【课标版】2012届高三数学湖北高考模拟卷一(打印版)

合集下载

2012年高考文科数学湖北卷(含详细答案)

2012年高考文科数学湖北卷(含详细答案)

数学试卷 第1页(共26页) 数学试卷 第2页(共26页)绝密★启用前2012年普通高等学校招生全国统一考试(湖北卷)数学(文史类)本试卷共4页,共22题.满分150分.考试用时120分钟.★祝考试顺利★考生注意:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.用统一提供的2B 铅笔将答题卡上试卷类型后的方框涂黑.2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷、草稿纸上无效.3.填空题和解答题的作答:用统一提供的签字笔将答案直接答在答题卡上对应的答题区域内.答在试题卷、草稿纸上无效.4.考生必须保持答题卡的整洁.考试结束后,请将本试题卷和答题卡一并上交. 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合23 20,|} {A x x x x -+=∈R ,05 {|}B x x x =∈<<,N ,则满足条件A CB ⊆⊆的集合C 的个数为( ) A .1B .2C .3D .42.容量为20的样本数据,分组后的频数如下表:则样本数据落在区间[10,40)的频率为( )A .0.35B .0.45C .0.55D .0.65 3.函数s ()co 2f x x x =在区间[0,2π]上的零点的个数为 ( ) A .2B .3C .4D .54.命题“存在一个无理数,它的平方是有理数”的否定是( )A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数 5.过点)(1,1P 的直线,将圆形区域22{()|+4}x y x y ,≤分为两部分,使得这两部分的面积差最大,则该直线的方程为( )A .20x y +-=B .10y -=C .0x y -=D .340x y +-=6.已知定义在区间[0,2]上的函数()y f x =的图象如图所示,则()2y f x =--的图象为( )ABCD7.定义在()(),00,-∞+∞上的函数)(f x ,如果对于任意给定的等比数列{}n a ,{)(}n f a 仍是等比数列,则称)(f x 为“保等比数列函数”.现有定义在()(),00,-∞+∞上的如下函数:①2()f x x =;②()2x f x =;③()f x =;④()ln ||f x x =.则其中是“保等比数列函数”的)(f x 的序号为( ) A .①②B .③④C .①③D .②④8.设ABC △的内角A ,B ,C 所对的边分别为a ,b ,c .若三边的长为连续的三个正整 数,且A B C >>,320b acosA =,则sin :sin :sin A B C 为 ( ) A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶49.设a b c ∈,,R ,则“1abc =++a b c ”的()--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第3页(共26页) 数学试卷 第4页(共26页)A .充分条件但不是必要条件B .必要条件但不是充分条件C .充分必要条件D .既不充分也不必要的条件10.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .112π-B .1πC .21π-D .2π二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有 人.12.若3+i=+i 1ib a b -(a ,b 为实数,i 为虚数单位),则a b += . 13.已知向量0)(1,=a ,1)(1,=b ,则(Ⅰ)与2+a b 同向的单位向量的坐标表示为 ;(Ⅱ)向量3-b a 与向量a 夹角的余弦值为 .14.若变量x ,y 满足约束条件1,1,33,x y x y x y --⎧⎪+⎨⎪-⎩≥≥≤则目标函数23z x y =+的最小值是 .15.已知某几何体的三视图如图所示,则该几何体的体积为 .16.阅读如图所示的程序框图,运行相应的程序,输出的结果s = .17.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,记为数列{}n a ,将可被5整除的三角形数按从小到大的顺序组成一个新数列{}n b .可以推测: (Ⅰ)2012b 是数列{}n a 中的第 项; (Ⅱ)21k b =- .(用k 表示)三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)设函数22()sin cos cos ()f x x x x x x ωωωωλ-∈++=R 的图象关于直线π=x 对称,其中ω,λ为常数,且)11(2ω∈,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若()y f x =的图象经过点π()40,,求函数()f x 的值域. 19.(本小题满分12分)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台1111A B C D ABCD -,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱2222ABCD A B C D -. (Ⅰ)证明:直线11B D ⊥平面22ACC A ;(Ⅱ)现需要对该零部件表面进行防腐处理.已知10=AB ,1120=A B ,20=3A ,113=AA (单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元? 20.(本小题满分13分)已知等差数列{}n a 前三项的和为,前三项的积为.(Ⅰ)求等差数列{}n a 的通项公式;(Ⅱ)若2a ,3a ,1a 成等比数列,求数列{||}n a 的前n 项和.21.(本小题满分14分)设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足|(|)|01DM m DA m m ≠=>,且.当点A 在圆上运动时,记点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;3-8数学试卷 第5页(共26页) 数学试卷 第6页(共26页)(Ⅱ)过原点斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,且它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H .是否存在m ,使得对任意的0k >,都有PQ PH ⊥?若存在,求m 的值;若不存在,请说明理由.22.(本小题满分14分)设函数()(1)()0n f x ax x b x =-+>,n 为正整数,a ,b 为常数.曲线()y f x =在(1)(1)f ,处的切线方程为1x y +=.(Ⅰ)求a ,b 的值;(Ⅱ)求函数()f x 的最大值; (Ⅲ)证明:1()ef x n <.数学试卷第7页(共26页)数学试卷第8页(共26页)5 / 13数学试卷 第11页(共26页)数学试卷 第12页(共26页)3S ,4S 。

湖北省黄冈中学2012届高高考模拟考试数学(理工类)答案

湖北省黄冈中学2012届高高考模拟考试数学(理工类)答案

湖北省黄冈中学2012届高高考模拟考试数学(理工类)答案一、选择题:本小题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合}1,0,1{-=M ,},{2a a N =则使M ∩N =N 成立的a 的值是 ( )A .1B .0C .-1D .1或-1解析:C2.若(2)a i i b i -=-,其中,a b R ∈,i 是虚数单位,复数a bi += ( ) A .12i + B .12i -+ C .12i --D .12i -解析:B3.阅读右面的程序框图,则输出的S = ( ) A .14 B .20 C .30 D .55 解析:C4.“lg ,lg ,lg x y z 成等差数列”是“2y xz =”成立的A .充分非必要条件;B .必要非充分条件;C .充要条件;D .既非充分也非必要条件. 解析:A5.下列函数中既是偶函数,又是区间[-1,0]上的减函数的是 ( ) A .x y cos = B .1--=x y C .xx y +-=22ln D .xx e e y -+= 解析:D6.已知二项式2(n x (n N +∈)展开式中,前三项的二项式系数和是56,则展开式中的常数项为 ( )A .45256B .47256 C .49256D .51256解析:A7.已知两点(1,0),(1,3),A B O 为坐标原点,点C 在第二象限,且120=∠AOC ,设2,(),OC OA OB λλλ=-+∈R 则等于 ( )A .1-B .2C .1D .2-解析:C8.过抛物线x y 42=的焦点作一条直线与抛物线相交于B A ,两点,它们到直线2-=x 的距离之和等于5,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在解析:D9.某个体企业的一个车间有8名工人,以往每人年薪为1万元,从今年起,计划每人的年薪都比上一年增加20%,另外,每年新招3名工人,每名新工人的第一年的年薪为8千元,第二年起与老工人的年薪相同.若以今年为第一年,如果将第n 年企业付给工人的工资总额y (万元)表示成n 的函数,则其表达式为( )A .y =(3n +5)1.2n +2.4B .y =8×1.2n +2.4nC .y =(3n +8)1.2n +2.4D .y =(3n +5)1.2n -1+2.4【解析】 A 第一年企业付给工人的工资总额为:1×1.2×8+0.8×3=9.6+2.4=12(万元),而对4个选择项来说,当n =1时,C 、D 相对应的函数值均不为12,故可排除C 、D ;A 、B 相对应的函数值都为12,再考虑第2年付给工人的工资总额及A 、B 相对应的函数值,又可排除B.10.如图,平面四边形ABCD 中,1===CD AD AB ,CD BD BD ⊥=,2,将其沿对角线BD 折成四面体BCD A -',使平面⊥BD A '平面BCD ,若四面体BCD A -'顶点在同一个球面上,则该球的体积为 ( )A.π23B. π3C. π32D. π2解析:A二、填空题:本小题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.函数1)(23++-=x x x x f 在点)2,1(处的切线与函数2)(x x g =围成的图形的面积等于 解析:4312.平面直角坐标系中,圆O 方程为122=+y x ,直线x y 2=与圆O 交于B A ,两点,又知角α、β的始边是x 轴,终边分别为OA 和OB ,则_________)cos(=+βα。

湖北省黄冈中学2012届高考模拟试1

湖北省黄冈中学2012届高考模拟试1

湖北省黄冈中学2012届高考模拟试卷数学理科(十)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个符合题目要求.)1、给出下列函数:①y=x-x3,②y=x²sinx+cosx,③y=sinx²cosx,④y =2x+2-x,其中是偶函数的有()A.1个B.2个C.3个D.4个2、若角α、β的终边关于y轴对称,则下列等式成立的是()A.sinα=sinβ B.cosα=cosβC.tanα=tanβ D.cotα=cotβ3、设全集U=R,A={x|x2>4},B={x|log x7>log37},则()A.{x|x<-2} B.{x|x<-2或x≥3}C.{x|x≥3} D.{x|-2≤x<3}4、函数f(x)=3+xlnx的单调递增区间是()5、设等比数列{a n}的前n项和为S n,若S6∶S3=1∶2,则S9∶S3=()A.1∶2 B.2∶3C.3∶4 D.1∶36、若则(a1+a3+a5+…+a11)2-(a0+a2+a4+…+a12)2的值是()A.1 B.-1C.2 D.-27、“在平面α内的两条直线 l、m都平行于平面β”是“平面α∥平面β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8、为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立地做了10次和15次试验,并且利用线性回归方法,求得回归方程所对应的直线分别为l1和l2.已知两个人在试验中发现对变量x的观测数据的平均数都为s,对变量y的观测数据的平均数都为t,那么下列说法正确的是()A.l1与l2有交点(s,t)B.l1与l2有交点,但交点不一定是(s,t)C.l1与l2必定平行D.l1与l2必定重合9、已知点A为双曲线x2-y2=1的顶点,点B和点C在双曲线的同一分支上,且A与B在y轴的异侧,则正△ABC的面积是()10、记函数f(x)=3+x2sinx在区间[-2,2]上的最大值为M,最小值为m,那么M+m的值为()A.0 B.3C.6 D.8显示提示1、B解析:②④是偶函数.2、A解析:若角α、β的终边关于y轴对称,则α+β=2kπ+π,k∈Z,故sinα=sinβ.3、B解析:A={x|x<-2或x>2},B={x|1<x<3},则={x|x≤1或x≥3},.4、C解析:,由lnx+1>0,解得,故f(x)的单调递增区间是.5、C解析:在等比数列中,也成等比数列,设S6=k,则S3=2k,∴2k,-k,S9-k成等比数列,∴2k(S9-k)=(-k)2,解得,∴S9∶S3=3∶4.6、B解析:令x=1,得;令x=-1,得;7、B解析:由在平面α内的两条直线 l、m都平行于平面β,只有当l与m 相交时才能得到平面α∥平面β;反之,若平面α∥平面β,则平面α内的所有直线都平行于平面β.故是必要不充分条件.8、A解析:∵在两人的试验中发现变量x的观测数据的平均值恰好都为s,变量y的观测数据的平均值恰好都为t,∴这两组数据的平均数是相等的,都是(s,t).∵线性回归直线一定过样本中心点,∴两条直线都过(s,t)点,即两条线性回归直线有公共点(s,t).9、C解析:设A(1,0),则B、C在双曲线的左支上,不妨设点B在第二象限,由∠BAC=60°,得∠BAO=30°,故直线AB方程为,代入双曲线方程中可求得,∴,∴.10、C解析:令g(x)=x2sinx,则g(-x)=(-x)2sin(-x)=-x2sinx=-g(x),故g(x)是奇函数,又奇函数图像关于原点对称,故g(x)在[-2,2]上的最大值和最小值互为相反数,则有(M-3)+(m-3)=0,∴M+m=6.二、填空题(本大题共5小题,每小题5分,共25分.)11、已知复数z满足|z|2-2zi=1+2i,则z=__________.12、已知数列{a n}的前n项和S n满足log2S n=n,则其通项a n=__________.13、某学校要从高三的6个班中派9名同学参加市中学生外语口语演讲,每班至少派1人,则这9个名额的分配方案共有_________种.(用数字作答)14、如图a所示,在直角梯形ABCD中,AB⊥AD,AD⊥DC,AB=2,,CD =1,E为AD的中点,沿CE、BE把梯形折成四个面都是直角三角形的三棱锥,使点A、D重合,如图b所示,则这个三棱锥的体积等于__________.(a)(b)15、关于曲线C:x4+y2=1,给出下列说法:①关于直线y=0对称;②关于直线x=0对称;③关于点(0,0)对称;④关于直线y=x对称;⑤是封闭图形,面积小于π;⑥是封闭图形,面积大于π;⑦不是封闭图形,无面积可言.则其中正确说法的序号是_____________.(把你认为正确的序号都填上)显示答案11、-1或-1-2i解析:设z=a+bi,则有|a+bi|2-2(a+bi)i=1+2i,即a2+b2+2b -2ai=1+2i,,故z=-1或-1-2i.12、解析:由log2S n=n,得S n=2n,当n=1时,a1=S1=2,当n≥2时,a n =S n-S n-1=2n-2n-1=2n-1,.13、56解析:9名同学之间有8个空隙,取5个挡板插入这8个空隙中,将9名同学分成了6个部分,对应的就是6个班的名额,故共有种.14、解析:在折后图形中,EA⊥AC,EA⊥AB,故EA⊥面ABC,又AC=1,AB =2,BC=,AE=,.15、①②③⑥解析:若点(x0,y0)在曲线上,则点(x0,-y0),(-x0,y0),(-x0,-y0)都在曲线上,故①②③正确;对于④,将方程中的x换为y,y换为x方程变为y4+x2=1,与原方程不同,故④错;对于⑤,在曲线C上任取一点M(x0,y0),x04+y02=1,∵|x0|≤1,∴x04≤x02,∴x02+y02≥x04+y02=1,即点M在圆x2+y2=1外,故⑤错,⑥对,⑦错.三、解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.)16、(本小题满分12分)在人寿保险业中,要重视某一年龄的投保人的死亡率,经过随机抽样统计,得到某城市一个投保人能活到75岁的概率为0.60,试问:(1)3个投保人都能活到75岁的概率;(2)3个投保人中只有1人能活到75岁的概率;(3)3个投保人中至少有1人能活到75岁的概率.(结果精确到0.01)显示答案16、(1)P3(3)=(0.6)3≈0.22.(2)(3)17、(本小题满分12分)已知向量(1)若点A、B、C能构成三角形,求实数m应满足的条件;(2)若△ABC为直角三角形,且∠A为直角,求实数m的值.显示答案18、(本小题满分12分)如图所示,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=1,侧棱,M、N分别为棱AA1、BC上的中点,点P在边A1B1上,且A1P=2PB1.(1)求证:MN⊥AP;(2)求二面角M—AN—P的正切值.显示答案18、(1)过点N作NH⊥AB于H,连接MH,如图所示.∵ABC—A1B1C1为直三棱柱,且NH⊥AB,∴NH⊥平面ABB1A1.∴MH为MN在平面ABB1A1内的射影,且.∴∠AMH=∠APA1.∵∠A1AP+∠AMH=∠A1AP+∠APA1=90°,∴MH⊥AP,由三垂线定理知MN ⊥AP.(2)取B1C1的中点D,连接DN、DA1,过点P作PE⊥A1D于E,过点E作EF⊥AN于F,连接PF.由三垂线定理知,∠PFE为二面角M—AN—P的平面角.19、(本小题满分12分)已知,数列{a n}、{b n}满足下列条件:a1=1,a n+1-2a n=f(n),b n=a n+1-a n(n∈N*).(1)求f(x)的解析式;(2)求{b n}的通项公式;(3)试比较2a n与b n的大小,并加以证明.显示答案由①②可得,f(x)=2x+1,(2)∵a n+1-2a n=2n+1,则a n-2a n-1=2n-1,两式相减得a n+1-a n-2(a n-a n-1)=2,即b n-2b n-1=2,则有b n+2=2(b n-1+2)且b1=a2-a1=4∴{b n+2}是首项为6、公比为2的等比数列,∴b n+2=6²2n-1,则b n=3²2n-2.(3)∵a n+1-2a n=2n+1,①又a n+1-a n=b n=3²2n-2 ②由①②可得,a n=3²2n-2n-3,∴2a n-b n=3²2n-4(n+1)当n=1时,2a1-b1=-2<0,∴2a1<b1;当n=2时,2a2-b2=0,∴2a2=b2;当n=3时,2a3-b3=8>0,∴2a3>b3,猜测当n≥3时,2a n-b n>0可用数学归纳法证明,或者20、(本小题满分13分)设函数f(x)=ax3-2bx2+cx+4d(a、b、c、d∈R)的图像关于原点对称,且x=1时,f(x)取极小值.(1)求a、b、c、d的值;(2)当x∈[-1,1]时,图像上是否存在两点,使得过此两点的切线互相垂直?试证明你的结论;(3)若x1、x2∈[-1,1]时,求证:.显示答案20、(1)∵函数f(x)的图像关于原点对称,∴对任意实数x有f(-x)=-f(x),∴-ax3-2bx2-cx+4d=-ax3+2bx2-cx-4d,即bx2-2d=0恒成立∴b=0,d=0,∴f(x)=ax3+cx,f′(x)=3ax2+c,∵x=1时,f(x)取极小值,∴3a+c=0且(2)当x∈[-1,1]时,图像上不存在这样的两点使结论成立.假设图像上存在两点A(x1,y1)、B(x2,y2),使得过此两点处的切线互相垂直,则由f′(x)=x2-1,知两点处的切线斜率分别为(*)∵x1、x2∈[-1,1],此与(*)相矛盾,故假设不成立.(3)∵f′(x)=x2-1,令f′(x)=0,得x=±1,∵x∈(-∞,-1),或x∈(1,+∞)时,f′(x)>0;x∈(-1,1)时,f′(x)<0,∴f(x)在[-1,1]上是减函数,21、(本小题满分14分)已知a=(x,0),b=(1,y),(1)求点P(x,y)的轨迹C的方程;(2)若直线l:y=kx-1与曲线C交于A、B两点,并且A、B在y轴的同一侧,求实数k的取值范围;(3)设曲线C与x轴的交点为M,若直线l:y=kx-1与曲线C交于A、B 两点,是否存在实数k,使得以AB为直径的圆恰好过点M?若有,求出k的值;若没有,写出理由.显示答案21、(1)由。

