所以X 的分布列为独立事件与互斥事件典例 (1)中国乒乓球队甲、乙两名运动员参加奥运乒乓球女子单打比赛,甲夺得冠军的概率是37,乙夺得冠军的概率是14,那么中国队夺得女子乒乓球单打冠军的概率为________. (2)某射手每次射击击中目标的概率都是23,这名射手射击5次,有3次连续击中目标,另外两次未击中目标的概率是________. 错解展示:(1)设“甲夺得冠军”为事件A ,“乙夺得冠军”为事件B ,则P (A )=37,P (B )=14,由A ,B是相互独立事件,得所求概率为P (A B )+P (A B )+P (AB ) =37×34+47×14+37×14=1628=47. (2)所求概率P =C 35×⎝⎛⎭⎫233×⎝⎛⎭⎫132=80243. 错误答案 (1)47 (2)80243现场纠错解析 (1)设“甲夺得冠军”为事件A ,“乙夺得冠军”为事件B ,则P (A )=37,P (B )=14.∵A ,B 是互斥事件,∴P (A ∪B )=P (A )+P (B )=37+14=1928.(2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则 P (A )=P (A 1A 2A 3A 4A 5)+P (A 1A 2A 3A 4A 5)+P (A1A 2A 3A 4A 5)=⎝⎛⎭⎫233×⎝⎛⎭⎫132+13×⎝⎛⎭⎫233×13+⎝⎛⎭⎫132×⎝⎛⎭⎫233=881. 答案 (1)1928 (2)881纠错心得 (1)搞清事件之间的关系,不要混淆“互斥”与“独立”. (2)区分独立事件与n 次独立重复试验.1.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ) A.12 B.14 C.16 D.18答案 A解析 由古典概型知P (A )=12,P (AB )=14,则由条件概率知P (B |A )=P (AB )P (A )=1412=12.2.(2018·大连模拟)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.45 答案 A解析 已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P =0.60.75=0.8.3.(2017·武昌模拟)某居民小区有两个相互独立的安全防范系统A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为18和p ,若在任意时刻恰有一个系统不发生故障的概率为940,则p 等于( ) A.110 B.215 C.16 D.15答案 B解析 由题意得18(1-p )+⎝⎛⎭⎫1-18p =940, ∴p =215,故选B.4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648 B .0.432 C .0.36 D .0.312 答案 A解析 3次投篮投中2次的概率为P (k =2)=C 23×0.62×(1-0.6),投中3次的概率为P (k =3)=0.63,所以通过测试的概率为P (k =2)+P (k =3)=C 23×0.62×(1-0.6)+0.63=0.648.故选A.5.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( ) A .C 1012⎝⎛⎭⎫3810⎝⎛⎭⎫582B .C 912⎝⎛⎭⎫389⎝⎛⎭⎫582 C .C 911⎝⎛⎭⎫589⎝⎛⎭⎫382D .C 911⎝⎛⎭⎫3810⎝⎛⎭⎫582答案 D解析 “X =12”表示第12次取到红球,前11次有9次取到红球,2次取到白球, 因此P (X =12)=38C 911⎝⎛⎭⎫389⎝⎛⎭⎫582=C 911⎝⎛⎭⎫3810⎝⎛⎭⎫582. 6.甲射击命中目标的概率是12,乙命中目标的概率是13,丙命中目标的概率是14.现在三人同时射击目标,则目标被击中的概率为( ) A.34 B.23 C.45D.710答案 A解析 设“甲命中目标”为事件A ,“乙命中目标”为事件B ,“丙命中目标”为事件C ,则击中目标表示事件A ,B ,C 中至少有一个发生.又P (A B C )=P (A )P (B )P (C )=[1-P (A )]·[1-P (B )]·[1-P (C )]=⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14=14. 故目标被击中的概率P =1-P (A B C )=34.7.(2017·德阳模拟)一盒中放有大小相同的10个小球,其中8个黑球、2个红球,现甲、乙二人先后各自从盒子中无放回地任意取2个小球,已知甲取到了2个黑球,则乙也取到2个黑球的概率是________. 答案1528解析 记事件“甲取到2个黑球”为A ,“乙取到2个黑球”为B ,则有P (B |A )=P (AB )P (A )=C 26C 28=1528,即所求事件的概率是1528. 8.某一部件由三个电子元件按如图所示方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.答案 38解析 设元件1,2,3的使用寿命超过1 000小时的事件分别记为A ,B ,C ,显然P (A )=P (B )=P (C )=12,∴该部件的使用寿命超过1 000小时的事件为 (A B +A B +AB )C ,∴该部件的使用寿命超过1 000小时的概率 P =⎝⎛⎭⎫12×12+12×12+12×12×12=38.9.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是________.答案516解析 由于质点每次移动一个单位,移动的方向为向上或向右,移动五次后位于点(2,3),所以质点P 必须向右移动两次,向上移动三次,故其概率为C 35⎝⎛⎭⎫123·⎝⎛⎭⎫122=C 35⎝⎛⎭⎫125=C 25⎝⎛⎭⎫125=516. 10.(2017·长沙模拟)排球比赛的规则是5局3胜制(无平局),甲在每局比赛获胜的概率都为23,前2局中乙队以2∶0领先,则最后乙队获胜的概率是________. 答案1927解析 乙队3∶0获胜的概率为13,乙队3∶1获胜的概率为23×13=29,乙队3∶2获胜的概率为⎝⎛⎭⎫232×13=427.∴最后乙队获胜的概率为P =13+29+427=1927.11.挑选空军飞行员可以说是“万里挑一”,要想通过需要五关:目测、初检、复检、文考(文化考试)、政审.若某校甲、乙、丙三位同学都顺利通过了前两关,根据分析甲、乙、丙三位同学通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,由于他们平时表现较好,都能通过政审关,若后三关之间通过与否没有影响. (1)求甲、乙、丙三位同学中恰好有一人通过复检的概率; (2)设只要通过后三关就可以被录取,求录取人数X 的分布列.解 (1)设A ,B ,C 分别表示事件“甲、乙、丙通过复检”,则所求概率P =P (A B C )+P (A B C )+P (A B C )=0.5×(1-0.6)×(1-0.75)+(1-0.5)×0.6×(1-0.75)+(1-0.5)×(1-0.6)×0.75=0.275.(2)甲被录取的概率为P 甲=0.5×0.6=0.3, 同理P 乙=0.6×0.5=0.3,P 丙=0.75×0.4=0.3.∴甲、乙、丙每位同学被录取的概率均为0.3,故可看成是独立重复试验,即X ~B (3,0.3),X 的可能取值为0,1,2,3,其中P (X =k )=C k 3(0.3)k·(1-0.3)3-k . 故P (X =0)=C 03×0.30×(1-0.3)3=0.343, P (X =1)=C 13×0.3×(1-0.3)2=0.441, P (X =2)=C 23×0.32×(1-0.3)=0.189, P (X =3)=C 33×0.33=0.027,故X 的分布列为12.张先生家住H 小区,他工作在C 科技园区,从家开车到公司上班路上有L 1,L 2两条路线(如图),L 1路线上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;L 2路线上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走L 1路线,求最多遇到1次红灯的概率; (2)若走L 2路线,求遇到红灯次数X 的分布列. 解 (1)设走L 1路线最多遇到1次红灯为A 事件, 则P (A )=C 03×⎝⎛⎭⎫123+C 13×12×⎝⎛⎭⎫122=12. 所以走L 1路线,最多遇到1次红灯的概率为12.(2)依题意,X 的可能取值为0,1,2. P (X =0)=⎝⎛⎭⎫1-34×⎝⎛⎭⎫1-35=110, P (X =1)=34×⎝⎛⎭⎫1-35+⎝⎛⎭⎫1-34×35=920, P (X =2)=34×35=920.所以随机变量X 的分布列为13.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是________.(写出所有正确结论的序号) ①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立; ④A 1,A 2,A 3是两两互斥的事件;⑤P (B )的值不能确定,它与A 1,A 2,A 3中哪一个发生都有关.答案 ②④解析 由题意知A 1,A 2,A 3是两两互斥的事件, P (A 1)=510=12,P (A 2)=210=15,P (A 3)=310,P (B |A 1)=12×51112=511,P (B |A 2)=411,P (B |A 3)=411,而P (B )=P (A 1B )+P (A 2B )+P (A 3B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)P (B |A 3) =12×511+15×411+310×411=922. 14.(2017·兰州模拟)甲、乙两人各射击一次,击中目标的概率分别是23和34.假设两人射击是否击中目标相互之间没有影响,每人每次射击是否击中目标相互之间也没有影响. (1)求甲射击4次,至少有1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设每人连续2次未击中目标,则终止其射击.问:乙恰好射击5次后,被终止射击的概率是多少?解 (1)记“甲连续射击4次,至少有1次未击中目标”为事件A 1,则事件A 1的对立事件A1为“甲连续射击4次,全部击中目标”.由题意知,射击4次相当于做4次独立重复试验.故P (A 1)=C 44⎝⎛⎭⎫234=1681.所以P (A 1)=1-P (A 1)=1-1681=6581.所以甲连续射击4次,至少有一次未击中目标的概率为6581.(2)记“甲射击4次,恰好有2次击中目标”为事件A 2,“乙射击4次,恰好有3次击中目标”为事件B 2,则P (A 2)=C 24×⎝⎛⎭⎫232×⎝⎛⎭⎫1-232=827, P (B 2)=C 34⎝⎛⎭⎫343×⎝⎛⎭⎫1-341=2764. 由于甲、乙射击相互独立, 故P (A 2B 2)=P (A 2)P (B 2)=827×2764=18.所以两人各射击4次,甲恰有2次击中目标且乙恰有3次击中目标的概率为18.(3)记“乙恰好射击5次后,被终止射击”为事件A 3,“乙第i 次射击未击中”为事件D i (i =1,2,3,4,5),则A 3=D 5D 4D 3(D 2 D 1∪D 2D 1∪D 2D 1), 且P (D i )=14.由于各事件相互独立,故 P (A 3)=P (D 5)P (D 4)P (D 3)P (D2D 1+D 2D 1+D 2D 1)=14×14×34×⎝⎛⎫1-14×14=451 024. 所以乙恰好射击5次后,被终止射击的概率为451 024.15.设随机变量X ~B (2,p ),随机变量Y ~B (3,p ),若P (X ≥1)=59,则P (Y ≥1)=________.答案1927解析 ∵X ~B (2,p ),∴P (X ≥1)=1-P (X =0)=1-C 02(1-p )2=59, 解得p =13.又Y ~B (3,p ),∴P (Y ≥1)=1-P (Y =0)=1-C 03(1-p )3=1927. 16.现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列.解 (1)依题意知,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有k 人去参加甲游戏”为事件A k (k =0,1,2,3,4).则P (A k )=C k 4⎝⎛⎭⎫13k ⎝⎛⎭⎫234-k . 故这4个人中恰有2人去参加甲游戏的概率为 P (A 2)=C 24⎝⎛⎭⎫132⎝⎛⎭⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4. 由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝⎛⎭⎫133×23+C 44⎝⎛⎭⎫134=19.所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能取值为0,2,4. 由于A 1与A 3互斥,A 0与A 4互斥,故 P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1)+P (A 3) =C 14⎝⎛⎭⎫13⎝⎛⎭⎫233+C 34⎝⎛⎭⎫133×23=4081, P (ξ=4)=P (A 0)+P (A 4) =C 04⎝⎛⎭⎫234+C 44⎝⎛⎭⎫134=1781. 所以ξ的分布列是。
