第五章 气-固相催化反应动力学
第五章气固相催化反应本征动力学
![第五章气固相催化反应本征动力学](https://img.taocdn.com/s3/m/fafbf95a3c1ec5da50e270f8.png)
本身在反应前后没有变化
石油化学工程系 化学工程与工艺教研室 weigang
(2)
催化剂
不会改变
反应物质最终 所能达到的平衡状态 催化剂并不改 变化学平衡
对于催化或非 催化反应都有:
G RT ln K
0
(3)对于任何一个可逆反应
催化剂
同倍加快
正、逆反应速率
1
且K
k1 k2
K—化学平衡常数; γ—化学平衡常数; k1、 k2—正、逆反应速率常数;
方法是:1)适度加热驱除易除去的外来杂质; 2)小心燃烧除去顽固杂质; 3)用氢气、硫化氢、一氧化碳或氯化烃作为活化剂 活化催化剂。
石油化学工程系
化学工程与工艺教研室
weigang
5、催化剂的开工和停工
开工的不稳定阶段,可能 会发生温度失控而破坏催 化剂的活性,所与需要一 个专门的开车程序。
新催化剂
石油化学工程系 化学工程与工艺教研室 weigang
5.1.2 非均相催化反应速率表达
反 应 速 率 定义:单位反应体系中反应程度随时间的变化率。
r 1 d V dt
注意单位!
基准
单位质量催化剂wcat 单位体积催化剂Vcat
反应速率r
r
反应速率(-rA)
1 d 1 dnA (5.1 - 1) (rA ) (2.1 - 2) Wcat dt Wcat dt 1 d 1 dnA r (2.1 - 3) (rA ) (2.1 - 4) Vcat dt Vcat dt
石油化学工程系 化学工程与工艺教研室 weigang
总反应式可以写成:
A+B+2σ
R+S+2σ
气固相催化反应的动力学步骤
![气固相催化反应的动力学步骤](https://img.taocdn.com/s3/m/48df460482c4bb4cf7ec4afe04a1b0717fd5b3f8.png)
气固相催化反应的动力学步骤以气固相催化反应的动力学步骤为标题,本文将从理论和实践两方面介绍气固相催化反应的动力学步骤。
一、理论部分1.催化剂的吸附在气固相催化反应中,催化剂的吸附是反应的第一步。
催化剂表面存在各种吸附位,其中最常见的是吸附位和活性位。
吸附位是催化剂表面的一个缺陷,其表面结构与晶体结构不同,因此吸附能力较强。
活性位则是吸附位上的一些具有活性的物种,如氢原子、羟基、氧原子等。
催化剂表面的吸附位和活性位对反应物的吸附和反应至关重要。
2.反应物的吸附反应物吸附在催化剂表面的吸附位和活性位上,通过化学键形成催化剂-反应物复合物,这是反应的第二步。
3.反应反应物在复合物的作用下发生反应,形成产物。
反应速率取决于反应物的浓度、催化剂的活性、反应温度等因素。
4.产物的脱附产物脱附是反应的最后一步,当产物与催化剂之间的键断裂时,产物会从催化剂表面脱离。
二、实践部分以催化裂化反应为例,介绍气固相催化反应的动力学步骤。
1.催化剂的选择在催化裂化反应中,催化剂的选择非常重要。
催化剂应具有较高的活性和选择性,同时还应具有较高的稳定性和寿命。
2.反应条件的控制催化裂化反应需要适宜的反应温度、反应压力、反应时间等条件。
反应温度一般在450-550℃之间,反应压力一般为1-2MPa。
3.反应物的选择催化裂化反应的反应物为长链烷烃,反应物的选择对反应的效果有很大影响。
一般来说,碳数较多的长链烷烃反应活性较低,而碳数较少的烷烃反应活性较高。
4.反应机理的研究通过对反应物和产物的分析,可以确定反应的机理和动力学参数,如反应速率常数、反应级数等。
这对于优化反应条件、提高反应效率具有重要意义。
气固相催化反应的动力学步骤包括催化剂的吸附、反应物的吸附、反应和产物的脱附。
在实践中,催化剂的选择、反应条件的控制、反应物的选择和反应机理的研究是保证反应效率和催化剂寿命的关键。
(5)气固催化反应宏观动力学
![(5)气固催化反应宏观动力学](https://img.taocdn.com/s3/m/1a95d41ca76e58fafab0036a.png)
气固催化反应过程的研究方法