2012年普通高等学校招生全国统一考试数学理试题(湖北卷,含答案)

2012年普通高等学校招生全国统一考试数学理试题(湖北卷,含答案)

y2 b2
1(a, b o) 的两顶点为 A1, A2,虚轴两端点为 B,B 2 ,,两焦
点为 F1, F2。若以 A1A2 为直径的圆内切于菱形 (Ⅰ)双曲线的离心率 e=______;
F1B1F2B2,切点分别为 A, B,C, D。则
(Ⅱ)菱形 F1B1F2B2 的面积 S1 与矩形 ABCD的面积 S2 的比值 S1 S2
b2 2

a1b1
+a2b2

(III )请将( II )中的命题推广到一般形式,并用数学归.纳.法... 证明你所推广的命题。注 : 当α 为正有理数时,有求道公式 (x α) r =α x α-1
有一项是符合题目要求的
1. 方程 x2 +6x +13 =0 的 一个根是
A -3+2i B 3+2i C -2 + 3i D 2 + 3i
2 命题“ x0∈ CRQ, x03 ∈ Q ”的否定是
A
x 0?CRQ, x03 ∈ Q B
x 0∈ CRQ , x03 ?Q
C
x 0?CRQ , x03 ∈ Q D
x
+∞)上的如下函数:① f ( x) =x2;② f ( x) =2 ;③
;④ f (x) =ln|x | 。
则其中是“保等比数列函数”的 f ( x)的序号为 A. ①② B. ③④ C. ①③ D. ②④ 8. 如图,在圆心角为直角的扇形 OAB中,分别以 OA,OB为直径作两个半圆。在扇形 随机取一点,则此点取自阴影部分的概率是

x0∈CRQ , x03 ?Q
3 已知二次函数 y =f(x) 的图像如图所示 ,则它与 X 轴所围图形的面积为

2012年湖北高考数学试卷

2012年湖北高考数学试卷

2012年普通高等学校招生全国统一考试(福建卷)数学(文科)第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 复数2)2(i +等于( )A .i 43+B .i 45+C .i 23+D .i 25+ 考点:复数的运算。

难度:易。

分析:本题考查的知识点为复数的计算,直接套用复数运算公式即可。

解答:44)2(22++=+i i iii 43441+=++-=。

2. 已知集合}4,3,2,1{=M ,}2,2{-=N ,下列结论成立的是( )A .M N ⊆B .M N M =C .N N M =D .}2{=N M 考点:集合交并补的定义。

难度:易。

分析:本题考查的知识点为集合交集、并集的定义,直接根据定义选择即可。

解答:}4,3,2,1,2{-=N M ,}2{=N M 。

3. 已知向量)2,1(-=→x a ,)1,2(=→b ,则→→⊥b a 的充要条件是( )A .21-=x B .1-=x C .5=x D .0=x考点:平面向量的垂直。

难度:易。

分析:本题考查的知识点为平面向量的垂直,若非零向量),(11y x a =→,),(22y x b =→,则002121=+⇔=⋅⇔⊥→→→→y y x x b a b a 。

解答:非零向量0=⋅⇔⊥→→→→b a b a 。

02)1(2=⇔=+-⇔x x 。

4. 一个几何体的三视图形状都相同,大小均等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱考点:空间几何体的三视图。

难度:易。

分析:本题考查的知识点为空间几何体的三视图,直接画出即可。

解答:圆的正视图(主视图)、侧视图(左视图)和俯视图均为圆;三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形;圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆。

湖北2012年高考适应性考试文科数学(A型)

湖北2012年高考适应性考试文科数学(A型)

秘密★启用前2012年普通高等学校招生全国统一考试答题适应性训练数学(文史类)本试题卷共4页,共22题。

满分150分。

考试用时120分钟。

本试卷与2012年高考试卷没有对应关系。

★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试题卷、草稿纸上无效。

3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。

答在试题卷、草稿纸上无效。

4.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知OA =a,OB =b,OC =c,OD =d,且四边形ABCD为平行四边形,则A.=+0--a b c d B.=+0--a b c dC.=+0--a b c d D.=+++0a b c d2.设,a bÎR,则“0,0a b>>”是“2a b+>”的A.充分条件但不是必要条件B.必要条件但不是充分条件C.充分必要条件D.既不充分条件也不必要条件3.一个多面体的三视图如图所示,其中正视图是正方形,侧视图是等腰三角形. 则该几何体的体积为A.16 B.48C.60 D.964.命题“所有不能被2整除的整数都是奇数”的否定是A.所有能被2整除的整数都是奇数B.所有不能被2整除的整数都不是奇数C.存在一个能被2整除的整数是奇数D.存在一个不能被2整除的整数不是奇数正视图俯视图侧视图湖北省教育考试院保留版权数学(文史类)试卷A型第1页(共8页)5.已知双曲线22123y x -=的两个焦点分别为1F 、2F ,则满足△12PF F的周长为6+的动点P 的轨迹方程为 A .22149x y += B .22194x y += C .221(0)49x y x +=≠ D .221(0)94x y x +=≠6.下列推理中属于归纳推理且结论正确的是A .由21n a n =-,求出222123S S S =1,=2,=3,,推断:数列{}n a 的前n 项和2n S n =B .由()cos f x x x =满足()()f x f x -=-对x ∀∈R 都成立,推断:()cos f x x x =为奇函数C .由圆222x y r +=的面积2πS r =,推断:椭圆22221x y a b+=的面积πS ab =D .由212223(11)2,(21)2,(31)2,+>+>+>,推断:对一切2,(1)2n n n *∈+>N7.一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了8次试验,收集数据如下:零件数x (个) 10 20 30 40 50 60 70 80 加工时间y (min)626875818995102108设回归方程为y bx a =+,则点(,)a b 在直线45100x y +-=的 A .左上方 B .左下方 C .右上方 D .右下方 8.在下列区间中,函数()e 43x f x x -=--的零点所在的区间为A .31(,)42--B .11(,)24--C .1(,0)4-D .1(0,)49.在区间[0,1]上任取三个数a 、b 、c ,若点M 在空间直角坐标系Oxyz 中的坐标为(,,)a b c ,则1OM £的概率是A .π24B .π12C .3π32D .π610.已知函数()21f x x =-()x ∈R .规定:给定一个实数0x ,赋值10()x f x =,若1257x ≤,则继续赋值21()x f x =;若2257x ≤,则继续赋值32()x f x =;…,以此类推. 若1257n x -≤,则1()n n x f x -=,否则停止赋值.已知赋值k *()k ∈N 次后该过程停止,则0x 的取值范围是 A .78(21,21]k k --++ B .89(21,21]k k --++ C .109(21,21]k k --++D .89(2,2]k k --二、填空题:本大题共7小题,每小题5分,共35分. 请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分.11.复数5i 2-的共轭复数是 . 12.已知A ,B 均为集合U ={1,2,3,4,5,6}的子集,且{3}A B =,(∁U B )∩A {1}=,(∁U A )(∁U B ){2,4}=,则B∁U A = .13.为备战2012奥运会,甲、乙两位射击选手进行了强化训练.现分别从他们强化训练期间的若干次平均成绩中随机抽取8次,根据成绩记录可作出如图所示的茎叶图,中间一列的数字表示两个人成绩的十位数字,旁边的数字分别表示两人成绩的个位数字. 则(Ⅰ)甲的成绩的众数为 ; (Ⅱ)乙的成绩的中位数为 .14.如图所示的程序框图,当1233,5,1x x x ===-时,输出的p 值为 . 15.设2z x y =+,其中,x y 满足0,0,0.x y x y y k ì+?ïïïï-?íïï铮?ïî若z 的最大值为6,则(Ⅰ)k 的值为 ; (Ⅱ)z 的最小值为 .16.在圆22260x y x y +-+=内,过点(0,1)E -的最长弦和最短弦分别为AB 和CD , 则(Ⅰ)AB 的长为 ; (Ⅱ)CD 的长为 . 17.定义在R 上的函数()f x ,如果存在函数()g x kx b =+(,k b 为常数),使得()()f x g x ≥对一切实数x 都成立,则称()g x 为函数()f x 的一个承托函数.现有如下函数:①3()f x x = ②()2x f x -= ③lg ,0,()0,0x x f x x >⎧=⎨≤⎩④()sin f x x x =+则存在承托函数的()f x 的序号为 . (填入满足题意的所有序号) 三、解答题:本大题共5小题,共65分. 解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)已知前n 项和为n S 的等差数列{}n a 的公差不为零,且23a =,又4a ,5a ,8a 成等比数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若函数()sin(3)(0,0π)f x A x A =+><<ϕϕ在π3x =处取得最小值为7S ,求函数()f x 的单调递增区间.19.(本小题满分12分)编号为1210,,,A A A 的10名学生参加投篮比赛,每人投20个球,(Ⅰ)将投中个数在对应区间内的人数填入答题卡上相应表的空格内: (ⅰ)用学生的编号列出所有可能的抽取结果; (ⅱ)求这两人投中个数之和大于23的概率.20.(本小题满分13分)在直三棱柱111ABC A B C -中,1AB AC ==,90BAC ∠=,且异面直线1A B 与11B C 所成的角等于60. (Ⅰ)求棱柱的高;(Ⅱ)求11B C 与平面11A BC 所成的角的大小.21.(本小题满分14分)已知函数2()2eln f x x x =-.(e 为自然对数的底)(Ⅰ)求()f x 的最小值;(Ⅱ)是否存在常数,a b 使得22eln x ax b x ≥+≥对于任意的正数x 恒成立?若存在,求出,a b 的值;若不存在,说明理由.22.(本小题满分14分)已知中心在坐标原点O ,焦点在x 轴上,长轴长是短轴长的2倍的椭圆经过点(2,1).M =(Ⅰ)求椭圆的方程;(Ⅱ)直线l 平行于OM ,且与椭圆交于A 、B 两个不同点.(ⅰ)若AOB ∠为钝角,求直线l 在y 轴上的截距m 的取值范围; (ⅱ)求证直线MA 、MB 与x 轴围成的三角形总是等腰三角形.秘密★启用前BA 1 C 1B 1A C2012年普通高等学校招生全国统一考试答题适应性训练数学(文史类)试题参考答案及评分标准一、选择题1.A 2.D 3.B 4.D 5.C 6.A 7.C 8.B 9.D 10.B 二、填空题11.i 2- 12.{5,6} 13.(Ⅰ)83(Ⅱ)83.5 14.415.(Ⅰ)2 (Ⅱ)2- 16.(Ⅰ) 17.②④ 三、解答题18.解:(Ⅰ)因为4a ,5a ,8a 成等比数列,所以2548a a a =.设数列{}n a 的公差为d ,则2222(3)(2)(6)a d a d a d +=++. 3分 将23a =代入上式化简整理得220d d +=. 又因为0d ≠,所以2d =-. 于是2(2)27n a a n d n =+-=-+,即数列{}n a 的通项公式为27n a n =-+. 3分(Ⅱ)由(Ⅰ)知,21()(572)622n n n a a n n S n n ++-===-,于是77S =-, 所以函数()f x 的最小值为7-,由0A >,于是7A =. 2分又因为函数()f x 在π3x =处取得最小值,则πsin(3)13⨯+=-ϕ,因为0π<<ϕ,所以π2=ϕ.故函数()f x 的解析式为π()7sin(3)7cos32f x x x =+=. 2分于是由2ππ32πk x k -≤≤,k ∈Z ,得2ππ2π333k k x -≤≤,k ∈Z , 所以函数()f x 的单调递增区间为2ππ2π[,]()333k k k -∈Z . 2分19.解:(Ⅰ)4分(Ⅱ)(ⅰ)投中个数在区间[10,15)内的学生编号为235910,,,,A A A A A ,从中随机抽取2名学生,所有可能的抽取结果为23{,}A A ,25{,}A A ,29{,}A A ,210{,}A A ,35{,}A A ,39{,}A A ,310{,}A A ,59{,}A A ,510{,}A A ,910{,}A A ,共10种. 5分(ⅱ)“从投中个数在区间[10,15)内的学生中随机抽取2人,这两人投中个数之和大于23”(记为事件B )的所有可能的结果有:23{,}A A ,29{,}A A ,210{,}A A ,共3种.所以3()10P B =. 3分 20.解:(Ⅰ)由三棱柱111ABC A B C -是直三棱柱可知,1AA 即为其高.如图,因为BC ∥11B C ,所以1A BC ∠是异面直线1A B 与11B C 所成的角或其补角. 连接1A C ,因为AB AC =,所以11A B AC == 在Rt △ABC 中,由1AB AC ==,90BAC ∠=,可得BC 3分 又异面直线1A B 与11B C 所成的角为60,所以160A BC ∠=,即△1A BC 为正三角形.于是111A B B C ==.在Rt △1A AB1A B =,得11AA =,即棱柱的高为1. 3分 (Ⅱ)连结1B A ,设11B ABA E =,由(Ⅰ)知,1111B A AA ==,所以矩形11BAA B 是正方形,所以11B E A B ⊥. 2分 又由1111AC A B BA ⊥面得 111A C B E ⊥,于是得1B E ⊥平面11A BC .故11B C E ∠就是11B C 与平面11A BC 所成的角. 2分 在Rt △111A B C 中,由11111A B AC ==,11190B AC ∠=,可得11B C =在Rt △11B EC中,由1112B E A B ==,11B C = 得111111sin 2B E BC E B C ∠==,故1130B C E ∠=.因此11B C 与平面11A BC 所成的角30. 3分21.(Ⅰ)解:由2()2eln f x x x =-,得2e()2f x x x'=-(0)x >.令()0f x '=,得2e x =,所以x = 2分当0x <<时,()0f x '<,所以()f x在内是减函数;当x >()0f x '>,所以()f x在)+∞内是增函数. 2分 故函数()f x在x =0f =. 2分CA 1C 1B 1BAE(Ⅱ)证明:由(Ⅰ)知,当(0,)x ∈+∞时,有()0f x f ≥=,即22eln x x ≥,当且仅当x =.即两曲线2y x =,2eln y x =有唯一公共点. 3分 若存在a ,b ,则直线y ax b =+是曲线2y x =和2eln y x =的公切线,切点为.2分由2()2x x '=,得直线y ax b =+的斜率为a =又直线y ax b =+过点,所以e b =,得e b =-.故存在a =e b =-,使得22eln x ax b x ≥+≥对于任意正数x 恒成立. 3分22.解:(Ⅰ)设椭圆方程为2222 1 (0)x y a b a b +=>>,则222411a b a b =⎧⎪⎨+=⎪⎩,, 2分 解得228,2.a b ⎧=⎪⎨=⎪⎩故椭圆的方程为22182x y +=. 2分(Ⅱ)(ⅰ)由直线l 平行于OM ,得直线l 的斜率12OM k k ==, 又l 在y 轴上的截距为m ,所以l 的方程为12y x m =+. 由221,21,82y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩ 得222240x mx m ++-=. 又直线l 与椭圆交于A 、B 两个不同点,22(2)4(24)0m m ∆=-->,于是22m -<<. 3分AOB ∠为钝角等价于0OA OB ⋅<且0m ≠,设1122(,),(,)A x y B x y ,1212121211()()22OA OB x x y y x x x m x m ⋅=+=+++212125()042mx x x x m =+++<,由韦达定理122x x m +=-,21224x x m =-代入上式, 化简整理得22m <,即m <,故所求范围是((0,2).2分(ⅱ)依题意可知,直线MA 、MB 的斜率存在,分别记为1k ,2k . 由11112y k x -=-,22212y k x -=-. 2分而12122112121211(1)(2)(1)(2)22(2)(2)y y y x y x k k x x x x ----+--+=+=----12211212121211(1)(2)(1)(2)(2)()4(1)22(2)(2)(2)(2)x m x x m x x x m x x m x x x x +--++--+-+--==----21224(2)(2)4(1)(2)(2)m m m m x x -+----=--22122424440(2)(2)m m m m x x --+-+==--.所以120k k += , 故直线MA 、MB 的倾斜角互补,故直线MA 、MB 与x 轴始终围成一个等腰三角形. 3分。

