用配方法求最值

合集下载

数学高频考点归类分析(真题为例):应用配方法求最值

数学高频考点归类分析(真题为例):应用配方法求最值

应用配方法求最值典型例题:例1. (2012年浙江省文5分)若正数x ,y 满足x +3y =5xy ,则34x y +的最小值是【 】A 。

245B 。

285C.5D.6【答案】C.【考点】基本不等式或配方法的应用。

【解析】∵x +3y =5xy ,∴135yx+=,11315y x ⎛⎫+= ⎪⎝⎭。

∴2113131213113(34)()()5555555x y x y yxyx+⋅+=++=++≥。

(或由基本不等式得)∴34x y +≥5,即34x y +的最小值是5。

故选C.例2.(2012年上海市理14分)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海里A 处,如图。

现假设:①失事船的移动路径可视为抛物线21249y x =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t .(1)当5.0=t 时,写出失事船所在位置P 的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(6分)(2)问救援船的时速至少是多少海里才能追上失事船?(8分)【答案】解:(1)5.0=t 时,P 的横坐标P 77=2x t =,代入抛物线方程21249y x =得P 的纵坐标P 3y =.∵A(0,12), ∴()227949AP =+3+122⎛⎫=⎪⎝⎭。

949/时。

由tan∠OAP=72tan OAP 3+12730∠==,得OAP arc 30tan 7∠=,∴救援船速度的方向为北偏东arctan 730弧度。

(2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为)12,7(2t t 。

由222)1212()7(++=t t vt ,整理得222211144()337144()625625v t t tt=++=-+≤。

∵当1t t=即t =1时2v 最小,即25≥v 。

初中数学中求极值的几种常见的方法

初中数学中求极值的几种常见的方法

初中数学中求最值的几种常见方法仪陇县实验学校 李洪泉在生活实践中,人们经常面对求最值的问题:如在一定方案中,往往会讨论什么情况下花费最低、消耗最少、产值最高、获利最大等;在解数学题时也常常求某个变量的最大值或最小值。

同时,探求最值也是中考或一些高中学校自主招生考试中的一个热点内容,是初高中知识衔接的重要内容。

这类问题涉及变量多,综合性强,技巧性强,要求学生要有较强的数学转化思想和创新意识。

下面从不同的角度讨论如何求一些问题的最值。

一 、根据绝对值的几何意义求最值 实数的绝对值具有非负性,0a ≥,即a 的最小值为0,但根据绝对值的代数意义求一些复杂问题的最值就要采用分类讨论法,比较麻烦。

若根据绝对值的几何意义求最值就能够把一些复杂的问题简单化。

例1:已知13M x x =-++,则M 的最小值是 。

【思路点拨】用分类讨论法求出13x x -++的最小值是4,此时31x -≤≤。

如果我们从绝对值的几何意义来看此题,就是在数轴上求一点,使它到点1和点3-的距离之和为最短。

显然,若3x <-,距离之和为[1(3)]2(3)4x --+-->;若31x -≤≤,距离之和为1(3)4--=;若1x >,距离之和为[1(3)]2(1)4x --+->。

所以, 当31x -≤≤时,距离之和最短,最小值为4。

故M 的最小值为4。

二、利用配方法求最值完全平方式具有非负性,即2()0a b +≥。

一个代数式若能配方成2()m a b k ++的形式,则这个代数式的最小值就为k 。

例2:设,a b 为实数,求222a ab b a b ++--的最小值。

【思路点拨】一是将原式直接配方成与,a b 的完全平方式有关的式子可以求出最小值。

二是引入参数设222a ab b a b t ++--=,将等式整理成关于a 的二次方程,运用配方法利用判别式求最值。

解:(方法一) 配方得:当10,10,2b a b -+=-=即0,1a b ==时,上式中不等号的等式成立,故所求的最小值222222222(1)21331()242413()(1)1124a ab b a b a b a b b b a b b b a b ++--=+-+--=++---=++--≥-为1-。

一元二次方程用配方法求最值

一元二次方程用配方法求最值

一元二次方程用配方法求最值一元二次方程是数学中的一个重要概念,我们可以通过配方法来求解其最值。

在这篇文章中,我将详细介绍一元二次方程以及如何使用配方法来求解其最值。

一元二次方程是形如ax^2+bx+c=0的方程,其中a、b、c为实数且a不等于0。

求一元二次方程的最值可以帮助我们找到函数的最高点或最低点,这在很多实际问题中具有重要意义。

我们来了解一下一元二次方程的一些基本性质。

一元二次方程的图像是一个抛物线,其开口方向由a的正负确定。

当a大于0时,抛物线开口向上,此时方程的最值为最低点;当a小于0时,抛物线开口向下,此时方程的最值为最高点。

接下来,我们将介绍如何使用配方法来求解一元二次方程的最值。

配方法是一种通过将方程进行变形,使其能够方便地进行因式分解的方法。

具体步骤如下:1. 将一元二次方程的一次项系数b除以2,并将结果记为p,即p=b/2。

2. 将方程进行变形,得到(x+p)^2+q=0的形式,其中q=c-(b^2/4)。

3. 将方程进行因式分解,得到(x+p+√q)(x+p-√q)=0。

4. 根据因式分解的结果,得到两个解x1=-p+√q和x2=-p-√q。

通过以上步骤,我们可以得到一元二次方程的两个解。

根据方程的最值性质,最值点的横坐标为x=-p,最值点的纵坐标为y=q-p^2。

因此,最值点的坐标为(-p,q-p^2)。

对于开口向上的抛物线,最低点即为最小值点;对于开口向下的抛物线,最高点即为最大值点。

通过计算最值点的坐标,我们就可以求解一元二次方程的最值。

在实际问题中,我们经常需要求解一元二次方程的最值。

例如,在物理学中,当我们研究抛体运动时,需要确定抛体的最高点,这就需要求解一元二次方程的最值。

在经济学中,当我们研究成本和收益时,也需要求解一元二次方程的最值。

因此,掌握一元二次方程的配方法求最值是非常重要的。

总结起来,一元二次方程是数学中的一个重要概念,通过配方法可以求解其最值。

求解一元二次方程的最值可以帮助我们找到函数的最高点或最低点,具有重要的实际意义。

1.2.2 一元二次方程的解法-配方法(解析版)

1.2.2 一元二次方程的解法-配方法(解析版)