通过反应器实测的仅为流体主 体的温度Tb和浓度cb ,而催化 剂颗粒外表面上的温度Tes、浓 度ces和内孔表面上的温度Tis、 浓度cis一般是无法直接准确测 定的,只能通过反应工程理论 思维方法进行定性分析推算。 由于传递过程的存在,使得反应器微元中必然存在温 度差和浓度差以作为过程推动力。只有当内、外传递的阻 力降低到很低以致可以忽略不计时,上述三个温度和浓度 T 才会趋于一致,即 C b ≈ C es ≈ C is ; b ≈ Tes ≈ Tis 。
rNH 3 = k1 PN 2
PH 2
PNH 3
− k2
PNH 3
1 PH.25
在实际应用中常常以幂函数型来关联非均相动力学参数, 由于其准确性并不比双曲线型方程差,因而得到广泛应用。 而且幂函数型仅有反应速率常数,不包含吸附平衡常数, 在进行反应动力学分析和反应器设计中,更能显示其优越 性。
气固催化反应的传递过程
双曲线模型包含的参数太多,参数的可调范 围较大,常常对同一反应可以有多个动力学模型 均能达到所需的误差要求。
幂函数型的动力学表达式
不满足理想吸附条件的吸附,都称为真实吸附。 以焦姆金和弗隆德里希为代表提出的不均匀吸附理论认为: 由于催化剂表面具有不均匀性,因此吸附活化能与解吸活 化能都与表面覆盖程度有关。 例如焦姆金导出的铁催化剂上氨合成反应动力学方程式为 幂函数型: 幂函数型 1.5
双曲线型动力学表达式 基于理想吸附模型的动力学方程均属双曲线 型。不论其反应类型如何,吸附形式如何,以及 速率控制步骤如何,都可以表示成如下形式:
(动力学项)(推动力) 反应速率= n (吸附项)
动力学项即反应速率常数k,为温度的函数。 推动力为组分浓度或压力。 吸附项表明了在催化剂表面被吸附的组分。吸附项中 的n表示涉及到活性点的数目
化学反应工程-第5章-复习
![化学反应工程-第5章-复习](https://img.taocdn.com/s3/m/222a1ffc04a1b0717fd5ddcc.png)
• 1、以催化剂体积定义反应速率 、
1 dnA −3 −rA = − kmol ⋅ s−1 ⋅ mcat VS dt
• 2、以催化剂质量定义反应速率 、
1 dnA −1 −rA = − kmol ⋅ s−1kgcat mS dt
• 3、以催化剂内表面积定义反应速率 、
1 dnA −2 −rA = − kmol ⋅ s−1mcat SV dt
吸附过程) 3)反应物在催化剂上吸附 (吸附过程) 表面反应过程) 4)发生反应 (表面反应过程) 脱附过程) 5)产物从催化剂表面脱附 (脱附过程) 产物从催化剂孔内→孔外(内扩散) 6)产物从催化剂孔内→孔外(内扩散) 产物从催化剂孔外→气流中(外扩散) 7)产物从催化剂孔外→气流中(外扩散) 哪一步的阻力大,就是速率控步骤。 哪一步的阻力大,就是速率控步骤。
第五章 催化剂与催化动力学基础
漳州师范学院化学与环境科学系
陈建华
气固相催化过程
• 气固相:反应物和产物均为气相,催化剂为固 气固相:反应物和产物均为气相, 相。 • 催化剂参与反应,但在反应过程中不消耗。 催化剂参与反应,但在反应过程中不消耗。 • 催化剂的加入可以改变反应速率。 催化剂的加入可以改变反应速率。 • 催化剂的加入,不能改变反应的平衡。催化剂 催化剂的加入,不能改变反应的平衡。 以同样的比例同时改变正逆反应的速率。 以同样的比例同时改变正逆反应的速率
影响随即消除。 影响随即消除。
γA
G0
图中 G≥ G0 时无外扩散的影响 适用于: R = d pµρ / µ = 适用于: ep
G
dG
µ
> 50
减小化剂颗粒的直径,可消除内扩散得影响。 减小化剂颗粒的直径,可消除内扩散得影响。 在恒定的质量流速下, 无内扩散的影响。 在恒定的质量流速下,当dp<dp*时,无内扩散的影响。
化学反应工程-第五章 气固相催化反应宏观动力学
![化学反应工程-第五章 气固相催化反应宏观动力学](https://img.taocdn.com/s3/m/54f48aa0770bf78a64295429.png)
积累A量 0
19
推导过程:
De 4πr dr2
d dr
cA
dcA dr
dr
De
4πr
2
dcA dr
4πr 2dr rA
De 4π
r2
2rdr
dr 2
dcA dr
d 2cA dr 2
dr De 4πr 2
dcA dr
4πr 2dr rA
忽略高阶无穷小并整理:
2rdr
在前面孔扩散的基础上进行两点修正: ⑴以孔的真实长度代替直孔长度