2012年普通高等学校招生全国统一考试数学湖北卷

2012年普通高等学校招生全国统一考试数学湖北卷

2012年普通高等学校招生全国统一考试(湖北卷)一、选择题1.方程x 2+6x +13=0的一个根是( ) A .-3+2i B .3+2i C .-2+3i D .2+3i2.命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是( )A .∃x 0∉∁R Q ,x 30∈QB .∃x 0∈∁R Q ,x 30∉QC .∀x ∉∁R Q ,x 3∈QD .∀x ∈∁R Q ,x 3∉Q3.已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为( )A.2π5B.43C.32D.π24.已知某几何体的三视图如图所示,则该几何体的体积为( )A.8π3 B .3π C.10π3 D .6π5.设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =( ) A .0 B .1 C .11 D .126.设a ,b ,c ,x ,y ,z 是正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax +by +cz =20,则a +b +cx +y +z=( )A.14B.13C.12D.347.定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”,现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2; ②f (x )=2x ;③f (x )=|x |; ④f (x )=ln|x |.则其中是“保等比数列函数”的f (x )的序号为( ) A .①② B .③④ C .①③ D .②④8.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .1-2πB.12-1πC.2πD.1π9.函数f (x )=x cos x 2在区间[0,4]上的零点个数为( ) A .4 B .5 C .6 D .710.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式d ≈ 3169V .人们还用过一些类似的近似公式,根据π=3.141 59…判断,下列近似公式中最精确的一个是( )A .d ≈3169V B .d ≈ 32VC .d ≈ 3300157VD .d ≈ 32111V二、填空题11.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若(a +b -c )(a +b +c )=ab ,则角C =________12.阅读如图所示的程序框图,运行相应的程序,输出的结果s =________13.回文数是指从左到右读与从右到左读都一样的正整数,如22,121,3 443,94 249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则(1)4位回文数有________个;(2)2n +1(n ∈N +)位回文数有________个.14.如图,双曲线x 2a 2-y 2b 2=1(a ,b >0)的两顶点为A 1,A 2,虚轴两端点为B 1,B 2,两焦点为F 1,F 2.若以A 1A 2为直径的圆内切于菱形F 1B 1F 2B 2,切点分别为A ,B ,C ,D .则(1)双曲线的离心率e =________;(2)菱形F 1B 1F 2B 2的面积S 1与矩形ABCD 的面积S 2的比值S 1S 2=________.15.(选修4-1:几何证明选讲)如图,点D 在⊙O 的弦AB 上移动,AB =4,连接OD ,过点D 作OD 的垂线交⊙O 于点C ,则CD 的最大值为________.16.(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知射线θ=π4与曲线⎩⎪⎨⎪⎧x =t +1,y =(t -1)2,(t 为参数)相交于A ,B 两点,则线段AB 的中点的直角坐标为________.三、解答题17.已知向量a =(cos ωx -sin ωx ,sin ωx ),b =(-cos ωx -sin ωx ,23cos ωx ),设函数f (x )=a ·b +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈(12,1).(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点(π4,0),求函数f (x )在区间[0,3π5]上的取值范围.18.已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.19.如图1,∠ACB =45°,BC =3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连接AB ,沿AD 将△ABD 折起,使∠BDC =90°(如图2所示).(1)当BD 的长为多少时,三棱锥A -BCD 的体积最大;(2)当三棱锥A -BCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小.历年气象资料表明,该工程施工期间降水量X 小于300,700,900的概率分别为0.3,0.7,0.9.求:(1)工期延误天数Y 的均值与方差;(2)在降水量X 至少是300的条件下,工期延误不超过6天的概率.21.设A 是单位圆x 2+y 2=1上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足|DM |=m |DA |(m >0,且m ≠1).当点A 在圆上运动时,记点M 的轨迹为曲线C .(1)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(2)过原点且斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H .是否存在m ,使得对任意的k >0,都有PQ ⊥PH ?若存在,求m 的值;若不存在,请说明理由.22.(1)已知函数f (x )=rx -x r +(1-r )(x >0),其中r 为有理数,且0<r <1.求f (x )的最小值;(2)试用(1)的结果证明如下命题:设a 1≥0,a 2≥0,b 1,b 2为正有理数.若b 1+b 2=1,则a 1b 1a 2b 2≤a 1b 1+a 2b 2; (3)请将(2)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题. 注:当α为正有理数时,有求导公式(x α)1=αx α-1.答案2012年普通高等学校招生全国统一考试(湖北卷)一、选择题1.解析:配方得(x +3)2=-4=(2i)2,所以x +3=±2i ,x =-3±2i. 答案:A2.解析:其否定为∀x ∈∁R Q ,x 3∉Q . 答案:D3.解析:由题中图象易知f (x )=-x 2+1,则所求面积为2∫10(-x 2+1)d x =2(-x 33+x )|10=43. 答案:B4.解析:由三视图可知该几何体的体积V =π×12×2+12×π×12×2=3π.答案:B5.解析:512 012+a =(13×4-1)2 012+a ,被13整除余1+a ,结合选项可得a =12时,512 012+a 能被13整除.答案:D6.解析:由柯西不等式得,(a 2+b 2+c 2)(x 2+y 2+z 2)≥(ax +by +cz )2=400,当且仅当ax=b y =c z =12时取等号,因此有a +b +c x +y +z =12. 答案:C7.解析:设等比数列{a n }的公比为q ,则{a 2n }的公比为q 2,{ |a n | }的公比为|q |,其余的数列不是等比数列.答案:C8.解析:设扇形的半径为2,其面积为π×224=π,其中空白区域面积为π-4×(π4-12)=2,因此此点取自阴影部分的概率为π-2π=1-2π.答案:A9.解析:令x cos x 2=0,则x =0,或x 2=k π+π2,又x ∈[0,4],因此x k =k π+π2(k =0,1,2,3,4),共有6个零点.答案:C10.解析:∵V =43πR 3,∴2R =d = 36V π,考虑到2R 与标准值最接近,通过计算得6π-169≈0.132 08,6π-2≈-0.090 1,6π-300157≈-0.001 0,6π-2111≈0.000 8,因此最接近的为D 选项.答案:D 二、填空题11.解析:∵(a +b )2-c 2=ab , ∴cos C =a 2+b 2-c 22ab =-12,C =2π3.答案:2π312.解析:a =1,s =0,n =1;s =1,a =3,n =2;s =4,a =5,n =3;s =9,a =7,循环结束,因此输出s =9.答案:913.解析:2位回文数有9个,4位回文数有9×10=90个,3位回文数有90个,5位回文数有9×10×10=100×9个,依次类推可得2n +1位有9×10n 个.答案:90 9×10n14.解析:由题意可得a b 2+c 2=bc ,∴a 4-3a 2c 2+c 4=0,∴e 4-3e 2+1=0,∴e 2=3+52,∴e =1+52.设sin θ=b b 2+c 2,cos θ=cb 2+c 2, S 1S 2=2bc 4a 2sin θcos θ=2bc4a 2bc b 2+c2=b 2+c 22a 2=e 2-12=2+52.答案:1+52 2+5215.(选修4-1:几何证明选讲)解析:由题意知CD 2=OC 2-OD 2,OC 是半径,所以当OD 的值最小时,DC 最大,易知D 为AB 的中点时,DB =DC =2最大.答案:216.(选修4-4:坐标系与参数方程)解析:记A (x 1,y 1),B (x 2,y 2),将θ=π4,转化为直角坐标方程为y =x (x ≥0),曲线为y=(x -2)2,联立上述两个方程得x 2-5x +4=0,所以x 1+x 2=5,故线段AB 的中点坐标为(52,52). 答案:(52,52)三、解答题17.解:(1)因为f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin(2ωx -π6)+λ.由直线x =π是y =f (x )图象的一条对称轴,可得 sin(2ωπ-π6)=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈(12,1),k ∈Z ,所以k =1,故ω=56.所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点(π4,0),得f (π4)=0,即λ=-2sin(56×π2-π6)=-2sin π4=-2,即λ=- 2.故f (x )=2sin(53x -π6)-2,由0≤x ≤3π5,有-π6≤53x -π6≤5π6,所以-12≤sin(53x -π6)≤1,得-1-2≤2sin(53x -π6)-2≤2-2,故函数f (x )在[0,3π5]上的取值范围为[-1-2,2- 2 ].18.解:(1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8.解得⎩⎪⎨⎪⎧ a 1=2,d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3.所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7. 