1.2.2 一元二次方程的解法-配方法考点一.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式:. (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式.考点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.题型1:配方法解一元二次方程1.用配方法解一元二次方程2620x x -+=,此方程可化为( )A .2(3)7x -=B .2(3)11x -=C .2(3)7x +=D .2(3)11x +=【答案】A 【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后可得答案.2222()a ab b a b ±+=±【解析】解:2620x x -+=Q ,262x x \-=-,则26929x x -+=-+,即()237x -=,故选:A .【点睛】本题主要考查解一元二次方程的能力,解题的关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.2.用配方法解一元二次方程23610x x +-=时,将它化为()2x a b +=的形式,则a b +的值为( )A .103B .73C .2D .433.用配方法解下列方程时,配方有错误的是( )A .22990x x --=化为2(1)100x -=B .2890x x ++=化为2(4)25x +=C .22740t t --=化为2781416t æö-=ç÷èøD .23420x x --=化为221039x æö-=ç÷èø【答案】B【分析】根据配方的步骤计算即可解题.【解析】()2222890,89,816916,47x x x x x x x ++=+=-++=-++=故B 错误.且ACD 选项均正确,故选:B【点睛】考查了用配方法解一元二次方程,配方步骤:第一步平方项系数化1;第二步移项,把常数项移到右边;第三步配方,左右两边加上一次项系数一半的平方;第四步左边写成完全平方式;第五步,直接开方即可.4.关于y 的方程249996y y -=,用___________法解,得1y =__,2y =__.【答案】 配方 102 98-【分析】利用配方法解一元二次方程即可得.【解析】249996y y -=,24499964y y -+=+,2(2)10000y -=,2100y -=±,1002y =±+,12102,98y y ==-,故答案为:配方,102,98-.【点睛】本题考查了利用配方法解一元二次方程即可得,熟练掌握配方法是解题关键.5.用配方法解方程ax 2+bx +c =0(a ≠0),四个学生在变形时得到四种不同结果,其中配方正确的是( )A .2224()24b ac b x a a -+=B .2224()22b b ac x a a -+=C .2224()24b b ac x a a -+=D .2222()22b b ac x a a ++=6.用配方法解方程22103x x -+=,正确的是( )A .212251()1,,333x x x -===-B .224(),39x x -==C .238(29x -=-,原方程无实数解D .2()1839x -=-,原方程无实数解7.用配方法解下列方程:(1)2352x x -=;(2)289x x +=;(3)212150x x +-=;(4)21404x x --=;(5)2212100x x ++=;(6)()22040x px q p q ++=-³.8.ABC D 的三边分别为a 、b 、c ,若8+=b c ,21252bc a a =-+,按边分类,则ABC D 是______三角形【答案】等腰【分析】将8+=b c ,代入21252bc a a =-+中得到关系式,利用完全平方公式变形后,根据非负数的性质求出a 与c 的值,进而求出b 的值,即可确定出三角形形状.【解析】解:∵8+=b c ∴8b c =- ,∴()288bc c c c c =-=-+,∴2212528bc a a c c =-+=-+,即2212361680a a c c -+++-=,整理得:()()22640a c -+-=,∵()260a -³,()240c -³,∴60a -=,即6a =;40c -=,即4c =,∴844b =-=,则△ABC 为等腰三角形.故答案是:等腰.【点睛】此题考查了配方法的应用,非负数的性质,以及等腰三角形的判定,熟练掌握完全平方公式是解本题的关键.9.如果一个三角形的三边均满足方程210250x x -+=,则此三角形的面积是______10.已知三角形的三条边为,,a b c ,且满足221016890a a b b -+-+=,则这个三角形的最大边c 的取值范围是( )A .c >8B .5<c <8C .8<c <13D .5<c <13【答案】C【分析】先利用配方法对含a 的式子和含有b 的式子配方,再根据偶次方的非负性可得出a 和b 的值,然后根据三角形的三边关系可得答案.【解析】解:∵a 2-10a +b 2-16b +89=0,∴(a 2-10a +25)+(b 2-16b +64)=0,∴(a -5)2+(b -8)2=0,∵(a -5)2≥0,(b -8)2≥0,∴a -5=0,b -8=0,∴a =5,b =8.∵三角形的三条边为a ,b ,c ,∴b -a <c <b +a ,∴3<c <13.又∵这个三角形的最大边为c ,∴8<c <13.故选:C .【点睛】本题考查了配方法在三角形的三边关系中的应用,熟练掌握配方法、偶次方的非负性及三角形的三边关系是解题的关键.题型3:配方法的应用2-比较整式大小与求值问题11.若M =22x -12x +15,N =2x -8x +11,则M 与N 的大小关系为( )A .M ≥NB .M >NC .M ≤ND .M <N 【答案】A【解析】∵M=22x -12x +15,N=2x -8x +11,∴M-N=222222(21215)(811)2121581144(2)x x x x x x x x x x x -+--+=-+-+-=-+=- .∵2(2)0x -³,∴M-N ³0,∴M ³N.故选A.点睛:比较两个含有同一字母的代数式的大小关系时,当无法直接比较两者的大小关系时,可以通过求出两者的“差”,再看“差”的值是“正数”、“负数”或“0”来比较两者的大小.12.已知下面三个关于x 的一元二次方程2ax bx c 0++=,2bx cx a 0++=,2cx ax b 0++=恰好有一个相同的实数根a ,则a b c ++的值为( )A .0B .1C .3D .不确定【答案】A【分析】把x =a 代入3个方程得出a •a 2+ba +c =0,ba 2+ca +a =0,ca 2+a •a +b =0,3个方程相加即可得出(a +b +c )(a 2+a +1)=0,即可求出答案.【解析】把x =a 代入ax 2+bx +c =0,bx 2+cx +a =0,cx 2+ax +b =0得:a •a 2+ba +c =0,ba 2+ca +a =0,ca 2+a •a +b =0,相加得:(a +b +c )a 2+(b +c +a )a +(a +b +c )=0,13.已知实数m ,n ,c 满足2104m m c -+=,22112124n m m c =-++,则n 的取值范围是( )A .74n ³-B .74n >-C .2n ³-D .2n >-14.若x 为任意实数时,二次三项式26x x c -+的值都不小于0,则常数c 满足的条件是( )A .0c ³B .9c ³C .0c >D .9c >【答案】B【分析】把二次三项式进行配方即可解决.【解析】配方得:226(3)9x x c x c -+=--+∵2(3)0x -³,且对x 为任意实数,260x x c -+³∴90c -+³∴9c ³故选:B【点睛】本题考查了配方法的应用,对于二次项系数为1的二次三项式,加上一次项系数一半的平方,再减去这个数即可配成完全平方式.15.无论x 、y 取任何实数,多项式x 2+y 2-2x -4y+16的值总是_______数.【答案】正【解析】x 2+y 2-2x -4y +16=(x 2-2x +1)+(y 2-4y +4)-1-4+16=(x -1)2+(y -2)2+11,由于(x -1)2≥0,(y -2)2≥0,故(x -1)2+(y -2)2+11≥11,所以x 2+y 2-2x -4y +16的值总是正数.故答案为正.点睛:要证明一个式子的值总是正数,可以用配方法将式子写成多个非负数之和与一个正数的和的形式即可证明.16.不论x ,y 为什么数,代数式4x 2+3y 2+8x ﹣12y +7的值( )A .总大于7B .总不小于9C .总不小于﹣9D .为任意有理数【答案】C【分析】先将原式配方,然后根据偶次方的非负性质,判断出代数式的值总不小于−9即可.【解析】解:4x 2+3y 2+8x ﹣12y +7=4x 2+8x +4+3y 2−12y +3=4(x 2+2x +1)+3(y 2−4y +1)=4(x +1)2+3(y 2−4y +4−4+1)=4(x +1)2+3(y −2)2−9,∵(x +1)2≥0,(y −2)2≥0,∴4x 2+3y 2+8x ﹣12y +7≥−9.即不论x 、y 为什么实数,代数式4x 2+3y 2+8x ﹣12y +7的值总不小于−9.故选:C .【点睛】此题主要考查了配方法的应用,以及偶次方的非负性质的应用,要熟练掌握.解决本题的关键是掌握配方法.17.若12123y z x +--==,则x 2+y 2+z 2可取得的最小值为( )A .3B .5914C .92D .618.关于代数式12a a ++,有以下几种说法,①当3a =-时,则12a a ++的值为-4.②若12a a ++值为2,则a =③若2a >-,则12a a ++存在最小值且最小值为0.在上述说法中正确的是( )A .①B .①②C .①③D .①②③19.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记2a b c p ++=,则其面积S =.这个公式也被称为海伦—秦九韶公式.若3p =,2c =,则此三角形面积的最大值是_________.20.已知y=x,y均为实数),则y的最大值是______.21.已知152a b c +--=-,则a b c ++=____________22.已知212y x x c =+-,无论x 取任何实数,这个式子都有意义,则c 的取值范围_______.【答案】c <−1【分析】将原式分母配方后,根据完全平方式的值为非负数,只需−c−1大于0,求出不等式的解集即可得到c 的范围.【解析】原式分母为:x 2+2x−c =x 2+2x +1−c−1=(x +1)2−c−1,∵(x +1)2≥0,无论x 取任何实数,这个式子都有意义,∴−c−1>0,解得:c <−1.故填:c <−1【点睛】此题考查了配方法的应用,以及分式有意义的条件,灵活运用配方法是解本题的关键.23.(1)设220,3a b a b ab >>+=,求a b a b+-的值.(2)已知代数式257x x -+,先用配方法说明:不论x 取何值,这个代数式的值总是正数;再求出当x 取何值时,这个代数式的值最小,最小值是多少?24.选取二次三项式2(0)ax bx c a ++¹中的两项,配成完全平方式的过程叫作配方.例如①选取二次项和一次项配方:2242(2)2x x x -+=--;②选取二次项和常数项配方:2242(4)x x x x -+=+-或2242((4x x x x -+=+-+;③选取一次项和常数项配方:22242x x x -+=-.根据上述材料解决下面问题:(1)写出284x x -+的两种不同形式的配方.(2)已知22330x y xy y ++-+=,求y x 的值.(3)已知a 、b 、c 为三条线段,且满足()222214(23)a b c a b c ++=++,试判断a 、b 、c 能否围成三角形,并说明理由.25.若实数x ,y ,z 满足x <y <z 时,则称x ,y ,z 为正序排列.已知x =﹣m 2+2m ﹣1,y =﹣m 2+2m ,若当m 12>时,x ,y ,z 必为正序排列,则z 可以是( )A .m 14+B .﹣2m +4C .m 2D .1A.甲B.乙C.丙D.丁故选:D .【点睛】本题考查了解一元二次方程,掌握配方法是解题的关键.7.代数式243x x -+的最小值为( ).A .1-B .0C .3D .5【答案】A【分析】利用配方法对代数式做适当变形,通过计算即可得到答案.【解析】代数式()2224344121x x x x x -+=-+-=--∵()220x -³,∴()2211x --³-即代数式2|431x x -+³-,故选:A .【点睛】本题考查了完全平方公式和不等式的知识;解题的关键是熟练掌握完全平方公式和不等式的性质,从而完成求解.8.已知625N m =-,22M m m =-(m 为任意实数),则M 、N 的大小关系为( )A .M N<B .M N >C .M N =D .不能确定【答案】B 【分析】求出M N -的结果,再判断即可.【解析】根据题意,可知()22226258169490M N m m m m m m -=--+=-++=-+>,所以M N >.故选:B .【点睛】本题主要考查了整式的加减运算,配方法的应用,掌握配方法是解题的关键.9.若22242021p a b a b =++++,则p 的最小值是( )A .2021B .2015C .2016D .没有最小值【答案】C【分析】将等式右边分组,配成两个完全平方式,即可根据平方的非负性进行解答.【解析】解:22242021p a b a b =++++2221442016a ab b =++++++()()2221442016a ab b =++++++()()22120162a b ++=++,∵()210a +³,()220b +³,∴p 的最小值为2016,故选:C .【点睛】本题主要考查了配方法的应用,解题的关键是将原式分组配方.10.新定义:关于x 的一元二次方程21()0a x m k -+=与22()0a x m k -+=称为“同族二次方程”.如22021(3)40x -+=与23(3)40x -+=是“同族二次方程”.现有关于x 的一元二次方程22(1)10x -+=与()()22480a x b x ++-+=是“同族二次方程”,那么代数式22021ax bx ++能取的最小值是( )A .2013B .2014C .2015D .2016【答案】D【分析】根据同族二次方程的定义,可得出a 和b 的值,从而解得代数式的最小值.【解析】解:22(1)10x -+=Q 与2(2)(4)80a x b x ++-+=为同族二次方程.22(2)(4)8(2)(1)1a x b x a x \++-+=+-+,22(2)(4)8(2)2(2)3a x b x a x a x a \++-+=+-+++,∴42(2)83b a a -=-+ìí=+î,解得:510a b =ìí=-î.∴()22220215102021512016ax bx x x x ++=-+=-+\当1x =时,22021ax bx ++取最小值为2016.故选:D .【点睛】此题主要考查了配方法的应用,解二元一次方程组的方法,理解同族二次方程的定义是解答本题的关键.二、填空题11.将一元二次方程2410x x -+=变形为()2x h k +=的形式为______三、解答题。