xL=τl ⑵计算基准变成催化剂外表面积
孔截面积S SS SS:颗粒外表面积, :颗粒孔面积分率
注意:催化剂孔隙是均匀的,任意截面上
孔面积分率都相等且等于催化剂的孔隙率
即: P,因此,S SS P
11
因此:
dnA dl
DS
dcA dxL
rA kcA
d 2cA dz 2
2 dcA z dz
R2 DekcA定义 Nhomakorabea因次数群Thiele
模数S
R 3
k De
,则
R2 De
k
3S
2
d 2cA dz 2
2 z
dcA dz
3S 2 cA
二阶常微分方程,解之并代入边界条件得:
cA
cAS z
sinh 3Sz sinh 3S
--描述浓度分布
21
5.1 催化剂颗粒内气体扩散
气体在催化剂内的扩散属孔内扩散,根据 孔的大小分为两类: ⑴孔径较大时,为一般意义上的扩散; ⑵孔径较小时,属克努森(Knudson)扩散。 扩散的表达:费克(Fick)扩散定律
《气固相反应动力学》课件
![《气固相反应动力学》课件](https://img.taocdn.com/s3/m/6e0e9668580102020740be1e650e52ea5418ce49.png)
目录
• 气固相反应动力学概述 • 气固相反应动力学的基本原理 • 气固相反应的动力学实验研究 • 气固相反应的动力学模拟研究 • 气固相反应动力学的应用研究 • 总结与展望
01
气固相反应动力学概述
定义与特点
定义
气固相反应动力学是研究气体与固体 物质之间反应速率和反应机制的学科 。
科学研究
气固相反应动力学是化学反应工 程和物理化学等领域的重要分支 ,对于深入理解反应机制和探索 新反应路径具有重要意义。
气固相反应动力学的发展历程
早期研究
早在19世纪,科学家就开始研究气固相反应,初期主要关注燃烧和氧 化等简单反应。
理论模型建立
随着实验技术的发展,20世纪初开始建立气固相反应的动力学模型, 如扩散控制模型和化学反应控制模型等。
工业粉尘治理
通过气固相反应技术对工业生产过程中产生的粉尘进行控制和处理 ,减少空气污染。
土壤修复
利用气固相反应技术对受污染的土壤进行修复,如通过化学氧化还原 反应降低土壤中的重金属含量。
在新材料研发中的应用
纳米材料制备
气固相反应技术可用于制备纳米材料,如纳米碳管、纳米氧化物 等,具有广泛的应用前景。
实验技术进步
20世纪中叶以后,实验技术的进步为气固相反应动力学研究提供了更 多手段,如激光诱导荧光、质谱仪等技术的应用。
当前研究热点
目前,气固相反应动力学的研究重点包括新型催化剂的设计与制备、 反应机理的深入研究以及计算机模拟在动力学研究中的应用等。
02
气固相反应动力学的基本 原理
化学反应动力学基础
跨学科合作
气固相反应动力学涉及多个学科领域,需要加强跨学科合 作,促进多学科交叉融合,共同推动气固相反应动力学的 发展。
chap 5 气固相催化反应宏观动力学
![chap 5 气固相催化反应宏观动力学](https://img.taocdn.com/s3/m/8039920d7dd184254b35eefdc8d376eeaeaa1763.png)
热量传递:步(1)和步(7)取决于Re和Pr。步(2)~(6)交织
在一起,取决于反应热和颗粒导热系数 1
第一页,共七十四页。
表明:单颗粒催化剂上发生的化学反应,取决于本征
活性(速率)、流动状态、传热和传质等,过
程复杂。一般不进行单点计算,多表示为催
2 dcA z dz
R2 De
rA
中
得
d 2v dz 2
2 z
dv dz
R2 De
kf
' c AS
v
3
R 3
k De
f 'cAS 2 v
此
时 的 解 为 精 确 解
可 以 把 一 级 反 应
看
与一级反应相似,令
S
R 3
k De
f 'cAS
d 2v dz 2
2 z
dv dz
3S
2
v
成 是 非
N B,
0
D
1/
Dk
1 1/
DAB
α-扩散(kuòsàn)通量系数
10
第十页,共七十四页。
四、有效 扩散 (yǒuxiào)
在前面孔扩散的基础上进行两点修正:
以孔的真实长度代替直孔长度 xL=τl 计算基准变成催化剂外表(wàibiǎo)面积
孔截面积S SS
τ-曲折(qūzhé)因子
在催化剂表面附近,按泰勒级数将f cA 展开得:
f cA
f
cAS
c
A
c 1!
