桩基础计算书
桩基础设计(计算书、图纸)工程计算书
基础工程计算书桩基础设计1.1设计资料 1.1.1上部结构资料某教学实验楼,上部结构为七层框架,其框架主梁、次梁、楼板均为现浇整体式,混凝土强度等级为C30。
底层层高3.4m (局部10m ,内有10t 桥式吊车),其余层高3.3m ,底层拄网平面布置及柱底菏载见图2.1。
1.1.2建筑物场地资料拟建建筑场地位于市区内,地势平坦,建筑平面位置见图2.2。
建筑场地位于非地震区,不考虑地震影响。
图2.2建筑物平面位置示意图单位:m场地地下水类型为潜水,地下水位离地表 2.1m,根据已有的分析资料,该场地底下水对混凝土无腐蚀性。
建筑地基的土层分布情况及其各土层的物理、力学指标见表2.1表2.1地基各土层物理、力学指标1.2选择桩型、桩端持力层、承台埋深1.2.1选择桩型因框架跨度大而且极不均匀,柱底荷载大,不宜采用浅基础。
根据施工场地、地基条件以及场地周围的环境条件,选择桩基础。
因钻孔灌注桩水泥排泄不便,为了减小对周围环境的污染,采用静压预制桩,这样可以较好的保证桩身质量,并在较短施工工期完成沉桩任务,同时,当地的施工技术力量、施工设备及材料供应也为采用静压桩提供了可能性。
1.2.2选择桩的几何尺寸及承台埋深依据地基土的分布,第④层土是较合适的桩端持力层。
桩端全断面进入持力层1.0m(>d2),工程桩进土深度为23.1m。
承台底进入第②层土0.3m,所以承台的埋深为2.1m,桩基的有效长度即为21m。
桩截面尺寸选用450m m×450m m,由施工设备要求,桩分为两节,上段长11m,下段长11m(不包括桩尖长度在内),实际桩长比有效桩长大1m,这是考虑持力层可能有一定的起伏以及桩需嵌入承台一定长度而留有的余地。
桩基及土层分布示意图见图2.3. 1.3确定单桩极限承载力标准值本设计属二级建筑桩基,采用经验参数法和静力触探法估算单桩承载力标准值。
根据单桥探头静力触探资料s P 按图1.2确定桩侧极限阻力标准值。
桩基础设计计算书例题
桩基础设计计算书例题桩基础设计计算书是土木工程中的重要文件,用于评估和确定桩基础的尺寸、长度和承载能力。
下面是一个例题及其相关参考内容:例题:设计一个单桩基础,直径为0.6m,承载力要求为2500kN,地下水位0.5m,土壤类型为粘土。
步骤1:确定设计桩长根据土壤类型和地下水位,选择适当的桩长计算方法。
参考内容:- 使用管理规程 GB 50007-2011《建筑地基基础设计规范》中的方法计算桩长- 当地下水位低于地面以上1m时,桩长计算公式为L = H + 1.5B + D- 当地下水位高于地面以上1m时,桩长计算公式为L = H + B + D其中,L为设计桩长,H为地下水位深度,B为土壤的冻土深度,D为桩基础埋置深度。
- 根据相关地方标准或规范,确定特定土壤类型下的桩长计算方法,如国家标准DL/T 5044-2006《建筑地基检测与设计规范》的相应规定。
步骤2:计算桩的抗力参考内容:- 根据桩基础的尺寸、土壤类型和设计桩长,查找或计算相应的桩基础抗力表或计算方法,如《桩基础设计手册》等。
- 考虑桩基础在受压和受拉情况下的承载能力,并根据土壤的特性来计算桩的侧阻力、端阻力和摩擦力等。
- 对于复杂或独特的情况,可能需要进行现场试验或数值模拟等方法以获得更准确的桩抗力数据。
步骤3:校核桩基础的承载力参考内容:- 根据设计的承载力要求,计算桩基础的承载力,包括桩身的承载力和桩顶的承载力。
- 根据相关规范和标准,进行桩基础的稳定性和安全性校核,确保桩基础在不同条件下的承载能力满足设计要求。
- 通过安全系数的计算,评估桩基础在不同荷载工况下的安全性。
步骤4:绘制桩基础平面和纵断面图参考内容:- 绘制桩基础平面和纵断面图,清晰地表示出桩的布置、尺寸和埋置深度等。
- 在图纸中注明每根桩的编号和相应的设计参数。
- 根据需要,注明桩基础与其他结构的连接方式和构造细节。
综上所述,这个例题中涵盖了桩基础设计计算书中的关键步骤和参考内容。
桩基础实例设计计算书
桩基础实例设计计算书桩基础设计计算书⼀:建筑设计资料1、建筑场地⼟层按其成因⼟的特征和⼒学性质的不同⾃上⽽下划分为四层,物理⼒学指标见下表。
勘查期间测得地下⽔混合⽔位深为,地下⽔⽔质分析结果表明,本场地下⽔⽆腐蚀性。
建筑安全等级为2级,已知上部框架结构由柱⼦传来的荷载:V = 3200kN, M=400kN mg,H = 50kN;柱的截⾯尺⼨为:400×400mm;承台底⾯埋深:D =。
2、根据地质资料,以黄⼟粉质粘⼟为桩尖持⼒层,钢筋混凝⼟预制桩断⾯尺⼨为300×300,桩长为3、桩⾝资料:混凝⼟为C30,轴⼼抗压强度设计值fc=15MPa,弯曲强度设计值为fm =,主筋采⽤:4Φ16,强度设计值:fy=310MPa4、承台设计资料:混凝⼟为C30,轴⼼抗压强度设计值为fc=15MPa,弯曲抗压强度设计值为fm=。
、附:1):⼟层主要物理⼒学指标;2):桩静载荷试验曲线。
附表⼀:附表⼆:桩静载荷试验曲线⼆:设计要求:1、单桩竖向承载⼒标准值和设计值的计算;2、确定桩数和桩的平⾯布置图;3、群桩中基桩的受⼒验算4、承台结构设计及验算;5、桩及承台的施⼯图设计:包括桩的平⾯布置图,桩⾝配筋图,承台配筋和必要的施⼯说明;6、需要提交的报告:计算说明书和桩基础施⼯图。
三:桩基础设计(⼀):必要资料准备1、建筑物的类型机规模:住宅楼2、岩⼟⼯程勘察报告:见上页附表3、环境及检测条件:地下⽔⽆腐蚀性,Q —S 曲线见附表(⼆):外部荷载及桩型确定1、柱传来荷载:V = 3200kN 、M = 400kN ?m 、H = 50kN2、桩型确定:1)、由题意选桩为钢筋混凝⼟预制桩;2)、构造尺⼨:桩长L =,截⾯尺⼨:300×300mm 3)、桩⾝:混凝⼟强度 C30、cf=15MPa 、m=4φ16yf=310MPa 4)、承台材料:混凝⼟强度C30、cf=15MPa 、mf=tf=(三):单桩承载⼒确定 1、单桩竖向承载⼒的确定:1)、根据桩⾝材料强度(?=按折减,配筋φ16)2()1.0(150.25300310803.8)586.7pS cyR kNf f AA ?''=+=+?=2)、根据地基基础规范公式计算:1°、桩尖⼟端承载⼒计算:粉质粘⼟,LI=,⼊⼟深度为100800(800)8805pakPa q -=?= 2°、桩侧⼟摩擦⼒:粉质粘⼟层1:1.0LI17~24sakPa q= 取18kPa粉质粘⼟层2:0.60LI= ,24~31sakPa q= 取28kPa28800.340.3(189281)307.2p ippasia Ra kPaqq lA µ=+=?++?=∑3)、根据静载荷试验数据计算:根据静载荷单桩承载⼒试验Q s -曲线,按明显拐点法得单桩极限承载⼒550ukN Q=单桩承载⼒标准值:55027522uk kN QR === 根据以上各种条件下的计算结果,取单桩竖向承载⼒标准值275akN R单桩竖向承载⼒设计值1.2 1.2275330k kN R R ==?=4)、确定桩数和桩的布置:1°、初步假定承台的尺⼨为 223m ? 上部结构传来垂直荷载: 3200V kN = 承台和⼟⾃重: 2(23)20240G kN == 32002401.1 1.111.5330F G n R ++=?=?= 取 12n =根桩距:()()3~43~40.30.9~1.2S d m ==?= 取 1.0S m =2°、承台平⾯尺⼨及柱排列如下图:桩平⾯布置图1:100桩⽴⾯图(四):单桩受⼒验算: 1、单桩所受平均⼒:3200 2.6 3.6220297.912F G N kPa R n ++===<2、单桩所受最⼤及最⼩⼒:()()max max min2240050 1.5 1.5297.960.5 1.5iF G nMx Nx+??+=±=±=??∑3、单桩⽔平承载⼒计算: 150 4.212i H kPa n H === , 3200266.712i V == 4.211266.763.512H V ==<即 i V 与i H 合⼒与i V 的夹⾓⼩于5o∴单桩⽔平承载⼒满⾜要求,不需要进⼀步的验算。
(完整版)桩基础设计计算书