配方法应用举例

配方法应用举例

配方法应用举例配方法是一种非常重要的数学方法,在解决数学问题上应用非常广泛、有效。

下面结合实例对配方法的应用做以简单说明,以期对同学们有所协助。

一、用配方法能够分解因式。

例1 将x 2+4x+3分解因式。

分析:在没有学过“十字相乘法”的情况下,采用配方法就非常方便了。

解:x 2+4x+3=(x 2+4x+4)-1=(x+2)2-1=(x+2+1)(x+2-1)=(x+3)(x+1)二、用配方法能够判定二次三项式值的正、负性。

例2 求证无论x 取何值,代数式2x 2-6x+5的值恒大于零。

分析:同学们在没有学习二次函数之前,是无法解答的。

若用配方法,这类问题就迎刃而解了。

解:这是因为2x 2-6x+5=2(x 2-3x )+5=2[(x 2-3x+49)-49]+5=2(x -23)2-29+5=2(x -23)2+21>0。

例3 求证:无论y为何值,-10y 2+5y-4的值恒小于零。

解:这是因为-10y 2+5y-4=-10(y2-21y)-4=-10[(y2-21y+161)-161)-4=-10(y-41)2-827﹤0 三、用配方法能够求出二次三项式的最大值(或最小值)。

例4 求当x 取何值时,代数式2x-2x 2-1的值最大?最大值是多少?分析:这是一道关于二次函数极值的问题,用配方法解答此题显得更浅显易懂。

解:2x-2x 2-1=-2(x 2-x )-1=-2[(x 2-x+41)-41]-1=-2(x-21)2-21;因为无论x 取何值 -2(x-21)2≤0,所以 -2(x-21)2-21≤-21,当x=21时,代数式2x-2x 2-1的值最大,最大值是-21。

例5 代数式4y 2+8y-7有最大值还是有最小值?解:4y 2+8y-7=4(y 2+2y )-7=4[(y 2+2y+1)-1]-7=4(y+1)2-11;因为4(y+1)2≥0,所以4(y+1)2-11≥-11,故当y=-1时,代数式4y 2+8y-7有最小值,最小值是-11。