2019版高考数学大一轮复习人教B版全国通用文档:第十
§12.6随机变量的数字特征、正态分布1.离散型随机变量的数学期望与方差设一个离散型随机变量X所有可能取的值是x1,x2,…,x n,这些值对应的概率是p1,p2,…,p n.(1)数学期望称E(X)=x1p1+x2p2+…+x n p n为离散型随机变量X的均值或数学期望(简称期望),它刻画了这个离散型随机变量的平均取值水平.(2)方差称D(X)=(x1-E(X))2p1+(x2-E(X))2p2+…+(x n-E(X))2p n叫做这个离散型随机变量X的方差,即反映了离散型随机变量取值相对于期望的平均波动大小(或说离散程度),D(X)的算术平方根D(X)叫做离散型随机变量X的标准差.2.二点分布与二项分布、超几何分布的期望、方差3.正态曲线正态变量的概率密度函数的图象叫做正态曲线,其函数表达式为f(x)=12π·σ22()2ex uσ--,x∈R(其中μ,σ为参数,且σ>0,-∞<μ<+∞). 4.正态曲线的性质(1)曲线在x 轴的上方,并且关于直线x =μ对称.(2)曲线在x =μ时处于最高点,并由此处向左右两边延伸时,曲线逐渐降低,呈现“中间高,两边低”的形状.(3)曲线的形状由参数σ确定,σ越大,曲线越“矮胖”;σ越小,曲线越“高瘦”. 5.正态变量在三个特定区间内取值的概率值 (1)P (μ-σ<X <μ+σ)=68.3%; (2)P (μ-2σ<X <μ+2σ)=95.4%; (3)P (μ-3σ<X <μ+3σ)=99.7%.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)随机变量的期望是常数,样本的平均数是随机变量,它不确定.( √ )(2)随机变量的方差和标准差都反映了随机变量取值偏离期望的平均程度,方差或标准差越小,则偏离变量的平均程度越小.( √ )(3)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差.( √ )(4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.( √ )(5)期望是算术平均数概念的推广,与概率无关.( × ) 题组二 教材改编 2.已知X 的分布列为设Y =2X +3,则E (Y )的值为( ) A.73 B .4 C .-1 D .1 答案 A解析 E (X )=-12+16=-13,E (Y )=E (2X +3)=2E (X )+3=-23+3=73.3.甲、乙两工人在一天生产中出现的废品数分别是两个随机变量X ,Y ,其分布列分别为若甲、乙两人的日产量相等,则甲、乙两人中技术较好的是________. 答案 乙解析 E (X )=0×0.4+1×0.3+2×0.2+3×0.1=1. E (Y )=0×0.3+1×0.5+2×0.2=0.9, ∵E (Y )<E (X ). ∴乙技术好.4.已知随机变量X 服从正态分布N (3,1),且P (X >2c -1)=P (X <c +3),则c =________. 答案 43解析 ∵X ~N (3,1),∴正态曲线关于x =3对称, 且P (X >2c -1)=P (X <c +3), ∴2c -1+c +3=3×2,∴c =43.题组三 易错自纠5.已知随机变量X +η=8,若X ~B (10,0.6),则E (η),D (η)分别是( ) A .6,2.4 B .2,2.4 C .2,5.6 D .6,5.6答案 B解析 由已知随机变量X +η=8,所以η=8-X . 因此,求得E (η)=8-E (X )=8-10×0.6=2, D (η)=(-1)2D (X )=10×0.6×0.4=2.4.6.设随机变量ξ服从正态分布N (μ,σ2),函数f (x )=x 2+4x +ξ没有零点的概率是12,则μ等于( ) A .1 B .2 C .4 D .不能确定 答案 C解析 当函数f (x )=x 2+4x +ξ没有零点时,Δ=16-4ξ<0,即ξ>4,根据正态曲线的对称性,当函数f (x )=x 2+4x +ξ没有零点的概率是12时,μ=4.题型一 离散型随机变量的期望、方差命题点1 求离散型随机变量的期望、方差典例 某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X ,求X 的分布列和期望. 解 (1)设“当天小王的该银行卡被锁定”的事件为A , 则P (A )=56×45×34=12.(2)依题意得,X 所有可能的取值是1,2,3. 又P (X =1)=16,P (X =2)=56×15=16,P (X =3)=56×45×1=23.所以X 的分布列为所以E (X )=1×16+2×16+3×23=52.命题点2 已知离散型随机变量的期望与方差,求参数值典例 设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E (η)=53,D (η)=59,求a ∶b ∶c . 解 (1)由题意得ξ=2,3,4,5,6,故P (ξ=2)=3×36×6=14,P (ξ=3)=2×3×26×6=13,P (ξ=4)=2×3×1+2×26×6=518,P (ξ=5)=2×2×16×6=19,P (ξ=6)=1×16×6=136.所以ξ的分布列为(2)由题意知η的分布列为所以E (η)=a a +b +c +2b a +b +c +3c a +b +c =53,D (η)=⎝⎛⎭⎫1-532·a a +b +c +⎝⎛⎭⎫2-532·b a +b +c +⎝⎛⎭⎫3-532·c a +b +c =59,化简得⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0.解得a =3c ,b =2c ,故a ∶b ∶c =3∶2∶1.思维升华 离散型随机变量的期望与方差的常见类型及解题策略(1)求离散型随机变量的期望与方差.可依题设条件求出离散型随机变量的分布列,然后利用期望、方差公式直接求解.(2)由已知期望或方差求参数值.可依据条件利用期望、方差公式得出含有参数的方程(组),解方程(组)即可求出参数值.(3)由已知条件,作出对两种方案的判断.可依据期望、方差的意义,对实际问题作出判断. 跟踪训练 (2017·青岛一模)为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时. (1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与期望E (ξ),方差D (ξ). 解 (1)两人所付费用相同,相同的费用可能为0,40,80元,甲、乙两人2小时以上且不超过3小时离开的概率分别为⎝⎛⎭⎫1-14-12=14,⎝⎛⎭⎫1-16-23=16. 两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为 P 3=14×16=124,则两人所付费用相同的概率为 P =P 1+P 2+P 3=124+13+124=512.(2)设甲、乙所付费用之和为ξ,ξ的可能取值为0,40,80,120,160,则 P (ξ=0)=14×16=124,P (ξ=40)=14×23+12×16=14,P (ξ=80)=14×16+12×23+14×16=512,P (ξ=120)=12×16+14×23=14,P (ξ=160)=14×16=124.所以ξ的分布列为E (ξ)=0×124+40×14+80×512+120×14+160×124=80.D (ξ)=(0-80)2×124+(40-80)2×14+(80-80)2×512+(120-80)2×14+(160-80)2×124=4 0003.题型二 期望与方差在决策中的应用典例 计划在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的入流量相互独立. (1)求未来4年中,至多有1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系:若某台发电机运行,则该台发电机年利润为5 000万元;若某台发电机未运行,则该台发电机年亏损800万元.欲使水电站年总利润的期望达到最大,应安装发电机多少台? 解 (1)依题意,得p 1=P (40<X <80)=1050=0.2,p 2=P (80≤X ≤120)=3550=0.7,p 3=P (X >120)=550=0.1.由二项分布可知,在未来4年中,至多有1年的年入流量超过120的概率为p =C 04(1-p 3)4+C 14(1-p 3)3p 3=⎝⎛⎭⎫9104+4×⎝⎛⎭⎫9103×110=0.947 7. (2)记水电站年总利润为Y (单位:万元). ①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y =5 000,E (Y )=5 000×1=5 000. ②安装2台发电机的情形.依题意,当40<X <80时,一台发电机运行,此时Y =5 000-800=4 200,因此P (Y =4 200)=P (40<X <80)=p 1=0.2;当X ≥80时,两台发电机运行,此时Y =5 000×2=10 000,因此P (Y =10 000)=P (X ≥80)=p 2+p 3=0.8.由此得Y 的分布列如下:所以,E (Y )=4 200×0.2+10 000×0.8=8 840. ③安装3台发电机的情形.依题意,当40<X <80时,一台发电机运行,此时Y =5 000-1 600=3 400,因此P (Y =3 400)=P (40<X <80)=p 1=0.2;当80≤X ≤120时,两台发电机运行,此时Y =5 000×2-800=9 200,因此P (Y =9 200)=P (80≤X ≤120)=p 2=0.7;当X >120时,三台发电机运行,此时Y =5 000×3=15 000,因此P (Y =15 000)=P (X >120)=p 3=0.1,由此得Y 的分布列如下:所以,E (Y )=3 400×0.2+9 200×0.7+15 000×0.1=8 620. 综上,欲使水电站年总利润的期望达到最大,应安装发电机2台.思维升华 随机变量的期望反映了随机变量取值的平均水平,方差反映了随机变量稳定于期望的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要理论依据.一般先比较期望,若期望相同,再用方差来决定.跟踪训练 (2017·贵州调研)某投资公司在2018年年初准备将1 000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为79和29;项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为35,13和115.针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由. 解 若按“项目一”投资,设获利为X 1万元,则X 1的分布列为∴E (X 1)=300×79+(-150)×29=200.若按“项目二”投资,设获利为X 2万元,则X 2的分布列为∴E (X 2)=500×35+(-300)×13+0×115=200.D (X 1)=(300-200)2×79+(-150-200)2×29=35 000,D (X 2)=(500-200)2×35+(-300-200)2×13+(0-200)2×115=140 000.∴E (X 1)=E (X 2),D (X 1)<D (X 2),这说明虽然项目一、项目二获利相等,但项目一更稳妥. 综上所述,建议该投资公司选择项目一投资. 题型三 正态分布的应用典例 (2017·全国Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2).(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P (X ≥1)及X 的期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得x -=116∑i =116x i =9.97,s =116i =116(x i -x -)2=116(∑i =116x 2i -16x -2)≈0.212,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)用样本平均数x -作为μ的估计值μ^,用样本标准差s 作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查?剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ-3σ<Z <μ+3σ)=0.997 4,0.997 416≈0.959 2,0.008≈0.09.解 (1)抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.997 4,从而零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.002 6,故X ~B (16,0.002 6). 因此P (X ≥1)=1-P (X =0)=1-0.997 416≈0.040 8. E (X )=16×0.002 6=0.041 6.