AS
f
'
c
AS
c
A
催化剂与催化动力学基础.ppt
![催化剂与催化动力学基础.ppt](https://img.taocdn.com/s3/m/3d657abda98271fe900ef940.png)
A2 2
ka
kd
2 A
ra ka PAV2 ka PA (1 A )2
rd
kd
2 A
ka PA (1 A )2
kd
2 A
A
1
K A PA K A PA
V Vm
(5-6) (5-7)
两种或两种以上吸附质被吸附的过程
A
kaA
A
kdA
B
kaB
B
kdB
raA rdA kaAPAV kdAA
⑥ 溶蚀法 如加氢、脱氢用的著名催化剂骨架 镍。
⑦ 热熔法 即将主催化剂及助催化剂组份放在 电炉内熔融后.再把它冷却和粉碎到需要的尺 寸,如合成氨用的熔铁催化剂。
此外还有热解法(如将草酸镍加热分解成高活性 的镍催化剂)等等催化剂的制备方法。
5.1.3 催化剂的性能
工业催化剂所必备的三个主要条件: ① 活性好 催化剂的活性指的是催化剂对原料的转化能力。它 主要取决于两个方面:组成和制作过程。 ② 选择性高 ③ 寿命长 催化剂的寿命指的是催化剂正常使用的时间。影响 其寿命(失活)的主要因素有:催化剂的热稳定性、 抗毒性和机械稳定性。
(5-8)
B
1
KB PB K APA KB PB
i
Ki Pi
1 Ki Pi
(5-9)
(2)弗朗德利希Freundlich型吸附等温线方程
弗朗德利希型吸附等温式是朗格缪尔型的一种改进型。它是假定 吸附热随覆盖度的增加成幂数关系下降而导出的。
q q0 a ln
ra
ka
PA
A
rd
kd
A
(5-10/11)
A
ka
A
kd
第五章 气-固相催化反应动力学
![第五章 气-固相催化反应动力学](https://img.taocdn.com/s3/m/8dbcdb4d551810a6f424865f.png)
r 75000/ P
【例5-1】在测定孔容和催化剂颗粒的孔隙率实验中,用活性而 氧化硅(4~12目大小的颗粒)样品得到以下数据:催化剂样品 质量为101.5g,量取体积为165.5cm3,苯置换体积为120.4cm3,
汞置换体积为82.7cm3。试计算该样品的孔容和孔隙率。
【解】样品的真密度为:t
101.5 165.5 120.4
2.25(g
/ cm3)
样品的假密度为:P
101.5 165.5 82.7
1.226(g
/ cm3)
样品的孔容为:VP
1
P
1
t
1 1.226
1 2.25
0.371(cm3 / g)
即
Kp
(
p p L M LM
p p A B AB
)
p*A
(
p p L M LM
K
p
p B B
1
) A
r总
1
KA(
ka,A pA
p p L M LM
5.2.1 本证动力学过程速率方程
其中
※ ——固体催化剂颗粒表面活性中心位;
※ ——固体催化剂颗粒表面活性中心位的覆盖率;
被覆盖的活性中心位(浓度)
总活性中心位(浓度) ※ (1 i )——固体催化剂颗粒表面活性中心位的覆盖率;
未覆盖的活性中心位(浓度)
(1 i ) 总活性中心位(浓度)
样品的孔隙率为: P VPP 0.371 1.226 0.455
5.1.3 气-固相催化反应过程
化学反应工程-17-第五章-气固相催化反应宏观动力学
![化学反应工程-17-第五章-气固相催化反应宏观动力学](https://img.taocdn.com/s3/m/882056134431b90d6c85c738.png)
1
NA NB
NA、NB为A、B组分的扩散通量,mol•m-2•s-1。
上式简化: 比如对 A B 等类型反应, A、B在孔道中进行的是等分子逆向扩散过程。
N A N B 则 0
1 1 1 上式: D DAB DK
5.1.4 以颗粒为基准的有效扩散系数De
De为以颗粒外表面积计算基准的有效扩散系数。 问题是De如何求?
DAB 称为分子扩散系数,由下式计算:
1 1 T 1.5 M A MB 0.436 1 1 P V A / 3 VB / 3
2 0.5
D AB
式中 DAB 为A组分在B中的扩散系数,cm2•s-1;P为系统总压,kPa;T为 系统温度,K;MA、MB为A、B组分的相对分子量;VA、VB为A、B组分 的分子扩散体积(见表5-1)cm3•mol-1。表中未列气体,其扩散体积可按
yi 为I组分的mol分率;
Nj为j组分扩散通量。
工程计算时,常用Wilke简化模型,如下式:
D Am
1 yA yi D i Ai
5.1.2 努森扩散 记扩散系数为 D K,则:
DK 4850d 0
T M
式中:D K 为努森扩散系数,cm2•s-1;T为系统温度,K;M为 组分的相对分子量;d0为微孔直径,cm。
根据 S 的定义式: S
4 3 R V R 3 S 3 4R 2 SS
R 3
kV ' f C AS De
f C A f C AS C A C AS
4 3 Fr rA r dr r 3 3
单位时间球壳中A的累积量:
气固相反应动力学-PPT课件
![气固相反应动力学-PPT课件](https://img.taocdn.com/s3/m/82cd077e77232f60ddcca1d1.png)
0 ' Ea Aexp g ka A f RgT RgT 令: 0 E ' ' ' d Aexp h kd k f RT R T g g