初中九年级上册数学课件: 5、配方法求最值

初中九年级上册数学课件: 5、配方法求最值
代数式的配方与用配方法解一元二次 方程有什么异同点?
课堂小结:
1.配方法解一元二次方程
左边:完全平方式
;右边:常数
2.解题步骤:移,化,配,开,解,定。
3.配方法解方程是等式变形,代数式配方是恒 等变形,先加再减一次项系数一半的平方。
作业:课堂点晴P17
用配方法解一元二次方程的步骤:
1.移项:把常数项移到方程的右边; 2.化一:化二次项系数为1; 3.配方:方程两边都加上一次项系数一半的平方; 4.开方:根据平方根意义,方程两边开平方; 5.求解:解一元一次方程; 6.定解:写出原方程的解.
练习巩固
1、用配方法解下列方程:
(1)x2 10x 16 0
(2)3x2 6x 5 0
2 .用配方法证明:不论x取何实数,多项式
x2 2x 3 的值必定大于零.
变式:1、求 2x2 4x 3 的最小值? 2、求 4x2 6x 1 的最大值? 2
练习、将下列代数式配方:
(1)x2 10x 16 (2)3x2 6x 5

二次函数y=ax^2+bx+c的配方法最值(成都市东湖中学九上数学)

二次函数y=ax^2+bx+c的配方法最值(成都市东湖中学九上数学)

2
1 a 1 0 有最小值为 4
2
y 2x2 8x 3
2
2 配方得 y 2 x 8 x 3 2 x 2 5
a 2 0 有最大值为5
例.求下列二次函数图像的开口、顶点、对称轴,并画 出草图:
①y=2x2-5x+3
请画出草图:
∴ 对称轴是直线x=-3,当 x>-3 时,y随x的增大而减小。
例7 已知二次函数 2 y m 1 x 2mx 3m 2 m 1 的最大值是0,求此函数的解析式.
解:此函数图象开口应向下,且顶点纵坐 标的值为0.所以应满足以下的条件组.
m 1 0, ① 2 4 m 1 3m 2 2m 0 4 m 1 ②
求函数 解 配方:
y
1 2 x 2x 1 2
的最大值
y
1 2 x 2x 1 2 1 x 2 4 x 22 22 1 2
1 1 2 x 2 4 1 2 2


1 2 x 2 1 2
顶点坐标是(2,1),于是当x=2时,y达到最大值1.
二次函数
开口方向
对称轴
顶点坐标
y=2(x+3)2+5 y = -3x(x-1)2 -2 y = 4(x-3)2 +7
向上
直线x=-3 直线x=1
(-3,5) (1,-2) ( 3, 7 )
向下
向上
直线x=3 直线x=2
y = -5(2-x)2 - 6
向下
(2,-6)
在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0) 的图象可能是( )

配方法及其应用(题目)

配方法及其应用(题目)

配方法及其应用初一( )班 学号:_______ 姓名:____________一、配方法:将一个式子变为完全平方式,称为配方,它是完全平方公式的逆用。

配方法是一种重要的数学方法,它是恒等变形的重要手段,又是求最大最小值的常用方法,在数学中有广泛的应用。

配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简,何时配方需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方,有时也将其称为“凑配法”.配方法使用的最基本的配方依据是二项完全平方公式(a +b )2=a 2+2ab +b 2,将这个公式灵活运用,可得到各种基本配方形式,如: a 2+b 2=(a +b )2-2ab =(a -b )2+2ab ;a 2+ab +b 2=(a +b )2-ab =(a -b )2+3ab =⎝ ⎛⎭⎪⎫a +b 22+⎝ ⎛⎭⎪⎫32b 2; a 2+b 2+c 2+ab +bc +ca =12[(a +b )2+(b +c )2+(c +a )2].下面举例说明配方法的应用:一、求字母的值【例1】已知a ,b 满足a 2+2b 2-2ab -2b +1=0,求a +2b 的值.分析:可将含x,y 的方程化为两个非负数和为0的形式,从而求出两个未知数的值.解:∵a 2+2b 2-2ab -2b +1=0,∴a 2+b 2-2ab +b 2-2b +1=0,∴(a -b )2+(b -1)2=0.∵(a -b )2≥0,(b -1)2≥0,∴a -b =0,b -1=0,∴a =1,b =1,∴a +2b =1+2×1=3,∴a +2b 的值是3.变式练习:1、已知,6134222x xy x y x =+++则x,y 的值分别为___ ___.2、已知a 2+b 2+4a -2b +5=0,则3a 2+5b 2-4的值为___ ___.4. 已知0966222=+--++y x y xy x ,则y x +的值为___ ___. 5、若a 、b 为有理数,且0442222=+++-a b ab a ,则22ab b a +的值为___ ___.6、已知a 、b 、c 满足722=+b a ,122-=-c b ,1762-=-a c ,则a +b +c 的值为______.7、已知0962222222=+---++c bc ab c b a ,则abc 的值为___ ___.8. 已知b a ab b a ++=++122,则b a 43-的值为___ ___.二、证明字母相等【例2】已知a 、b 、c 是△ABC 的三边,且满足,0222=---++ac bc ab c b a ,判断这个三角形的形状. 分析:等式两边乘以2,得,022*******=---++ac bc ab c b a配方,得()()(),022*******=+-++-++-a ca c c bc b b ab a即()()().0222=-+-+-a c c b b a 由非负数的性质得a-b=0,b-c=0,c-a=0,a=b,b=c,c=a,即a=b=c.故△ABC 是等边三角形.变式练习:1、已知()()22223c b a c b a ++=++,求证:c b a ==2、已知:a 4+b 4+c 4+d 4=4abcd ,其中a ,b ,c ,d 是正数,求证:a=b=c=d 。

配方法求最值

配方法求最值

配方法求最值在数学中,求最值是一个非常常见的问题。

在实际生活中,我们经常需要找到某个函数的最大值或最小值,以便做出最优的决策。

而配方法是一种常用的数学方法,可以帮助我们求解函数的最值问题。

首先,让我们来了解一下什么是配方法。

在高中数学中,我们学过一元二次函数的配方法,即利用完全平方公式将一元二次函数化为平方的形式,从而求得最值。

而在高等数学中,配方法是指通过适当的配对,将一个多项式函数化为一个平方项与一个余项的和的形式,从而利用平方项的非负性来求解最值问题。

接下来,我们以一个具体的例子来说明配方法求最值的步骤。

假设我们要求解函数$f(x)=x^2-4x+3$的最值。

首先,我们可以通过配方法将函数化为平方项与余项的和的形式,即$f(x)=(x-2)^2-1$。

然后,我们可以看出平方项的最小值为0,因此原函数的最小值为-1,当且仅当$x=2$时取得最小值。

除了一元二次函数外,配方法还可以应用于其他类型的函数。

例如,对于一元三次函数$f(x)=x^3-3x^2+3x-1$,我们同样可以通过配方法将其化为平方项与余项的和的形式,从而求得最值。

这表明配方法是一种十分灵活和实用的数学方法,可以帮助我们解决各种类型的最值问题。

在实际应用中,配方法常常与导数法相结合,共同用于求解函数的最值。

通过配方法化简函数,我们可以更加方便地求出函数的极值点,然后利用导数法来判断这些极值点是最大值还是最小值。

这样一来,配方法不仅简化了计算过程,还可以提高我们求解最值问题的效率。

总之,配方法是一种重要的数学方法,可以帮助我们求解函数的最值问题。

无论是一元二次函数还是其他类型的函数,配方法都能够发挥作用,为我们提供便利。

因此,在学习数学的过程中,我们应该充分理解配方法的原理和应用,以便更好地应用于实际问题的求解中。

通过本文的介绍,相信大家对配方法求最值有了更深入的理解。

希望大家在今后的学习和工作中,能够灵活运用配方法,解决各种最值问题,为实际问题的求解提供更加便利的途径。

第02讲解一元二次方程——直接开方法与配方法(原卷版)