故a n =-3n +5或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5; 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+(n -2)[2+(3n -7)]2=32n 2-112n +10.当n =2时,满足此式.综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n >1.19.解:(1)法一:在如图1所示的△ABC 中,设BD =x (0<x <3),则CD =3-x . 由AD ⊥BC ,∠ACB =45°知,△ADC 为等腰直角三角形,所以AD =CD =3-x . 由折起前AD ⊥BC 知,折起后(如图2),AD ⊥DC ,AD ⊥BD ,且BD ∩DC =D ,所以AD ⊥平面BCD ,又∠BDC =90°,所以S △BCD =12BD ·CD =12x (3-x ).于是V A -BCD =13AD ·S △BCD =13(3-x )·12x (3-x )=112·2x (3-x )(3-x )≤112[2x +(3-x )+(3-x )3]3=23, 当且仅当2x =3-x ,即x =1时,等号成立,故当x =1,即BD =1时,三棱锥A -BCD 的体积最大.法二:同法一,得V A -BCD =13AD ·S △BCD =13(3-x )·12x (3-x )=16(x 3-6x 2+9x ).令f (x )=16(x 3-6x 2+9x ),由f ′(x )=12(x -1)(x -3)=0,且0<x <3,解得x =1.当x ∈(0,1)时,f ′(x )>0;当x ∈(1,3)时,f ′(x )<0. 所以当x =1时,f (x )取得最大值.故当BD =1时,三棱锥A -BCD 的体积最大.(2)法一:以D 为原点,建立如图a 所示的空间直角坐标系D -xyz .由(1)知,当三棱锥A -BCD 的体积最大时,BD =1,AD =CD =2.于是可得D (0,0,0),B (1,0,0),C (0,2,0),A (0,0,2),M (0,1,1),E (12,1,0),且=(-1,1,1).设N (0,λ,0),则=(-12,λ-1,0).因为EN ⊥BM 等价于=0,即(-12,λ-1,0)·(-1,1,1)=12+λ-1=0,故λ=12,N (0,12,0).所以当DN =12(即N 是CD 的靠近点D 的一个四等分点)时,EN ⊥BM .设平面BMN 的一个法向量为n =(x ,y ,z ),得⎩⎪⎨⎪⎧y =2x ,z =-x .可取n =(1,2,-1). 设EN 与平面BMN 所成角的大小为θ,则|-12-1|6×22=32,即θ=60°. 故EN 与平面BMN 所成角的大小为60°.法二:由(1)知,当三棱锥A -BCD 的体积最大时,BD =1,AD =CD =2. 如图b ,取CD 的中点F ,连接MF ,BF ,EF ,则MF ∥AD . 由(1)知AD ⊥平面BCD ,所以MF ⊥平面BCD .如图c ,延长FE 至P 点使得FP =DB ,连接BP ,DP ,则四边形DBPF 为正方形, 所以DP ⊥BF .取DF 的中点N ,连接EN ,又E 为FP 的中点,则EN ∥DP , 所以EN ⊥BF .因为MF ⊥平面BCD , 又EN ⊂平面BCD ,所以MF ⊥EN , 又MF ∩BF =F ,所以EN ⊥平面BMF . 又BM ⊂平面BMF ,所以EN ⊥BM .因为EN ⊥BM 当且仅当EN ⊥BF ,而点F 是唯一的,所以点N 是唯一的.即当DN =12(即N 是CD 的靠近点D 的一个四等分点)时,EN ⊥BM .连接MN ,ME ,由计算得NB =NM =EB =EM =52, 所以△NMB 与△EMB 是两个共底边的全等的等腰三角形, 如图d 所示,取BM 的中点G ,连接EG ,NG ,则BM ⊥平面EGN .在平面EGN 中,过点E 作EH ⊥GN 于H , 则EH ⊥平面BMN .故∠ENH 是EN 与平面BMN 所成的角. 在△EGN 中,易得EG =GN =NE =22,所以△EGN 是正三角形, 故∠ENH =60°,即EN 与平面BMN 所成角的大小为60°. 20.解:(1)由已知条件和概率的加法公式有:P (X <300)=0.3,P (300≤X <700)=P (X <700)-P (X <300)=0.7-0.3=0.4, P (700≤X <900)=P (X <900)-P (X <700)=0.9-0.7=0.2. P (X ≥900)=1-P (X <900)=1-0.9=0.1. 所以Y 的分布列为:于是,E (Y )=0×0.3+2×0.4+6×0.2+10×0.1=3;D (Y )=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8. 故工期延误天数Y 的均值为3,方差为9.8.(2)由概率的加法公式,P (X ≥300)=1-P (X <300)=0.7, 又P (300≤X <900)=P (X <900)-P (X <300)=0.9-0.3=0.6.由条件概率,得P (Y ≤6|X ≥300)=P (X <900|X ≥300)=P (300≤x <900)P (X ≥300)=0.60.7=67.故在降水量X 至少是300的条件下,工期延误不超过6天的概率是67.21.解:(1)如图1,设M (x ,y ),A (x 0,y 0),则由|DM |=m |DA |(m >0,且m ≠1),可得x =x 0,|y |=m |y 0|,所以x 0=x ,|y 0|=1m|y |. ①因为A 点在单位圆上运动,所以x 20+y 20=1. ②将①式代入②式即得所求曲线C 的方程为x 2+y 2m2=1(m >0,且m ≠1).因为m ∈(0,1)∪(1,+∞),所以当0<m <1时,曲线C 是焦点在x 轴上的椭圆, 两焦点坐标分别为(-1-m 2,0),(1-m 2,0); 当m >1时,曲线C 是焦点在y 轴上的椭圆, 两焦点坐标分别为(0,-m 2-1),(0,m 2-1).(2)法一:如图2、3,∀k >0,设P (x 1,kx 1),H (x 2,y 2),则Q (-x 1,-kx 1),N (0,kx 1),直线QN 的方程为y =2kx +kx 1,将其代入椭圆C 的方程并整理可得(m 2+4k 2)x 2+4k 2x 1x +k 2x 21-m 2=0.依题意可知此方程的两根为-x 1,x 2,于是由韦达定理可得-x 1+x 2=-4k 2x 1m 2+4k 2,即x 2=m 2x1m 2+4k 2.因为点H 在直线QN 上,所以y 2-kx 1=2kx 2=2km 2x1m 2+4k 2,4(2-m 2)k 2x 21m 2+4k 2=0.即2-m 2=0,又m >0,得m =2,故存在m =2,使得在其对应的椭圆x 2+y 22=1上,对任意的k >0,都有PQ ⊥PH . 法二:如图2、3,∀x 1∈(0,1)设P (x 1,y 1),H (x 2,y 2),则Q (-x 1,-y 1),N (0,y 1).因为P ,H 两点在椭圆C 上,所以⎩⎪⎨⎪⎧ m 2x 21+y 21=m 2,m 2x 22+y 22=m 2,两式相减可得m 2(x 21-x 22)+(y 21-y 22)=0. ③依题意,由点P 在第一象限可知,点H 也在第一象限,且P ,H 不重合,故(x 1-x 2)(x 1+x 2)≠0,于是由③式可得(y 1-y 2)(y 1+y 2)(x 1-x 2)(x 1+x 2)=-m 2. ④又Q ,N ,H 三点共线,所以k QN =k QH ,即2y1x 1=y 1+y 2x 1+x 2.于是由④式可得k PQ ·k PH =y 1x 1·y 1-y 2x 1-x 2=12·(y 1-y 2)(y 1+y 2)(x 1-x 2)(x 1+x 2)=-m 22.而PQ ⊥PH 等价于k PQ ·k PH =-1,即-m 22=-1,又m >0,得m =2,故存在m =2,使得在其对应的椭圆x 2+y 22=1上,对任意的k >0,都有PQ ⊥PH .22.解:(1)f ′(x )=r -rx r -1=r (1-x r -1),令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )<0,所以f (x )在(0,1)内是减函数;当x >1时,f ′(x )>0,所以f (x )在(1,+∞)内是增函数.故函数f (x )在x =1处取得最小值f (1)=0.(2)由(1)知,当x ∈(0,+∞)时,有f (x )≥f (1)=0,即x r ≤rx +(1-r ), ①若a 1,a 2中至少有一个为0,则ab 11ab 22≤a 1b 1+a 2b 2成立;若a 1,a 2均不为0,又b 1+b 2=1,可得b 2=1-b 1,于是在①中令x =a 1a 2,r =b 1,可得(a1a 2)b 1≤b 1·a1a 2+(1-b 1),即ab 11·a 1-b 12≤a 1b 1+a 2(1-b 1),亦即ab 11ab 22≤a 1b 1+a 2b 2.综上,对a 1≥0,a 2≥0,b 1,b 2为正有理数且b 1+b 2=1,总有ab 11ab 22≤a 1b 1+a 2b 2. ②(3)(2)中命题的推广形式为设a 1,a 2,…,a n 为非负实数,b 1,b 2,…,b n 为正有理数.若b 1+b 2+…+b n =1,则ab 11ab 22…abn n ≤a 1b 1+a 2b 2+…+a n b n . ③用数学归纳法证明如下:(1)当n =1时,b 1=1,有a 1≤a 1,③成立.(2)假设当n =k 时,③成立,即若a 1,a 2,…,a k 为非负实数,b 1,b 2,…,b k 为正有理数,且b 1+b 2+…+b k =1,则ab 11ab 22…abk k ≤a 1b 1+a 2b 2+…+a k b k .当n =k +1时,已知a 1,a 2,…,a k ,a k +1为非负实数,b 1,b 2,…,b k ,b k +1为正有理数,且b 1+b 2+…+b k +b k +1=1,此时0<b k +1<1,即1-b k +1>0,于是ab 11ab 22…ab kk ab k +1k +1=(ab 11ab 22…ab kk )ab k +1k +1=(ab 11-b k +11a b 21-b k +12…a b k 1-b k +1k)1-b k +1ab k +1k +1. 因b 11-b k +1+b 21-b k +1+…+b k 1-b k +1=1,由归纳假设可得 a b 11-b k +11a b 21-b k +12…a b k 1-b k +1k ≤a 1·b 11-b k +1+a 2·b 21-b k +1+…+a k ·b k 1-b k +1=a 1b 1+a 2b 2+…+a k b k 1-b k +1, 从而ab 11ab 22…ab kk ab k +1k +1≤(a 1b 1+a 2b 2+…+a k b k 1-b k +1)1-b k +1ab k +1k +1. 又因(1-b k +1)+b k +1=1,由②得(a 1b 1+a 2b 2+…+a k b k 1-b k +1)1-b k +1ab k +1k +1≤a 1b 1+a 2b 2+…+a k b k 1-b k +1· (1-b k +1)+a k +1b k +1=a 1b 1+a 2b 2+…+a k b k +a k +1b k +1,从而ab 11ab 22…ab kk ab k +1k +1≤a 1b 1+a 2b 2+…+a k b k +a k +1b k +1,故当n =k +1时,③成立.由(1)(2)可知,对一切正整数n ,所推广的命题成立.说明:(3)中如果推广形式中指出③式对n ≥2成立,则后续证明中不需讨论n =1的情况.。