目录1设计任务 (2)1.1设计资料 (2)1.2设计要求 (3)2 桩基持力层,桩型,桩长的确定 (3)3 单桩承载力确定 (3)3.1单桩竖向承载力的确定 (3)4 桩数布置及承台设计 (4)5 复合桩基荷载验算 (6)6 桩身和承台设计 (9)7 沉降计算 (14)8 构造要求及施工要求 (20)8.1预制桩的施工 (20)8.2混凝土预制桩的接桩 (21)8.3凝土预制桩的沉桩 (22)8.4预制桩沉桩对环境的影响分析及防治措施 (23)8.5结论与建议 (25)9 参考文献 (25)一、设计任务书(一)、设计资料1、某地方建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为5层,物理力学指标见下表。
勘查期间测得地下水混合水位深为2.1m,本场地下水无腐蚀性。
建筑安全等级为2级,已知上部框架结构由柱子传来的荷载。
承台底面埋深:D =2.1m。
(二)、设计要求:1、桩基持力层、桩型、承台埋深选择2、确定单桩承载力3、桩数布置及承台设计4、群桩承载力验算5、桩身结构设计和计算6、承台设计计算7、群桩沉降计算8、绘制桩承台施工图二、桩基持力层,桩型,桩长的确定根据设计任务书所提供的资料,分析表明,在柱下荷载作用下,天然地基基础难以满足设计要求,故考虑选用桩基础。
由地基勘查资料,确定选用第四土层黄褐色粉质粘土为桩端持力层。
根据工程请况承台埋深 2.1m,预选钢筋混凝土预制桩断面尺寸为450㎜×450㎜。
桩长21.1m。
三、单桩承载力确定(一)、单桩竖向承载力的确定:1、根据地质条件选择持力层,确定桩的断面尺寸和长度。
根据地质条件以第四层黄褐色粉土夹粉质粘土为持力层,采用截面为450×450mm的预置钢筋混凝土方桩,桩尖进入持力层1.0m;镶入承台0.1m,桩长21.1 m。
承台底部埋深2.1 m。
2、确定单桩竖向承载力标准值Quk可根据经验公式估算:Quk= Qsk+ Qpk=µ∑qsikli+qpkApQ——单桩极限摩阻力标准值(kN)skQ——单桩极限端阻力标准值(kN)pku——桩的横断面周长(m)A——桩的横断面底面积(2m)pL——桩周各层土的厚度(m)iq——桩周第i层土的单位极限摩阻力标准值(a kP)sikq——桩底土的单位极限端阻力标准值(a kP)pk桩周长:µ=450×4=1800mm=1.8m桩横截面积:Ap=0.45²=0.2025㎡桩侧土极限摩擦力标准值qsik:查表得:用经验参数法:粉质粘土层:L I=0.95,取qsk=35kPa淤泥质粉质粘土:qsk=29kPa粉质粘土:L I=0.70,取qsk=55kPa桩端土极限承载力标准值qpk,查表得:qpk=2200 kPa用经验参数法求得Quk1=1.8×(35×8.0+29×12.0+1.0×55) +2200×0.2025=1674.9KN用静力触探法求得Quk2=1.8×(36×8.0+43×12.0+1.0×111) +1784.5×0.2025=2008.4KN3、确定单桩竖向承载力设计值R,并且确定桩数n和桩的布置先不考虑群桩效应,估算单桩竖向承载力设计值R为:R=Qsk/rs+Qpk/rpR——单桩竖向极限承载力设计值,kNQ——单桩总极限侧阻力力标准值,kNskQ——单桩总极限端阻力力标准值,kNpkγ——桩侧阻力分项抗力系数sγ——桩端阻力分项抗力系数p用经验参数法时:查表rs=rp=1.65R1=Qsk/rs+Qpk/rp=1229.4/1.65+445.5/1.65=1015.09KN 用静力触探法时:查表rs=rp=1.60R2=Qsk/rs+Qpk/rp=1647/1.60+361.4/1.60=1255.25KNRz=min(R1,R2)= 1015.09 KN四、桩数布置及承台设计根据设计资料,以轴线⑦为例。
桩基础稳定性计算书
桩基础稳定性计算书1工程;工程建设地点:;属于结构;地上o层;地下o层;建筑高度:Om标准层层高:0m ;总建筑面积:0平方米;总工期:0天。
本工程由投资建设,设计,地质勘察,监理,组织施工;由担任项目经理,担任技术负责人。
本计算书主要依据施工图纸及以下规范及参考文献编制:《建筑基坑支护技术规程》(JGJ120-99)。
一、参数信息1. 基坑基本参数基坑开挖深度H:1.6m;桩与土接触点深度H1:1.5m;塔吊最大倾覆力矩M 630kN・m 桩直径d:0.5m;桩入土深度H2:30m;主动土压力分配系数:0.7 ;基坑外侧水位深度h wa:5m;基坑以下水位深度h wp:2m;稳定性计算安全系数K:1.2 ;2. 土层参数土层类型厚度h i 重度Y浮重度向内聚力C i 摩擦角(m)(kN/m3)(kN/m3)(kPa)(°)碎石素填土 2 19 25 0 0粉质粘土26 19.2 27.9 20 30淤泥质粉质粘土3 16.7 52.4 6 15微风化灰岩 5 18 22 4 53. 荷载参数布置方式荷载值P i (kPa)距基坑边线距离l 1(m)作用宽度a i(m)满布10 -- --局布 5 1 24. 支撑参数支撑点与填土面距离(m)作用力(kN)1 0.5 20示意图二、桩侧土压力计算1、水平荷载(1)、主动土压力系数:K ai=tan2(45° -奶/2)= tan 2(45-0/2 )=1;K a2=tan2(45° -血/2)= tan 2(45-0/2 )=1;K a3=tan2(45°-也/2) = tan 2(45-0/2 ) =1;K a4=tan2(45°-如/2) = tan 2(45-30/2 ) =0.333;K a5=tan2(45°-松/2) = tan 2(45-30/2 ) =0.333;K a6=tan2(45°-妬/2) = tan 2(45-15/2 ) =0.589;K a7=tan2(45°-也/2) = tan 2(45-5/2 ) =0.84 ;(2)、土压力、地下水以及地面附加荷载产生的水平荷载:第1层土:0 ~ 1 米;oai上= P 1 K ai-2C i K ai0.5 = 10 X 1-2 X 0X 10.5 = 10kN/m ;cai T = ( Y h1+P1)K a1-2C1K a10.5 = [19 1X10] X-2 XX10.5 = 29kN/m;第2层土:1 ~ 1.5 米;出=刀Yh i/ Y= 19/19 = 1;C2上=[Y H2'+P i+P?a2/(a2+2l2)]K a2-2C2K a20.5 = [19 1X10+2.5] X2 XX” =31.5kN/m;C2下=[Y(H2'+h2)+ P i+P2a2/(a2+2l2)]K a2-2C2K a20.5 = [19 (1+0.5) + 10+2.5] 1-2 X0X10.5 = 41kN/m;第3层土:1.5 ~ 2 米;Hs'=刀Yh i/Y = 28.5/19 = 1.5;C3上=[Y H3'+P I +P?a2/(a2+2l2)]K a3-2C3K a30.5 = [19 15+10+2.5] 1-2 X0X10.5 =41kN/m;C3下= [ Y(H3'+h3)+ P i+P2a2/(a2+2l2)]K a3-2C3K a30.5 =[19 X(1.5+0.5)+10+2.5] 1-2X>0X10.5 = 50.5kN/m;第4层土:2 ~ 5 米;W = 刀Yh/ Y = 38/19.2 = 1.979;0.5C4 上=[Y H4'+P i+F2a2/(a2+2l2)]K a4-2C4K a4 =0.5[19.2 1^979+10+2.5] 0.333-2 20X0.333 = -6.261kN/m;C4 下=[Y(H4'+h4)+ P i+P2a2/(a2+2l2)]K a4-2C4K a40.5 =[19.2 (1.979+3)+10+2.5] 0.333-2 20 >0.3330.5 = 12.939kN/m;第5层土:5 ~ 28 米;Hs'= 刀yh i/ Y = 95.6/19.2 = 4.979他5 上=[Y H5'+P I+F2宠/@+2l2)]K a5-2C5K a50.5 =0.5[19.2 电979+10+2.5] 0.333-2 20X).333 = 12.939kN/m;ca5下= [ Y(H5'+P l+P2a/(a2+2l2)]K a5-2C5K a50.5+ Y fe K a5+0.5 驹人52 =[19.2 X4.979+10+2.5] 0X.333-2 2X0X0.3330.5+27.9X23X0.333+0.5 1X0X232 =2871.839kN/m;第6层土:28 ~ 31 米;H6' = H 5' = 4.979 ;他6上=[Y H6'+P1]K a6-2C6K a6°.5+ 酋6心6+0.5 驹人62 =[16.7 X4.979+10] 0X.589-2 X6X0.5890.5+52.4X23X0.589+0.5 1X0X232 =3400.25kN/m;ca6下= [ Y H6'+P1]K a6-2C6K a6D.5+ yh6K a6+0.5 Yv h62 =[16.7 X4.979+10] 0X.589-2 X6X0.5890.5+52.4X26X0.589+0.5 1X0X262 =4227.808kN/m;第7层土:31 ~ 31.6 米;H7' = H 6' = 4.979 ;ca7上=[Y H7'+P1]K a7-2C7K a70.5+ ^K a7+0.5 ^w h72 =[18X4.979+10] 0X.84-2 4XX0.840.5+22X26X0.84+0.5 1X0X262 = 3936.608kN/m;C&7下= [ Y H7'+P1]K a7-2C7K a7).5+ yh7K a7+0.5 ^w h72 =[18X4.979+10] 0X.84-2 4XX0.840.5+22X26.6X0.84+0.5 1X0X26.62 = 4105.491kN/m;(3)、水平荷载:临界深度:Z0=(矽下X h4)/( oa4上+ ®下)=(12.939 X 3)/(6.261 X 12.939)=2.022m ; 第1 层土:E a1=0kN/m;第2层土:E a2=0kN/m;第3层土:E a3=0kN/m;第4层土:Ea4=0.5 X Z0X oa4下=0.5 X 2.022 X 12.939=13.08kN/m ;作用位置:h a4=Z0/3+ 刀hi=2.022/3+26.6=27.274m ;第5层土:艮5=馆X ( oa5上+ 阳5下)/2=23 X (12.939+2871.839)/2=33174.954kN/m ;第6层土:作用位置:h a5=h5(2 Oa5上+ 畋下)/(3 ca5上+3o a5下)+ 刀hi=23 X (2 X 12.939+2871.839)/(3 X 12.939+3X2871.839)+3.6=11.301m ;第7层土:E a6=h6 X (阳決+ 他6下)/2=3 X (3400.25+4227.808)/2=11442.086kN/m ;作用位置:h a6=h6(2 oa6上+ 笛6下)/(3 c&6上+3 oa6下)+ 刀hi=3 X (2 X3400.25+4227.808)/(3X 3400.25+3X 4227.808)+0.6=2.046m ;第7层土:E37=h7X ( oa/上+ca7下”2=0.6 X (3936.608+4105.491)/2=2412.63kN/m ; 作用位置:h a7=hz(2 商上+ca7下)/(3 商上+3o a7下)+ 刀hi=0.6 X (2 X 3936.608+4105.491)/(3 X 3936.608+3 X 4105.491)+0=0.298m ;土压力合力:E a= 2E ai= 13.08+33174.954+11442.086+2412.63=47042.75kN/m 合力作用点:h a=习lE ai/E a F(13.08 2X7.274+33174.954 1X1.301+11442.086 2X.046+2412.630X.298)/47042.75=8.49m;2、水平抗力计算(1)、被动土压力系数:2 K pi =tan (45°+忖2): = tan 2(45+0/2)=i;2K p2 =tan (45°+ 血/2):= tan 2(45+30/2)=3;K p3 =tan2(45°+ 初2): = tan 2(45+30/2)=3;K p4 =tan2(45°+ 创2): = tan 2(45+i5/2)=i.698;K p5 =tan2(45°+ 妬/2):= tan 2(45+5/2)=i.i9i;(2)、土压力、地下水产生的水平荷载:第1层土:1.6 ~ 2 米;cpi上= 2C 1 K pi0.5 = 2 X0X 10.5 = 0kN/m ;0.5 0.5c i下=Y h i K pi+2C i K pi = 19 X4 X+2X0X = 7.6kN/m;第2层土:2 ~ 3.6 米;f = 刀也/ Y= 7.6/I9.2 = 0.396;中2上=Y H2'K p2+2C2K p20.5 = I9.2 0X96 X+2X20X30.5 = 92.082kN/m;C2下= Y(H2'+h2)K p2+2C2K p20.5 = I9.2 (X396+I.6) 3+2X20X30.5 = I84.242kN/m;第3层土:3.6 ~ 28 米;H3' = H 2' = 0.396 ;0.5 2 C3上= [ Y H3']K p3+2C3K p3 + 丫'hK p3+0.5 Y h32 =[19.2 区396] 3+2>20>30'5+27.9 J0X3+O.5 X0X)2 = 92.082kN/m;§3下=[Y H3']K p3+2C3K p30.5+ Y '3K p3+0.5 Y h32 =[19.2 0.396] 3+2 >20 >30.5+27.9 24.4 3+0.5 X0 >24.42 = 5111.162kN/m;第4层土:28 ~31 米;H4' = H 3' = 0.396 ;0.5 2§4上=Y H『K p4+2C4K p4 +丫'4"K p4+0.5 Y h4 =16.7 0.396 *698+2 6 >1.6980.5+52.4 24.4 1.698+0.5 10 >24.42 = 5175.167kN/m;0.5 2§4下= Y H4‘K p4+2C4K p4 . + Y '4K p4+0.5 Y"4 =16.7 0.396 1.698+2 6 1.6980.5+52.4 27.4 1.698+0.5 10 27.42 = 6219.155kN/m;第5层土:31 ~ 31.6 米;H5' = H 4' = 0.396 ;0.5 2§5上= Y H5‘K p5+2C5K p5 . + Y 5K p5+0.5 Y"5 =0.5 218 0.396 1.191+2 4 1.1910.5+22 27.4 1.191+0.5 10 27.42 = 4488.923kN/m;§5下= Y H5'K p5+2C5K p5°.5+ Y '5K p5+0.5 Y h52 =18 >0.396 1.191+2 4 >1.1910.5+22 >28 >1.191+0.5 10 >2$ = 4670.844kN/m;(3)、水平荷载:第1 层土:Eo1=hi >(§1 上+ §1 下)/2=0.4 >(0+7.6)/2=1.52kN/m ;作用位置:h p1=hi(2 §1 上+§1 下)/(3 §1 上+3§1 下)+ 刀hi=0.4 x (2 x 0+7.6)/(3 >0+3 >7.6)+29.6=29.733m ;第2层土:Eo2=h2 >(§2上+ §2下)/2=1.6 >(92.082+184.242)/2=221.059kN/m ;作用位置:h p2=hz(2 §2上+§2下)/(3 §2上+3 §2下)+ 刀hi=1.6 X (2 X92.082+184.242)/(3 92.082+3 184.242)+28=28.711m;第4层土:第3层土:§3=馆 > (§尹+ §3下)/2=24.4 >(92.082+5111.162)/2=63479.578kN/m ;作用位置:h p3=h3(2 §3上+§3下)/(3 §3上+3 §3下)+ 刀hi=24.4 X (2 X 92.082+5111.162)/(3 X 92.082+3 X 