(2)(ⅰ)如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.002 6,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.040 8,发生的概率很小,因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由x =9.97,s ≈0.212,得μ的估计值为μ^=9.97,σ的估计值为σ^=0.212,由样本数据可以看出有一个零件的尺寸在(μ^-3σ^,μ^+3σ^)之外,因此需对当天的生产过程进行检查. 剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的平均数为115×(16×9.97-9.22)=10.02.因此μ的估计值为10.02.i =116x 2i =16×0.2122+16×9.972≈1 591.134.剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的样本方差为115×(1 591.134-9.222-15×10.022)≈0.008,因此σ的估计值为0.008≈0.09.思维升华 解决正态分布问题有三个关键点:(1)对称轴x =μ;(2)标准差σ;(3)分布区间.利用对称性可求指定范围内的概率值;由μ,σ,分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率.注意只有在标准正态分布下对称轴才为x =0.跟踪训练 从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x 和样本方差s 2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2.①利用该正态分布,求P (187.8<Z <212.2);②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用①的结果,求E (X ). 附:150≈12.2.若Z ~N (μ,σ2),则P (μ-σ<Z <μ+σ)=0.682 6,P (μ-2σ<Z <μ+2σ)=0.954 4. 解 (1)抽取产品的质量指标值的样本平均数x 和样本方差s 2分别为x =170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s 2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z ~N (200,150),即Z ~N (200,12.22). 从而P (187.8<Z <212.2)=P (200-12.2<Z <200+12.2)=0.682 6.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6, 依题意知X ~B (100,0.682 6), 所以E (X )=100×0.682 6=68.26.离散型随机变量的期望与方差问题典例 (12分)为回馈顾客,某商场拟通过模拟兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由. 规范解答解 (1)设顾客所获的奖励额为X .①依题意,得P (X =60)=C 11C 13C 24=12,即顾客所获的奖励额为60元的概率为12.[2分]②依题意,得X 的所有可能取值为20,60. P (X =60)=12,P (X =20)=C 23C 24=12,故X 的分布列为所以顾客所获的奖励额的期望为 E (X )=20×12+60×12=40.[5分](2)根据商场的预算,每个顾客的平均奖励额为60元, 所以,先寻找期望为60的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案, 因为60元是面值之和的最大值,所以期望不可能为60元; 如果选择(50,50,50,10)的方案, 因为60元是面值之和的最小值, 所以期望也不可能为60元;因此可能的方案是(10,10,50,50),记为方案1. 对于面值由20元和40元组成的情况, 同理可排除(20,20,20,40)和(40,40,40,20)的方案, 所以可能的方案是(20,20,40,40),记为方案2. 以下是对两个方案的分析. 对于方案1,即方案(10,10,50,50), 设顾客所获的奖励额为X 1, 则X 1的分布列为]X 1的期望为E (X 1)=20×16+60×23+100×16=60,X 1的方差为D (X 1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.[9分]对于方案2,即方案(20,20,40,40), 设顾客所获的奖励额为X 2, 则X 2的分布列为]X 2的期望为E (X 2)=40×16+60×23+80×16=60,X 2的方差为D (X 2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.[12分]求离散型随机变量的期望和方差问题的一般步骤 第一步:确定随机变量的所有可能取值;第二步:求每一个可能取值所对应的概率; 第三步:列出离散型随机变量的分布列; 第四步:求期望和方差;第五步:根据期望、方差进行判断,并得出结论(适用 于期望、方差的应用问题);第六步:反思回顾.查看关键点、易错点和答题规范性.1.(2018·太原模拟)随机变量X 的分布列如下:其中a ,b ,c 成等差数列.若E (X )=13,则D (X )的值是( )A.49B.59C.23D.95答案 B解析 a +b +c =1.又∵2b =a +c ,故b =13,a +c =23.由E (X )=13,得13=-a +c ,故a =16,c =12.D (X )=⎝⎛⎭⎫-1-132×16+⎝⎛⎭⎫0-132×13+⎝⎛⎭⎫1-132×12=59.故选B. 2.(2017·浙江)已知随机变量ξi 满足P (ξi =1)=p i ,P (ξi =0)=1-p i ,i =1,2.若0<p 1<p 2<12,则( )A .E (ξ1)<E (ξ2),D (ξ1)<D (ξ2)B .E (ξ1)<E (ξ2),D (ξ1)>D (ξ2)C .E (ξ1)>E (ξ2),D (ξ1)<D (ξ2) D .E (ξ1)>E (ξ2),D (ξ1)>D (ξ2) 答案 A解析 由题意可知ξi (i =1,2)服从二点分布,∴E (ξ1)=p 1,E (ξ2)=p 2,D (ξ1)=p 1(1-p 1),D (ξ2)=p 2(1-p 2), 又∵0<p 1<p 2<12,∴E (ξ1)<E (ξ2),把方差看作函数y =x (1-x ),函数在⎝⎛⎭⎫0,12上为增函数,∴由题意可知,D (ξ1)<D (ξ2).故选A. 3.在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( )附:若X ~N (μ,σ2),则P (μ-σ<X <μ+σ)=0.683, P (μ-2σ<X <μ+2σ)=0.954.A .2 386B .2 718C .3 415D .4 772答案 C解析 由X ~N (0,1)知,P (-1<X <1)=0.683, ∴P (0≤X ≤1)=12×0.683=0.341 5,故S ≈0.341 5.∴落在阴影部分中点的个数x 的估计值为x 10 000=S1(古典概型),∴x =10 000×0.341 5=3 415,故选C.4.若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3×2-2B .2-4C .3×2-10D .2-8答案 C解析 由题意知⎩⎪⎨⎪⎧np =6,np (1-p )=3, 解得⎩⎪⎨⎪⎧p =12,n =12.∴P (X =1)=C 112×12×⎝⎛⎭⎫1-1211=12212=3×2-10. 5.设随机变量X ~N (μ,σ2),且X 落在区间(-3,-1)内的概率和落在区间(1,3)内的概率相等,若P (X >2)=p ,则P (0<X <2)等于( ) A.12+p B .1-pC .1-2p D.12-p 答案 D解析 由X 落在(-3,-1)内的概率和落在(1,3)内的概率相等得μ=0. 又∵P (X >2)=p ,∴P (-2<x <2)=1-2p , ∴P (0<X <2)=1-2p 2=12-p .6.某班举行了一次“心有灵犀”的活动,教师把一张写有成语的纸条出示给A 组的某个同学,这个同学再用身体语言把成语的意思传递给本组其他同学.若小组内同学甲猜对成语的概率是0.4,同学乙猜对成语的概率是0.5,且规定猜对得1分,猜不对得0分,则这两个同学各猜1次,得分之和X (单位:分)的期望为( ) A .0.9 B .0.8 C .1.2 D .1.1答案 A解析 由题意得X =0,1,2,则 P (X =0)=0.6×0.5=0.3,P (X =1)=0.4×0.5+0.6×0.5=0.5, P (X =2)=0.4×0.5=0.2, ∴E (X )=1×0.5+2×0.2=0.9.7.(2017·全国Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D (X )=________. 答案 1.96解析 由题意得X ~B (100,0.02), ∴D (X )=100×0.02×(1-0.02)=1.96.8.马老师从课本上抄录一个随机变量ξ的分布列如下表:请小牛同学计算ξ的期望.尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=________. 答案 2解析 设“?”处的数值为x ,则“!”处的数值为1-2x ,则 E (ξ)=1·x +2×(1-2x )+3x =x +2-4x +3x =2.9.已知当X ~N (μ,σ2)时,P (μ-σ<X <μ+σ)=0.683,P (μ-2σ<X <μ+2σ)=0.954,P (μ-3σ<X <μ+3σ)=0.997,则ʃ4312π2(1)2e x --d x =________.答案 0.021 5解析 由题意,μ=1,σ=1,P (3≤X ≤4)=12×[P (-2<X <4)-P (-1<X <3)]=12×(0.997-0.954)=0.021 5.10.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.答案 25解析 设P (ξ=1)=a ,P (ξ=2)=b , 则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎨⎧a =35,b =15,所以D (ξ)=15+35×0+15×1=25.11.(2017·天津)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 解 (1)随机变量X 的所有可能取值为0,1,2,3, P (X =0)=⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14=14, P (X =1)=12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14+⎝⎛⎭⎫1-12×13×⎝⎛⎭⎫1-14+⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×14=1124, P (X =2)=⎝⎛⎭⎫1-12×13×14+12×⎝⎛⎭⎫1-13×14+12×13×⎝⎛⎭⎫1-14=14, P (X =3)=12×13×14=124.所以,随机变量X 的分布列为随机变量X 的期望E (X )=0×14+1×1124+2×14+3×124=1312.(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为 P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0)=P(Y=0)P(Z=1)+P(Y=1)P(Z=0)=14×1124+1124×14=1148.所以,这2辆车共遇到1个红灯的概率为1148.12.(2017·全国名校名师原创联考)汽车租赁公司为了调查A,B两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表:A型车B型车(1)从出租天数为3天的汽车(仅限A,B两种车型)中随机抽取一辆,估计这辆汽车恰好是A 型车的概率;(2)根据这个星期的统计数据,估计该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率;(3)①试写出A,B两种车型的出租天数的分布列及期望;②如果两种车型每辆车每天出租获得的利润相同,该公司需要从A,B两种车型中购买一辆,请你根据所学的统计知识,建议应该购买哪一种车型,并说明你的理由.解(1)这辆汽车是A型车的概率约为P=3030+20=0.6,故这辆汽车是A型车的概率为0.6.(2)设“事件A i表示一辆A型车在一周内出租天数恰好为i天”,“事件B j表示一辆B型车在一周内出租天数恰好为j天”,其中i,j=1,2,3, (7)则该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率为P(A1B3+A2B2+A3B1)=P(A1B3)+P(A2B2)+P(A3B1)=P(A1)P(B3)+P(A2)P(B2)+P(A3)P(B1)=5100×20100+10100×20100+30100×14100=9125,故该公司一辆A 型车,一辆B 型车一周内合计出租天数恰好为4天的概率为9125.