2012年湖北省高考数学试卷(文科)答案与解析

2012年湖北省高考数学试卷(文科)答案与解析

A.1B.2C.3D.4考点:集合的包含关系判断及应用.合.专题:集合.分析:先求出集合A,B由A⊆C⊆B 可得满足条件的集合C有{1,2,},{1,2,3},{1,2,4},{1,2,3,4},可求,可求解答:解:由题意可得,A={1,2},B={1,2,3,4},∵A⊆C⊆B,个, ∴满足条件的集合C有{1,2},{1,2,3},{1,2,4},{1,2,3,4}共4个,故选D.点评:本题主要考查了集合的包含关系的应用,解题的关键是由A⊆C⊆B 找出符合条件的集合.集合.分组 [10,20)[20,30)[30,40)[40,50)[50,60)[60,70)分组频数 2 3 4 5 4 2 频数的频率为( )则样本数据落在区间[10,40]的频率为(A.0.35 B.0.45 C.0.55 D.0.65 考点:频率分布表.算题.专题:计算题.分析:先求出样本数据落在区间[10,40]频数,然后利用频率等于频数除以样本容量求出频率即可.率即可.:由频率分布表知:解答:解:由频率分布表知:样本在[10,40]上的频数为2+3+4=9,故样本在[10,40]上的频率为9÷20=0.45.故选:B.点评:本题主要考查了频率分布表,解题的关键是频率的计算公式是频率=,属于基础题.基础题.A.2B.3C.4D.5考点:根的存在性及根的个数判断.专题:计算题.算题.分析:考虑到函数y=cos2x的零点一定也是函数f(x)的零点,故在区间[0,2π]上y=cos2x的零点有4个.函数y=x 的零点有0,故在区间[0,2π]上y=xcos2x 的零点有5个.个. 解答:解:∵y=cos2x 在[0,2π]上有4个零点分别为,,,函数y=x 的零点有0 ∴函数f (x )=xcos2x 在区间[0,2π]上有5个零点.分别为0,,,,故选D 点评: 本题主要考查了函数零点的意义和判断方法,题主要考查了函数零点的意义和判断方法,三角函数的图象和性质,三角函数的图象和性质,三角函数的图象和性质,排除法解选择排除法解选择题,属基础题题,属基础题 4.(5分)(2012•湖北)命题“存在一个无理数,它的平方是有理数”的否定是(的否定是( ) A . 任意一个有理数,它的平方是有理数意一个有理数,它的平方是有理数 B . 任意一个无理数,它的平方不是有理数意一个无理数,它的平方不是有理数 C . 存在一个有理数,它的平方是有理数在一个有理数,它的平方是有理数 D . 存在一个无理数,它的平方不是有理数在一个无理数,它的平方不是有理数考点: 命题的否定. 专题: 应用题.用题. 分析: 根据特称命题“∃x ∈A ,p (A )”的否定是“∀x ∈A ,非p (A )”,结合已知中命题,即可得到答案.得到答案. 解答: 解:∵命题“存在一个无理数,它的平方是有理数”是特称命题是特称命题而特称命题的否定是全称命题,而特称命题的否定是全称命题,则命题“存在一个无理数,它的平方是有理数”的否定是任意一个无理数,它的平方不是有理数是有理数 故选B 点评: 本题考查的知识点是命题的否定,其中熟练掌握特称命题的否定方法“∃x ∈A ,p (A )”的否定是“∀x ∈A ,非p (A )”,是解答本题的关键.,是解答本题的关键.5.(5分)(2012•湖北)过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分两部分,使得这两部分的面积之差最大,则该直线的方程为(使得这两部分的面积之差最大,则该直线的方程为( ) A . x +y ﹣2=0 B . y ﹣1=0 C . x ﹣y=0 D . x +3y ﹣4=0 考点: 直线与圆相交的性质. 专题: 计算题.算题. 分析:法一:由扇形的面积公式可知,劣弧所的扇形的面积=2α,要求面积差的最大值,即求α的最小值,根据直线与圆相交的性质可知,只要当OP ⊥AB 时,α最小,可求.最小,可求.法二:要使直线将圆形区域分成两部分的面积之差最大,要使直线将圆形区域分成两部分的面积之差最大,必须使过点必须使过点P 的圆的弦长达到最小,所以需该直线与直线OP 垂直即可.由此能求出直线的方程.垂直即可.由此能求出直线的方程. 解答: 解法一:设过点P (1,1)的直线与圆分别交于点A ,B ,且圆被AB 所分的两部分的面积分别为S 1,S 2且S 1≤S 2劣弧所对的圆心角∠AOB=α,则﹣S △AOB =2α﹣S △AOB ,S 2=4π﹣2α+S △AOB (0<α≤π)∴要求面积差的最大值,即求α的最小值,根据直线与圆相交的性质可知,只要当OP ⊥AB 时,α最小最小此时K AB =﹣1,直线AB 的方程为y ﹣1=﹣(x ﹣1)即x+y ﹣2=0 故选A 解法二:要使直线将圆形区域分成两部分的面积之差最大,要使直线将圆形区域分成两部分的面积之差最大,必须使过点必须使过点P 的圆的弦长达到最小,所以需该直线与直线OP 垂直即可.垂直即可. 又已知点P (1,1),则K OP =1,故所求直线的斜率为﹣1.又所求直线过点P (1,1), 由点斜式得,所求直线的方程为y ﹣1=﹣(x ﹣1),即.x+y ﹣2=0 故选A 点评: 本题主要考查了直线与圆相交性质的应用,解题的关键是根据扇形的面积公式把所要求解的两面积表示出来求解的两面积表示出来 6.(5分)(2012•湖北)已知定义在区间(0,2)上的函数y=f (x )的图象如图所示,则y=﹣f (2﹣x )的图象为()的图象为( )A .B .C .D .考点: 函数的图象与图象变化. 专题: 作图题.图题.分析: 由(0,2)上的函数y=f (x )的图象可求f (x ),进而可求y=﹣f (2﹣x ),根据一次函数的性质,结合选项可可判断函数的性质,结合选项可可判断解答:解:由(0,2)上的函数y=f (x )的图象可知f (x )=当0<2﹣x <1即1<x <2时,f (2﹣x )=2﹣x 当1≤2﹣x <2即0<x ≤1时,f (2﹣x )=1 ∴y=﹣f (2﹣x )=,根据一次函数的性质,结合选项可知,选项B正确正确 故选:B 点评: 本题主要考查了一次函数的性质在函数图象中的应用,属于基础试题题主要考查了一次函数的性质在函数图象中的应用,属于基础试题 7.(5分)(2012•湖北)定义在(﹣∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”.现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2;②f (x )=2x;③f (x )=;④f (x )=ln|x|.则其中是“保等比数列函数”的f (x )的序号为()的序号为( )A . ①②B . ③④C . ①③D . ②④考点: 等比关系的确定. 专题: 综合题;压轴题.合题;压轴题. 分析: 根据新定义,结合等比数列性质,一一加以判断,即可得到结论.,一一加以判断,即可得到结论.解答: 解:由等比数列性质知,①=f 22(a n+1),故正确;,故正确; ②≠=f 2(a n+1),故不正确;,故不正确; ③==f 2(a n+1),故正确;,故正确; ④f (a n )f (a n+2)=ln|a n |ln|a n+2|≠=f 2(a n+1),故不正确;,故不正确; 故选C 点评: 本题考查等比数列性质及函数计算,正确运算,理解新定义是解题的关键.题考查等比数列性质及函数计算,正确运算,理解新定义是解题的关键. 8.(5分)(2012•湖北)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A >B >C ,3b=20acosA ,则sinA :sinB :sinC 为(为( ) A . 4:3:2 B . 5:6:7 C . 5:4:3 D . 6:5:4 考点: 正弦定理的应用. 专题: 解三角形.三角形.分析:由题意可得三边即由题意可得三边即 a 、a ﹣1、a ﹣2,由余弦定理可得,由余弦定理可得 cosA=,再由3b=20acosA ,可得,可得 cosA=,从而可得,从而可得=,由此解得a=6,可得三边长,根据sinA :sinB :sinC=a :b :c ,求得结果.,求得结果.解答: 解:由于a ,b ,c 三边的长为连续的三个正整数,且A >B >C ,可设三边长分别为可设三边长分别为 a 、a ﹣1、a ﹣2. 由余弦定理可得由余弦定理可得cosA===,又3b=20acosA ,可得,可得 cosA==.故有故有=,解得a=6,故三边分别为6,5,4.由正弦定理可得由正弦定理可得 sinA :sinB :sinC=a :b :c=a :(a ﹣1):( a ﹣2)=6:5:4, 故选D . 点评: 本题主要考查正弦定理、余弦定理的应用,求出a=6是解题的关键,属于中档题.是解题的关键,属于中档题.9.(5分)(2012•湖北)设a ,b ,c ,∈R +,则“abc=1”是“”的(的( )A . 充分条件但不是必要条件分条件但不是必要条件B . 必要条件但不是充分条件要条件但不是充分条件C . 充分必要条件分必要条件D . 既不充分也不必要的条件不充分也不必要的条件考点: 必要条件、充分条件与充要条件的判断. 专题: 计算题;压轴题.算题;压轴题. 分析: 由abc=1,推出,代入不等式的左边,证明不等式成立.利用特殊值判断不等式成立,推不出abc=1,得到结果.,得到结果. 解答: 解:因为abc=1,所以,则==≤a+b+c .当a=3,b=2,c=1时,显然成立,但是abc=6≠1,所以设a ,b ,c ,∈R +,则“abc=1”是“”的充分条件但不是必要条件.条件. 故选A . 点评: 本题考查充要条件的应用,不等式的证明,特殊值法的应用,考查逻辑推理能力,计算能力.算能力. 10.(5分)(2012•湖北)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是(内随机取一点,则此点取自阴影部分的概率是( )A .B .C .D .考点: 几何概型. 专题: 概率与统计.率与统计. 分析: 求出阴影部分的面积即可,连接OC ,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,用位移割补的方法,分别平移到图中划线部分,那么阴影部分的面积就是图中扇形的分别平移到图中划线部分,那么阴影部分的面积就是图中扇形的面积﹣直角三角形AOB 的面积.的面积. 解答:解:设扇形的半径为r ,则扇形OAB 的面积为,连接OC ,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴影部分的面积为:﹣,∴此点取自阴影部分的概率是.故选C .点评: 本题考查几何概型,题考查几何概型,解题的关键是利用位移割补的方法求组合图形面积,此类不规则解题的关键是利用位移割补的方法求组合图形面积,此类不规则图形的面积可以转化为几个规则的图形的面积的和或差的计算.图形的面积可以转化为几个规则的图形的面积的和或差的计算.二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上答错位置,书写不清,模棱两可均不得分. 11.(5分)(2012•湖北)一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有人,则抽取的女运动员有 6 人.人.考点: 分层抽样方法. 专题: 计算题.算题. 分析: 设出抽到女运动员的人数,根据分层抽样的特征列出方程可求出抽到女运动员的人数.数. 解答: 解:设抽到女运动员的人数为n 则=解得n=6 故答案为:6 一般利用各层抽到的个体数与该层题主要考查了分层抽样,解决分层抽样的问题,一般利用各层抽到的个体数与该层点评:本题主要考查了分层抽样,解决分层抽样的问题,的个体数的比等于样本容量与总体容量的比,属于基础题.的个体数的比等于样本容量与总体容量的比,属于基础题.12.(5分)(2012•湖北)若=a+bi(a,b为实数,i为虚数单位),则a+b=3.考点:复数代数形式的乘除运算;复数相等的充要条件.算题.专题:计算题.分析:由==,知=a+bi,故,所以,由此能求出a+b.解答:解:===,∵=a+bi,∴,∴,解得a=0,b=3,∴a+b=3.故答案为:3.题考查复数的代数形式的乘除运算,是基础题.解题时要认真审题,仔细解答. 点评:本题考查复数的代数形式的乘除运算,是基础题.解题时要认真审题,仔细解答.13.(5分)(2012•湖北)已知向量=(1,0),=(1,1),则,则同向的单位向量的坐标表示为 ();(Ⅰ)与2+同向的单位向量的坐标表示为夹角的余弦值为 .(Ⅱ)向量﹣3与向量夹角的余弦值为考点:数量积表示两个向量的夹角;向量的模;单位向量;平面向量的坐标运算.算题.专题:计算题.分析:(I)由已知可求2+,进而可求|2+|,而与2+同向的单位向量,再利用坐标表示即可用坐标表示即可(II)设﹣3与向量夹角θ,由已知可求,|,,||,代入可求向量的夹角公式cosθ=可求解答:解:(I)∵=(1,0),=(1,1)∴2+=(2,0)+(1,1)=(3,1),|2+|=∴与2+同向的单位向量的坐标表示=(II)设﹣3与向量夹角θ∵=(1,0),=(1,1),∴,∴=﹣2,||=,||=1 则cosθ===故答案为:;点评:本题主要考查了向量运算的坐标表示,向量的数量积的坐标表示、夹角公式的应用,的应用注意结论:与向量共线且同向的单位向量的应用14.(5分)(2012•湖北)若变量x,y满足约束条件则目标函数z=2x+3y 的最小值是 2.的最小值是考点:简单线性规划.专题:计算题.算题.分析:先作出不等式组表示的平面区域,由于z=2x+3y,则可得y=,则表示直线2x+3y﹣z=0在y轴上的截距,当z最小时,截距最小,结合图形可求z的最小值的最小值 :作出不等式组表示的平面区域,如图所示解答:解:作出不等式组表示的平面区域,如图所示作直线L:2x+3y=0,由于z=2x+3y,则可得y=,则表示直线2x+3y﹣z=0在y轴上的截距,当z最小时,截距最小最小时,截距最小最小结合图形可知,当直线2x+3y﹣z=0平移到点B时,z最小由可得B(1,0),此时Z=2 故答案为:2 点评:借助于平面区域,利用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.性规划中的最优解,通常是利用平移直线法确定.15.(5分)(2012•湖北)已知某几何体的三视图如图所示,则该几何体的体积为湖北)已知某几何体的三视图如图所示,则该几何体的体积为 12π.考点:由三视图求面积、体积.算题.专题:计算题.分析:由题意三视图可知,几何体是有3个圆柱体组成的几何体,利用三视图的数据,求出几何体的体积即可.几何体的体积即可.解答:解:由题意可知几何体是有两个底面半径为2,高为1的圆柱与一个底面半径为1,高为4的圆柱组成的几何体,的圆柱组成的几何体,所以几何体的条件为V=2×22π×1+12π×4=12π.故答案为:12π.点评:本题考查三视图与几何体的关系,考查空间想象能力与计算能力.