5111.162)+3.6=11.877m ;第5层土:E p4=h4 x ( cp4上+3下)/2=3 X (5175.167+6219.155)/2=17091.484kN/m ;作用位置:h p4=h4(2 qp4上+ q54下)/(3 op4上+3 qp4下)+ 刀hi=3 X (2 X5175.167+6219.155)/(3 X5175.167+3X6219.155)+0.6=2.054m ;第5层土:Eo5=h5 X ( cps上+ qp5下)/2=0.6 X (4488.923+4670.844)/2=2747.93kN/m ;作用位置:h p5=h5(2 C5上+q55下)/(3 85上+3 C P5下)+ 刀hi=0.6 X (2 X4488.923+4670.844)/(3 X 4488.923+3X 4670.844)+0=0.298m ;土压力合力:E p= 艺E i =1.52+221.059+63479.578+17091.484+2747.93=83541.571kN/m;合力作用点:h p=》h pi/E p=(1.52 X29.733+221.059 2X8.711+63479.578 1X1.877+17091.484 2X.054+2747.930X.298)/8354 1.571=9.532m;三、桩侧弯矩计算1. 主动土压力对桩底的弯矩M = 0.7 X 0.5 X 47042.75 X 8.49 = 139788.303kN • m2. 被动土压力对桩底的弯矩M = 0.5 X 83541.571 X 9.532 = 398142.062kN • m3. 支撑对桩底弯矩M = 622kN • m四、基础稳定性计算M+M》K(M+M)622+398142.062=398764.062kN -m > 1.2 X (630+139788.303)=168501.964kN m 塔吊稳定性满足要求!。
某住宅楼桩基础设计计算书
某住宅楼桩基础设计计算书一、工程概况本住宅楼位于_____,总建筑面积为_____平方米,地上_____层,地下_____层。
结构形式为_____,基础采用桩基础。
建筑物的安全等级为_____级,抗震设防烈度为_____度。
二、地质条件根据地质勘察报告,场地土层分布情况如下:1、第一层:填土,厚度约_____米,承载力特征值为_____kPa。
2、第二层:粉质黏土,厚度约_____米,承载力特征值为_____kPa。
3、第三层:粉砂,厚度约_____米,承载力特征值为_____kPa。
4、第四层:中砂,厚度约_____米,承载力特征值为_____kPa。
地下水水位埋深约_____米。
三、桩型选择综合考虑工程地质条件、建筑物荷载、施工条件等因素,本工程选用_____桩型。
该桩型具有承载力高、施工方便等优点。
四、单桩竖向承载力计算1、根据《建筑桩基技术规范》(JGJ 94 2008),单桩竖向极限承载力标准值按下式计算:Quk = Qsk + Qpk其中,Qsk 为总极限侧阻力标准值;Qpk 为总极限端阻力标准值。
2、总极限侧阻力标准值 Qsk 计算:Qsk =∑uqsikli式中,u 为桩身周长;qsik 为第 i 层土的极限侧阻力标准值;li 为第i 层土的厚度。
3、总极限端阻力标准值 Qpk 计算:Qpk = qpkAp式中,qpk 为极限端阻力标准值;Ap 为桩端面积。
通过计算,单桩竖向极限承载力标准值 Quk 为_____kN。
五、桩数确定1、建筑物的总竖向荷载标准值为_____kN。
2、考虑一定的安全系数,单桩竖向承载力特征值Ra =Quk /K,其中 K 为安全系数,取_____。
3、桩数n =建筑物总竖向荷载标准值/单桩竖向承载力特征值,计算得桩数 n 为_____根。
六、桩的布置桩在基础平面内呈_____布置,桩间距满足规范要求。
七、桩身结构设计1、桩身混凝土强度等级选用_____,根据规范要求,计算桩身承载力。
桩基础计算书
本工程中fak=1000kPa1、当d=1400D=1300时,N max =D 2×3.14×f a /4=1327.321775kN192.422388kN则N =N max -N 1=1134.899388kNQ=1327.321775kNA p ×f c ×Ψc =10991.16677kN所以Q <Ap×fc×Ψc3078.7582mm 2选用钢筋为:16φ16N=16φ=16As=3216.98816 2、当d=1100D=1400时,N max =D 2×3.14×f a /4=1539.3791kN118.791372kN则N =N max -N 1=1420.587728kNQ=1539.3791kNA p ×f c ×Ψc =6785.363162kN所以Q <Ap×fc×Ψc1900.66195mm 2选用钢筋为:13φ14N=13φ=14As=2001.19283 3、当d=1200D=1500时,N max =D 2×3.14×f a /4=1767.144375kN141.37155kN则N =N max -N 1=1625.772825kNQ=1767.144375kNA p ×f c ×Ψc =8075.142936kN所以Q <Ap×fc×Ψc钢筋根数 N 钢筋直径mm 面积 As=N*(Pi*φ^2/4)配筋满足要求假设每根桩长5m,那么桩身自重N1为桩基础计算书桩的承载力计算桩的承载力计算假设每根桩长5m,那么桩身自重N1为桩身强度验算桩身强度验算按构造配筋,最小配筋面积应为配筋满足要求满足规范要求钢筋直径mm 面积 As=N*(Pi*φ^2/4)满足规范要求桩的承载力计算假设每根桩长5m,那么桩身自重N1为桩身强度验算满足规范要求按构造配筋,最小配筋面积应为钢筋根数 N2261.9448mm 2选用钢筋为:15φ14N=15φ=14As=2309.06865 4、当d=1500D=1900时,N max =D 2×3.14×f a /4=2835.284975kN220.893047kN 则N =N max -N 1=2614.391928kNQ=2835.284975kNA p ×f c ×Ψc =12617.41084kN所以Q <Ap×fc×Ψc3534.28875mm 2选用钢筋为:18φ16N=18φ=16As=3619.11168 5、当d=1600D=2000时,N max =D 2×3.14×f a /4=3141.59kN251.3272kN 则N =N max -N 1=2890.2628kNQ=3141.59kNA p ×f c ×Ψc =14355.80966kN所以Q <Ap×fc×Ψc4021.2352mm 2选用钢筋为:21φ16N=21φ=16As=4222.29696桩身强度验算面积 As=N*(Pi*φ^2/4)配筋满足要求满足规范要求按构造配筋,最小配筋面积应为钢筋根数 N 钢筋直径mm 按构造配筋,最小配筋面积应为钢筋根数 N 假设每根桩长5m,那么桩身自重N1为桩身强度验算满足规范要求按构造配筋,最小配筋面积应为钢筋直径mm 桩的承载力计算假设每根桩长5m,那么桩身自重N1为面积 As=N*(Pi*φ^2/4)桩的承载力计算配筋满足要求钢筋根数 N 钢筋直径mm 面积 As=N*(Pi*φ^2/4)配筋满足要求。
桩基础课程设计计算书
桩基础课程设计计算书桩基础是土木工程中非常重要的一部分,它承担着支撑建筑物的重要作用。
在设计桩基础时,需要进行一系列的计算和分析,以确保其稳定性和安全性。
本文将介绍桩基础课程设计计算书的内容,以及其中涉及的一些重要计算。
一、桩基础设计的背景和意义桩基础是一种常见的基础形式,主要用于承载建筑物的重力和水平力。
它通过将桩打入地下,利用桩与土壤之间的摩擦力和桩端的抗拔力来支撑建筑物。
桩基础的设计需要考虑土壤的性质、桩的类型和尺寸、荷载条件等因素。
二、桩基础设计计算书的内容1. 工程背景和设计要求:介绍工程的背景和设计的基本要求,包括建筑物的类型、土壤条件、设计荷载等。
2. 土壤力学参数的确定:确定土壤的力学参数,包括土壤的强度参数、变形参数等,这些参数将用于后续的计算。