(3)①设X 为A 型车出租的天数,则X 的分布列为设Y 为B 型车出租的天数,则Y 的分布列为E (X )=1×0.05+2×0.10+3×0.30+4×0.35+5×0.15+6×0.03+7×0.02=3.62, E (Y )=1×0.14+2×0.20+3×0.20+4×0.16+5×0.15+6×0.10+7×0.05=3.48.②一辆A 类车型的出租车一个星期出租天数的期望为3.62天,B 类车型的出租车一个星期出租天数的期望为3.48天,故选择A 类型的出租车更加合理.13.某班有50名学生,一次考试的数学成绩ξ服从正态分布N (100,102),已知P (90≤ξ≤100)=0.3,估计该班学生数学成绩在110分以上的人数为________. 答案 10解析 由题意知,P (ξ>110)=1-2P (90≤ξ≤100)2=0.2,∴该班学生数学成绩在110分以上的人数为0.2×50=10.14.一个不透明的盒子中关有蝴蝶、蜜蜂和蜻蜓三种昆虫共11只,现在盒子上开一小孔,每次只能飞出1只昆虫(假设任意1只昆虫等可能地飞出).若有2只昆虫先后任意飞出(不考虑顺序),则飞出的是蝴蝶或蜻蜓的概率是2155.(1)求盒子中蜜蜂有几只;(2)若从盒子中先后任意飞出3只昆虫(不考虑顺序),记飞出蜜蜂的只数为X ,求随机变量X 的分布列与期望E (X ).解 (1)设“2只昆虫先后任意飞出,飞出的是蝴蝶或蜻蜓”为事件A ,设盒子中蜜蜂为x 只,则由题意,得 P (A )=C 211-x C 211=2155,所以(11-x )(10-x )=42, 解得x =4或x =17(舍去), 故盒子中蜜蜂有4只.(2)由(1)知,盒子中蜜蜂有4只,则X 的取值为0,1,2,3,P (X =0)=C 37C 311=733,P (X =1)=C 14C 27C 311=2855,P (X =2)=C 24C 17C 311=1455,P (X =3)=C 34C 311=4165.故X 的分布列为期望E (X )=0×733+1×2855+2×1455+3×4165=1211.15.(2017·黄冈调研)已知6只小白鼠中有1只感染了病毒,需要对6只小白鼠进行病毒DNA 化验来确定哪一只受到了感染.下面是两种化验方案:方案甲:逐个化验,直到能确定感染病毒的小白鼠为止.方案乙:将6只小白鼠分为两组,每组三只,将其中一组的三只小白鼠的待化验物质混合在一起化验,若化验结果显示含有病毒DNA ,则表明感染病毒的小白鼠在这三只当中,然后逐个化验,直到确定感染病毒的小白鼠为止;若化验结果显示不含病毒DNA ,则在另外一组中逐个进行化验. (1)求执行方案乙化验次数恰好为2次的概率;(2)若首次化验的化验费为10元,第二次化验的化验费为8元,第三次及以后每次化验的化验费都是6元,求方案甲所需化验费的分布列和期望. 解 (1)执行方案乙化验次数恰好为2次的情况分两种:第一种,先化验一组,结果显示不含病毒DNA ,再从另一组中任取一只进行化验,其恰好含有病毒DNA ,此种情况的概率为C 35C 36×1C 13=16;第二种,先化验一组,结果显示含病毒DNA ,再从中逐个化验,恰好第一只含有病毒,此种情况的概率为C 25C 36×1C 13=16.所以执行方案乙化验次数恰好为2次的概率为16+16=13.(2)设用方案甲化验需要的化验费为η(单位:元),则η的可能取值为10,18,24,30,36. P (η=10)=16,P (η=18)=56×15=16,P (η=24)=56×45×14=16,P (η=30)=56×45×34×13=16,P (η=36)=56×45×34×23=13,则化验费η的分布列为所以E (η)=10×16+18×16+24×16+30×16+36×13=773(元).16.(2017·江苏)已知一个口袋有m 个白球,n 个黑球(m ,n ∈N +,n ≥2),这些球除颜色外完全相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m +n 的抽屉内,其中第k 次取球放入编号为k 的抽屉(k =1,2,3,…,m +n ).(1)试求编号为2的抽屉内放的是黑球的概率p ;(2)随机变量X 表示最后一个取出的黑球所在抽屉编号的倒数,E (X )是X 的期望,证明:E (X )<n(m +n )(n -1).(1)解 编号为2的抽屉内放的是黑球的概率为p =C n -1m +n -1C n m +n =n m +n.(2)证明 随机变量X 的分布列为随机变量X 的期望为E (X )=k =n m +n 1k ·C n -1k -1C n m +n =1C n m +n k =n m +n 1k ·(k -1)!(n -1)!(k -n )!.所以E (X )<1C n m +n k =n m +n (k -2)!(n -1)!(k -n )!=1(n -1)C nm +n k =n m +n (k -2)!(n -2)!(k -n )!=1(n -1)C n m +n(1+C n -2n -1+C n -2n +…+C n -2m +n -2)=1(n -1)C n m +n (C n -1n -1+C n -2n -1+C n -2n +…+C n -2m +n -2) =1(n -1)C n m +n(C n -1n +C n -2n +…+C n -2m +n -2) =…=1(n -1)C n m +n(C n -1m +n -2+C n -2m +n -2) =C n -1m +n -1(n -1)C n m +n =n (m +n )(n -1), 即E (X )<n (m +n )(n -1).。
高考数学大一轮复习第十二章概率、随机变量及其分布12_3几何概型教师用书理新人教版
第十二章概率、随机变量及其散布12.3几何概型教师用书理新人教版1.几何概型假如每个事件发生的概率只与组成该事件地区的长度( 面积或体积 ) 成比率,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型中,事件A的概率的计算公式P(A)=组成事件 A的地区长度面积或体积.试验的所有结果所组成的地区长度面积或体积3.几何概型试验的两个基本特色(1)无穷性:在一次试验中,可能出现的结果有无穷多个;(2)等可能性:每个结果的发生拥有等可能性.4.随机模拟方法(1) 使用计算机或许其余方式进行的模拟试验,以便经过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2) 用计算机或计算器模拟试验的方法为随机模拟方法.这个方法的基本步骤是①用计算器或计算机产生某个范围内的随机数,并给予每个随机数必定的意义;②统计代表某意义的随机M数的个数 M和总的随机数个数N;③计算频次 f n( A)=N作为所求概率的近似值.【思虑辨析】判断以下结论能否正确 ( 请在括号中打“√”或“×”)(1)在一个正方形地区内任取一点的概率是零.(√)(2)几何概型中,每一个基本领件就是从某个特定的几何地区内随机地取一点,该地区中的每一点被取到的时机相等. ( √ )(3)在几何概型定义中的地区能够是线段、平面图形、立体图形.(√)(4)随机模拟方法是以事件发生的频次预计概率.(√)(5)与面积相关的几何概型的概率与几何图形的形状相关.(×)(6)从区间 [1,10] 内任取一个数,取到 1 的概率是1×)= .(P91. ( 教材改编 ) 在线段 [0,3] 上任投一点,则此点坐标小于1 的概率为 ()1 1 1A. 2B. 3C. 4 D . 1 答案B1分析 坐标小于 1 的区间为 [0,1] ,长度为 1, [0,3] 区间长度为3,故所求概率为 3.2.(2015 ·山东 ) 在区间 [0,2]上随机地取一个数x ,则事件“-1≤log 1( x1) ≤1”发生的22概率为 ()3211A. 4B. 3C. 3D. 4 答案A分析 由- 1≤11 1log 1( x≤1,得 ≤ x + ≤2,)22223∴0≤ x ≤ .2∴由几何概型的概率计算公式得所求概率3- 02 33.( 教材改编 ) 有四个游戏盘, 将它们水平放稳后, 在上边扔一颗玻璃小球,若小球落在暗影部分,则可中奖,小明要想增添中奖时机,应选择的游戏盘是( )答案A3221分析∵ P ( A ) =8,P ( B ) =8,P ( C )=6,P ( D )= 3,∴P ( A )>P ( C ) = P ( D )> P ( B ) .4.(2017 ·南昌月考) 一个边长为3 πcm的正方形薄木板的正中央有一个直径为2 cm 的圆孔,一只小虫在木板的一个面内随机地爬行,则小虫恰在离四个极点的距离都大于2 cm 的区域内的概率等于________.1 答案2分析 如下图,分别以正方形的四个极点为圆心, 2 cm 为半径作圆,与正方形订交截得四个圆心角为直角的扇形,当小虫落在图中的黑色地区时,它离四个极点的距离都大于 2 cm ,此中黑色地区面积为 S =S-4S-S2 22正方形 扇形 小圆 = (3 π )-π×2 -π×11S 4π 11=9π- 5π= 4π,因此小虫离四个极点的距离都大于 2 cm 的概率为 P = 9π-π = 8π =2.5.若将一个质点随机投入如下图的长方形 ABCD 中,此中 AB = 2,BC = 1,则质点落在以 AB为直径的半圆内的概率是 ________.π答案4分析设质点落在以 AB 为直径的半圆内为事件A ,1 2暗影面积 2π·1 π则 P ( A ) = 长方形面积 = 1×2 = 4.题型一 与长度、角度相关的几何概型例 1(1)(2016 ·全国甲卷 ) 某路口人行横道的信号灯为红灯和绿灯交替出现, 红灯连续时间为 40 秒.若一名行人到达该路口碰到红灯,则起码需要等候 15 秒才出现绿灯的概率为 ()75 3 3 A.10 B. 8 C.8 D.10π πx ,则 cos x 的值介于1(2)(2017 ·太原调研 ) 在区间 [ - 2 , 2 ] 上随机取一个数 0 到 2之间的概率为 ________.1答案 (1)B(2) 3分析(1) 起码需要等候40- 15 515 秒才出现绿灯的概率为= ,应选 B.408π π1 (2) 当-2 ≤ x ≤ 2 时,由 0≤cosx ≤ 2,得-π≤ x≤-π或π≤ x≤π,23321依据几何概型概率公式得所求概率为3.(3)如下图,在△ ABC中,∠ B=60°,∠ C=45°,高 AD=3,在∠ BAC内作射线 AM交 BC于点 M,求 BM<1的概率.解由于∠ B=60°,∠ C=45°,因此∠ BAC=75°.在 Rt△ABD中,AD=3,∠B=60°,AD因此 BD=tan 60°=1,∠ BAD=30°.记事件 N 为“在∠ BAC内作射线 AM交 BC于点 M,使 BM<1”,则可得∠ BAM<∠BAD时势件 N 发生.30°275°引申研究131.本例 (2)中,若将“ cos x 的值介于0 到 2”改为“ cos x 的值介于0 到2”,则概率怎样?ππ3解当- 2 ≤x≤ 2 时,由0≤cos x≤2,ππππ得- 2 ≤x≤- 6 或6 ≤x≤ 2 ,232.本例 (3) 中,若将“在∠BAC内作射线AM交 BC于点 M”改为“在线段BC上找一点M”,求 BM<1的概率.解依题意知 BC= BD+ DC=1+3,( <1)=1=3- 1.P BM1+ 32思想升华求解与长度、角度相关的几何概型的方法求与长度 ( 角度 ) 相关的几何概型的概率的方法是把题中所表示的几何模型转变为长度( 角度 ) ,而后求解.要特别注意“长度型”与“角度型”的不一样.解题的重点是建立事件的地区( 长度或角度 ) .(1)(2016 ·全国乙卷 ) 某企业的班车在7:00,8:00,8 :30 发车,小明在7:50至 8:30 之抵达站乘坐班,且抵达站的刻是随机的,他等不超10分的概率是 ()1123A.3B.2C.3D.4x-2(2) 已知会合A={ x|-1<x<5}, B= x 3-x>0,在会合 A 中任取一个元素x,事件“ x∈(A∩ B)”的概率是________.1答案 (1)B(2) 6分析(1) 如所示,画出.小明抵达的会随机的落在中段AB中,而当他的抵达落在段AC或 DB,才能P=10+101保他等的不超10 分,依据几何概型得所求概率40=2,故 B.(2)A{ x|1<x<5}B{ x|2<<3}A B{ x|2< x<3}由意得-x,故.由几何概型知,在=,=∩=1会合 A中任取一个元素x, x∈(A∩ B)的概率 P=.6型二与面相关的几何概型命点 1与平面形面相关的例2(2016 ·全国甲卷) 从区[0,1]随机抽取2n个数x1, x2,⋯, x n, y1,y2,⋯,y n,构成 n 个数( x1, y1),( x2, y2),⋯,( x n,y n) ,此中两数的平方和小于 1 的数共有m个,用随机模的方法获得的周率π 的近似()4n2n4m2mA.mB.mC.nD.n答案C分析由意得( x i ,i )(i= 1,2 ,⋯, ) 在如所示方格中,而平方和小于 1 的点均在如所示的暗影中,y nπ4m由几何概型概率算公式知 1=n,4m∴π=n,应选 C.命题点 2与线性规划知识交汇命题的问题x≤0,例 3 (2016 ·武汉模拟) 由不等式组y≥0,确立的平面地区记为Ω1,由不等式组y- x-2≤0x+y≤1,确立的平面地区记为Ω2,若在Ω1中随机取一点,则该点恰幸亏Ω2内的概率x+y≥-2为 ________.7答案8分析如图,平面地区Ω1就是三角形地区OAB,平面地区Ω2与平面地区Ω1的重叠部分就是地区OACD,13易知 C(-2,2),故由几何概型的概率公式,得所求概率S2-147P=四边形 OACD=8.△ OAB=2S命题点 3与定积分交汇命题的问题例 4(2015 ·福建 ) 如图,点A的坐标为 (1,0),点 C的坐标为(2,4),函数 f ( x)= x2.