第四节
则有:
气固相催化反应本征动力学方程
0 E E a a A 0 E E d A d 0 0 Ea ,Ed ,,为常数
第四节
气固相催化反应本征动力学方程
将吸附和脱附活化能代入净吸附速率的表达式中: 0 0 E E ' ' a d A A r r r p f exp k f exp a d A A A A R T R T R T R T g g g g
在多孔催化剂上进行的气固相催化反应,由反应物在位于催化剂
内表面的活性位上的化学吸附、活化吸附态组分进行化学反应和 产物的脱附三个连串步骤组成,因此,气固相催化反应本征动力 学的基础是化学吸附。
第四节
下表。
类别
项目 吸附剂
气固相催化反应本征动力学方程
气体在固体表面的吸附可分为物理吸附和化学吸附。二者区别见
Langmuir理想吸附层等温方程
第四节
气固相催化反应本征动力学方程
如果气相中的组分A及B都同时被固体表面吸附,其表面覆盖度分 k p 1 别为θA,θB,则A组分的吸附速率为: r a aA A A B k aA 脱附速率为: r k b A d dA A * k dA k p * a A A A 吸附达平衡时,ra=rd,则有: b p A A 1 A k B dA
1 则: b0 p exp(fA) A ln( b0 p* A) f
气固相催化反应动力学
![气固相催化反应动力学](https://img.taocdn.com/s3/m/57f4ae35ee06eff9aef80731.png)
表面反应: A B R S
R的脱附: R R
S的脱附: S S
反应速率即等于A的净吸附速率,而A的吸附速率是与A的分压 及裸露的活性点数成正比例的,脱附速率则与A的覆盖率成正 比,故净吸附速率为
r ra rd k1 p AV k2 A
由于其余各步都达到了平衡状态,故有
i
Ki Pi
1 Ki Pi
i
r
kr KA pAKB pB
kpA pB
1 K A pA K B pB K R pR KS pS 2 1 K A pA K B pB K R pR KS pS 2
式中, k k AK AKB 对于表面覆盖率极低的情况,则
A的吸附: A A
B的吸附: B B
表面反应: A B R S
R的脱附: R R S的脱附: S S
因表面反应速率是与吸附的A与B的量成正比的,故
r rA kr AB
式中kr是表面反应速率常数,将 代入得
(K A pA KB pB KR pR KS pS ) 1 于是反应速率式便简化成于一般均相反应速率式相同的形式了,
r kpA pB
(2)吸附控制
以反应 A B R S 为例,如A的吸附是控制步骤,可设想 其机理步骤如下:
A的吸附: A k1,k2 A B的吸附: B B
1 KRS
pR pS pB
KB pB KR pR KS pS
式中
K k1K A K B k2 K R K S
(3)脱附控制 A R 反应为例,其机理为
A A A R
第五章 固定床气-固相催化反应器
![第五章 固定床气-固相催化反应器](https://img.taocdn.com/s3/m/6f7a544d69eae009581bec84.png)
加压热水作载热体的反应装置
以加压热水作载热体的固定床反应装置示意图
1-列管上花板;2-反应列管;3-膨胀圈;4-汽水分离器;5-加压热水泵
用有机载热体带走反应热的反应装置:
反应器外设置载热体冷却器,利用载热体移出的反 应热副产中压蒸汽。 1-列管上花板; 2、3-折流板; 4-反应列管;
(1)列管式固定床反应器 这种反应器由多根管径通常为25~50㎜ 的反应管并联构成,但不小于25mm。管数可 能多达万根以上。管内装催化剂,催化剂粒 径应小于管径的8倍,通常固定床用的粒径 约为2~6mm,不小于1.5mm。载热体流经管 间进行加热或冷却。在管间装催化剂的很少
见。
列管式固定床反应器外冷列管式、外 部供热管式二种。
外部供热管式催化床
用于吸热反应,催化剂装 载在管内,管外用热载体,如 烟道气,温度可高达600~ 700℃左右。
列管式固定床反应器:外冷列管式
原料 催化剂
蒸汽 调节阀
补充水
产物
外部供热管式
列管式反应器优点
①传热面积大,传热效果好,易控制催化剂床层 温度,反应速率快,选择性高。 ② 返混小、选择性较高; ③ 只要增加管数,便可有把握地进行放大; ④ 对于极强的放热反应,还可用同样粒度的惰 性物料来稀释催化剂
(2)多段固定床绝热反应器
由多个绝热床组成,段间可以进行间接换热,或 直接引入气体反应物(或惰性组分)以控制反应器 内的轴向温度分布。对于可逆放热反应过程,可通 过段间换热形成先高后低的温度序列利于提高转化 率。 多段绝热催化床可以分为间接换热式和冷激式。
第5章 气-固相催化反应器
![第5章 气-固相催化反应器](https://img.taocdn.com/s3/m/621b239ef424ccbff121dd36a32d7375a417c66a.png)
固 固体 体的 的质 体 gc量 积 m3
颗粒密度: 指单位体积催化剂颗粒(包括孔占有的体积)
的质量。
Pm VSP 固 颗体 粒的 的质 体 gc量 积 m3
堆密度:
b 固 床体 层的 的质 体g量 积 cm3 床层的体积(堆体积):包括颗粒体积和颗粒与颗 粒间的空隙体积两个部分。
S Pb
孔隙率:催化剂颗粒孔容积占总体积的分率。
ka kd
pA
exp
RT
ln
因为:exln y y x
exln y eln yx eln(yx ) y x
所以:ka kd
pA
RT
1
令n
RT
;K
A
ka kd
n
1
KA pAn
称弗鲁德里希吸附等温式
焦姆金(ТЕМКИН)吸附模型
ТЕМКИН模型认为吸附及脱附活化能与表面覆盖率呈线 性关系。即:
r
ka(A p Ap R/K Pp B )
r k(pApBpR/K P)
1K Rp R/K SK Bp BK Bp BK Rp R
1KApAK BpBK RKppApB
双曲线型速率方程 不同的控制步骤,推出的速率方程式各不相同,但都可概
括为如下的形式:
反应速率 (= 动力学( 项推 )动力) (吸附n项)
1 f
ln KA pA
称焦姆金吸附等温式
速率控制步骤
定态近似 表述一: 若反应过程达到定 态,则中间化合物的浓度 不随时间而变,即:
dcI 0,I 1,2,N dt
速率控制步骤
总反应速率决定于串联各 步中速率最慢的一步,其 余各步认为达到平衡。
表述二:若达到定态,则串联 各步反应速率相等。
化学反应工程第五章气固催化反应本证动力学详解
![化学反应工程第五章气固催化反应本证动力学详解](https://img.taocdn.com/s3/m/6b9522fa4128915f804d2b160b4e767f5acf80b9.png)
Tayler,1928(看作固体中 的不饱和原子,固体表面 不均匀、断层、晶体边缘 及粒子间的裂缝)
活性位:催化剂表面可和被 吸附原子或分子形成强化 学键的中心
化学吸附的 微观形态
给定某一吸附剂,给定被吸附的物质(通常是气 体),给定吸附温度,当吸附压力变化时,吸附剂 的吸附能力如何变化? 吸附等温式给出了这一变化的规律
③ 吸附项的指数是控制步骤中吸附中心参与的个数,如果 n=3,说明三个吸附中心参与控制步骤;
④当出现解离吸附,在吸附项中出现开方( KA)p项A ;
小结
1、正确书写反应速率表达式,并能给出复杂化 学反应的速率式
2、理解活化能和反应级数的意义和概念
3、气固催化反应过程的7步骤,什么是物理吸附、 化学吸附和理想、非理想吸附模型,什么是速率 控制步骤,什么叫拟平衡态。并可进行本征动力 学推导。
Ed RT
)
吸附平衡时: rA rd
A
KA pA 1 KA pA
单组分A解离吸附:A2 +2 2A
ra k a pA (1A )2
rd
kd
2 A
ka
ka0exp(
Ea RT
)
kd
kd 0exp(
Ed RT
)
吸附平衡时: ra rd
A
1
KA pA KA pA
A
KA pA 1 KA pA
: 双组分A、B吸附
Ea
E
0 a
ln
Ed
E
0 d
ln
q
Ed -Ea
(
E
0 d
E
0 a
)
(
) ln
r ka pA exp( / RT ) ln kd exp( / RT ) ln
2.2.2气~固相催化反应动力学.
![2.2.2气~固相催化反应动力学.](https://img.taocdn.com/s3/m/93f6cfbbdaef5ef7ba0d3c28.png)
2.2.2气~固相催化反应动力学宏观动力学:工业反应器中实际反应速度(不排除外界因素影响)的动力学关系。
本征动力学(微观动力学):排除外界因素影响,进行动力学研究得出的规律。
(一)气-固相催化反应速率气~固相催化反应速度定义:单位催化剂质量(或体积),单位时间内反应物数量的变化。
()dtdN w r A A 1-=-=反应消耗A 的摩尔数/催化剂质量、反应时间()/A r -=反应消耗A 的摩尔数/催化剂体积,反应时间=dtdN V Ap 1-(2—9)Cat V p ~体积有时以单位床层体积为基准,()dtdN V r AB A 1//-=- (2—10)~B V 床层体积关系()()()BA pA A r r r ρρ///-=-=- ~p ρ催化剂密度粒子[][][]33/m mkg kg 密度质量体积=~B ρ 催化剂床层堆积密度 (二)双曲线型的反应速率式(L-H-H-W )型基本假设:①反应发生在吸附分子之间或吸附分子与气体分子之间 ②()A r -与各组分在催化剂表面上的覆盖率成正比 基本步骤:①已知:反应物,产物,设想反应机理 ②定出每种机理的动力学方程式③实验推定动力学方程式参数的最佳值 ④检验模型的准确性 (一)表面反应控制1.双分子不可逆反应 S R B A +→+ 设想机理步骤:A 的吸附:σσA ↔+A ~σ吸附位B 的吸附:σσB ↔+B表面反应:σσσσS R +→B +A (控制步骤) R 的脱附:σσ+↔R R 其它步骤达到平衡 S 的脱附:σσ+↔S A表面反应速度:()B A r A k r θθ=- r k ~反应速率常数 根据L-H 吸附模型:SS R R B B A A AA A p K p K p K p K p K ++++=1θ (2—11)SS R R B B A A BB B p K p K p K p K p K ++++=1θ (2—12)()()()21S S R R B B A A BA B A r A p K p K p K p K p p K K k r ++++=-则()21S S R R B B A A BA p K p K p K p K p kp ++++=(2—13)2.