3. 桩的类型和尺寸选择:根据土壤条件和设计荷载,选择合适的桩的类型和尺寸,包括钢筋混凝土桩、预应力混凝土桩等。
4. 桩身的承载力计算:根据桩的类型和尺寸,计算桩身的承载力,考虑桩身与土壤的摩擦力和桩身的抗压能力。
5. 桩端的承载力计算:根据桩的类型和尺寸,计算桩端的承载力,考虑桩端的抗拔能力和桩端的摩擦力。
6. 桩基础的稳定性分析:对桩基础的稳定性进行分析,包括桩身的稳定性和桩端的稳定性,确保桩基础在不同荷载条件下的稳定性。
7. 桩基础的变形分析:对桩基础的变形进行分析,包括桩身的弯曲变形和桩端的沉降变形,确保桩基础在设计寿命内的变形满足要求。
8. 桩基础的设计优化:根据上述分析结果,对桩基础的设计进行优化,包括调整桩的类型和尺寸、增加桩的数量等,以提高桩基础的承载能力和稳定性。
三、桩基础设计计算书的重要性桩基础设计计算书是桩基础设计的重要依据,它包含了桩基础设计的各个环节的计算方法和结果。
通过桩基础设计计算书,可以评估桩基础的承载能力和稳定性,指导工程的施工和监测,确保工程的安全性和可靠性。
四、桩基础设计计算书的应用桩基础设计计算书广泛应用于土木工程领域,包括建筑物的基础设计、桥梁的基础设计、码头的基础设计等。
桩基础课程设计计算书
一、教学内容
《土木工程基础》第五章:桩基础的设计与计算
1.桩基础的类型与构造特点
-预制桩
-现场浇筑桩
-混合桩
2.桩基础的设计原则与要求
-桩长度的确定
-桩径的选择
-桩间距的确定
3.桩基础的计算方法
-单桩承载力计算
-桩群承载力计算
-桩基沉降计算
4.桩基础施工质量控制
-施工准备
-钻孔、灌注桩施工
-预制桩打桩施工
5.桩基础工程实例分析
-工程背景
-设计与计算方法
-施工过程及质量控制
本章节内容紧密围绕桩基础的设计与计算,结合教材内容,旨在让学生掌握桩基础的基本知识、设计原则和计算方法,提高解决实际工程问题的能力。
2、教学内容
《土木工程基础》第五章:桩基础课程设计计算书
6.桩基础设计所需参数的确定
-桩基与地基处理技术的结合
19.桩基础设计的创新思维培养
-设计方案的创新方法
-解决问题的创新策略
-跨学科合作与交流
20.课程总结与评价
-学生设计作品展示
-设计过程中的经验与教训
-教学效果反馈与改进
本部分教学内容着重于实践应用和安全质量控制,同时强调创新思维的培养。通过桩基础与其他基础形式的结合应用,拓宽学生的知识面,并结合课程总结与评价,提高教学质量和学生的学习效果。
4、教学内容
《土木工程基础》第五章:桩基础课程设计计算书
16.桩基础施工中的安全措施
-施工现场安全管理
-施工人员安全培训
-应急预案制定
17.桩基础施工中的质量控制
-施工过程中的质量检测
-桩基工程的验收标准
-质量问题处理方法
课程设计基础工程桩基础计算书
目录一、设计资料 (4)二、确定桩的长度和承台埋深 (5)三、确定单桩的竖向承载力 (5)四、轴线选择 (5)五、初步确定桩数及承台尺寸 (5)六、群桩基础中单桩承载力验算 (6)七、确定桩的平面布置 (6)八、承台结构计算 (6)1、桩顶最大竖向力 (6)2、承台受弯验算及承台配筋 (6)3、承台柱下抗冲切验算 (7)4、承台角桩抗冲切验算 (8)5、承台抗剪验算 (9)九、单桩配筋设计和计算 (10)一、设计资料1、地形拟建建筑场地地势平坦,局部堆有建筑垃圾;2、工程地质条件自上而下土层依次如下:号土层:素填土,层厚约1.5m,稍湿,松散,承载力特征值fak=95kPa号土层:淤泥质土,层厚3.3m,流塑,承载力特征值fak=65kPa;号土层:粉砂,层厚6.6m,稍密,承载力特征值fak=110kPa;号土层:粉质黏土,层厚4.2m,湿,可塑,承载力特征值fak=165kPa;号土层:粉砂层,钻孔未穿透,中密-密实,承载力特征值fak=280kPa;3、岩土设计技术参数岩土设计参数如表和表所示.4、水文地质条件1拟建场区地下水对混凝土结构无腐蚀性; 2地下水位深度:位于地表下3.5m;5、场地条件建筑物所处场地抗震设防烈度为7度,场地内无可液化砂土、粉土; 6、上部结构资料拟建建筑物为六层钢筋混凝土结构,长30m,宽9.6m;室外地坪标高同自然地面,室内外高差450mm;柱截面尺寸均为4 00mm×400mm,横向承重,柱网布置如图所示;图柱网布置图7、上部结构作用、水平上部结构作用在柱底的荷载效应标准组合值如表所示,该表中弯矩MK 均为横向方向;上部结构作用在柱底的荷载效应基本组合值如表所示,该表中力VK弯短M、水平力V均为横向方向;8、材料混凝土强度等级为C25~C30,钢筋采用HPB235、HRB335级; 二、确定桩的长度和承台埋深1、 材料信息:柱混凝土强度等级:30C桩、承台混凝土强度等级:30C 2/43.1mm N f t = 钢筋强度等级:235HpB 2/210mm N f y = 钢筋强度等级:335HRB 2/300mm N f y =2、 确定桩的长度及截面尺寸:根据设计资料,选第四层粉质粘土为持力层,进入持力层,承台埋深,桩长12m;截面尺寸选为300mmx300mm;三、确定单桩竖向承载力根据公式根据设计资料,Ap=0.3m=㎡,==1.2m,p四、轴线选择选择第1组轴线B计算,根据设计资料有:柱底荷载效应标准组合值:FK=1765KN,MK=,V=130 KN;柱底荷载效应基本组合值:FK=2630KN,MK=,V=140KN五、初步确定桩数及承台尺寸先假设承台尺寸为2mx2m,厚度为1m,承台及其上土平均容重为30 kN/m3则承台及其上土自重标准值为:Gk==300 kN,根据规范,桩数n需满足:4.39.6653001765x 1.11.1n =+=+=Ra G F k k , 如下图所示:六、群桩基础中单桩承载力验算 按照设计的承台尺寸,计算 Gk= kN,单桩平均竖向力: 符合要求;单桩偏心荷载下最大竖向力:在偏心竖向力作用下,必须有: Qk,max=, 符合要求;七、确定桩的平面布置几何参数:承台边缘至桩中心距 mm C 300= mm D 300= 桩列间距 mm A 2000= 桩行间距 mm B 1000= 承台高度mm H 1000= 桩顶深入承台100 mm,承台下设100mm,强度为C25的混凝土垫层,钢筋保护层取50mm , 承台有效高度h0=850mm承台采用混凝土强度等级为C30,抗拉强度2/43.1mm N f t =, 钢筋采用:335HRB 2/300mm N f y =八、承台结构计算1、在承台结构计算中,相应于荷载效应基本组合设计值为:FK=2630KN,MK=,V=140 KN各桩不计承台及其上土重Gk 部分的净反力Ni 为: Ni=kN n F k 5.6574/2630/== 最大竖向力3、 承台受弯计算及承台配筋:1对Ⅰ-Ⅰ截面,垂直于X 轴方向计算截面处弯矩计算:2606.57958503009.0101.13309.0mm h f M A y ys =⨯⨯⨯== 选用2512φ 25890mm A s =,平行于x 轴布置;2对于Ⅱ-Ⅱ截面,垂直于Y 轴方向计算截面处弯矩计算:2606.14368503009.0105.3949.0mm h f M A y x s =⨯⨯⨯== 选用1214φ 21582mm A s =,平行于y 轴布置.4、 承台柱下抗冲切验算:计算公式:建筑地基基础设计规范JGJ-94——2008 式中:X 方向上自柱边到最近桩边的水平距离:,mm a ox 65.0= X 方向冲垮比:765.085.065.00===h a ox ox λ,X 方向冲切系数:87.0)2.0765.0(84.0)2.0(84.0=+=+=ox ox λβY 方向上自柱边到最近桩边的水平距离: mm a oy 15.0=,Y 方向冲垮比:2.018.085.015.00y <===h a o oy λ,取2.0=oy λ,Y 方向冲切系数:1.2)2.02.0(84.0)2(84.0=+=+=oy oy λβ bc=ac=0.4m,作用于冲切破坏锥体上的冲切力设计值:kN Ni F F l 5.19725.6572630=-=-= 符合要求;4、承台角桩抗冲切验算:计算公式:建筑地基基础设计规范JGJ-94——2008 角桩竖向冲反力设计值:kN N