若在矩形 ABCD内随机取一点,则此点取自暗影部分的概率等于________.5答案12221325分析由题意知,暗影部分的面积S=?1(4- x )d x=(4 x-3x )|1=3,5因此所求概率S=35P== .S1×4 12矩形 ABCD思想升华求解与面积相关的几何概型的注意点求解与面积相关的几何概型时,重点是弄清某事件对应的面积,必需时可依据题意结构两个变量,把变量当作点的坐标,找到所有试验结果组成的平面图形,以便求解.x-2y+2≥0,(1)(2016 ·昌平模拟 ) 设不等式组x≤4,表示的平面地区为D.在y≥-2地区 D内随机取一个点,则此点到直线y+2=0的距离大于 2的概率是 () 4589A. 13B.13C. 25D.25(2)如图,在边长为 e(e 为自然对数的底数 ) 的正方形中随机撒一粒黄豆,则它落到暗影部分的概率为 ________.2答案(1)D(2) e2分析(1) 作出平面地区D,可知平面地区D是以 A(4,3),B(4,-2),C(-6,-2)为极点的三角形地区.当点在△AEF地区内时,点到直线y+2=0的距离大于 2.1∴ P=S△AEF2×6×39 S== .1×10×525△ ABC2(2) 由题意知,所给图中两暗影部分面积相等,故暗影部分面积为1x x= 2(e x-= 2?(e - e )dx1- e- (0 - 1)]=2. 又该正方形面积为2,e )|= 2[e e2故由几何概型的概率公式可得所求概率为e2.题型三与体积相关的几何概型例 5 (1)(2016 ·贵州黔东南州凯里一中期末) 一只蜜蜂在一个棱长为 3 的正方体内自由飞行,若蜜蜂在飞翔过程中一直保持与正方体 6 个表面的距离均大于1,则称其为“安全飞翔”,则蜜蜂“安全飞翔”的概率为()1113A.8B. 6C.27D.81 (2)已知正三棱锥 S—ABC的底面边长为4,高为3,在正三棱锥内任取一点 P,使得 V P—ABC<2V S—ABC 的概率是 ()7311A.8B.4C.2D.4答案(1)C(2)A分析(1) 由题意知小蜜蜂的安全飞翔范围为以这个正方体的中心为中心,且棱长为 1 的小正1方体内.这个小正方体的体积为1,大正方体的体积为27,故安全飞翔的概率为P=27. (2) 当P在三棱锥的三条侧棱的中点所在的平面及下底面组成的正三棱台内时切合要求,由几17何概型知, P=1-=.8 8思想升华求解与体积相关的几何概型的注意点对于与体积相关的几何概型问题,重点是计算问题的整体积 ( 总空间 ) 以及事件的体积 ( 事件空间 ) ,对于某些较复杂的问题也可利用其对峙事件去求.(2016 ·哈尔滨模拟) 在体积为V 的三棱锥 S- ABC的棱 AB上任取一点P,则三棱V锥 S-APC的体积大于3的概率是________.2答案3V分析如图,三棱锥S-ABC与三棱锥 S-APC的高同样,要使三棱锥S- APC的体积大于3,1只要△ APC的面积大于△ ABC的面积的3.V假定点 P′是线段 AB凑近点 A 的三均分点,记事件 M为“三棱锥S- APC的体积大于3”,则事件 M发生的地区是线段P′ B.P ′B2进而 P (M )= AB =3.16.几何概型中的“测度”典例(1) 在等腰 Rt △ ABC 中,∠ C =90°,在直角边 BC 上任取一点 M ,则∠ CAM <30°的概率是 ________.(2) 在长为 1的线段上任取两点,则这两点之间的距离小于1的概率为 ()211 3 7A. 4B. 2C. 4D. 8错解展现分析(1) ∵∠ C =90°,∠ CAM =30°,30 1∴所求概率为 90= 3.11(2) 两点之间线段长为 2时,占长为1 的线段的一半,故所求概率为2.答案 (1) 1 (2)B3现场纠错分析 (1) 由于点 M 在直角边 BC 上是等可能出现的, 因此“测度”是长度.设直角边长为 a ,33a3则所求概率为a =3.(2) 设任取两点所表示的数分别为 x , y ,则 0≤ x ≤1,且 0≤ y ≤1.1由题意知 | x - y |< 2,因此所求概率为1 1 11- 2× 2×2× 2 3P =1=4.3答案(1)3(2)C纠错心得(1) 在线段上取点, 则点在线段上等可能出现; 在角内作射线, 则射线在角内的分布等可能.(2) 两个变量在某个范围内取值,对应的“测度”是面积 .1.(2016 ·佛山模拟 ) 如图,矩形长为 6,宽为 4,在矩形内随机地撒300 颗黄豆,数得落在椭圆外的黄豆数为96,以此实验数据为依照能够预计出椭圆的面积约为()A . 16.32B . 15.32C . 8.68D . 7.68答案 AS300- 96分析设椭圆的面积为 S ,则=,故 S =16.32.2.(2016 ·昆明三中、玉溪一中统考 )已知 P→ → →是△ ABC 所在平面内一点, PB + PC + 2PA = 0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△ PBC 内的概率是 ()1121A. 4B. 3C. 3D. 2答案 D分析以 PB 、 PC 为邻边作平行四边形PBDC ,→→ →则 PB +PC = PD ,→ → → 由于 PB + PC + 2 PA = 0,→ → → → → 因此 PB + PC =- 2PA ,得 PD =- 2PA ,1由此可得, P 是△ ABC 边 BC 上的中线 AO 的中点,点 P 到 BC 的距离等于 A 到 BC 距离的 2,因此 S △ PBC = 21S △ ABC ,S因此将一粒黄豆随机撒在△ABC 内,黄豆落在△ PBC 内的概率为 △PBC 1S= ,应选 D.2△ ABC3.(2016 ·菏泽一模 ) 已知函数 f ( x ) 的部分图象如下图,向图中的矩形地区内随机投出100粒豆子, 记着落入暗影地区的豆子数. 经过 10 次这样的试验, 算得落入暗影地区的豆子的平均数约为 1 ) 39,由此可预计 ?f ( x )d x 的值约为 (6139A.100B.100 10117C.D.100 100答案 D分析1S .?0f ( x )d x 表示暗影部分的面积 S39 117由于 3=100 ,因此 S = 100.4.已知△ 中,∠=60°, = 2, = 6,在 上任取一点 ,则使△ 为钝角三ABCABC AB BC BC D ABD角形的概率为 ()11 12A.6B.3C.2D.3答案C分析如图,当 BE = 1 时,∠为直角,则点 D 在线段 ( 不包括 、 E 点 ) 上时,△ 为钝角三角形;当=4 时,AEBBEB ABD BF ∠ BAF 为直角,则点D 在线段 CF ( 不包括 C 、F 点 ) 上时,△ ABD 为钝角三角形,因此△ABD为1+ 2 1钝角三角形的概率为 6 = 2.5. ( 2017·武昌质检 ) 如图,矩形 ABCD 的四个极点的坐标分别为 A (0 ,- 1) , B ( π,- 1) ,C ( π, 1) ,D (0 , 1) ,正弦曲线f ( x ) = sinx 和余弦曲线g ( x ) = cosx 在矩形 ABCD 内交于点F ,向矩形ABCD 地区内随机扔掷一点,则该点落在暗影地区内的概率是()1+ 2 1+ 2 A.B.π2π11C. πD. 2π答案B解析依据题意,可得曲线y =sin x 与y =cos x 围成的区域的面积为ππ=1--22π(sin xcos x)dx ( cos x sin x) |π2-2= 1+ 2. 又矩形ABCD的面积441+ 2为 2π,由几何概型概率公式得该点落在暗影地区内的概率是2π . 应选 B.6.欧阳修的《卖油翁》中写到:“ ( 翁 ) 乃取一葫芦,置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人惊叹不已.若铜钱是直径为 3 cm的圆,中间有边长为 1 cm的正方形孔,若随机向铜钱上滴一滴油( 油滴的直径忽视不计 ) ,则正好落入孔中的概率是________.答案4 9π分析依题意,所求概率为P=124.3=π·29π27.有一个底面圆的半径为1、高为 2 的圆柱,点O为这个圆柱底面圆的圆心,在这个圆柱内随机取一点 P,则点 P 到点 O的距离大于 1 的概率为 ________.答案2 3分析1432 V 圆柱=2π, V半球=× π×1=π,233半球1VV圆柱=3,故点 P到 O的距离大于21 的概率为 .3228.在区间 [1,5] 和 [2,4]上分别各取一个数,记为m和 n,则方程x2+y2 =1表示焦点在x 轴m n上的椭圆的概率是________.答案1 2分析x2y2∵方程 2+2=1表示焦点在x轴上的椭圆,∴m>n.m n如图,由题意知,在矩形 ABCD内任取一点Q( m,n),点Q落在暗影部分的概率即为所求的概率,易知直线m= n 恰巧将矩形均分,1∴所求的概率为P=2.9.随机地向半圆0<y< 2ax-x2( a为正常数 ) 内掷一点,点落在圆内任何地区的概率与地区x 轴的夹角小于π的面积成正比,则原点与该点的连线与4的概率为 ______.1 1答案2+π分析半圆地区如下图.π设 A 表示事件“原点与该点的连线与x 轴的夹角小于4”,A的面积1πa2+ 1a2由几何概型的概率计算公式得P(A)=42半圆的面积=122π a11=2+π .10.(2017 ·大连月考 ) 正方形的四个极点A(-1,-1),B(1,-1),C(1,1),D(-1,1)分别在抛物线y =-x2 和y=x2 上,如下图.若将一个质点随机投入正方形中,则质点ABCD落在图中暗影地区的概率是________.答案2 3分析正方形内空白部分面积为11[22?x- ( -x )]d x-12d231224= ?-12x=·x|-1=-(- )=,x333348暗影部分面积为 2×2-3=3,8因此所求概率为3 2 4= 3.11.已知向量a=(-2,1), b=( x,y).(1) 若x,y分别表示将一枚质地平均的正方体骰子( 六个面的点数分别为1,2,3,4,5,6)先后扔掷两次时第一次,第二次出现的点数,求知足a· b=-1的概率;(2)若 x, y 在连续区间[1,6]上取值,求知足 a· b<0的概率.解(1) 将一枚质地平均的正方体骰子先后扔掷两次,所包括的基本领件总数为6×6= 36,由 a·b=-1得-2x+ y=-1,因此知足a· b=-1的基本领件为(1,1), (2,3), (3,5),共 3 个,31故知足a· b=-1的概率为36= 12.(2) 若x , y在连续区间y)|1≤ x≤6,1≤ y≤6},[1,6]上取值,则所有基本领件的结果为Ω ={(x ,知足a· b<0的基本领件的结果为A={( x, y)|1≤ x≤6,1≤ y≤6且-2x+ y<0}.画出图形如图,矩形的面积为S矩形=25,1暗影部分的面积为S暗影=25-2×2×4=21,故知足·21 <0 的概率为 .a b25x + y -8≤0,12.已知对于 x 的二次函数 f ( x ) = ax 2-4bx + 1. 设点 ( a ,b ) 是地区 x >0,内的y >0一点,求函数 y = f ( x ) 在区间 [1 ,+∞ ) 上是增函数的概率.解 ∵函数f( ) =ax2-4 +1 的图象的对称轴为直线x=2b,xbxa要使 f ( x ) = ax 2-4bx + 1 在区间 [1 ,+∞ ) 上为增函数,2b当且仅当 a >0 且 a ≤1,即 2b ≤ a .依条件可知事件的所有结果所组成的地区为a +b -8≤0,a , ba >0, ,组成所求事件的地区为三角形部分.b >0所求概率区间应知足2b ≤ a .a +b - 8= 0,16 8 由a得交点坐标为 ( , ) ,b = 2,3 3182×8× 3 1故所求事件的概率为P = 1 = 3.× 8×8 2*13. 甲、乙两船驶向一个不可以同时停靠两艘船的码头,它们在一日夜内抵达该码头的时辰是等可能的.假如甲船停靠时间为1 h ,乙船停靠时间为2 h ,求它们中的随意一艘都不需要等待码头空出的概率.解 设甲、乙两艘船抵达码头的时辰分别为x与y ,记事件 A 为“两船都不需要等候码头空出”,则0≤ x ≤24,0 ≤ y ≤24,要使两船都不需要等候码头空出,当且仅当甲比乙早抵达1 h以上或乙比甲早抵达2 h以上,即y - x ≥1或x -y ≥2. 故所求事件组成会合A = {(x , y )| y- x ≥1或 x - y ≥2, x ∈[0,24] , y ∈[0,24]} .A 为图中暗影部分,所有结果组成会合Ω 为边长是 24 的正方形及其内部.A 的面积所求概率为P ( A ) = Ω的面积24- 12×12+24- 22×12=242 506.5 1 013=576=1 152.。
2019版高考数学大一轮复习江苏专版课件:第十二章 概率、随机变量及其概率分布12-6
(2)由已知均值或方差求参数值.可依据条件利用均值、方差公
式得出含有参数的方程(组),解方程(组)即可求出参数值. (3)由已知条件,作出对两种方案的判断.可依据均值、方差的 意义,对实际问题作出判断.
跟踪训练
为迎接2022年北京冬奥会,推广滑雪运动,某滑雪
(2)若X~B(n,p),则E(X)=
,V(X)=
.
基础自 测 题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)随机变量的均值是常数,样本的平均数是随机变量,它不确 √ 定.( )
(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的 √ 平均程度,方差或标准差越小,则偏离变 量的平均程度越 小.( )
1 3 5
2 3 10
3 1 10
3 3 1 3 解析 由已知条件可知 E(X)=1×5+2×10+3×10=2.