第02讲解一元二次方程——直接开方法与配方法(原卷版)

第02讲 解一元二次方程——直接开方与配方法知识点01 直接开方法解一元二次方程1. 直接开方法求p x =2的一元二次方程:由平方根的定义可知: ①0>p 时,一元二次方程p x =2有 个 的实数根,分别是 或 。

他们互为 。

②当0=p 时,一元二次方程p x =2有 个 的实数根,即。

③当0<p 时,一元二次方程p x =2 实数根。

2. 直接开方法解()p b ax =+2的一元二次方程:同样由平方根的定义可知:①当0>p 时,一元二次方程()p b ax =+2有 个 的实数根。

方程开方降次得到一元一次方程p b ax =+或p b ax -=+。

所以它的两个实数根分别是 或 。

②当0=p 时,一元二次方程()p b ax =+2有 个 的实数根。

方程开方降次得到一元一次方程0=+b ax ,所以一元二次方程的两个实数根为 。

③当0<p 时,一元二次方程b ax =+题型考点:①利用直接开方法解方程。

②根据根的情况求字母的值或取值范围。

【即学即练1】1. 方程x 2=1的根是( )A .x =1B .x =﹣1C .x =±1D .x =±22.方程(x +6)2﹣9=0的两个根是( )A .x 1=3,x 2=9B .x 1=﹣3,x 2=9C .x 1=3,x 2=﹣9D .x 1=﹣3,x 2=﹣9 3.解方程:(1)x 2﹣81=0; (2)4(x ﹣1)2=9. 【即学即练2】4.关于x 的一元二次方程x 2=a 的两个根分别是2m ﹣1与m ﹣5,则m = .【即学即练3】5.若关于x 的方程(x ﹣a )2﹣4=b 有实数根,则b 的取值范围是( )A .b >4B .b >﹣4C .b ≥4D .b ≥﹣46.如果关于x 的方程(x ﹣1)2=m 没有实数根,那么实数m 的取值范围是 .知识点02 配方法解一元二次方程1. 配方法的定义:将一元二次方程化成()p b x =+2的形式在利用直接开方法解一元二次方程的方法。

利用配方法求代数式最值

利用配方法求代数式最值

利用配方法求代数式最值代数式的最值问题是数学中常见的问题之一,解决这类问题的方法之一就是利用配方法。

配方法是一种将代数式转化为完全平方或完全立方的方法,通过配方可以使得求最值问题变得更加简单。

本文将介绍如何利用配方法求代数式的最值,并给出具体的步骤和示例。

一、配方法的基本思想配方法的基本思想是将代数式转化为完全平方或完全立方的形式,这样可以将原来复杂的表达式简化为更容易求解的形式。

具体来说,配方的目的是寻找一个适当的变量替换,使得原式可以化简为一个平方或立方的和或差。

二、配方法的步骤下面以一个具体的例子来说明配方法的步骤。

例子:求解代数式 f(x)=x^2-6x+5 的最小值。

步骤一:判断是否可以使用配方法。

只有当代数式中含有完全平方或完全立方的项时,才可以使用配方法。

在这个例子中,f(x)中含有一个完全平方项x^2,所以可以使用配方法。

步骤二:将代数式进行配方。

配方的目的是将代数式转化为完全平方或完全立方的形式。

在这个例子中,我们需要将f(x)=x^2-6x+5进行配方。

将代数式中的二次项 x^2 和一次项 -6x 分别移项,并添加一个常数项,即:f(x)=x^2-6x+5=x^2-6x+9-9+5=(x-3)^2+1步骤三:化简代数式。

将代数式化简为最简形式,即:f(x)=(x-3)^2+1步骤四:分析配方结果。

从配方结果中可以看出,(x-3)^2 是一个完全平方项,且它的最小值为0。

所以 f(x) 的最小值为 0+1=1。

三、配方法的应用除了求解最值问题外,配方法还可以用于求解其他类型的代数问题,如求解方程、求解不等式等。

下面以一个求解方程的例子来说明配方法的应用。

例子:求解方程 x^2-6x+5=0。

步骤一:将方程进行配方。

将方程两边同时加上一个常数项,即:x^2-6x+5+4=4(x-3)^2+1=4步骤二:化简方程。

将方程化简为最简形式,即:(x-3)^2=3步骤三:求解方程。

由于方程中含有一个完全平方项,所以可以得到两个解:x-3=±√3x=3±√3配方法是一种将代数式转化为完全平方或完全立方的方法,通过配方可以使得求最值问题变得更加简单。