N 5.796m ax 1== 式中:Y 方向上从承台角桩内边缘引 45冲切线于承台顶面相交点至角桩边缘的水平距离当柱或承台变阶处位于该 45线以内时,则取由柱边变阶处与桩内边缘连线为冲切锥体的锥线m a x 65.01=,765.085.065.0011===h a x x λ, 58.0)2.056.011=+=x x λβ;X 方向上从承台角桩内边缘引 45冲切线于承台顶面相交点至角桩边缘的水平距离当柱或承台变阶处位于该 45线以内时,则取由柱边变阶处与桩内边缘连线为冲切锥体的锥线m a y 15.01=,2.018.0011<==h a y y λ取,2.01=y λ抗冲切=0111121)]2()2([h f a c a c t hp x y y x ⋅⋅+++βββ符合要求; 5、承台抗剪验算:计算公式:建筑地基基础设计规范JGJ-94——2008(1) Ⅰ—Ⅰ截面的抗剪验算:765.085.065.001===h a x x λ,02.2)0.1765.075.1)0.1(75.1=+=+=λβ受剪的承载力截面高度影响系数hs β的计算:985.08508008004141=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=h hs β最大剪力设计值:kN N V l 15935.7962m ax 2=⨯==抗剪切力=kN V kN h b f l t hs 6.16625.241885.0143002.2985.000=>=⨯⨯⨯=ββ 符合要求2Ⅱ-Ⅱ截面的抗剪验算:3.018.085.015.00<===h a y y λ,取3.0=y λ,受剪的承载力截面高度影响系数hs β的计算:985.08508008004141=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=h hs β 最大剪力设计值:kN Ni V l 13155.65722=⨯==抗剪切力=kN V kN h b f l t hs 13159.418985.06.21430346.1985.000=>=⨯⨯⨯⨯=ββ 符合要求; 九、单桩配筋设计和计算桩身采用C30混凝土,2/1.20mm N f c = 按构造配筋,根据建筑地基基础设计规范JGJ-94——2008,取最小配筋率%:%8.03.03.0=⨯sA 2720mm A s = 采用146φ 2923mm A s =箍筋取200@6φ,局部加密,保护层厚度为30mm.。
桩基础设计计算书
1.确定桩的规格根据地质勘察资料,确定第4层粘土为桩端持力层。
采用钢筋混凝土预制桩,桩截面为方桩,为400mm ×400mm ,桩长为22米。
承台埋深1.5米 ,桩顶嵌入承台0.1米,则桩端进持力层2.4米。
2.确定单桩竖向承载力标准值Q 和桩基竖向承载力设计值R查表内插求值得按静力触探法确定单桩竖向极限承载力标准值:p pk i sik pk sk uk A q l q u Q Q Q +=+=∑=4×0.4(24×2.0+14×15+32×2.4)+1600×0.4×0.4=791.68KN取=uk Q 791.68 kNQ 2uk R == 791.62=395kN 3.确定桩数n 及其布置粗估桩数n 为n =F/R=3200/ 395=8.1根取桩数n =9根。
桩距,查表,桩距s=3.0b p =3×0.4=1.2m承台边:a=2×(0.4+1.2)=3.2承台高度h 为1.2m, 桩顶嵌入承台0.1m ,钢筋保护层取150mm ,则h 0=1.2-0.15=1.05m=105mm4.基桩承载力验算∑++=2max max iy x x M n G F N= 3200 3.2 3.2 1.5 20(40050 1.05)1.296 1.2 1.2+⨯⨯⨯+⨯+⨯⨯ = 389+62.8 =451.8kN < 1.2R =1.2×395=474 kN 且nG F N +== 389 < R =395(满足) 5.软弱下卧层承载力验算 由Es1/Es2=3.2/1.9=1.68.z/b=2.5/2>0.5,查表得023θ=。
下卧层顶面处附加应力:()(2tan )(2tan )k c z lb p p p b z l z θθ-=++ 23.2 3.2(342.520 1.5)(3.2230.424)⨯⨯-⨯=+⨯⨯=96.9kpa 下卧层顶面处的自重应力:20 1.518.3(10.387)363.6cz σ=⨯+⨯-⨯=kpa 下卧层承载力:363.614.1/4.5czm KN m d z σγ===+ 75 1.214.1(4.50.5)142.68az f kpa =+⨯⨯-=>96.9kpa z p =(满足) 单桩水平力:1/ 5.6k k H H n kN ==(可以)相应于荷载效应基本组合时作用于桩底的荷载设计值为: 1.35 1.3532004320K F F KN ==⨯=1.35 1.35400540.K M M KN m ==⨯=1.35 1.355067.5K H H KN ==⨯=桩顶竖向设计值:480F N n==KN ()max maxmin 2iM Hh x N N x +=±∑ ()609350254067.5 1.2 1.2480480129.38{4 1.2+⨯⨯=±=±=⨯ 6.承台计算(1) 承台冲切计算:柱对承台的冲切,按下式计算:F 1.35320004320Ii l F N =-=⨯-=∑KN 受冲切承载截面高度影响系数hp β=1冲跨比λ与系数α的计算0000.80.76( 1.0)1.05a h λ===<00.840.880.760.2β==+ ()004b c hp t o a f h ββ⨯+()40.880.40.811100 1.05=⨯⨯+⨯⨯⨯ =4851>Fl角桩向上冲切,110.560.560.5830.20.760.2x βλ===++ ()102/2hp t c a f h ββ+()20.5830.60.8/211100 1.05=⨯+⨯⨯⨯ =1347.5>Nmax=609KN(可以)(2) 承台受剪计算1/408000.93hs h β⎛⎫== ⎪⎝⎭I -I 截面:00.76x λλ==175.1+=λβ=1.75/(0.76+1)=0.994 00h b f t hs ββ=0.93×0.994×1100×3.2×1.05=3416.6 kN >2Nmax=2×609=1218满足要求(3) 承台受弯计算按式计算x 34800.375769.5.i i M N y KN m ==⨯⨯=∑ 60769.5102714.0.90.93001050x s y M A KN m f h ⨯===⨯⨯ 选用1814,=s A 27702mm ,沿x,y 均匀布置。
(完整版)桩基础计算书
桩基础计算报告书计算人校对人:审核人:计算工具:PKPM软件开发单位:中国建筑科学研究院设计单位:灌注桩计算说明书1.支架计算组件钢结构支架要在37m/s(基本风压0.85KN/m2)的风载作用下正常使用,应使其主要构件满足强度要求、稳定性要求,即横梁、斜梁、斜撑、拉杆、立柱在风载作用下不失稳且立柱弯曲强度满足要求。
组件自重19.5kg。
支架计算最大柱底反力:Fx max=5.6KN,Fy max=0.9KN,Fz max=12.1KNFx min= -6.9KN, Fy min= -0.9KN,Fz min= -7.29KN2.灌注桩设计2.1基桩设计参数成桩工艺: 干作业钻孔桩承载力设计参数取值: 根据建筑桩基规范查表孔口标高0.00 m桩顶标高0.30 m桩身设计直径: d = 0.25m桩身长度: l = 1.60 m根据《建筑地基基础设计规范》GB50007-2011,设计使用年限不少于50年时,灌注桩的混凝土强度不应低于C25;所以本次设计中混凝土强度选用C25。
灌注桩纵向钢筋的配置为3跟根Ф6,箍筋采用Ф4钢筋,箍筋间距选择300~400。