解析 答案
1
2
3
4
5
6
3.[P70练习T3]甲、乙两工人在一天生产中出现的废品数分别是 两个随机变量X,Y,其概率分布分别为:
X
0
1
2
3
Y
0
1
2
P 0.4 0.3 0.2 0.1
P 0.3 0.5 0.2
√ )
×
(3)若X~B(n,p),则E(X)=np.(
增大.(
(4) 若随机变量 X 的取值中的某个值对应的概率增大时,均值也 × ) ) (5)均值是算术平均数概念的推广,与概率无关 .( 1 2 3 4 5 6
题组二 教材改编 2.[P70练习T1]已知离散型随机变量X的概率分布为
X P
3 则X的均值E(X)=______. 2
高考数学(理)(北师大版)大一轮复习讲义第十二章概率、随机变量及其分布第十二章 12.3
1.几何概型向平面上有限区域(集合)G 内随机地投掷点M ,若点M 落在子区域G 1G 的概率与G 1的面积成正比,而与G 的形状、位置无关,即P (点M 落在G 1)=G 1的面积G 的面积,则称这种模型为几何概型.2.几何概型中的G 也可以是空间中或直线上的有限区域,相应的概率是体积之比或长度之比.3.借助模拟方法可以估计随机事件发生的概率. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)在一个正方形区域内任取一点的概率是零.( √ )(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( √ )(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.( √ ) (4)随机模拟方法是以事件发生的频率估计概率.( √ ) (5)与面积有关的几何概型的概率与几何图形的形状有关.( × ) (6)从区间[1,10]内任取一个数,取到1的概率是P =19.( × )1.(教材改编)在线段[0,3]上任投一点,则此点坐标小于1的概率为( ) A.12 B.13 C.14 D .1 答案 B解析 坐标小于1的区间为[0,1],长度为1,[0,3]区间长度为3,故所求概率为13.2.(2015·山东)在区间[0,2]上随机地取一个数x ,则事件“-1≤ ≤1”发生的概率为( )A.34B.23C.13D.14 答案 A解析 由-1≤ ≤1,得12≤x +12≤2,∴0≤x ≤32.∴由几何概型的概率计算公式得所求概率P =32-02-0=34.3.(教材改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是()答案 A解析 ∵P (A )=38,P (B )=28,P (C )=26,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).4.(2016·南昌模拟)一个边长为3π cm 的正方形薄木板的正中央有一个直径为2 cm 的圆孔,一只小虫在木板的一个面内随机地爬行,则小虫恰在离四个顶点的距离都大于2 cm 的区域内的概率等于________. 答案 12解析 如图所示,分别以正方形的四个顶点为圆心,2 cm 为半径作圆,与正方形相交截得四个圆心角为直角的扇形,当小虫落在图中的黑色区域时,它离四个顶点的距离都大于2 cm ,其中黑色区域面积为S 1=S 正方形-4S 扇形-S 小圆=(3π)2-π×22-π×12=9π-5π=4π,所以小虫离四个顶点的距离都大于2 cm 的概率为P =S 19π-π=4π8π=12.121()2log x +121()2log x +5.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是________.答案 π4解析 设质点落在以AB 为直径的半圆内为事件A , 则P (A )=阴影面积长方形面积=12π·121×2=π4.题型一 与长度、角度有关的几何概型例1 (1)(2016·全国甲卷)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.710 B.58 C.38D.310(2)(2017·太原联考)在区间[-π2,π2]上随机取一个数x ,则cos x 的值介于0到12之间的概率为________. 答案 (1)B (2)13解析 (1)至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.(2)当-π2≤x ≤π2时,由0≤cos x ≤12,得-π2≤x ≤-π3或π3≤x ≤π2,根据几何概型概率公式得所求概率为13.(3)如图所示,在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM 交BC 于点M ,求BM <1的概率.解 因为∠B =60°,∠C =45°,所以∠BAC =75°. 在Rt △ABD 中,AD =3,∠B =60°, 所以BD =AD tan 60°=1,∠BAD =30°.记事件N 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”,则可得∠BAM <∠BAD 时事件N 发生.由几何概型的概率公式,得P (N )=30°75°=25.引申探究1.本例(2)中,若将“cos x 的值介于0到12”改为“cos x 的值介于0到32”,则概率如何?解 当-π2≤x ≤π2时,由0≤cos x ≤32,得-π2≤x ≤-π6或π6≤x ≤π2,根据几何概型概率公式得所求概率为23.2.本例(3)中,若将“在∠BAC 内作射线AM 交BC 于点M ”改为“在线段BC 上找一点M ”,求BM <1的概率.解 依题意知BC =BD +DC =1+3,P (BM <1)=11+3=3-12. 思维升华 求解与长度、角度有关的几何概型的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).(1)(2016·全国乙卷)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A.13 B.12 C.23 D.34(2)已知集合A ={x |-1<x <5},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -23-x >0,在集合A 中任取一个元素x ,则事件“x ∈(A ∩B )”的概率是________. 答案 (1)B (2)16解析 (1)如图所示,画出时间轴.小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟,根据几何概型得所求概率P =10+1040=12,故选B.(2)由题意得A ={x |-1<x <5},B ={}x | 2<x <3,故A ∩B ={x |2<x <3}.由几何概型知,在集合A 中任取一个元素x ,则x ∈(A ∩B )的概率为P =16.题型二 与面积有关的几何概型 命题点1 与平面图形面积有关的问题例2 (2016·全国甲卷)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A.4n m B.2n m C.4m n D.2m n答案 C解析 由题意得(x i ,y i )(i =1,2,…,n )在如图所示方格中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知π41=mn ,∴π=4mn,故选C.命题点2 与线性规划知识交汇命题的问题 例3 (2016·武汉模拟)由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为________. 答案 78解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C (-12,32),故由几何概型的概率公式,得所求概率P =S 四边形OACD S △OAB=2-142=78.命题点3 与定积分交汇命题的问题例4 (2015·福建)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f (x )=x 2.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于________.答案512解析 由题意知,阴影部分的面积S =ʃ21(4-x 2)d x =(4x -13x 3)|21=53, 所以所求概率P =S S 矩形ABCD =531×4=512.思维升华 求解与面积有关的几何概型的注意点求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.(1)(2016·昌平模拟)设不等式组⎩⎪⎨⎪⎧x -2y +2≥0,x ≤4,y ≥-2表示的平面区域为D .在区域D内随机取一个点,则此点到直线y +2=0的距离大于2的概率是( ) A.413 B.513 C.825D.925(2)如图,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.答案 (1)D (2)2e2解析 (1)作出平面区域D ,可知平面区域D 是以A (4,3),B (4,-2),C (-6,-2)为顶点的三角形区域.当点在△AEF 区域内时,点到直线y +2=0的距离大于2. ∴P =S △AEF S △ABC =12×6×312×10×5=925.(2)由题意知,所给图中两阴影部分面积相等,故阴影部分面积为S =2ʃ10(e -e x )d x =2(e x -e x )|1=2[e -e -(0-1)]=2.又该正方形面积为e 2, 故由几何概型的概率公式可得所求概率为2e 2.题型三 与体积有关的几何概型例5 (1)(2016·贵州黔东南州凯里一中期末)一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,则称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( ) A.18 B.16 C.127D.38(2)已知正三棱锥S —ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P —ABC <12V S —ABC 的概率是( ) A.78 B.34 C.12 D.14 答案 (1)C (2)A解析 (1)由题意知小蜜蜂的安全飞行范围为以这个正方体的中心为中心,且棱长为1的小正方体内.这个小正方体的体积为1,大正方体的体积为27,故安全飞行的概率为P =127.(2)当P 在三棱锥的三条侧棱的中点所在的平面及下底面构成的正三棱台内时符合要求,由几何概型知,P =1-18=78.思维升华 求解与体积有关的几何概型的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的问题也可利用其对立事件去求.(2016·哈尔滨模拟)在体积为V 的三棱锥S -ABC 的棱AB 上任取一点P ,则三棱锥S -APC 的体积大于V3的概率是________.答案 23解析 如图,三棱锥S -ABC 与三棱锥S -APC 的高相同,要使三棱锥S -APC 的体积大于V3,只需△APC 的面积大于△ABC 的面积的13.假设点P ′是线段AB 靠近点A 的三等分点,记事件M 为“三棱锥S -APC 的体积大于V3”,则事件M 发生的区域是线段P ′B . 从而P (M )=P ′B AB =23.16.几何概型中的“测度”典例 (1)在等腰Rt △ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________.(2)在长为1的线段上任取两点,则这两点之间的距离小于12的概率为( )A.14B.12C.34D.78 错解展示解析 (1)因为∠C =90°,∠CAM =30°, 所以所求概率为3090=13.(2)两点之间线段长为12时,占长为1的线段的一半,故所求概率为12.答案 (1)13 (2)B现场纠错解析 (1)因为点M 在直角边BC 上是等可能出现的,所以“测度”是长度.设直角边长为a ,则所求概率为33a a =33.(2)设任取两点所表示的数分别为x ,y , 则0≤x ≤1,且0≤y ≤1.由题意知|x -y |<12,所以所求概率为P =1-2×12×12×121=34.答案 (1)33(2)C 纠错心得 (1)在线段上取点,则点在线段上等可能出现;在角内作射线,则射线在角内的分布等可能.(2)两个变量在某个范围内取值,对应的“测度”是面积.1.(2016·佛山模拟)如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为96,以此实验数据为依据可以估计出椭圆的面积约为( ) A .16.32 B .15.32 C .8.68 D .7.68答案 A解析 设椭圆的面积为S ,则S 4×6=300-96300,故S =16.32.2.(2016·昆明三中、玉溪一中统考)已知P 是△ABC 所在平面内一点,PB →+PC →+2P A →=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( ) A.14 B.13 C.23 D.12 答案 D解析 以PB 、PC 为邻边作平行四边形PBDC ,则PB →+PC →=PD →, 因为PB →+PC →+2P A →=0,所以PB →+PC →=-2P A →,得PD →=-2P A →,由此可得,P 是△ABC 边BC 上的中线AO 的中点,点P 到BC 的距离等于A 到BC 距离的12,所以S △PBC =12S △ABC ,所以将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为S △PBC S △ABC =12,故选D.3.(2016·菏泽一模)已知函数f (x )的部分图像如图所示,向图中的矩形区域内随机投出100粒豆子,记下落入阴影区域的豆子数.通过10次这样的试验,算得落入阴影区域的豆子的平均数约为39,由此可估计ʃ10f (x )d x 的值约为( )A.61100B.39100 C.10100 D.117100答案 D解析 ʃ10f (x )d x 表示阴影部分的面积S . 因为S 3=39100,所以S =117100.4.已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为( ) A.16 B.13 C.12 D.23 答案 C解析 如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B 、E 点)上时,△ABD 为钝角三角形;当BF =4时,∠BAF 为直角,则点D 在线段CF (不包含C 、F 点)上时,△ABD为钝角三角形,所以△ABD 为钝角三角形的概率为1+26=12.5.(2017·武昌质检)如图,矩形ABCD 的四个顶点的坐标分别为A (0,-1),B (π,-1),C (π,1),D (0,1),正弦曲线f (x )=sin x 和余弦曲线g (x )=cos x 在矩形ABCD 内交于点F ,向矩形ABCD 区域内随机投掷一点,则该点落在阴影区域内的概率是()A.1+2πB.1+22πC.1πD.12π答案 B解析 根据题意,可得曲线y =sin x 与y =cos x 围成的区域的面积为44(sin cos )(cos sin )|1()122x x dx x x ππππ-=--=---=+⎰又矩形ABCD 的面积为2π,由几何概型概率公式得该点落在阴影区域内的概率是1+22π.故选B.6.欧阳修的《卖油翁》中写到:“(翁)乃取一葫芦,置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3 cm 的圆,中间有边长为1 cm 的正方形孔,若随机向铜钱上滴一滴油(油滴的直径忽略不计),则正好落入孔中的概率是________.答案49π解析 依题意,所求概率为P =12π·(32)2=49π.7.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 23解析 V 圆柱=2π,V 半球=12×43π×13=23π,V 半球V 圆柱=13, 故点P 到O 的距离大于1的概率为23.8.在区间[1,5]和[2,4]上分别各取一个数,记为m 和n ,则方程x 2m 2+y 2n 2=1表示焦点在x 轴上的椭圆的概率是________. 答案 12解析 ∵方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆,∴m >n .如图,由题意知,在矩形ABCD 内任取一点Q (m ,n ),点Q 落在阴影部分的概率即为所求的概率,易知直线m =n 恰好将矩形平分, ∴所求的概率为P =12.9.随机地向半圆0<y <2ax -x 2(a 为正常数)内掷一点,点落在圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于π4的概率为______.答案 12+1π解析 半圆区域如图所示.设A 表示事件“原点与该点的连线与x 轴的夹角小于π4”,由几何概型的概率计算公式得P (A )=A 的面积半圆的面积=14πa 2+12a 212πa 2=12+1π.10.(2017·大连质检)正方形的四个顶点A (-1,-1),B (1,-1),C (1,1),D (-1,1)分别在抛物线y =-x 2和y =x 2上,如图所示.若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影区域的概率是________.答案 23解析 正方形内空白部分面积为ʃ1-1[x 2-(-x 2)]d x=ʃ1-12x 2d x =23·x 3|1-1=23-(-23)=43, 阴影部分面积为2×2-43=83,所以所求概率为834=23.11.已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次,第二次出现的点数,求满足a ·b =-1的概率; (2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.解 (1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36, 由a ·b =-1,得-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5),共3个,故满足a ·b =-1的概率为336=112. (2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y )|1≤x ≤6,1≤y ≤6}, 满足a ·b <0的基本事件的结果为A ={(x ,y )|1≤x ≤6,1≤y ≤6且-2x +y <0}.画出图形如图,矩形的面积为S 矩形=25,阴影部分的面积为S 阴影=25-12×2×4=21,故满足a ·b <0的概率为2125.12.已知关于x 的二次函数f (x )=ax 2-4bx +1.设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0内的一点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.解 ∵函数f (x )=ax 2-4bx +1的图像的对称轴为直线x =2ba ,要使f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数, 当且仅当a >0且2ba≤1,即2b ≤a .依条件可知事件的全部结果所构成的区域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(a ,b )⎪⎪⎪⎪⎩⎨⎧ a +b -8≤0,a >0,b >0,构成所求事件的区域为三角形部分. 所求概率区间应满足2b ≤a .由⎩⎪⎨⎪⎧a +b -8=0,b =a 2,得交点坐标为(163,83),故所求事件的概率为P =12×8×8312×8×8=13.13.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h ,乙船停泊时间为2 h ,求它们中的任意一艘都不需要等待码头空出的概率.解 设甲、乙两艘船到达码头的时刻分别为x 与y ,记事件A 为“两船都不需要等待码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要等待码头空出,当且仅当甲比乙早到达1 h 以上或乙比甲早到达2 h 以上,即y -x ≥1或x -y ≥2.故所求事件构成集合A ={(x ,y )|y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 为图中阴影部分,全部结果构成集合Ω为边长是24的正方形及其内部. 所求概率为P (A )=A 的面积Ω的面积=(24-1)2×12+(24-2)2×12242=506.5576=1 0131 152.。
2019版高考数学大一轮复习江苏专版课件:第十二章 概率、随机变量及其概率分布12-5
1
2
3
4
5
6
解析
答案
题型分类
深度剖析
题型一 相互独立事件的概率
师生共研
典例
某企业有甲、乙两个研发小组,他们研发新产品成功的
概率分别为 2 3
和5 3 设甲、乙两组的研发相互独立.
.现安排甲组研发新产品A,乙组研发新产品B.
(1)求至少有一种新产品研发成功的概率;
跟踪训练
为了纪念 2017 在德国波恩举行的联合国气候大会,
某社区举办《“环保我参与”有奖问答比赛》活动.某场比赛
中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题 .