求函数最值的方法总结

求函数最值的方法总结

求函数最值的常用以下方法:1.函数单调性法先确定函数在给定区间上的单调性,然后依据单调性求函数的最值.这种利用函数单调性求最值的方法就是函数单调性法.这种求解方法在高考中是必考的,且多在解答题中的某一问中出现.例1 设a >1,函数f (x )=log a x 在区间[a,2a ]上的最大值与最小值之差为12,则a =________.【思路】 先判断函数在指定区间上的单调性,再求出函数的最值,然后利用条件求得参数a 的值. 【解析】 ∵a >1,∴函数f (x )=log a x 在区间[a,2a ]上是增函数,∴函数在区间[a,2a ]上的最大值与最小值分别为log a 2a ,log a a =1.∴log a 2=12,a =4.故填4.【讲评】 解决这类问题的重要的一步就是判断函数在给定区间上的单调性.这一点处理好了,以下的问题就容易了.一般而言,对一次函数、幂函数、指数函数、对数函数在闭区间[m ,n ]上的最值:若函数f (x )在[m ,n ]上单调递增,则f(x)min=f(m),f(x)max=f(n);若函数f(x)在[m,n]上单调递减,则f(x)min=f(n),f(x)max=f(m);若函数f(x)在[m,n]上不单调,但在其分成的几个子区间上是单调的,则可以采用分段函数求最值的方法处理.2.换元法换元法是指通过引入一个或几个新的变量,来替换原来的某些变量(或代数式),以便使问题得以解决的一种数学方法.在学习中,常常使用的换元法有两类,即代数换元和三角换元,我们可以根据具体问题及题目形式去灵活选择换元的方法,以便将复杂的函数最值问题转化为简单函数的最值问题,从而求出原函数的最值.如可用三角代换解决形如a2+b2=1及部分根式函数形式的最值问题.例2 (1)函数f(x)=x+21-x的最大值为________.【解析】方法一:设1-x=t(t≥0),∴x=1-t2,∴y=x+21-x=1-t2+2t=-t2+2t+1=-(t-1)2+2,∴当t=1即x=0时,y max=2.方法二:f(x)的定义域为{x|x≤1},f′(x)=1-11-x,由f′(x)=0得x=0.0<x≤1时,f′(x)<0,f(x)为减函数.x<0时,f′(x)>0,f(x)为增函数.∴当x=0时,f(x)max=f(0)=2.(2)求函数y=x+4-x2的值域.【解析】换元法:由4-x2≥0得-2≤x≤2,∴设x=2cosθ(θ∈[0,π]),则y=2cosθ+4-4cos2θ=2cos θ+2sin θ=22sin(θ+π4),∵θ+π4∈[π4,5π4]∴sin(θ+π4)∈[-22,1],∴y ∈[-2,22].3.配方法配方法是求二次函数最值的基本方法,如F (x )=af 2(x )+bf (x )+c 的函数的最值问题,可以考虑用配方法. 例3 已知函数y =(e x -a )2+(e -x -a )2(a ∈R ,a ≠0),求函数y 的最小值. 【思路】 将函数表达式按e x +e -x 配方,转化为关于变量e x +e -x 的二次函数. 【解析】 y =(e x -a )2+(e -x -a )2 =(e x +e -x )2-2a (e x +e -x )+2a 2-2. 令t =e x +e -x ,f (t )=t 2-2at +2a 2-2.∵t ≥2,∴f (t )=t 2-2at +2a 2-2=(t -a )2+a 2-2的定义域为[2,+∞).∵抛物线y =f (t )的对称轴为t =a ,∴当a ≤2且a ≠0时,y min =f (2)=2(a -1)2; 当a <0时,y min =f (a )=a 2-2.【讲评】 利用二次函数的性质求最值,要特别注意自变量的取值范围,同时还要注意对称轴与区间的相对位置关系.如本题化为含参数的二次函数后,求解最值时要细心区分:对称轴与区间的位置关系,然后再根据不同情况分类解决.4.不等式法利用不等式法求解函数最值,主要是指运用均值不等式及其变形公式来解决函数最值问题的一种方法.常常使用的基本不等式有以下几种:a 2+b 2≥2ab (a ,b 为实数);a +b2≥ab (a ≥0,b ≥0);ab ≤(a +b2)2≤a 2+b 22(a ,b 为实数).例4 设x ,y ,z 为正实数,x -2y +3z =0,则y 2xz的最小值为________.【思路】 先利用条件将三元函数化为二元函数,再利用基本不等式求得最值. 【解析】 因为x -2y +3z =0, 所以y =x +3z2,所以y 2xz=x 2+9z 2+6xz4xz.又x ,z 为正实数,所以由基本不等式, 得y 2xz ≥6xz +6xz 4xz =3, 当且仅当x =3z 时取“=”.故y 2xz的最小值为3.故填3.【讲评】 本题是三元分式函数的最值问题,一般地,可将这类函数问题转化为二元函数问题加以解决.在利用均值不等式法求函数最值时,必须注意“一正二定三相等”,特别是“三相等”,是我们易忽略的地方,容易产生失误.5.平方法对含根式的函数或含绝对值的函数,有的利用平方法,可以巧妙地将函数最值问题转化为我们熟知的、易于解决的函数最值问题.例5 已知函数y =1-x +x +3的最大值为M ,最小值为m ,则mM的值为( )A.14B.12C.22D.32【思路】 本题是无理函数的最值问题,可以先确定定义域,再两边平方,即可化为二次函数的最值问题,进而可以利用二次函数的最值解决.【解析】由题意,得⎩⎨⎧1-x ≥0,x +3≥0,所以函数的定义域为{x |-3≤x ≤1}. 又两边平方,得y 2=4+21-x ·x +3=4+21-xx +3.所以当x =-1时,y 取得最大值M =22;当x =-3或1时,y 取得最小值m =2,∴选C【讲评】 对于形如y =a -cx +cx +b 的无理函数的最值问题,可以利用平方法将问题化为函数y 2=(a +b )+2a -cx cx +b 的最值问题,这只需利用二次函数的最值即可求得.6.数形结合法数形结合法,是指利用函数所表示的几何意义,借助几何方法及函数的图像求函数最值的一种常用的方法.这种方法借助几何意义,以形助数,不仅可以简捷地解决问题,又可以避免诸多失误,是我们开阔思路、正确解题、提高能力的一种重要途径.因此,在学习中,我们对这种方法要细心研读,认真领会,并正确地应用到相关问题的解决之中.例6对a ,b ∈R ,记max |a ,b |=⎩⎨⎧a ,a ≥b ,b ,a <b ,函数f (x )=max ||x +1|,|x -2||(x ∈R )的最小值是________.【思路】 本题实质上是一个分段函数的最值问题.先根据条件将函数化为分段函数,再利用数形结合法求解. 【解析】由|x +1|≥|x -2|,得(x +1)2≥(x -2)2,所以x ≥12.所以f (x )=⎩⎪⎨⎪⎧ |x +1|,x ≥12,|x -2|,x <12,其图像如图所示. 由图形易知,当x =12时,函数有最小值, 所以f (x )min =f (12)=|12+1|=32. 7.导数法设函数f (x )在区间[a ,b ]上连续,在区间(a ,b )内可导,则f (x )在[a ,b ]上的最大值和最小值应为f (x )在(a ,b )内的各极值与f(a)、f(b)中的最大值和最小值.利用这种方法求函数最值的方法就是导数法.例7 函数f(x)=x3-3x+1在闭区间[-3,0]上的最大值、最小值分别是________.【思路】先求闭区间上的函数的极值,再与端点函数值比较大小,确定最值.【解析】因为f′(x)=3x2-3,所以令f′(x)=0,得x=1(舍去).又f(-3)=-17,f(-1)=3,f(0)=1,比较得,f(x)的最大值为3,最小值为-17.【讲评】(1)利用导数法求函数最值的三个步骤:第一,求函数在(a,b)内的极值;第二,求函数在端点的函数值f(a)、f(b);第三,比较上述极值与端点函数值的大小,即得函数的最值.(2)函数的最大值及最小值点必在以下各点中取得:导数为零的点,导数不存在的点及其端点.8.线性规划法线性规划法,是指利用线性规划的基本知识求解函数最值的方法.线性规划法求解最值问题,一般有以下几步:(1)由条件写出约束条件;(2)画出可行域,并求最优解;(3)根据目标函数及最优解,求出最值.例8 已知点P(x,y)的坐标同时满足以下不等式:x+y≤4,y≥x,x≥1,如果点O为坐标原点,那么|OP|的最小值等于________,最大值等于________.【思路】本题实质上可以视为线性规划问题,求解时,先找出约束条件,再画可行域,最后求出最值.【解析】由题意,得点P (x ,y )的坐标满足⎩⎪⎨⎪⎧ x +y ≤4,y ≥x ,x ≥1.画出可行域,如图所示.由条件,得A (2,2),|OA |=22; B (1,3),|OB |=10;C (1,1),|OC |= 2.故|OP |的最大值为10,最小值为 2.。

初中数学代数最值问题常用解决方法

初中数学代数最值问题常用解决方法

初中数学代数最值问题常用解决方法最值问题,也就是最大值和最小值问题。

它是初中数学竞赛中的常见问题。

这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,而且具有一定的难度。

一. 配方法例1. (2005年全国初中数学联赛武汉CASIO杯选拔赛)可取得的最小值为_________。

解:原式由此可知,当时,有最小值。

二. 设参数法例2. (《中等数学》奥林匹克训练题)已知实数满足。

则的最大值为________。

解:设,易知由,得从而,由此可知,是关于t的方程的两个实根。

于是,有解得。

故的最大值为2。

例3. (2004年全国初中联赛武汉选拔赛)若,则可取得的最小值为()A. 3B.C.D. 6解:设,则从而可知,当时,取得最小值。

故选(B)。

三. 选主元法例4. (2004年全国初中数学竞赛)实数满足。

则z的最大值是________。

解:由得。

代入消去y并整理成以为主元的二次方程,由x为实数,则判别式。

即,整理得解得。

所以,z的最大值是。

四. 夹逼法例5. (2003年北京市初二数学竞赛复赛)是非负实数,并且满足。

设,记为m的最小值,y为m的最大值。

则__________。

解:由得解得由是非负实数,得从而,解得。

又,故于是,因此,五. 构造方程法例6. (2000年山东省初中数学竞赛)已知矩形A的边长为a和b,如果总有另一矩形B使得矩形B与矩形A的周长之比与面积之比都等于k,试求k的最小值。