题考查三视图与几何体的关系,考查空间想象能力与计算能力.16.(5分)(2012•湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果s=9.考点:循环结构.法和程序框图.专题:算法和程序框图.时退出循环,即可.分析:用列举法,通过循环过程直接得出S与n的值,得到n=3时退出循环,即可.解答:解:循环前,S=1,a=3,第1次判断后循环,n=2,s=4,a=5,次判断退出循环,第2次判断并循环n=3,s=9,a=7,第3次判断退出循环,输出S=9.故答案为:9.退出循环是解题的关键,考查计算能力.点评:本题考查循环结构,判断框中n=3退出循环是解题的关键,考查计算能力.17.(5分)(2012•湖北)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n},将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n},可以推测:,可以推测:(Ⅰ)b2012是数列{a n}中的第项;中的第 5030项;(Ⅱ)b2k﹣1=.(用k表示)表示)考点:数列递推式;数列的概念及简单表示法;归纳推理.轴题;探究型.专题:压轴题;探究型.分析:(Ⅰ)由题设条件及图可得出a n+1=a n+(n+1),由此递推式可以得出数列{a n}的通项为,a n=n(n+1),由此可列举出三角形数1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…,从而可归纳出可被5整除的三角形数每五个数中出现两个,即每五个数分为一组,则该组的后两个数可被5整除,由此规律即可求出b2012在数列{a n}中的位置;中的位置;(II)由(I)中的结论即可得出b2k﹣1═(5k﹣1)(5k﹣1+1)=.解答:解:(I)由题设条件可以归纳出a n+1=a n+(n+1),故a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=n+(n﹣1)+…+2+1=n(n+1)由此知,三角数依次为1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…则该组的由此知可被5整除的三角形数每五个数中出现两个,即每五个数分为一组,整除的三角形数每五个数中出现两个,即每五个数分为一组,则该组的整除,后两个数可被5整除,由于b2012是第2012个可被5整除的数,故它出现在数列{a n}按五个一段分组的第1006组的最后一个数,由此知,b2012是数列{a n}中的第1006×5=5030个数个数 故答案为5030 (II)由于2k﹣1是奇数,由(I)知,第2k﹣1个被5整除的数出现在第k组倒数第二个,故它是数列{a n}中的第k×5﹣1=5k﹣1项,所以b2k﹣1═(5k﹣1)(5k﹣1+1)=故答案为点评:本题考查数列的递推关系,数列的表示及归纳推理,解题的关键是由题设得出相邻两个三角形数的递推关系,由此列举出三角形数,得出结论“被5整除的三角形数每五个数中出现两个,即每五个数分为一组,则该组的后两个数可被5整除”,本题综合性强,有一定的探究性,是高考的重点题型,解答时要注意总结其中的规律.性强,有一定的探究性,是高考的重点题型,解答时要注意总结其中的规律.三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤.18.(12分)(2012•湖北)设函数f(x)=sin2ωx+2sinωx•cosωx﹣cos2ωx+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1).(1)求函数f(x)的最小正周期;)的最小正周期;)的值域.(2)若y=f(x)的图象经过点,求函数f(x)的值域.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数中的恒等变换应用;正弦函数的定义域和值域.算题.专题:计算题.分析:(1)先利用二倍角公式和两角差的余弦公式将函数f(x)化为y=Asin(ωx+φ)+k 型函数,再利用函数的对称性和ω的范围,计算ω的值,最后利用周期计算公式得函数的最小正周期;函数的最小正周期;(2)先将已知点的坐标代入函数解析式,求得λ的值,再利用正弦函数的图象和性质即可求得函数f(x)的值域.)的值域.解答:解:f(x)=sin2ωx+2sinωx•cosωx﹣cos2ωx+λ=sin2ωx﹣cos2ωx+λ=2sin(2ωx﹣)+λ∵图象关于直线x=π对称,∴2πω﹣=+kπ,k∈z ∴ω=+,又ω∈(,1)符合要求令k=1时,ω=符合要求∴函数f(x)的最小正周期为=(2)∵f()=0 ∴2sin(2××﹣)+λ=0 ∴λ=﹣∴f(x)=2sin(x﹣)﹣故函数f(x)的取值范围为[﹣2﹣,2﹣]点评:本题主要考查了y=Asin(ωx+φ)+k型函数的图象和性质,复合函数值域的求法,正弦函数的图象和性质,属基础题弦函数的图象和性质,属基础题19.(12分)(2012•湖北)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1﹣ABCD,其上是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD﹣A2B2C2D2.(1)证明:直线B1D1⊥平面ACC2A2;(2)现需要对该零部件表面进行防腐处理,已知AB=10,A1B1=20,AA2=30,AA1=13(单元,需加工处理费多少元?位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?考点:直线与平面垂直的判定;棱柱、棱锥、棱台的侧面积和表面积.算题;证明题.专题:计算题;证明题.分析:(1)依题意易证AC⊥B1D1,AA2⊥B1D1,由线面垂直的判定定理可证直线B1D1⊥平面ACC2A2;(2)需计算上面四棱柱ABCD﹣A2B2C2D2的表面积(除去下底面的面积)S1,四棱即可.台A1B1C1D1﹣ABCD的表面积(除去下底面的面积)S2即可.解答:解:(1)∵四棱柱ABCD﹣A2B2C2D2的侧面是全等的矩形,的侧面是全等的矩形,∴AA2⊥AB,AA2⊥AD,又AB∩AD=A,∴AA2⊥平面ABCD.连接BD,∵BD⊂平面ABCD,是正方形,∴AA2⊥BD,又底面ABCD是正方形,∴AC⊥BD,根据棱台的定义可知,BD与B1D1共面,共面,又平面ABCD∥平面A1B1C1D1,且平面BB1D1D∩平面ABCD=BD,平面BB1D1D∩平面A1B1C1D1=B1D1,∴B1D1∥BD,于是由AA2⊥BD,AC⊥BD,B1D1∥BD,可得AA2⊥B1D1,AC⊥B1D1,又AA2∩AC=A,∴B1D1⊥平面ACC2A2;的底面是正方形,侧面是全等的矩形, (2)∵四棱柱ABCD﹣A2B2C2D2的底面是正方形,侧面是全等的矩形,=S四棱柱下底面+S四棱柱侧面∴S1=+4AB•AA2=102+4×10×30 =1300(cm2)上下底面均是正方形,侧面是全等的等腰梯形, 又∵四棱台A1B1C1D1﹣ABCD上下底面均是正方形,侧面是全等的等腰梯形,∴S2=S四棱柱下底面+S四棱台侧面=+4×(AB+A1B1)•h等腰梯形的高=202+4×(10+20)•=1120(cm2),于是该实心零部件的表面积S=S1+S2=1300+1120=2420(cm2),故所需加工处理费0.2S=0.2×2420=484元.元.点评:本题考查直线与平面垂直的判定,考查棱柱、棱台的侧面积和表面积,着重考查分析转化与运算能力,属于中档题.转化与运算能力,属于中档题.20.(13分)(2012•湖北)已知等差数列{a n}前三项的和为﹣3,前三项的积为8.(1)求等差数列{a n}的通项公式;的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.项和.考点:数列的求和;等差数列的通项公式;等比数列的性质.算题.专题:计算题.分析:(I)设等差数列的公差为d,由题意可得,,解方程,进而可求通项可求a1,d,进而可求通项(II)由(I)的通项可求满足条件a2,a3,a1成等比的通项为a n=3n﹣7,则|a n|=|3n,根据等差数列的求和公式可求﹣7|=,根据等差数列的求和公式可求解答:解:(I)设等差数列的公差为d,则a2=a1+d,a3=a1+2d 由题意可得,解得或由等差数列的通项公式可得,a n=2﹣3(n﹣1)=﹣3n+5或a n=﹣4+3(n﹣1)=3n﹣7 不成等比(II)当a n=﹣3n+5时,a2,a3,a1分别为﹣1,﹣4,2不成等比当a n=3n﹣7时,a2,a3,a1分别为﹣1,2,﹣4成等比数列,满足条件成等比数列,满足条件 故|a n|=|3n﹣7|=设数列{|a n|}的前n项和为S n当n=1时,S1=4,当n=2时,S2=5 当n≥3时,S n=|a1|+|a2|+…+|a n|=5+(3×3﹣7)+(3×4﹣7)+…+(3n﹣7)=5+=,当n=2时,满足此式时,满足此式综上可得点评:本题主要考查了利用等差数列的基本量表示等差数列的通项,等差数列与等比数列的通项公式的综合应用及等差数列的求和公式的应用,要注意分类讨论思想的应用通项公式的综合应用及等差数列的求和公式的应用,要注意分类讨论思想的应用21.(14分)(2012•湖北)设A 是单位圆x 2+y 2=1上的任意一点,i 是过点A 与x 轴垂直的直线,D 是直线i 与x 轴的交点,点M 在直线l 上,且满足丨DM 丨=m 丨DA 丨(m >0,且m ≠1).当点A 在圆上运动时,记点M 的轨迹为曲线C . (I )求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求焦点坐标;为何种圆锥曲线,并求焦点坐标;(Ⅱ)(Ⅱ)过原点且斜率为过原点且斜率为k 的直线交曲线C 于P 、Q 两点,两点,其中其中P 在第一象限,它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H ,是否存在m ,使得对任意的k >0,都有PQ ⊥PH ?若存在,求m 的值;若不存在,请说明理由.的值;若不存在,请说明理由.考点: 直线与圆锥曲线的综合问题;轨迹方程;圆锥曲线的轨迹问题.专题: 综合题;压轴题.合题;压轴题. 分析: (I )设M (x ,y ),A (x 0,y 0),根据丨DM 丨=m 丨DA 丨,确定坐标之间的关系x 0=x ,|y 0|=|y|,利用点A 在圆上运动即得所求曲线C 的方程;根据m ∈(0,1)∪(1,+∞),分类讨论,可确定焦点坐标;,分类讨论,可确定焦点坐标;(Ⅱ)∀x 1∈(0,1),设P (x 1,y 1),H (x 2,y 2),则Q (﹣x 1,﹣y 1),N (0,y 1),利用P ,H 两点在椭圆C 上,可得,从而可得可得.利用Q ,N ,H 三点共线,及PQ ⊥PH ,即可求得结论.得结论.解答: 解:(I )如图1,设M (x ,y ),A (x 0,y 0)∵丨DM 丨=m 丨DA 丨,∴x=x 0,|y|=m|y 0| ∴x 0=x ,|y 0|=|y|①∵点A 在圆上运动,∴②①代入②即得所求曲线C 的方程为∵m ∈(0,1)∪(1,+∞), ∴0<m <1时,曲线C 是焦点在x 轴上的椭圆,两焦点坐标分别为(),m >1时,曲线C 是焦点在y 轴上的椭圆,两焦点坐标分别为(),(Ⅱ)如图2、3,∀x 1∈(0,1),设P (x 1,y 1),H (x 2,y 2),则Q (﹣x 1,﹣y 1),N (0,y 1),∵P,H两点在椭圆C上,∴①﹣②可得③∵Q,N,H三点共线,∴k QN=k QH,∴∴k PQ•k PH=∵PQ⊥PH,∴k PQ•k PH=﹣1 ∴∵m>0,∴故存在,使得在其对应的椭圆上,对任意k>0,都有PQ⊥PH 点评:本题考查轨迹方程,考查直线与椭圆的位置关系,考查代入法求轨迹方程,计算要小心.心.22.(14分)(2012•湖北)设函数f(x)=ax n(1﹣x)+b(x>0),n为正整数,a,b为常数,曲线y=f(x)在(1,f(1))处的切线方程为x+y=1 的值;(Ⅰ)求a,b的值;)的最大值;(Ⅱ)求函数f(x)的最大值;(Ⅲ)证明:f(x)<.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.合题;压轴题;函数思想;转化思想.专题:综合题;压轴题;函数思想;转化思想.分析:(Ⅰ)由题意曲线y=f(x)在(1,f(1))处的切线方程为x+y=1,故可根据导数的几何意义与切点处的函数值建立关于参数的方程求出两参数的值;几何意义与切点处的函数值建立关于参数的方程求出两参数的值;(Ⅱ)由于f(x)=x n n(1﹣x),可求fʹ(x)=(n+1)x n n﹣11(﹣x),利用导数研究函数的单调性,即可求出函数的最大值;函数的单调性,即可求出函数的最大值;(Ⅲ)结合(Ⅱ),欲证f (x )<.由于函数f (x )的最大值f ()=()n (1﹣)=,故此不等式证明问题可转化为证明<,对此不等式两边求以e 为底的对数发现,可构造函数φ(t )=lnt ﹣1+,借助函数的最值辅助证明不等式.最值辅助证明不等式.解答: 解:(Ⅰ)因为f (1)=b ,由点(1,b )在x+y=1上,可得1+b=1,即b=0. 因为f ʹ(x )=anx n ﹣1﹣a (n+1)x n ,所以f ʹ(1)=﹣a .又因为切线x+y=1的斜率为﹣1,所以﹣a=﹣1,即a=1,故a=1,b=0.(Ⅱ)由(Ⅰ)知,f (x )=x n (1﹣x ),则有f ʹ(x )=(n+1)xn ﹣1(﹣x ),令f ʹ(x )=0,解得x=在(0,)上,导数为正,故函数f (x )是增函数;在(,+∞)上导数为负,故函数f (x )是减函数;)是减函数;故函数f (x )在(0,+∞)上的最大值为f ()=()n(1﹣)=,(Ⅲ)令φ(t )=lnt ﹣1+,则φʹ(t )=﹣=(t >0)在(0,1)上,φʹ(t )<0,故φ(t )单调减;在(1,+∞),φʹ(t )>0,故φ(t )单调增;单调增;故φ(t )在(0,+∞)上的最小值为φ(1)=0,所以φ(t )>0(t >1)则lnt >1﹣,(t >1),令t=1+,得ln (1+)>,即ln (1+)n+1>lne 所以(1+)n+1>e ,即<由(Ⅱ)知,f (x )≤<,故所证不等式成立.故所证不等式成立.点评: 本题考查利用导数求函数最值及利用最值证明不等式,本题技巧性强,解题的关键是能根据题设及证明中的结论构造函数辅助证明,本题是能力型题,难度较大,是高考选拔优秀数学人才的首选题,做题后要注意总结本题的解题规律,选拔优秀数学人才的首选题,做题后要注意总结本题的解题规律,领会构造法证明不领会构造法证明不等式的要旨,本题考查了转化的思想及函数思想,等式的要旨,本题考查了转化的思想及函数思想,难度较大极易找不到思路或计算出难度较大极易找不到思路或计算出错,作为压轴题出现. 错,作为压轴题出现.。