已知甲家庭回答正确的概率是 ,甲、丙两个家庭都回答错误
1 3 的概率是 ,乙、丙两个家庭都回答正确的概率是 .若各家庭 12 4 1 回答是否正确互不影响. 4
公园
甲 乙 丙 丁
获得签名人数 45 60 30 15
然后在各公园签名的人中按分层抽样的方式抽取 10 名幸运之星 回答问题,从10个关于长征的问题中随机抽取4个问题让幸运之 星回答,全部答对的幸运之星获得一份纪念品.
解析
1 2 2 2 4 80 P(ξ=2)=C63 3 =243. 12来自345
6
解析
答案
6.一射手对同一目标进行4次射击,且射击结果之间互不影响. 已知至少
80 81 命中一次的概率为
,则此射手的命中率为_____.
4
2 3
80 解析 设此射手未命中目标的概率为 p,则 1-p =81,
(1)求乙、丙两个家庭各自回答正确的概率;
解答
(2)求甲、乙、丙三个家庭中不少于2个家庭回答正确的概率. 解 有0个家庭回答正确的概率为
2019届高考数学大一轮复习第十二章概率随机变量及其分布高考专题突破六高考中的概率与统计问题课件理北师大
有一男一女抽到同一道题的概率为
1
2
A.3
B.3
√C.12
3 D.4
解析 记两道题分别为A,B,所有抽取的情况为AAA,AAB,ABA,
ABB,BAA,BAB,BBA,BBB(其中第1个、第2个分别表示两个女教师
抽取的题目,第3个表示男教师抽取的题目),共有8种;其中满足恰有
一男一女抽到同一道题目的情况为ABA,ABB,BAA,BAB,共4种.故
11 解析 根据题意,设该班的男生人数为 x,则女生人数为 63-x,因为每
名学生被选中的概率是相同的, 根据古典概型的概率计算公式知,“选
出的标兵是女生”的概率是636-3 x,“选出的标兵是男生”的概率是6x3, 故636-3 x=1110×6x3,解得 x=33,故这个班男生的人数为 33.
12345
=15. 所以 ξ 的均值 Eξ=1×15+2×35+3×15=2,Dξ=(1-2)2×15+(2-2)2×35+(3
-2)2×15=25.
12345
解析 答案
4.已知高一年级某班有63名学生,现要选1名学生作为标兵,每名学 生被选中的概率是相同的,若“选出的标兵是女生”的概率是“选出 的标兵是男生”的概率的 10 ,则这个班男生的人数为__3_3_.
12345
解析 答案
题型分类 深度剖析
题型一 古典概型与几何概型 例 1 (1)(2017·榆林二模)若函数 f(x)=elnx,x+0≤e,x<11≤,x≤e,
在区间[0,e]
上随机取一个实数 x,则 f(x)的值不小于常数 e 的概率是
1 A.e
√B.1-1e
e C.1+e
1 D.1+e
(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a的取
2019高考大一轮复习数学人教A版全国用课件:第十二章 概率、随机变量及其分布 12-3
√
3 2 2 1 解析 ∵P(A)=8,P(B)=8,P(C)=6,P(D)=3,
∴P(A)>P(C)=P(D)>P(B).
1
2
3
4
5
6
解析
答案
0≤x≤2, 4.[P146B 组 T4] 设不等式组 表示的平面区域为 D, 在区域 D 0≤y≤2
内随机取一个点,则此点到坐标原点的距离大于 2 的概率是 π A.4 π-2 B. 2 π C.6 4-π D. 4 机的,则他等车时
间不超过10分钟的概率是
1 A.3
1 B.2 √
2 C.3
3 D.4
解析
答案
2.如图,四边形 ABCD 为矩形,AB= 3,BC=1,以 A 为圆心,1 为半 径作四分之一个圆弧 DE ,在∠DAB 内任作射线 AP,则射线 AP 与线段 1 BC 有公共点的概率为___. 3
解析
因为在∠DAB内任作射线AP,所以它的所有等可能事件所在
的区域 H 是 ∠DAB ,当射线 AP 与线段 BC 有公共点时,射线 AP 落在 ∠CAB内,则区域H为∠CAB,所以射线AP与线段BC有公共点的概 率为 ∠CAB 30° 1
= = . ∠DAB 90° 3
解析
答案
3.在区间 [0,5]上随机地选择一个数 p ,则方程 x2+ 2px +3p- 2= 0 有 两个
确定的平面区域记为 Ω1 ,由不等式组
事件D发生的区域μD=90°-75°=15°,
构成事件总的区域μΩ=90°,
μD 15° 1 所以 P(D)=μ =90° =6. Ω
1 2 3 4 5 6
解析
答案
题型分类
深度剖析
2019-2020年全国通用高考数学大一轮复习第十二章概率随机变量及其分布12
发电机最多可运行台数 1
2
3
若某台发电机运行,则该台发电机年利润为5 000万元;若某台发电机未 运行,则该台发电机年亏损800万元.欲使水电站年总利润的均值达到最 大,应安装发电机多少台?
解答
思维升华
随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变 量稳定于均值的程度,它们从整体和全局上刻画了随机变量,是生产 实际中用于方案取舍的重要理论依据.一般先比较均值,若均值相同, 再用方差来决定.
命题点1 求离散型随机变量的均值、方差
多维探究
典例 某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该
银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,
但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从
中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续
尝试,直至该银行卡被锁定.
跟踪训练 (2017·贵州调研)某投资公司在2018年年初准备将1 000万元投资 到“低碳”项目上,现有两个项目供选择: 项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利 30%,也可能亏损15%,且这两种情况发生的概率分别为 79和29; 项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%, 可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为 35,13和115. 针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明 理由.
4.正态分布
(1)正态曲线:函数φμ,σ(x)=
1
e
(
x )2 2 2
,x∈(-∞,+∞),其中实数
2
μ和σ为参数(σ>0,μ∈R).我们称函数φμ,σ(x)的图象为正态分布密度曲线 ,
全国通用2019届高考数学大一轮复习第十二章概率随机变量及其分布12.4离散型随机变量及其分布列课件
3 B.4
4 C.5
√
5 D.6
1 5 5 1 5 1 5 ∴P2<X<2=P(X=1)+P(X=2)=4×2+4×6=6.
解析
答案
2.设离散型随机变量X的分布列为 X
求2X+1的分布列. 解 由分布列的性质知, 0.2+0.1+0.1+0.3+m=1,得m=0.3. 列表为 X 0 1 2 3 4
P(η=0)=P(X=1)=0.1,P(η=2)=P(X=3)=0.3,
P(η=3)=P(X=4)=0.3.
故η=|X-1|的分布列为 η 0 1 2 3
解答
P 0.1 0.3 0.3 0.3
2.若题2中条件不变,求随机变量η=X2的分布列.
0
1
2
3
4
P 0.2 0.1 0.1 0.3 m
2X+1 1 3 5 7 9
从而2X+1的分布列为 2X+1 P 1 3 5 7 9
解答
0.2 0.1 0.1 0.3 0.3
引申探究 1.若题2中条件不变,求随机变量η=|X-1|的分布列. 解 由题2知m=0.3,列表为 X 0 1 2 3 4
|X-1| 1 0 1 2 3 ∴P(η=1)=P(X=0)+P(X=2)=0.2+0.1=0.3,
得n=10.
1
2
3
4
5
6
7
解析
答案
7.一盒中有12个乒乓球,其中9个新的、3个旧的,从盒中任取3个球来
用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X=4) 27 220 的值为______.
解析 由题意知取出的3个球必为2个旧球、1个新球,
1 C2 C 27 3 9 故 P(X=4)= C3 =220. 12
2019届全国通用高考数学大一轮复习第十二章概率随机变量及其分布12
跟踪训练 (2018·沈阳模拟)某超市随
商品
机选取1 000位顾客,记录了他们购 顾客人数
甲乙丙丁
买甲、乙、丙、丁四种商品的情况,
100
√×√√
整 理 成 如 下 统 计 表 , 其 中 “√” 表
217
×√×√
示购买,“×”表示未购买.
200
√√√×
(1)估计顾客同时购买乙和丙的概率;
300
√×√×
【知识拓展】 互斥事件与对立事件的区别与联系 互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发 生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求 二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况, 而互斥事件未必是对立事件.
基础自测
题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)事件发生的频率与概率是相同的.( × ) (2)随机事件和随机试验是一回事.( × ) (3)在大量重复试验中,概率是频率的稳定值.( √ ) (4)两个事件的和事件是指两个事件都得发生.( × ) (5)对立事件一定是互斥事件,互斥事件不一定是对立事件.( √ ) (6)两互斥事件的概率和为1.( × )
= n 为事件A出现的频率.
(2)对于给定的随机事件A,在相同条件下,随着试验次数的增加,事 件A发生的 频率 会在某个常数附近摆动并趋于稳定,我们可以用这个 常数来刻画随机事件A发生的可能性的大小,并把这个 常数称 为 随 机
事件A的概率,记作P(A).