双分子可逆反应S R B A +⇔+表面反应为 σσσσS R +⇔B +A 其它吸附、脱附同不可逆反应()SR k k r θθθθ21-=-B A A()2211S S R R B B A A SR S R B A B A p K p K p K p K p p K K k p p K K k ++++-=B A K K k k 1=令()221S S R R B B A A RS S R B A p K p K p K p K p p K K k k kp kp ++++-= SR B A K K k K K k K 21=令 ()()21/S S R R B B A A S R B A p K p K p K p K K p p p p k ++++-=(2—14)k K K k K SR 21=SS R R B B A A R R R p K p K p K p K p k ++++=1θ SS R R B B A A SS S p K p K p K p K p k ++++=1θ说明:分子有两项→可逆反应分母 A 、B 、R 、S→四种物质被吸附括号上的平方项→控制步骤是三步及到两个吸附位之间的反应(双分子反应) 3.2A 在吸附时解离 +⇔B +A R 2S 与上不同的是:*2σσσσσ++⇔B +A S R 反应速率式:()V S R A A k k r θθθθθ221-=-B ~V θ裸露率整理 ()()32221/SS R R B B A A S R B A p K p K p K p K K p p p p k ++++-=(2—15)说明:分母222A →A A p K 是解离吸附 4.吸附的A 与气相的B 进行不可逆反应 S R +→B +A 机理:σσA ⇔+Aσσ++→B +A S R反应速率:()AA BA A rB A r A p K p p K k p k r +==-1θ (2—16)其中 AA AA A p K p K +=1θ5.两类不同吸附位的情况 R →B +A机理11σσA ⇔+A22σσB ⇔+B 1σ吸附A *1221σσσσ+→B +A R 2σ吸附B 22σσ+⇔R R反应速率 ()B A r A k r θθ=-其中A θRR B B BB B A A A A p K p K p K p K p K ++=+=11θ()()()R R B B A A BA A p K p K p K p kp r +++=-11 (2—17)B A r K K k k = 说明:分母两个因子→两类不同吸附位吸附(二)吸附控制 化学反应式R ⇔B +A 若A 的吸附是控制步骤设想,机理: σσA ⇔+A σσB ⇔+Bσσσσ+⇔B +A R σσ+⇔R R反应速率(为A 的净吸附速度): ()b a A r r r -=-A d V A A k p k θθ-=其余各步达平衡:V B B B p K θθ= (2—18)V R R R p K θθ= (2—19) 而:1=+++V R B A θθθθ (2—20)令BB A VR R B R B A V R r p K p K K θθθθθθθθ⎪⎪⎭⎫ ⎝⎛=代入 BA VR r K R θθθθσσσσ=∴+⇔B +A 则V BRB r R A p p K K K θθ=(2—21) V V R R B B B RB r R R B A p K p K p p K K K θθθθθ-=⎪⎪⎭⎫⎝⎛++=++1 (2—22)RR B B BRB r R V p K p K p p K K K +++=∴11θ (2—23)则()A d A A a A k p k r θθ-=- (2—24)V B RB r R d A a p p K K K k p k θ⎪⎪⎭⎫⎝⎛-= (2—25)RR B B BR B r R BR B r r d A a p K p K p p K K K p p K K K k p k ++⎪⎪⎭⎫ ⎝⎛+-=1RR B B BRRB B R A a p K p K p p K K p p p k +++⎪⎪⎭⎫ ⎝⎛-=1 (2—26)其中R b B r a K k K K k K =Br RRB K K K K =⎪⎪⎭⎫⎝⎛=B A θθθθVR r K (三)脱附控制设:R 的脱附为控制步骤:④*σσ+⇔R RR ⇔B +A (①σσA ⇔+A ②σσB ⇔+B ③σσσR →B +A ) 推导结果:()()BA AB B B A A R B A A p p K p K p K Kp p p k r +++-=-1 (2—27)式中:B A r AB K K K K =;B A r b K K K k k =;BA r b aK K K k k K =例1镍催化剂在200℃进行苯加氢反应,若催化剂的平均孔径0510d m=⨯,p,4τ=,求系统总压力为3039.3kpa时,氢在催化剂内的有效扩散系数e D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.2.2 吸附等温方程 思考1:吸附等温方程?