湖北省12—13上学期高三数学(理科)高考原创全真模拟考试试卷

湖北省12—13上学期高三数学(理科)高考原创全真模拟考试试卷

2012年普通高等学校招生全国统一考试模拟考试(湖北卷) (仅供内部交流) 原创全真模拟卷理科数学本试卷共4页,共22题,其中第15、16题为选考题.满分150分.考试用时120分钟.★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.用2B 铅笔把答题卡上试卷类型A 后的方框涂黑. 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷、草稿纸上无效. 3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内.答在试题卷、草稿纸上无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑.考生应根据自己选做的题目准确填涂题号,不得多选.答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效.5.考生必须保持答题卡的整洁.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的. 1.已知复数ii--132(i 是虚数单位),它的实部和虚部的和是( ) A .4 B .6 C .2 D .32.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7= ( ) A .243 B .128 C .81 D .643.如右边框图所示,已知集合A ={x |框图中输出的x 值},集合B ={y |框图中输出的y 值},U =R .当x =0时,(C U A )∩B = ( ) A .{-1,1,5} B .{-1,1,7,9} C .{-1,7}D .{-1,5,7} 4.(1+3x )n (其中n ∈N 且n ≥6)的展开式中x 5与x 6的系数相等,则n = ( ) A .6 B .7 C .8 D .95.已知非零向量a =(2,4),b =(-2,2)且(a +b )⊥(a +mb ),则m = ( ) A .2 B .1 C .-1 D .-26.已知直线l :x +y -m =0与圆C :x 2+y 2-2x +4y +1=0,直线与圆相切的必要不充分条件是 ( ) A .221±-=m B .221221+-≤≤--m C .221--=mD .221+-=m7.设函数f (x )=A sin (ωx +φ),(A ≠0,ω>0,2π2π<<-ϕ)图象的相邻两条对称轴为x =6π,32π=x ,则 ( )A .f (x )的图象过点)21,0(B .f (x )在区间]32π,125π[上是减函数 C .f (x )的图象的一个对称中心是,0)125π(D .f (x )的最大值是A 8.如果椭圆12222=+b y a x 的离心率21=e ,直线l 与椭圆交与A 、B 两点,A 、B 的中点为P .设直线l 的斜率为k 1(k 1≠0),直线OP (O 为坐标原点)的斜率为k 2,则k 1·k 2= ( )A .43B .43-C .45D .45-10.对实数a 与b ,定义新运算“□”:a □b ⎩⎨⎧>-≤-=.1,,1,b a b b a a 设函数f (x )=(x 2-2)□(x-1),x ∈R .若函数y =f (x )-c 的图像与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-∞,-2)∪(1,+∞)B .(-2,-1)∪(1,+∞)C .(-2,-1]∪(1,2]D .(-2,-1)∪(1,2)二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分. (一)必考题(11-14题)11.某班学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果分成五组:第一组[13,14);第二组[14,15),…,第五组[17,18].右图是按上述分组方法得到的频率分布直方图,已知在组[13,14)内有3人;若成绩大于或等于14秒且小于16秒认为良好,则该班在这次百米测试中成绩良好的人数是________. 12.函数y =sin x 与直线x y π2=在[0,π]内所围成的面积是________.13.设变量x ,y 满足约束条件:⎪⎩⎪⎨⎧-≥≤+≥.143,x y x x y ,则z =|x -3y |的最大值为________.14.无穷等差数列{a n }的各项均为正整数,其中3、15、21为其中的三项,首相为a 1,公差为d ,给出下列命题:①满足条件的公差d 的取值是{1,2,3,6};②对任意满足条件的d ,存在a 1,使得30一定是数列{a n }中的一项;③对任意满足条件的d ,存在a 1,使得99一定是数列{a n }中的一项;其中正确的命题序号为________. (二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.)∠ACB =90°,BC =4,AC =3,以AC 为直径作圆O 交AB 于D ,则CD =________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分12分)已知:设函数2sin 32)3πsin()(2xx x f ++=,x ∈ R . (Ⅰ)求f (x )的最大值及此时x 的值;(Ⅱ)△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c ,若3)(=B f ,26=b ,c =1,求a 的值.18.(本题满分12分)已知正数数列{a n }的前n 项和为S n ,满足332312nn a L a a S +++=. (1)求证:数列{a n }为等差数列,并求出通项公式; (2)设)11()11(2nnn a a a b ---=,若n n b b >+1对任意n ∈N *恒成立,求实数a 的取值范围.20.(本题满分12分)在我市“城乡清洁工程”建设活动中,社会各界掀起净化美化环境的热潮.某单位计划在小区内种植A ,B ,C ,D 四棵风景树,受本地地理环境的影响,A ,B 两棵树的成活的概率均为21,另外两棵树C ,D 为进口树种,其成活概率都为a (0<a <1),设ξ表示最终成活的树的数量.(1)若出现A ,B 有且只有一颗成活的概率与C ,D 都成活的概率相等,求a 的值; (2)求ξ的分布列(用a 表示);(3)若出现恰好两棵树成活的概率最大,试求a 的取值范围.21.(本题满分13分)已知抛物线C 的焦点F 在y 轴上,顶点在坐标原点,C 上一点P (a ,4)到其准线的距离为5,已知圆M 过定点D (0,2),且圆心M 在C 上运动. (Ⅰ)求抛物线C 的方程;(Ⅱ)证明圆M 和x 轴恒有两个不同的交点;(Ⅲ)设圆M 与x 轴交于A 、B 两点,设|DA |=l 1,|DB |=l 2,求1221l ll l 的最大值.22.(本题满分14分)已知函数)73.2()2()(≈-+=--e e x xe x f a x x . (Ⅰ)当a =2时,证明函数f (x )是增函数;(Ⅱ)当x ≥1时,x x f 2)1()(-≥恒成立,求实数a 的取值范围.2012年普通高等学校招生全国统一考试模拟考试(湖北卷) (仅供内部交流) 理科数学参考答案一、选择题:1.C 本题主要考察复数的概念和运算.因为i i i 2125132-=--,所以22125=-,选C .2.D 本题主要考察等比数列的通项公式,∵21223=++=a a aa q ,∴a 1(1+q )=3,a 1=1,a 7=26=64,故选D .3.C 本题主要考察框图的条件分支结构,和集合的基本运算.其中A ={ 1,2,3,4,5},B ={-1,1,3,5,7},所以(C U ∪A )∩B ={-1,7},选C .4.B 本题主要考察二项式定理及其通项公式,以及组合数的计算等概念,运用方程的思想方法;由二项式定理得556633n n C C ⋅=⋅,∴3651⨯-=n ,n =7.故选B . 5.D 本题主要考查向量的运算,向量的垂直条件等概念,因为(a +b )⊥(a +mb ),a +b =(0,6),a +mb =(2-2m ,4+2m ),所以(a +b )·(a +mb )=6(4+2m )=0,∴m =-2所以选D .6.B 本题主要考察直线与圆的位置关系、圆的方程和充要条件等概念,考察数形结合及逻辑思维能力;因为圆心C (1,-2),半径r =2,圆心到直线的距离22|21|=--=m d ,即m =-1±22,选B .7.C 本题主要考察正弦型函数的图象和性质,考查同学们的数形结合能力即通过函数的图形研究函数的性质的能力;∵125π)/26π32π(=+,∴C 正确. 8.B 本题主要考察双曲线的有关概念,直线的斜率,还考查了点差法的应用;由21=e ,可得23()4b a =,将A ,B 两点的坐标代入方程222222b a y a x b =+中相减可得221)(abk k -=⋅,选B .9.A 本题主要考察三视图和三棱锥的概念,棱锥的体积公式和三角形的面积公式,考察其空间想象能力.设棱锥的棱长和高分别为a 和h ,由a a a h 36)]23(32[22=-=,则31322=(3212236)43a a a =,∴a 3=8,a =2,左视图的面积为2236)223(21=⨯⨯,故选A .10.C 本题主要考察应用新知识解决问题的能力,考察零点和分段函数的概念,应用数形结合的思想,考察作图的能力.由定义可知f (x )=⎩⎨⎧>-<-≤≤--).21(1),21(22x x x x x 或画出图像可知:C 成立.二、填空题:11.27 本题主要考察频率分布直方图的应用,和古典概型的有关知识.由图知在第一组的频率是0.06人数3,所以全班总人数为50,因此良好的人数为50×(0.16+0.38)=27.12.4π1- 本题主要考察函数y =sin x 和x y π2=的图像和定积分的简单运算;如图:所围成的面积112π21d sin 2π=⨯⨯-⎰x x ⋅-4π13.6 本题主要考察直线的画法以及二元一次不等式所表示的区域问题;画出可行域,由移动|x -3y |=0的图形可知,在点A (-1,35)处可取得最大值6. 14.①③ 本题主要考察等差数列的通项公式,前n 项和公式的应用及整除的思想.由21-15=6,可知d =1,2,3,6,所以①正确;当d =2时,数列是奇数列,30不可能是其中的一项,故②不正确;无论d 为何值,让a 1=3,总可以取得整数k ,使a k =99成立,③正确.15.8 曲线为1121622=+y x ,易知A ,B 分别为两焦点,由定义知|PA |+|PB |=2a =2×4=8. 16.512=CD 由已知∠ADC =90°,于是CD ×AB =AC ×BC ∴⋅=512CD三、解答题17.(本小题满分12分)解:(Ⅰ)化简2cos 132cos 23sin 212sin 32)3πsin()(2xx x x x x f -⋅++=++= 3cos 3cos 23sin 21+-+=x x x3)3πsin(3cos 23sin 21+-=+-=x x x …………4分当2ππ23π+=-k x 时,即65ππ2+=k x ,k ∈Z ∴.31max +=y ………………………6分 (Ⅱ)∵3)(=B f ,∴0)3πsin(=-B ,∴3π=B ∵CcB b sin sin =,∴22sin =C∵b >c ,∴4π=C ,∴125π=A ………………………9分 ∵42622.232221)4π6πsin(125πsin+=+⋅=+= ∴==CAc a sin sin 22426+⋅+=213…………………………………12分18.(本小题满分12分)解:(1)由233323312121n nn n S a a a S a a --=++++++∴3221111()()()n n n n n n n n n n a S S S S S S a S S ----=-=-++…………………12分∴21(2)n n n a S S n -=+≥ 2112(3)n n n a S S n ---=+≥∴2212n n n n a a S S ---=-10n n n a a a -=+>∴)3(11≥=--n a a n n …………………………………4分又312121a a S ==且a 1>0 ∴a 1=0 323122122)(a a a a S +=+= ∴32221)1(a a +=+ ∴0222232=--a a a由a 2>0得a 2=2 ∴)2(11≥=--n a a n n数列{a n }为等差数列.通项公式a n =n …………………………………………………(6分) (Ⅱ)解法一:a na n n a nb n -+-+=---=121)11()11(22令nt 1=则∈-+=)2(2a t b n .1a -+……………………………(8分) 当4322>-a 时,即21<a 时,⎥⎦⎤43,0(21)(t g 上为减数,且)1()21(g g > 所以b 1<b 2<b 3<…当4322≤-a ,即21≥a 时)1()21(g g ≤. 从而b 2≤b 1而不合题意………………………10分∴实数a 的取值范围为21<a .…………………………………12分解法二:11111()(2)011n n b b a n n n n+-=-++->++.……………………8分 ∴021111<-+++a a n 即nn a 1112-+-< 对任意n ∈N *成立.………………………10分∴a 的取值范围为⋅<21a ………………………………12分 19.(本小题满分12分)(本小题主要考查棱柱、线面平行、二面角、空间直角坐标系、法向量、空间向量的运算等概念.考察数形结合、将空间的位置关系转化为向量的运算关系的数学思想方法,以及推理论证能力、运算求解能力和空间想象能力.) 解:(Ⅰ)存在,设E 是AO 的中点,则EC ∥平面A 1BD . ………1分证明:取A 1O 的中点F ,在△A 1 OA 中∵E 是OA 的中点,∴EF 12AA 1 又∵D 是CC 1的中点,CC 1=AA ' ∴CD21AA 1,∴CD EF ,∴CDEF 是一平行四边形.EC ∥DF,……………………………………………4分 而EC ⊄平面A 1BD ,DF ⊂平面A 1BD ,∴EC ∥平面A 1BD …………………………………6分 (Ⅱ)如图建立空间直角坐标系,设AB =a ,则A (0,0,0),C (0,a ,0),1,,0)2B a , ∵141AB =,∴,)84a aE ,37(,)84a aCE =- 333(,)84a aEB =-, 3(,0)2aCB =-……………8分 设平面BCE 和平面ABC 的法向量分别为n =(x ,y ,z )和m =(x 0,y 0,z 0),∵AA 1⊥平面ABC ,∴m =(0,0,1);………………………………9分 ∵n ⊥EB ,∴3331084n EB ay az ⋅=+-=3CB ax ⋅=令x =1,则33,3==z y ,则)33,3,1(=n ,…………………………10分 ∵3193331133,cos =⋅>=<m n , 所以,二面角E -BC -A 的余弦值为31933.………………………12分 20.(本小题满分12分)(1)由题意,得2)211(212a =-⨯⨯∴.22=a ………………………2分(2)ξ的所有可能取值为0,1,2,3,4.…………………………………3分2202202)1(41)1()211()0(a a C C P -=--==ξ…………………4分10202122221111(1)(1)(1)(1)(1)(1)2222P C C a C C a a a ξ==--+--=-……5分2202112222111(2)()(1)(1)(1)222P C C a C C a a ξ==-+--+ 02(C -+=-a a C 21(41)2112222)22a …………6分 2)211(21)1()21()3(2221212222a a C C a a C C P =-+-==ξ……………7分4)21()4(2222222a a C C P ===ξ…………………………8分(3)由0<a <1,显然)1(21)1(412a a -<-,24a a < ∴22111(2)(1)(122)(1)(241)0424P P a a a a a ξξ=-==+---=--+≥…10分2211(2)(3)(122)(21)0424a P P a a a ξξ=-==+--=--≥………10分由上述不等式解得aa ≤≤………………12分 21.(本小题满分12分)(本小题主要考查圆、抛物线、基本不等式等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力) 解:(Ⅰ)设抛物线方程x 2=2py ,因P (a ,4)在抛物线上,P 到准线距离为5,所以,准线方程y =-1,即12=P, 所以,抛物线方程为x 2=4y .…………………………3分 (Ⅱ)设圆M 的圆心(a ,b ),则a 2=4b ,半径b b b b b b a r >+=+-+=-+=4444)2(2222,所以,圆M 和x 轴恒有两个不同的交点. ……………………7分 (Ⅲ)由(2)知,圆M 的方程(x -a )2+(y -b )2=b 2+4,令y =0并解得,x =a ±2,不妨设为A (a -2,0),B (a +2,0),∴4)2(21+-=a l ,4)2(22++=a l∴64161264)8(2641624242242212221122++=++=++=+=+a a a a a a l l l l l l l l 1 ③ 因a ≠0时,由③得,12212l l l l +=228216126416122=⨯+≤++aa 当且仅当22±=a 时,等号成立.故当22±=a 时,1221l l l l +的最大值为.22………13分22.(本小题满分12分)解:(Ⅰ)当a =2时,2)2()(---+=x xe x xex f ,))(1()2()(222'x x x x x x e e x e x e xe e x f --------=-++-=xx e e x )1)(1(22--=-,当x ≥1时,x -1≥0,0122≥--x e ,所以f (x )≥0, 当x <1时,x -1<0,0122<--x e,所以f (x )≥0,所以对任意实数x ,f '(x )≥0,所以f (x )是增函数.……………………4分(Ⅱ)当x ≥1时,x ex x f 2)1()(-≥恒成立,即013)2(22≥-+---x x e x a x 恒成立, 设)1(13)2()(22≥-+--=-x x x e x x h a x ,则)1)(32()(2'--=-a x e x x h , 令0)1)(32(2=---a x e x ,解得231=x ,22ax =……………………6分 ①当12≤a,即a ≤2时,列表42)2()(3min +-==-a e h x h ,因为3-a ≥1,所以425452145213ee e a -=+-≤+--<0, 故不成立; ②当31<<a ,即2<a <3时,所以要使结论成立,则01)1(2≥+-=-a e h ,04521)23(3≥+-=-a e h ,即12≤-a e ,253≤-a e ,解得a ≥2,25ln 3-≥a ,所以325ln 3<≤-a ;…………………………………8分 ③当232=a ,即a =3时,h '(x )≥0恒成立,所以h (x )是增函数,又01)1(1>+-=-e h , 故结论成立; ④当3>a ,即a >3时,…………12分所以要使结论成立,则01)1(2≥+-=-ae h ,0324)2(2≥-+-=a a a h ,即12≤-ae,01282≤+-a a ,解得a ≥2,2≤a ≤6,所以3<a ≤6;综上所述,若使当x ≥1时xe x xf 2)1()(-≥恒成立,实数a 的取值范围是625ln 3≤≤-a .……………………14分。

【课标版】2012届高三数学湖北高考模拟试卷四(己排版)

【课标版】2012届高三数学湖北高考模拟试卷四(己排版)