2.事件的关系与运算
定义
符号表示
包含关系
如果事件A发生,则事件B一定发生, 这时称事件B 包含事件A(或称事件A 包含于事件B)
100+200 所以顾客在甲、乙、丙、丁中同时购买 3 种商品的概率可以估计为 1 000 =0.3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§12.3几何概型1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.在几何概型中,事件A的概率的计算公式P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积) .3.要切实理解并掌握几何概型试验的两个基本特点(1)无限性:在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性.4.随机模拟方法(1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算器或计算机模拟试验的方法为随机模拟方法.这个方法的基本步骤是①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M和总的随机数个数N;③计算频率f n(A)=MN作为所求概率的近似值.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)在一个正方形区域内任取一点的概率是零.( √ )(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( √ )(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.( √ ) (4)随机模拟方法是以事件发生的频率估计概率.( √ ) (5)与面积有关的几何概型的概率与几何图形的形状有关.( × ) (6)从区间[1,10]内任取一个数,取到1的概率是P =19.( × )题组二 教材改编2.[P137思考]在线段[0,3]上任投一点,则此点坐标小于1的概率为( ) A.12 B.13 C.14 D .1 答案 B解析 坐标小于1的区间为[0,1),长度为1,[0,3]的区间长度为3,故所求概率为13.3.[P140T1]有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )答案 A解析 ∵P (A )=38,P (B )=28,P (C )=26,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).4.[P146B 组T4]设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A.π4 B.π-22 C.π6 D.4-π4 答案 D解析 如图所示,正方形OABC 及其内部为不等式组表示的平面区域D ,且区域D 的面积为4,而阴影部分表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是4-π4,故选D.题组三 易错自纠5.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.答案 3解析 由|x |≤m ,得-m ≤x ≤m .当0<m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去.当2<m <4时,由题意得m -(-2)6=56,解得m =3. 6.在Rt△ABC 中,∠A =30°,过直角顶点C 作射线CM 交线段AB 于点M ,则|AM |>|AC |的概率为________. 答案 16解析 设事件D 为“作射线CM ,使|AM |>|AC |”. 在AB 上取点C ′使|AC ′|=|AC |, 因为△ACC ′是等腰三角形, 所以∠ACC ′=180°-30°2=75°,事件D 发生的区域μD =90°-75°=15°, 构成事件总的区域μΩ=90°, 所以P (D )=μD μΩ=15°90°=16.题型一 与长度、角度有关的几何概型1.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A.13 B.12 C.23 D.34答案 B解析 如图所示,画出时间轴.小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 上时,才能保证他等车的时间不超过10分钟,根据几何概型, 得所求概率P =10+1040=12,故选B.2.如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧DE ,在∠DAB 内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.答案 13解析 因为在∠DAB 内任作射线AP ,所以它的所有等可能事件所在的区域H 是∠DAB ,当射线AP 与线段BC 有公共点时,射线AP 落在∠CAB 内,则区域H 为∠CAB ,所以射线AP 与线段BC有公共点的概率为∠CAB ∠DAB =30°90°=13.3.在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________. 答案 23解析 方程x 2+2px +3p -2=0有两个负根, 则有⎩⎪⎨⎪⎧Δ≥0,x 1+x 2<0,x 1x 2>0,即⎩⎪⎨⎪⎧4p 2-4(3p -2)≥0,-2p <0,3p -2>0,解得p ≥2或23<p ≤1,又p ∈[0,5],则所求概率为P =3+135=1035=23.思维升华 求解与长度、角度有关的几何概型的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).题型二 与面积有关的几何概型命题点1 与平面图形面积有关的问题典例 (2017·全国Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是________.答案π8解析 不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,可得S 正方形=4. 由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知,所求概率P =S 黑S 正方形=π24=π8.命题点2 与线性规划知识交汇命题的问题典例 由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为______. 答案 78解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C ⎝ ⎛⎭⎪⎫-12,32,故由几何概型的概率公式,得所求概率 P =S 四边形OACD S △OAB=S △OAB -S △BCDS △OAB =2-142=78.命题点3 与定积分交汇命题的问题典例 如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f (x )=x 2.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率为________.答案512解析 由题意知,阴影部分的面积S =ʃ21(4-x 2)d x =3211(4)|3x x =53,所以所求概率P =S S 矩形ABCD =531×4=512.思维升华 求解与面积有关的几何概型的注意点求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.跟踪训练 (1)(2016·全国Ⅱ)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A.4n m B.2n m C.4m n D.2mn答案 C解析 由题意得(x i ,y i )(i =1,2,…,n )在如图所示方格中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知π41=mn ,∴π=4mn,故选C.(2)(2017·石家庄调研)在满足不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,y ≥0的平面内随机取一点M (x 0,y 0),设事件A =“y 0<2x 0”,那么事件A 发生的概率是( )A.14 B.34 C.13 D.23答案 B解析 作出不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,y ≥0的平面区域即△ABC ,其面积为4,且事件A =“y 0<2x 0”表示的区域为△AOC ,其面积为3,所以事件A 发生的概率是34.(3)如图,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.答案2e2 解析 由题意知,所给图中两阴影部分面积相等,故阴影部分面积为S =2ʃ10(e -e x)d x =2(e x -e x)|10=2[e -e -(0-1)]=2.又该正方形的面积为e 2, 故由几何概型的概率公式可得所求概率为2e 2.题型三 与体积有关的几何概型典例 (1)已知正三棱锥S —ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P —ABC <12V S —ABC 的概率是( )A.78B.34C.12D.14 答案 A解析 当P 在三棱锥的三条侧棱的中点所在的平面及下底面构成的正三棱台内时符合要求,由几何概型知,P =1-18=78.(2)如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,在正方体内随机取点M ,则使四棱锥M —ABCD 的体积小于16的概率为________.答案 12解析 过点M 作平面RS ∥平面AC ,则两平面间的距离是四棱锥M —ABCD 的高,显然点M 在平面RS 上任意位置时,四棱锥M —ABCD 的体积都相等.若此时四棱锥M —ABCD 的体积等于16,只要M 在截面以下即可小于16,当V M —ABCD =16时,即13×1×1×h =16,解得h =12,即点M 到底面ABCD 的距离,所以所求概率P =1×1×121×1×1=12.思维升华 求解与体积有关的几何概型的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.跟踪训练 (2017·湖南长沙四县联考)如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是( )A .1-π4B.π12C.π4 D .1-π12答案 A解析 鱼缸底面正方形的面积为22=4,圆锥底面圆的面积为π.所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1-π4,故选A.几何概型中的“测度”典例 (1)在等腰Rt△ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________.(2)在长为1的线段上任取两点,则这两点之间的距离小于12的概率为( )A.14B.12C.34D.78 错解展示:(1)∵∠C =90°,∠CAM =30°,∴所求概率为30°90°=13.(2)当两点之间线段长为12时,占长为1的线段的一半,故所求概率为12.错误答案 (1)13 (2)B现场纠错解析 (1)∵点M 在直角边BC 上是等可能出现的, ∴“测度”是长度.设直角边长为a ,则所求概率为33a a=33. (2)设任取两点所表示的数分别为x ,y , 则0≤x ≤1,且0≤y ≤1.由题意知|x -y |<12,所以所求概率为P =1-2×12×12×121=34.答案 (1)33(2)C 纠错心得 (1)在线段上取点,则点在线段上等可能出现;在角内作射线,则射线在角内的分布等可能.(2)两个变量在某个范围内取值,对应的“测度”是面积.1.如图所示,半径为3的圆中有一封闭曲线围成的阴影区域,在圆中随机扔一粒豆子,它落在阴影区域内的概率是13,则阴影部分的面积是( )A.π3 B .π C .2π D .3π答案 D解析 设阴影部分的面积为S ,且圆的面积S ′=π·32=9π.由几何概型的概率,得S S ′=13,则S =3π.2.设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( ) A.34+12π B.14-12π C.12-1πD.12+1π答案 B解析 由|z |≤1可得(x -1)2+y 2≤1,表示以(1,0)为圆心,1为半径的圆及其内部,满足y ≥x 的部分为如图阴影部分所示,由几何概型概率公式可得所求概率为 P =14π×12-12×12π×12=π4-12π=14-12π.3.(2018·石家庄模拟)已知P 是△ABC 所在平面内一点,PB →+PC →+2PA →=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( ) A.14 B.13 C.23 D.12 答案 D解析 以PB ,PC 为邻边作平行四边形PBDC , 则PB →+PC →=PD →,因为PB →+PC →+2PA →=0, 所以PB →+PC →=-2PA →,得PD →=-2PA →,由此可得,P 是△ABC 边BC 上的中线AO 的中点,点P 到BC 的距离等于A 到BC 距离的12,所以S △PBC =12S △ABC ,所以将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为S △PBC S △ABC =12,故选D. 4.已知函数f (x )的部分图象如图所示,向图中的矩形区域内随机投出100粒豆子,记下落入阴影区域的豆子数.通过10次这样的试验,算得落入阴影区域的豆子的平均数约为39,由此可估计ʃ10f (x )d x 的值约为()A.61100B.39100C.10100D.117100答案 D解析 ʃ10f (x )d x 表示阴影部分的面积S .因为S 3=39100,所以S =117100.5.在区间[0,2]上随机地取一个数x ,则事件“-1≤121log ()2x +≤1”发生的概率为( )A.34B.23C.13D.14 答案 A解析 由-1≤121log ()2x +≤1,得12≤x +12≤2,得0≤x ≤32.由几何概型的概率计算公式,得所求概率 P =32-02-0=34. 6.(2017·武昌质检)如图,矩形ABCD 的四个顶点的坐标分别为A (0,-1),B (π,-1),C (π,1),D (0,1),正弦曲线f (x )=sin x 和余弦曲线g (x )=cos x 在矩形ABCD 内交于点F ,向矩形ABCD 区域内随机投掷一点,则该点落在阴影区域内的概率是()A.1+2πB.1+22π C.1π D.12π答案 B解析 根据题意,可得曲线y =sin x 与y =cos x 围成的区域的面积为4(sin cos )d x x x ππ⎰-=4(cos sin )|x x ππ--=1-⎝ ⎛⎭⎪⎫-22-22=1+ 2.又矩形ABCD 的面积为2π,由几何概型概率公式得该点落在阴影区域内的概率是1+22π.故选B.7.(2017·江苏)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________. 答案 59解析 设事件“在区间[-4,5]上随机取一个数x ,则x ∈D ”为事件A ,由6+x -x 2≥0,解得-2≤x ≤3, ∴D =[-2,3].如图,区间[-4,5]的长度为9,定义域D 的长度为5,∴P (A )=59.8.如图,在面积为S 的矩形ABCD 内任取一点P ,则△PBC的面积小于S4的概率为________.答案 12解析 如图,设△PBC 的边BC 上的高为PF ,线段PF 所在的直线交AD 于点E ,当△PBC 的面积等于S 4时,12BC ·PF =14BC ·EF ,所以PF =12EF .过点P 作GH 平行于BC 交AB 于点G ,交CD于点H ,则满足条件“△PBC 的面积小于S4”的点P 落在矩形区域GBCH 内.设“△PBC 的面积小于S 4”为事件A ,则构成事件A 的区域的面积为S2,而试验的全部结果所构成的区域面积为S ,所以由几何概型概率的计算公式得P (A )=S2S =12.所以△PBC的面积小于S 4的概率是12.9.如图,在长方体ABCD —A 1B 1C 1D 1中,有一动点在此长方体内随机运动,则此动点在三棱锥A —A 1BD 内的概率为______.答案 16解析 因为1A A BD V -=1A ABD V -=13AA 1×S △ABD=16×AA 1×S 矩形ABCD =16V 长方体, 故所求概率为1A A BDV -V 长方体=16. 10.正方形的四个顶点A (-1,-1),B (1,-1),C (1,1),D (-1,1)分别在抛物线y =-x2和y =x 2上,如图所示.若将一个质点随机投入到正方形ABCD 中,则质点落在图中阴影区域的概率是______.答案 23解析 正方形内空白部分面积为ʃ1-1[x 2-(-x 2)]d x =ʃ1-12x 2d x =23·x 3|1-1=23-⎝ ⎛⎭⎪⎫-23=43,阴影部分面积为2×2-43=83,所以所求概率为834=23.11.在区间[-π,π]内随机取出两个数分别记为a ,b ,求函数f (x )=x 2+2ax -b 2+π2有零点的概率.解 由函数f (x )=x 2+2ax -b 2+π2有零点,可得Δ=(2a )2-4(-b 2+π2)≥0,整理得a2+b 2≥π2,如图所示,(a ,b )可看成坐标平面上的点,试验的全部结果构成的区域为Ω={(a ,b )|-π≤a ≤π,-π≤b ≤π},其面积S Ω=(2π)2=4π2.事件A 表示函数f (x )有零点,所构成的区域为M ={(a ,b )|a 2+b 2≥π2},即图中阴影部分,其面积为S M =4π2-π3,故P (A )=S M S Ω=4π2-π34π2=1-π4. 12.已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a ·b =-1的概率; (2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.解 (1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36, 由a ·b =-1,得-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5),共3个. 故满足a ·b =-1的概率为336=112. (2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y )|1≤x ≤6,1≤y ≤6}.满足a ·b <0的基本事件的结果为A ={(x ,y )|1≤x ≤6,1≤y ≤6且-2x +y <0}. 画出图象如图所示,矩形的面积为S 矩形=25, 阴影部分的面积为S 阴影=25-12×2×4=21,故满足a ·b <0的概率为2125.13.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .1-2πB.12-1πC.2πD.1π 答案 A解析 设分别以OA ,OB 为直径的两个半圆交于点C ,OA 的中点为D ,如图,连接OC ,DC .不妨令OA =OB =2, 则OD =DA =DC =1.在以OA 为直径的半圆中,空白部分面积S 1=π4+12×1×1-⎝ ⎛⎭⎪⎫π4-12×1×1=1, 所以整体图形中空白部分面积S 2=2. 又因为S 扇形OAB =14×π×22=π,所以阴影部分面积为S 3=π-2. 所以P =π-2π=1-2π.14.已知关于x 的二次函数f (x )=ax 2-4bx +1.设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0内的一点,求函数y =f (x )在区间[1,+∞)上是增函数的概率. 解 ∵函数f (x )=ax 2-4bx +1的图象的对称轴为直线x =2b a,要使f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,当且仅当a >0且2ba≤1,即2b ≤a .如图所示,事件的全部结果所构成的区域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(a ,b )⎪⎪⎪⎩⎪⎨⎪⎧ a +b -8≤0,a >0,b >0,构成所求事件的区域为三角形部分(阴影部分).由⎩⎪⎨⎪⎧a +b -8=0,b =a 2,得交点坐标为⎝⎛⎭⎪⎫163,83,故所求事件的概率为P =12×8×8312×8×8=13.15.在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≥12”的概率,p 2为事件“|x -y |≤12”的概率,p 3为事件“xy ≤12”的概率,则( )A .p 1<p 2<p 3B .p 2<p 3<p 1C .p 3<p 1<p 2D .p 3<p 2<p 1答案 B解析 因为x ,y ∈[0,1],所以事件“x +y ≥12”表示的平面区域如图(1)阴影部分S 1,事件“|x -y |≤12”表示的平面区域如图(2)阴影部分S 2,事件“xy ≤12”表示的平面区域如图(3)阴影部分S 3,由图知,阴影部分的面积满足S 2<S 3<S 1,正方形的面积为1×1=1,根据几何概型公式可得p 2<p 3<p 1.16.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h ,乙船停泊时间为2 h ,求它们中的任意一艘都不需要等待码头空出的概率.解 设甲、乙两艘船到达码头的时刻分别为x 与y ,记事件A 为“两船都不需要等待码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要等待码头空出,当且仅当甲比乙早到达1 h 以上或乙比甲早到达2 h 以上,即y -x ≥1或x -y ≥2.故所求事件构成集合A ={(x ,y )|y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 为图中阴影部分,全部结果构成集合Ω为边长是24的正方形及其内部. 所求概率为P (A )=A 的面积Ω的面积=(24-1)2×12+(24-2)2×12242=506.5576=1 0131 152.。