解:设矩形B的边长为x和y,由题设可得。

从而x和y可以看作是关于t的一元二次方程的两个实数根,则因为,所以,解得所以k的最小值是四. 由某字母所取的最值确定代数式的最值例7. (2006年全国初中数学竞赛)已知为整数,且。

若,则的最大值为_________。

解:由得,代入得。

而由和可知的整数。

所以,当时,取得最大值,为。

七. 借助几何图形法例8. (2004年四川省初中数学联赛)函数的最小值是________。

人教版九年级数学上册《配方法的应用》专项练习题-附带答案

人教版九年级数学上册《配方法的应用》专项练习题-附带答案

人教版九年级数学上册《配方法的应用》专项练习题-附带答案类型一 配方法求字母的值1.如果221016890x y x y +--+= 求x y的值. 【答案】58 【解析】【分析】先将89拆成64+25 然后配成两个完全平方式相加 再根据非负数的性质“两个非负数相加和为0 这两个非负数的值都为0” 解出x 、y 的值即可求解.【详解】解:由已知221016890x y x y +--+=得()()22580x y -+-=()()225=080x y ∴--=, 5,8x y ∴==58x y ∴=. 【点睛】本题考查了配方法的应用和非负数的性质 解题关键是掌握两个非负数相加和为0 这两个非负数的值都为0.2.阅读下列材料:对于某些二次三项式可以采用“配方法”来分解因式 例如:把x 2 + 6x ﹣16分解因式 我们可以这样进行:x 2 + 6x ﹣16=x 2 +2·x ·3+32-32﹣16(加上32 再减去32)=(x +3)2-52(运用完全平方公式)=(x +3+5)(x +3﹣5) (运用平方差公式)=(x +8)(x ﹣2)(化简)运用此方法解决下列问题:(1)把x 2﹣8x ﹣9分解因式.(2)已知:a 2+b 2﹣6a +10b +34=0 求多项式4a 2 +12ab +9b 2的值.【答案】(1)()()19x x +-;(2)81【解析】【分析】(1)按照阅读材料的方法进行因式分解即可;(2)利用配方法把原式变形得()()22350a b -++= 从而可得3a =5b =- 再由()222412923a ab b a b ++=+ 进行求解即可. 【详解】解:(1)289x x --22224449x x =-⋅⋅+--()2245x =--()()4545x x =-+--()()19x x =+-;(2)∵22610340a b a b +-++=∵226910250a a b b -++++=∵()()22350a b -++=∵3a = 5b =-∵()()222241292361581a ab b a b ++=+=-=.【点睛】本题考查的是配方法的应用 掌握完全平方公式和平方差公式、偶次方的非负性是解题的关键.3.已知a -b =2 ab +2b -c 2+2c =0 当b ≥0 -2≤c <1时 整数a 的值是_____.【答案】2或3【解析】【分析】由a −b =2 得出a =b +2 进一步代入2220ab b c c +-+= 利用完全平方公式得到()()222130b c +---= 再根据已知条件求出b 的值 进一步求得a 的值即可. 【详解】解:∵a −b =2∵a =b +2∵222ab b c c +-+()2222b b b c c =++-+()2242b b c c =+--()()22213b c =+---=0∵()()22213b c +=-+∵b ≥0 −2≤c <1∵310c -≤-<∵()2019c <-≤∵()231312c <-+≤∵3<()22b +≤12∵a 是整数∵b 是整数∵b =0或1∵a =2或3故答案为:2或3.【点睛】此题考查配方法的运用 掌握完全平方公式是解决问题的关键.4.若a =x +19 b =x +20 c =x +21 则a 2+b 2+c 2-ab -bc -ac =___________.【答案】3【解析】【分析】先利用已知条件求解,,,a b b c a c 再把原式化为()()()22212a b b c a c ⎡⎤-+-+-⎣⎦ 再整体代入求值即可. 【详解】 解: a =x +19 b =x +20 c =x +211,1,2,a b b c a c∴ a 2+b 2+c 2-ab -bc -ac =()22222221222a b c ab bc ac ++--- 22222212222a ab b b bc c a ac c 22212a b b c a c 222111126322故答案为:3【点睛】本题考查的是利用完全平方式的特点求解代数式的值 因式分解的应用 掌握“完全平方式的特点”是解题的关键.5.阅读材料:若m 2+2mn +2n 2﹣6n +9=0 求m 和n 的值.解:∵m 2+2mn +2n 2﹣6n +9=0∵m 2+2mn +n 2+n 2﹣6n +9=0∵(m +n )2+(n ﹣3)2=0∵m +n =0且n ﹣3=0∵m =﹣3 n =3根据你的观察 探究下面的问题:(1)若x 2+2xy +2y 2﹣2y +1=0 求x 、y 的值;(2)已知a b c 是∵ABC 的三边长 满足a 2+b 2=10a +12b ﹣61 且∵ABC 是等腰三角形 求c 的值.【答案】(1)x =-1 y =1;(2)5或6【解析】【分析】(1)仿照材料的过程进行凑成两个非负数的和为0 即可求得结果;(2)仿照材料的过程进行凑成两个非负数的和为0 即可分别求得a和b的值再根据等腰三角形的性质可求得c的值.【详解】(1)∵x2+2xy+2y2﹣2y+1=0∵x2+2xy+y2+y2﹣2y+1=0∵(x+y)2+(y﹣1)2=0∵x+y=0且y﹣1=0∵x=﹣1 y=1(2)∵a2+b2=10a+12b﹣61∵a2+b2-10a-12b+61=0∵(a-5)2+(b﹣6)2=0∵a-5=0且b﹣6=0∵a=5 b=6∵∵ABC是等腰三角形∵c=a=5或c=b=6即c的值为5或6.【点睛】本题是材料问题考查了配方法的应用平方非负性的性质等腰三角形的性质等知识关键是读懂材料中提供的解题过程和方法.6.在平面直角坐标系xOy中满足不等式x2+y2≤2x+2y的整数点坐标(x y)的个数为_____.【答案】9【解析】【分析】由已知不等式变形后利用完全平方公式化简根据x与y均为整数确定出x与y的值即可得到结果.【详解】解:由题设x2+y2≤2x+2y得0≤(x﹣1)2+(y﹣1)2≤2因为x y 均为整数 所以有或22(1)0(1)1x y ⎧-=⎨-=⎩或22(1)1(1)1x y ⎧-=⎨-=⎩或22(1)1(1)0x y ⎧-=⎨-=⎩ 解得:11x y =⎧⎨=⎩ 或12x y =⎧⎨=⎩或10x y =⎧⎨=⎩或01x y =⎧⎨=⎩或00x y =⎧⎨=⎩或02x y =⎧⎨=⎩或21x y =⎧⎨=⎩或20x y =⎧⎨=⎩或22x y =⎧⎨=⎩ 以上共计9对(x y ).故答案为:9.【点睛】本题考查坐标与图形的性质、配方法的应用、非负数的性质等知识 是重要考点 掌握相关知识是解题关键.7.阅读下面的材料:若22228160m mn n n -+-+= 求m n 的值.解:22228160m mn n n -+-+=.()()22228160m mn n n n ∴-++-+=.22()(4)0m n n ∴-+-=. 2()0m n ∴-= 2(4)0n -=.4n ∴= 4m =.