2.2岩土设计参数2.3设计依据《建筑桩基技术规范》(JGJ 94-2008) 以下简称桩基规范 《建筑地基基础设计规范》GB50007-2011 《混凝土结构设计规范》GB50010-2010 《建筑结构载荷规范》GB50009-2012 《钢结构设计规范》GB50017-2003《混凝土结构工程施工质量验收规范》GB50204-2002(2011年版) 《钢结构工程施工质量验收规范》GB50205-2001 2.4单桩竖向承载力估算当根据土的物理指标与承载力参数之间的经验关系确定单桩竖向极限承载力标准值时,宜按下式估算:式中——桩侧第i 层土的极限阻力标准值,按JGJ94-2008中表5.3.5-1取值,吐鲁番当地土质为角砾,属中密-密实状土层,查表得出干作业钻孔桩的极限侧阻力标准值为135~150;——极限端阻力标准值,按JGJ94-2008中表5.3.5-2取值,吐鲁番当地土质为角砾,属中密-密实状土层,查表得出干作业钻孔桩的极限端阻力标准值为4000~5500;μ——桩身周长; ——桩周第i 层土的厚度; ——桩端面积。
桩基础设计计算书.doc
基础工程桩基础设计资料⑴上部结构资料某教学实验楼,上部结构为十层框架,其框架主梁、次梁、楼板均为现浇整体式,混凝土强度等级为C30,上部结构传至柱底的相应于荷载效应标准组合的荷载如下︰竖向力 :4800 kN , 弯距 :70 kN · m, 水平力:40 kN拟采用预制桩基础,预制桩截面尺寸为350mm * 350mm。
⑵建筑物场地资料拟建建筑物场地位于市区内,地势平坦 , 建筑物场地位于非地震地区,不考虑地震影响 . 场地地下水类型为潜水,地下水位离地表 2.1 米,根据已有资料,该场地地下水对混凝土没有腐蚀性。
建筑地基的土层分布情况及各土层物理,力学指标见下表:表 1地基各土层物理、力学指标土天然层底埋含孔液塑压缩地基层层厚重度内聚内摩土层名称深( m)( kN/m 水量隙限限模量承载力编(m)( %)( %)( %)力擦角(MPa) (kPa)比号)1 杂填土 1.5 1.5 15.52 粉质粘土9.8 8.3 17.3 32.0 0.90 34.0 19.0 15.0 20.0 5.4 1103 粘土21.8 12.0 16.2 33.8 1.06 44.0 18.0 13.8 17.5 3.2 100粉土夹粉4 27.1 5.3 18.3 30.0 0.88 33.0 18.0 16.9 22.1 11.0 148质粘土淤泥质粘5 >27.1 16.9 45.3 1.2 6.0 4.7 1.2 60土基础工程桩基础设计计算1.选择桩端持力层、承台埋深⑴ . 选择桩型由资料给出,拟采用预制桩基础。
还根据资料知,建筑物拟建场地位于市区内,为避免对周围产生噪声污染和扰动地层,宜采用静压法沉桩,这样不仅可以不影响周围环境,还能较好地保证桩身质量和沉桩精度。
⑵ . 确定桩的长度、埋深以及承台埋深依据地基土的分布,第 3 层是粘土,压缩性较高,承载力中等,且比较厚,而第 4 层是粉土夹粉质粘土,不仅压缩性低,承载力也高,所以第 4 层是比较适合的桩端持力层。
桩基础计算书
目录一.作用效应组合 (2)(一)、恒载计算 (2)(二)、活载反力计算 (3)(三)、人群荷载 (3)(四)、汽车制动力计算 (4)(五)、支座摩阻力 (4)(六)、荷载组合计算 (4)二.确定桩长 (6)三.桩基强度验算 (7)(一)、桩的内力计算 (7)(二)桩身材料截面强度验算 (11)四.桩顶纵向水平位移验算 (13)五.横系梁设计 (14)六.桩柱配筋 (14)七.裂缝宽度验算 (14)桥墩桩基础设计计算书一. 作用效应组合(一)恒载计算1、盖梁自重 )1(G =25⨯0.5⨯0.33⨯1.4=5.775 KN)2(G =(0.9+1.5)⨯2.075/2⨯25⨯1.4=87.15 KN)3(G =(0.25+1.2+5.8+1.2+5.8+1.2+0.25)⨯25⨯1.5⨯1.4=824.25KN )4(G =0.33⨯0.5⨯25⨯1.4=5.775 KN)5(G =(0.9+1.5)⨯2.065/2⨯25⨯1.4=86.73 KN1G =)1(G +)2(G +)3(G +)4(G +)5(G =1009.68 KN2、桥墩自重:2G =)]633.6738.6843.6(412.1[252++⨯⨯⨯⨯π=KN 54.5713.系梁自重:3G =253145.128.01)215.08.5(252⨯⨯⨯⨯+⨯⨯⨯⨯-⨯π=KN 54.3524.上部恒载:各梁恒载反力表 表一边梁自重:)1(G =2⨯12.54⨯19.94=500.10KN 中辆自重:)2(G =10.28⨯19.94⨯15=3074.75KN 一孔上部铺装自重:)3(G =3.5⨯19.94⨯17.5=1221.33KN 一孔上部恒载:4G =)1(G +)2(G +)3(G =4796.18KN 综上可得恒载为:G=1G +2G +3G +4G =6729.94KN(二)支座活载反力计算 1. 汽车荷载(1)一跨活载反力查规范三车道横向折减系数取0.78,根据规范的跨径在五米和五十米之内均布荷载标准值应该采用直线内插法180360180--x 4515= 解得x =237.84 故P K=237.84KN在桥跨上的车道荷载布置如图排列,均布荷载q k =10.5KN/m 满跨布置,集中荷载P K=237.84KN 布置在最大影响线峰值处,反力影响线的纵距分别为: h 1=1.0, h 2=0.0hh 1支座反力: KN l q P N k k 61.79578.03)2205.1084.237(78.03)2(6=⨯⨯⨯+=⨯⨯⨯+= 支座反力作用点离基底形心轴的距离:e a =(20-19.46)/2=0.27m由1N 引起的弯矩:KN M 81.21427.061.7951=⨯=(1) 两跨活载反力 支座反力: KN lq P N k k 68.103478.03)46.195.1084.237(78.03)22(2=⨯⨯⨯+=⨯⨯⨯⨯+= 由2N 产生的弯矩:m KN M .36.27927.068.10342=⨯= 2.行人荷载布置在5.5米人行道上,产生竖直方向力。
桩基础课程设计计算书
桩基础课程设计计算书一、引言桩基础是土木工程中常用的一种基础形式,用于承受建筑物或其他结构的重力和水平力。
本文旨在通过桩基础课程设计计算书,对桩基础的设计和计算过程进行详细介绍。
二、桩基础设计原则1.选取合适的桩型:根据工程场地的地质条件和设计要求,选择适合的桩型,常见的桩型有钢筋混凝土灌注桩、预制桩和钢管桩等。
2.确定桩的数量和布置:根据建筑物或结构的荷载和地质条件,确定桩的数量和布置方式,以保证桩基础的稳定性和承载能力。
3.计算桩的承载力:根据桩的类型和地质条件,采用适当的计算方法计算桩的承载力,包括桩身承载力和桩端承载力。
4.考虑桩与土的相互作用:在桩基础设计中,需要考虑桩与土之间的相互作用,包括桩身的摩擦阻力和桩端的土的阻力等。
5.确定桩的长度和直径:根据桩的承载力和桩身的应力条件,确定桩的长度和直径,以满足设计要求。
三、桩基础设计计算书的内容1.工程概况:包括工程名称、地理位置、建设单位、设计单位等基本信息。
2.设计依据:包括国家相关标准、规范和技术要求等。
3.地质勘察报告摘要:根据地质勘察报告的结果,对地质条件进行简要描述。
4.荷载计算:根据建筑物或结构的荷载标准,计算垂直和水平荷载,包括永久荷载、活荷载和地震荷载等。
5.桩的类型和布置:根据地质条件和设计要求,确定桩的类型和布置方式。
6.桩身承载力计算:根据所选桩的类型和地质条件,计算桩身的承载力,包括桩身的摩擦阻力和桩身的承载力等。
7.桩端承载力计算:根据所选桩的类型和地质条件,计算桩端的承载力,包括桩端的土的阻力和桩端的承载力等。
8.桩的长度和直径计算:根据桩的承载力和桩身的应力条件,计算桩的长度和直径。
9.桩基础的稳定性分析:对桩基础的稳定性进行分析,包括桩身的稳定性和桩端的稳定性等。
10.施工及验收规范:根据国家相关标准和规范,列出桩基础施工的要求和验收标准。
四、桩基础设计计算书的编写要点1.准确性:设计计算书应准确描述桩基础的设计和计算过程,避免歧义或错误信息的出现。
桩基础计算书1
一、桩基础计算。
1、本工程基础持力层为:中风化灰岩,岩石饱和抗压强度标准值为31.6Mpa。
2、基础形式:机械钻孔桩,基础梁抬墙。