第五章 气-固相催化反应动力学 5.1 气-固相催化反应 5.2 气-固相催化反应本征动力学 5.3 气-固相催化反应宏观动力学
5.1 气-固相催化反应
5.1.1 气-固相催化反应概述 1、气-固相催化反应——非均相反应——发生在气-固界面。
2、气-固相催化反应的特征
(1)在操作条件下反应物和产物都为气体;
图例 外层气膜 内孔结构 向内传递 向外传递
气 流 主 体
反应物 生成物
气 膜 界 面
反应物 生成物
颗 粒 外 表 面
孔 反应物 道
内 生成物 表
面
气-固相催化反应过程基本概念
● 气流主体——对流过固体催化剂颗粒的气体物料的统称。 ● 气 膜——气流主体流过固体颗粒催化剂外表面所形成的
层流边界层。 ● 外扩散过程——反应组分在气膜中的扩散过程。
(2)反应主要在固体颗粒催化剂内表面上进行;
ri
1 S
dni dt
或ri
1 W
dni dt
(3)反应速率与固体颗粒催化剂内的扩散速率有关。
5.1.2 固体催化剂的表面积、外表面积和内表面积
S108型二氧化硫氧 A202型氨合成催 化制硫酸催化剂 化剂
C307型中低压合 成甲醇催化剂
T-504型常温COS 水解催化剂
① ②
Hale Waihona Puke B① ②③ M
① A A B B
② A B L M
A+B
L+M
气-固相催化反应本证动力学 过程示意图
③ L L M M
5.2.1 本证动力学过程速率方程
※ A组分的净吸附速率方程
rA raA rdA kaA pA (1 i ) kdA A
※ B组分的净吸附速率方程
● 内扩散过程——反应组分在催化剂颗粒内的扩散过程。 ● 本证动力学过程——对反应组分在催化剂颗粒内孔道表面
上所发生的吸附、表面反应与脱附过 程的统称。 ●宏观动力学过程——对内、外扩散过程和本证动力学过程 的统称。
5.2 气-固相催化反应本证动力学 目标:建立本证动力学过程速率方程
(1)吸附速率方程
C14-SL型二段转化 QDB-04型CO耐
催化剂
硫变换催化剂
(1)固体催化剂的组成及基本制备方法
活性组分——原子——活性中心
(1)组成
助催化剂——分子——协同作用
载
体——骨架——支撑作用
(2)方法
浸渍法——贵金属催化剂 沉淀法——氧化物催化剂 共混法——氧化物催化剂 熔融法——金属催化剂
(2)固体催化剂的孔结构
其中:σ——表面张力,θ——接触角。Ritter 和Drake 发现,汞和一大类物质如木碳和金属氧化物的结束角 在135~144°间,一般可以使用平均值140°,因此
r 75000/ P
【例5-1】在测定孔容和催化剂颗粒的孔隙率实验中,用活性而 氧化硅(4~12目大小的颗粒)样品得到以下数据:催化剂样品 质量为101.5g,量取体积为165.5cm3,苯置换体积为120.4cm3,
(2)表面反应速率方程 内容:
(3)脱附速率方程 (4)本证动力学速率方程 (1)理想吸附等温方程 依据: (2)非理想吸附等温方程 方法:稳态法——划分为控制步骤和平衡步骤。
5.2.1 本证动力学过程速率方程
① 反应组分吸附
※ 本证动力学 过程与表达
② 吸附组分发生表面反应
③ 反应组分脱附
A
③ L
外观形状 有模有样
内观结构 千疮百孔
① 内表面积——内孔表面积 (3)孔结构参数与表征 ② 孔容和孔隙率
③ 孔径及其分布 (1)内表面积实验测定——气体吸附法,即BET法 BET:Brunauer-Emment-Teller的缩写。 最常用的气体:氮气(分子小,不易化学吸附) 测量要求:相对压力P/P0= 0.05~0.3 。 P:气体压力P;P0:同温度下气体的饱和蒸气压。 仪器名称:比表面测定仪;氮吸附比表面测定仪等。 规格型号及其性能:从网上可搜索到。
比表面测定仪;氮吸附比表面测定仪
主要技术参数 电源电压:220V 频率:50Hz 传感器输入: 直流电压0~30V 直流电流:0~200mA He∶N2=4∶1 比表面积测定范围: 0.1~3500m2/g 相对误差:≤±2% 完成测试时间: ≤25min
(2)孔容和孔隙率——孔总体积相对大小 孔容——单位质量催化剂的孔体积 实验测定——氦-汞置换法
样品的孔隙率为: P VPP 0.371 1.226 0.455
5.1.3 气-固相催化反应过程
(1)气流中的球形颗粒催化剂 (2)催化剂颗粒内微孔结构
示意图
示意图
在气流中的固体催化剂颗粒外层总是存在一层气膜,颗粒内 分布着无数的微孔通道与外界气流相通。
气体组分在固体催化剂颗粒中的传递过程
rB raB rdB kaB pB (1 i ) kdBB
※ 表面反应速率方程
rS ra rd ka AB kdLM
※ L组分净脱附速率方程
rL rdL raL kdLL kaL pL (1 i )
※ M组分净脱附速率方程
rM rdM raM kdMM kaM pM (1 i )
5.2.1 本证动力学过程速率方程
其中
※ ——固体催化剂颗粒表面活性中心位;
※ ——固体催化剂颗粒表面活性中心位的覆盖率;
被覆盖的活性中心位(浓度)
总活性中心位(浓度) ※ (1 i )——固体催化剂颗粒表面活性中心位的覆盖率;
未覆盖的活性中心位(浓度)
(1 i ) 总活性中心位(浓度)
汞置换体积为82.7cm3。试计算该样品的孔容和孔隙率。
【解】样品的真密度为:t
101.5 165.5 120.4
2.25(g
/ cm3)
样品的假密度为:P
101.5 165.5 82.7
1.226(g
/ cm3)
样品的孔容为:VP
1
P
1
t
1 1.226
1 2.25
0.371(cm3 / g)
He
Hg
只
只
剩
进
骨
缝
架
隙
孔隙率——孔容积与总体积之比
按假密度计算
真密度:骨架密度“ρt” 假密度:总体密度“ρp”
孔隙率
空容积 总体积
Vg 1
Vg p
p
pVg
(3)孔径及其分布——内孔大小状况
实验测定——压汞法测大孔(>25nm); 气体吸附测中孔(1-25nm);
r (2 cos ) / P