2012届高三湖北高考模拟重组预测试卷四数 学第I 卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若纯虚数z 满足(2)4i z bi -=-,(i 是虚数单位,b 是实数),则b =( ) A .-2 B .2 C .-8 D .8 2.函数2sin 26y x π⎛⎫=-⎪⎝⎭的图像( ) A .关于原点成中心对称B .关于y 轴成轴对称C .关于点)0,12(π成中心对称D .关于直线12π=x 成轴对称3.已知(){}10,10,≤≤≤≤=Ωy x y x ,A 是由直线)10(,0≤<==a a x y 和直线x y =围成的三角形的平面区域,若向区域Ω上随机投一点P ,点P 落在区域A 内的概率是81,则a 的值为( ) A .1 B .81 C .41D .214.已知命题p :“0],2,1[2≥-∈∀a x x ”,命题q :“022,2=-++∈∃a ax x R x ”.若命题“p 且q ”是真命题,则实数a 的取值范围为( )A .2-≤a 或1=aB .2-≤a 或21≤≤aC .1≥aD .12≤≤-a5.已知一个几何体的主视图及左视图均是边长为2的正 三角形,俯视图是直径为2的圆,则此几何体的外接球的 表面积为( ) A .π34 B .π38 C .π316D .π3326.过点)2,4(P 作圆422=+y x 的两条切线,切点分别为点A 、B ,O 为坐标原点,则OAB ∆的外接圆方程是( ) A .5)1()2(22=-+-y x B .20)2()4(22=-+-y x C .5)1()2(22=+++y xD .20)2()4(22=+++y x7.已知函数)(x f y =是偶函数,当0>x 时,xx x f 4)(+=,且当]1,3[--∈x 时,)(x f 的值域是],[m n ,则n m -的值是 ( )A .31B .32C .1D .34 8.某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg )数据进行整理后分成六组,并绘制频率分布直方图(如图54-所示).已知图中从左到右第一、 第六小组的频率分别为16.0、07.0,第一、第二、第三小 组的频率成等比数列,第三、第四、第五、第六小组的频率成等差数列,且第三小组的频数为100,则该校高三年级的男生总数为( )A .480B .440C .420D .4009.已知函数()f x 的定义域为[]15-,,部分对应值如下表。

2012届高三毕业班第一次模拟考试数学试卷(理)

2012届高三毕业班第一次模拟考试数学试卷(理)

2012届高中毕业班第一次模拟试题数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若复数(5)(3)z x x i =-+-在复平面内对应的点位于第三象限,则实数x 的取值范围是A. (,5)-∞B. (3,)+∞C. (3,5)D. (5,)+∞ 2.已知集合{0,1,2}M =,集合N 满足N M ⊆,则集合N 的个数是 A.6 B. 7 C. 8 D. 93.已知函数()lg f x x =的定义域为M ,函数2,231,1x x y x x ⎧>=⎨-+<⎩的定义域为N ,则M N =A. (0,1)B. (2,)+∞C. (0,)+∞D. (0,1)(2,)+∞ 4.“1m <”是“函数2()f x x x m =++有零点”的 条件 A .充分非必要 B.充要 C .必要非充分 D.非充分必要 5.已知函数()(cos 2cos sin 2sin )sin f x x x x x x =+,x ∈R,则()f x 是 A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数 6.已知向量(4,3)=a , (2,1)=-b ,如果向量λ+a b 与b 垂直,则|2|λ-a b 的值为( ) A .1 BC.5 D.7.已知,x y 满足3,2,326,39x y x x y y x ≤⎧⎪≥⎪⎨+≥⎪⎪≤+⎩,则2z x y =-的最大值是( ).A.152 B. 92 C. 94D. 2 8.设M 为平面内一些向量组成的集合,若对任意正实数λ和向量M ∈a ,都有M λ∈a ,则称M为“点射域”,则下列平面向量的集合为“点射域”的是 A.2{(,)|}x y y x ≥B.0(,)|0x y x y x y ⎧-≥⎫⎧⎨⎨⎬+≤⎩⎩⎭C.22{(,)|20}x y x y y +-≥D.22{(,)|32120}x y x y +-<二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. 必做题(9~13题) 9.2||2||150x x -->的解集是 .10.在1041x x ⎛⎫+ ⎪⎝⎭的展开式中常数项...是 .(用数字作答) 11.某中学举行了一次田径运动会,其中有50名学生 参加了一次百米比赛,他们的成绩和频率如图所示.若 将成绩小于15秒作为奖励的条件,则在这次百米比赛 中获奖的人数共有 人.12.离心率23e =的椭圆的两焦点为12,F F , 过1F 作直线交椭圆于,A B 两点,则2ABF ∆的周长为13.如果实数,x y 满足等式22(2)1x y -+=,那么31y x +-的取值范围是14.(坐标系与参数方程选做题)在极坐标系中,圆2ρ=上的点到直线()6sin 3cos =+θθρ的距离的最小值为 15.(几何证明选讲选做题)如图2,点P 是⊙O 外一点,PD 为⊙O 的一切线,D 是切点,割线经过圆心O ,若030=∠EFD ,32=PD ,则=PE三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知数列{}n a 是一个等差数列,且21a =,55a =-. (I )求{}n a 的通项n a ; (II )设52n n a c -=,2n cn b =,求2122232log log log log n T b b b b =++++ 的值。

2012届高三数学理科摸底试题参考答案和评分标准(打印版)

2012届高三数学理科摸底试题参考答案和评分标准(打印版)

{an1 2an} 是以 1为公比, a2 2a1 2 为首项的等比数列.
an1 2an 2 (1)n1 2 (1)n -----------②--------4 分
①-②得: 3an 2[2n (1)n ]
所以,所求通项为
an
2 [2n 3
(1)n ] --------6

第1页
20.(本小题满分 14 分)
已知数列{an}, a1 a2 2 , an1 an 2an1(n 2) (Ⅰ)求数列{an}的通项公式 an
(Ⅱ)当 n 2 时,求证: 1 1 ... 1 3
a1 a2
an
(Ⅲ)若函数 f (x) 满足: f (1) a1, f (n 1) f 2 (n) f (n). (n N *)
(2) 当 n 为偶数时,
1 1 an1 an
31 2 [ 2n1 1
1
2n
] 1
3 2
2n1
2n1 2n 2n 2n 2n1 1
3 2
2n1 2n 2n1 2n 2n1
1
3 2
2n1 2n 2n1 2n
3 2
1 ( 2n1
1 2n
)(n
2)
1
1
...
1
3 (1 1
1
...
第1页
17.(本小题满分 14 分)
如图,在直三棱柱 ABC A1B1C1 中, AC BC , AC BC 1, CC1 2 ,点 D 、 E 分别
C 是 AA1 、 CC1 的中点.
(1)求证: AE / / 平面 BC1D ;
A
B
(2)证明:平面 BC1D 平面 BCD
D
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012届高三湖北高考模拟重组预测试卷数 学适用地区:新课标地区 考查范围:全部内容第Ⅰ卷一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 把复数z 的共轭复数记作z ,i 为虚数单位.若z =1+i ,则(1+z )·z =( )A .3-iB .3+iC .1+3iD .3 2 已知集合U =R ,集合则},11|{xy x A -==U A ð等于( )A }10|{<≤x xB }10|{≥<x x x 或C }1|{≥x xD }0|{<x x3. 阅读右面的程序框图,运行相应的程序,则输出i 的值为( )A .3B .4C .5D .6 4. 设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .即不充分也不必要条件5.设变量,x y 满足约束条件31,23x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩则目标函数23z x y =+的最小值为( )A .7B .8C .10D .236.设a b c 、、表示三条直线,αβ、表示两个平面,则下列命题中不正确的是( )A ββαα⊥⇒⎭⎬⎫⊥c c // B a b b c b c a ⊥⊂⎫⎬⎪⎭⎪⇒⊥ββ是在内的射影C ////b c b c c ααα⎫⎪⊂⇒⎬⎪⊄⎭D αα⊥⇒⎭⎬⎫⊥b a b a //7. 某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为( ) A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元 8.已知数列{n a }满足*331log 1log ()n n a a n ++=∈N ,且2469a a a ++=,则15793l o g ()a a a ++的值是( )A.15-B.5-C.5D. 159. 设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( ) A .f (x )在⎝⎛⎭⎫0,π2单调递减 B .f (x )在⎝⎛⎭⎫π4,3π4单调递减 C .f (x )在⎝⎛⎭⎫0,π2单调递增 D .f (x )在⎝⎛⎭⎫π4,3π4单调递增 10.将一骰子抛掷两次,所得向上的点数分别为m 和n ,则函数3213y mx nx =-+在[)1,+∞上为增函数的概率是( )A .12B .23C .34D .56第Ⅱ卷二、填空题(本大题共7小题,每小题5分,共35分.将答案填在答题卷相应位置上)11.某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1—50号,并分组,第一组1—5号,第二组6—10号,……,第十组46—50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为___ 的学生.12.某几何体的三视图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是 .13.已知()⎪⎩⎪⎨⎧-≥=0,0,x x x x x f ,则不等式()2≤⋅+x f x x 的解集是_________.14.下列四种说法①命题“x x R x -∈∃2,>0”的否定是“0,2≤-∈∀x x R x ”;②“命题q p ∨为真”是“命题q p ∧为真”的必要不充分条件; ③“若2am <2bm ,则a <b ”的逆命题为真; ④若实数[]1.0,∈y x ,则满足:22y x +>1的概率为4π; 正确的有___________________.(填序号)15. 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1, F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为________________ 16.已知向量a 、b 的夹角为60,|a |=2, |b |=3,则|2a -b |= . 17. 函数(1) 若a=0,则方程f(x)=0的解为_______.(2) 若函数f(x)有两个零点,则a 的取值范围是_______.<三、解答题(本大题共5小题,满分65分.解答须写出文字说明、证明过程和演算步骤) 18. (12分)在△ABC 中,,,A B C 的对边分别是,,a b c ,且满足(2)cos cos a c B b C -=. (1)求B ;(2)设(sin ,cos2),(4,1),(1),A A k k ==>且m n ⋅m n 的最大值是5,求k 的值.19.(12分) 等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6.(1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和.20.(13) 已知向量(,),(1,2)x y ==-a b ,从6张大小相同、分别标有号码1、2、3、4、5、6的卡片有放回地抽取两张,x 、y 分别表示第一次、第二次抽取的卡片上的号码.(1)求满足1⋅=-a b 的概率;(2)求满足0⋅>a b 的概率.21.(14)已知圆C 的圆心为(,0),3<C m m ,半径为5,圆C 与椭圆E :)0(12222>>=+b a by a x 有一个公共点A (3,1),21F F 、分别是椭圆的左、右焦点.(1)求圆C 的标准方程;(2)若点P 的坐标为(4,4),试探究斜率为k 的直线1PF 与圆C 能否相切,若能,求出椭圆E 和直线1PF 的方程;若不能,请说明理由.22.(14)已知函数32()2f x x ax x =+++.(1)若1a =-,令函数()2()g x x f x =-,求函数()g x 在(1,2)-上的极大值、极小值; (2)若函数()f x 在1(,)3-+∞上恒为单调递增函数,求实数a 的取值范围.试卷类型:A2012届高三湖北高考模拟重组预测试卷参考答案数 学1. A2. A3. B 4.A 5.A 6. D 7. B 8.B 9.A 10. D 11. 3712. 2(π 13. (-∞, 1〕 14. ①② 15 .x 216+y 28=1.16. 13 17. (1)()21-5±(2)()4545-,18.解:(1)C b B c a cos cos )2(=-,C B B C A cos sin cos )sin sin 2(=-∴ ,即)sin(cos sin cos sin cos sin 2C B B C C B B A +=+=.π,2sin cos sin .A B C A B A ++=∴= 10π,sin 0,cos .2A A B <<∴≠∴= .π0π,.3B B <<∴=(2)22π4sin cos 22sin 4sin 1,(0,)3k A A A k A A ⋅=+=-++∈m n , 设,sin t A =则(]1,0∈t .2222412()12t kt t k k ⋅=-++=--++m n ,(]1,0∈t .1,k >∴Q 当1t =时,⋅m n 取最大值.依题意得,max 3()241,2k k ⋅=-++∴=m n .19.解:(1)设(x ,y )表示一个基本事件,则两次抽取卡片的所有基本事件有(1,1)、 (1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(2,1)、(2,2)、 …、(6,5)、(6,6),共36个.用A 表示事件“1=-a b ”,即21x y -=-,则A包含的基本事件有(1,1)、(3,2)、(5,3)共3个,31()3612P A ==.(2)020,x y ⋅>->即a b 在(1)中的36个基本事件中,满足20x y ->的事件有(3,1)、(4,1)、(5、1)、(6,1)、(5,2)、(6、2)共6个,所以P (B )=61366=.20. 解:(1)设数列{a n }的公比为q ,由a 23=9a 2a 6得a 23=9a 24,所以q 2=19. 由条件可知q >0,故q =13.由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=13.故数列{a n }的通项公式为a n =13n .(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n (n +1)2.故1b n =-2n (n +1)=-2⎝⎛⎭⎫1n -1n +1, 1b 1+1b 2+…+1b n =-21111112231n n ⎡⎤⎛⎫⎛⎫⎛⎫-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦=-2n n +1. 所以数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和为-2n n +1.21.解:(1)由已知可设圆C 的方程为)3(5)(22<=+-m y m x . 将点A 的坐标代入圆C 的方程,得51)3(2=+-m ,即4)3(2=-m ,解得51==m m ,或. ∵3<m ,∴1=m ,∴圆C 的方程为5)1(22=+-y x .(2)直线1PF 能与圆C 相切.依题意,设直线1PF 的方程为4)4(+-=x k y ,即044=+--k y kx . 若直线1PF 与圆C 相切,则514402=++--k k k ,∴0112442=+-k k ,解得21211==k k ,或.当211=k 时,直线1PF 与x 轴的交点横坐标为1136,不合题意,舍去; 当21=k 时,直线1PF 与x 轴的交点横坐标为4-, ∴)0,4()0,4(421F F c ,,-=, ∴由椭圆的定义得262251)43(1)43(2222221=+=+-+++=+=AF AF a ,∴23=a ,即182=a , ∴2222=-=c a b , 直线1PF 能与圆C 相切,直线1PF 的方程为042=+-y x ,椭圆E 的方程为121822=+y x .22.解:(1)3232()2(2)2g x x x x x x x x =--++=-++-,所以2()321g x x x '=-++.由()0g x '=得13x =-或1x =.所以函数()g x 在13x =-处取得极小值5927-;在1x =处取得极大值1-. (2) 因为2()321f x x ax '=++的对称轴为3a x =-. ①若133a -≥-即1a ≤时,要使函数()f x 在1(,)3-+∞上恒为单调递增函数,则有24120a ∆=-≤,解得:a ≤1a ≤≤; ②若133a -<-即1a >时,要使函数()f x 在1(,)3-+∞上恒为单调递增函数,则有2111()3()2()10333f a '-=⋅-+⋅-+≥,解得:2a ≤,所以12a <≤.综上,实数a 的取值范围为2a ≤≤.。

相关文档
最新文档