3、桩基础计算:桩基采用材料为:C25混凝土;ZJ1-800桩基计算:桩径800mm,嵌岩深度为800mm。
桩承载力的计算:Q uk=Q sk+Q rkQ sk=u∑q sik l i=0KN(本设计不考虑侧向摩阻力,设计偏于安全)Q rk=ζr f rk A p=0.81×31600×∏×0.8×0.8/4=12865KN(桩基规范5.3.9-3)Q =Q uk/2=6432KN桩身承载力R=ψc fcAps=0.7×11.9×∏×0.8×0.8×1000/4=4187KN (桩基规范5.8.2-2)取桩承载力为:4187KN>N=2275 KN(墙柱底最大轴力)1.学习与研究教育学的意义:A.教育学的理论与实践意义B.教育决策与教育改革需要教育理论的指导C.学习教育学是成为合格教诗的必要前提D.学习教育学有助于成为好家长2.学校产生于奴隶制社会。
3.现代教育的基本特征:A. 生产性 B. 普及性 C. 教育形式与手段的多样性 D. 科学性4.影响人的发展的因素:5.教育方针:是一个国家在一定时期教育发展和人才培养的行动指针。
6.教育方针的核心:教育目的。
7.素质教育:73 96-97 2418.坚持人的全面发展:A.德育:首要位置B.智育:核心地位C.体育D.美育9.学制:(学校教育制度),指一个国家各级各类学校的体系及其规则系统10.我国学校教育从类型上分为:普通教育、职业教育11.中国学校教育制度的改革趋势:A.学校教育与社会教育的联系更为密切B.学制的弹性化、开放性的特征日趋明显C.高等教育的大众化、普及化D.普通教育和职业教育一体化趋势日益增强E.现代学制逐渐向终身化方向发展12.《教育规划纲要》(2010年):A. 进一步强调了素质教育的战略意义,B. 指出“坚持以人为本、全面实施素质教育是教育改革发展的战略主题,是贯彻党的教育方针的时代要求,其核心是解决好培养什么人、怎样培养人的重大问题”,C. 并为此提出了坚持德育为先、坚持能力为重和坚持全面发展的基本策略。
完整版)桩基础设计计算书
完整版)桩基础设计计算书设计任务书设计要求:1.确定桩基持力层、桩型、桩长;2.确定单桩承载力;3.确定桩数布置及承台设计;4.进行复合桩基荷载验算;5.进行桩身和承台设计;6.进行沉降计算;7.确定构造要求及施工要求。
设计资料:场地土层自上而下划分为5层,勘查期间测得地下水混合水位深为2.1m,建筑安全等级为2级,已知上部框架结构由柱子传来的荷载,承台底面埋深为2.1m。
桩基持力层、桩型、桩长的确定:根据场地的土层特征和勘查数据,确定了桩基持力层、桩型和桩长。
单桩承载力确定:通过计算,确定了单桩竖向承载力。
桩数布置及承台设计:根据单桩承载力和建筑荷载,确定了桩数布置和承台设计方案。
复合桩基荷载验算:进行了复合桩基荷载验算,确保了基础的稳定性和安全性。
桩身和承台设计:根据桩基的荷载情况,进行了桩身和承台的设计。
沉降计算:进行了沉降计算,确保了基础的稳定性和安全性。
构造要求及施工要求:确定了基础的构造要求和施工要求,确保施工的质量和安全。
预制桩的施工、混凝土预制桩的接桩、凝土预制桩的沉桩、预制桩沉桩对环境的影响分析及防治措施:详细介绍了预制桩的施工、混凝土预制桩的接桩、凝土预制桩的沉桩、预制桩沉桩对环境的影响分析及防治措施。
结论与建议:总结了本次基础设计的主要内容,并提出了建议。
参考文献:列出了本次设计中所使用的参考文献。
根据设计任务书提供的资料,分析表明在柱下荷载作用下,天然地基基础难以满足设计要求,因此考虑采用桩基础。
经过地基勘查,确定选用第四土层黄褐色粉质粘土为桩端持力层。
同时,根据工程情况,承台埋深为2.1m,预选钢筋混凝土预制桩断面尺寸为45㎜×45㎜,桩长为21.1m。
为了确定单桩承载力,首先需要根据地质条件选择持力层,确定桩的断面尺寸和长度。
在本工程中,采用截面为450×450mm的预置钢筋混凝土方桩,桩尖进入持力层1.0m,镶入承台0.1m,承台底部埋深2.1m。
(完整版)桩基础计算书
(完整版)桩基础计算书桩基础计算报告书计算⼈校对⼈:审核⼈:计算⼯具:PKPM软件开发单位:中国建筑科学研究院设计单位:灌注桩计算说明书1.⽀架计算组件钢结构⽀架要在37m/s(基本风压0.85KN/m2)的风载作⽤下正常使⽤,应使其主要构件满⾜强度要求、稳定性要求,即横梁、斜梁、斜撑、拉杆、⽴柱在风载作⽤下不失稳且⽴柱弯曲强度满⾜要求。
组件⾃重19.5kg。
⽀架计算最⼤柱底反⼒:Fx max=5.6KN,Fy max=0.9KN,Fz max=12.1KNFx min= -6.9KN, Fy min= -0.9KN,Fz min= -7.29KN2.灌注桩设计2.1基桩设计参数成桩⼯艺: ⼲作业钻孔桩承载⼒设计参数取值: 根据建筑桩基规范查表孔⼝标⾼0.00 m桩顶标⾼0.30 m桩⾝设计直径: d = 0.25m桩⾝长度: l = 1.60 m根据《建筑地基基础设计规范》GB50007-2011,设计使⽤年限不少于50年时,灌注桩的混凝⼟强度不应低于C25;所以本次设计中混凝⼟强度选⽤C25。
灌注桩纵向钢筋的配置为3跟根Ф6,箍筋采⽤Ф4钢筋,箍筋间距选择300~400。
2.2岩⼟设计参数2.3设计依据《建筑桩基技术规范》(JGJ 94-2008) 以下简称桩基规范《建筑地基基础设计规范》GB50007-2011 《混凝⼟结构设计规范》GB50010-2010 《建筑结构载荷规范》GB50009-2012 《钢结构设计规范》GB50017-2003《混凝⼟结构⼯程施⼯质量验收规范》GB50204-2002(2011年版)《钢结构⼯程施⼯质量验收规范》GB50205-2001 2.4单桩竖向承载⼒估算当根据⼟的物理指标与承载⼒参数之间的经验关系确定单桩竖向极限承载⼒标准值时,宜按下式估算:式中——桩侧第i 层⼟的极限阻⼒标准值,按JGJ94-2008中表5.3.5-1取值,吐鲁番当地⼟质为⾓砾,属中密-密实状⼟层,查表得出⼲作业钻孔桩的极限侧阻⼒标准值为135~150;——极限端阻⼒标准值,按JGJ94-2008中表5.3.5-2取值,吐鲁番当地⼟质为⾓砾,属中密-密实状⼟层,查表得出⼲作业钻孔桩的极限端阻⼒标准值为4000~5500;µ——桩⾝周长; ——桩周第i 层⼟的厚度; ——桩端⾯积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础计算书
人工挖孔灌注桩以③-3离石黄土层为基础持力层时桩端进入离石黄土层不小于2倍的桩径,桩极限端阻力q pk(Kpa)和桩极限侧摩阻力q sik(Kpa)可按表1取值。
桩极限端阻力q pk(Kpa)和桩极限侧摩阻力q sik(Kpa)表1
中性点深度l n计算(桩规)5.4.4条表4.4.1-2
l n/l0取0.6
l0桩周软弱土层下限深度13.5m
l n=l0x0.6=8.1m,①~③-1黄土层中性点以上为8.1m,中性点以下为13.5-8.1=5.4m ①~③-1黄土层中性点以上计负摩擦,以上计正摩擦。
桩长L=15m;
JH1桩径800扩大头直径D=1.4m:
(1)单桩的竖向极限承载力标准值Q
uk
值为:
Q uk=Q sk+ Q pk-G P=ψsi u∑q sik l i+A p× q pk×ψp-G P
=(0.8/0.8)1/3x3.14×0.8×(60×2.5+10x5.4-10x8.1)+1600×3.14×0.72×(0.8/1.4)1/3-25×0.42×3.14×15
=2163kN
(2)单桩竖向承载力特征值Ra为:
Ra
1= Q
uk2
/K=2163/2=1081KN
JH2桩径800扩大头直径D=1.7m:
(1)单桩的竖向极限承载力标准值Q
uk
值为:Q uk=Q sk+ Q pk-G P=ψsi u∑q sik l i+A p× q pk×ψp-G P
=(0.8/0.8)1/3x3.14×0.8×(60×2.5+10x5.4-10x8.1)+1600×3.14×0.852×(0.8/1.7)1/3-25×0.42×3.14×15
=2944kN
(2)单桩竖向承载力特征值Ra为:
Ra
1= Q
uk2
/K=2944/2=1472KN。