根据你的观察 探究下列问题:(1)已知等腰三角形ABC 的两边长a b 都是正整数 且满足221012610a b a b +--+= 求ABC 的周长;(2)已知6a b -= 216730ab c c +-+= 求a b c ++的值.【答案】(1)ABC 的周长为16或17;(2)8a b c ++=【解析】【分析】(1)根据题中所给方法把221012610a b a b +--+=进行配方求解a 、b 的值 然后根据等腰三角形的定义及三角形三边关系进行分类求解即可;(2)由6a b -=可知6b a =- 然后代入等式可得()2616730a a c c -+-+= 进而根据配方即可求解.【详解】解:(1)∵221012610a b a b +--+=∵22102512360a a b b -++-+=∵()()22560a b -+-=∵50,60a b -=-=∵5,6a b ==∵等腰三角形ABC 的两边长a b 都是正整数∵当5a =为腰 则6b =为底 满足三角形三边关系 故ABC 的周长为5+5+6=16;当6b =为腰 则5a =为底 满足三角形三边关系 故ABC 的周长为5+6+6=17;(2)∵6a b -=∵6b a =-∵()221673616730ab c c a a c c +-+=-+-+=226916640a a c c -++-+=()()22380a c -+-=∵30,80a c -=-=∵3,8a c ==∵363b =-=-∵8a b c ++=.【点睛】本题主要考查配方法的应用 熟练掌握完全平方公式是解题的关键.类型二 配方法求最值8.已知y =x y 均为实数) 则y 的最大值是______.【答案】【解析】【分析】将根据题意0y ≥ 14x ≤≤ 原式y = 可得248y ≤≤故2y ≤≤进而即可求得最大值.【详解】解:0y ≥ 15x ≤≤ 244y =+=+248y ∴≤≤.0y ≥2y ∴≤≤∴y的最大值为故答案为:【点睛】本题考查了二次根式的求值问题 配方法的应用 解本题的关键是通过y 2为媒介求得y 的取值范围从而找出最大最小值.9.已知实数m n 满足21m n -= 则代数式22242m n m ++-的最小值等于___________.【答案】3【解析】【分析】由21m n -=可得21,n m 再代入22242m n m ++- 再利用配方法配方 从而可得答案.【详解】 解: 21m n -=21,n m ()222242=2142m n m m m m ∴++-+-+-264m m()23133,m =+-≥ 所以22242m n m ++-的最小值是3故答案为:3【点睛】本题考查的是代数式的最值 配方法的应用 熟练的运用配方法求解代数式的最值是解本题的关键. 10.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式 此公式与古希腊几何学家海伦提出的公式如出一辙 即三角形的三边长分别为a b c 记2a b c p ++= 则其面积S =这个公式也被称为海伦—秦九韶公式.若3p = 2c = 则此三角形面积的最大值是_________.【解析】【分析】根据公式算出a +b 的值 代入公式 根据完全平方公式的变形即可求出解.【详解】解:∵2a b c p ++=p =3 c =2 ∵232a b ++= ∵a +b =4∵a =4−b∵S∵当b =2时 S【点睛】本题考查了二次根式与完全平方公式的应用 解答本题的关键是明确题意 表示出相应的三角形的面积.二、解答题(共0分)11.【阅读材料】把代数式通过配凑等手段 得到局部完全平方式 再进行有关运算和解题 这种解题方法叫做配方法.如:对于268a a ++.(1)用配方法因式分解:223x x +-;(2)对于代数式2128x x - 有最大值还是最小值?并求出2128x x-的最大值或最小值.【答案】(1)()()31x x +-(2)代数式2128x x -有最大值 最大值为18- 【解析】【分析】(1)先用配方法 再用平方差公式分解即可;(2)先利用配方法变形 根据偶次方的非负性可知最小值 继而即可求得2128x x-的最大值. (1)223x x +-2214x x =++- ()214x =+- ()()1212x x =+++-()()31x x =+-;(2)∵228x x -()224x x =-()22444x x =-+-()2224x ⎡⎤=--⎣⎦()2228x =--∵当2x =时 ()2228x --即228x x -有最小值-8∵代数式2128x x -有最大值 最大值为18-. 【点睛】本题考查配方法在因式分解中的应用及代数式求值 解题的关键是熟练掌握配方法. 12.阅读下面的解答过程 求y 2+4y +5的最小值.解:y 2+4y +5=y 2+4y +4+1=(y +2)2+1∵(y +2)2≥0 即(y +2)2的最小值为0∵y2+4y+5=(y+2)2+1≥1∵y2+4y+5的最小值为1仿照上面的解答过程求:(1)m2﹣2m+2的最小值;(2)3﹣x2+2x的最大值.【答案】(1)1;(2)4【解析】【分析】(1)利用完全平方公式把原式变形根据偶次方的非负性解答即可.(2)利用完全平方公式把原式变形根据偶次方的非负性解答即可.【详解】解:(1)m2﹣2m+2=m2-2m+1+1=(m-1)2+1∵(m-1)2≥0∵(m-1)2+1≥1 即m2﹣2m+2的最小值为1;(2)3-x2+2x=-x2+2x+3=-(x2-2x+1)+4=-(x-1)2+4∵(x-1)2≥0∵-(x-1)2≤0∵-(x-1)2+4≤4 即3-x2+2x的最大值为4.【点睛】本题考查的是配方法的应用掌握完全平方公式、偶次方的非负性是解题的关键.13.配方法可以用来解一元二次方程还可以用它来解决很多问题.例如:求﹣3(a+1)2+6的最值.解:∵﹣3(a+1)2≤0 ∵﹣3(a+1)2+6≤6 ∵﹣3(a+1)2+6有最大值6 此时a=﹣1.(1)当x=时代数式2(x﹣1)2+3有最(填写大或小)值为.(2)当x=时代数式﹣x2+4x+3有最(填写大或小)值为.(3)如图矩形花园的一面靠墙另外三面的栅栏所围成的总长度是16m 当垂直于墙的一边长为多少时花园的面积最大?最大面积是多少?【答案】(1)1 小3(2)2 大7(3)当垂直于墙的一边长为4米时花园有最大面积为32【解析】【分析】(1)先根据平方的性质求出代数式的取值范围再进行分析计算即可;(2)先配方把多项式变成完全平方形式再进行分析计算;(3)根据总长为16m 构造方程求解即可.(1)解:∵2(x﹣1)2≥0∵2(x﹣1)2+3≥3∵当x=1时代数式有最小值为3.故答案为:1 小3.(2)解:﹣x2+4x+3=﹣(x2﹣4x)+3=﹣(x2﹣4x+4﹣4)+3=﹣(x﹣2)2+7∵﹣(x﹣2)2≤0∵﹣(x﹣2)2+7≤7∵当x=2时代数式有最大值为7.故答案为:2 大7.(3)解:设垂直于墙的一边长为x m 则平行于墙的一边长为(16﹣2x)m花园的面积为x(16﹣2x)=﹣2x2+16x=﹣2(x2﹣8x)=﹣2(x2﹣8x+16﹣16)=﹣2(x﹣4)2+32∵﹣2(x﹣4)2≤0∵﹣2(x﹣4)2+32≤32∵当x=4时代数式有最大值为32即当垂直于墙的一边长为4米时花园有最大面积为32.【点睛】本题主要考查配方法的实际运用解题的关键在于通过配方法把代数式化成完全平方式再进行分析.类型三配方法在几何图形中的应用14.如图∵ABC=90° AC=6 以AB为边长向外作等边∵ABM连CM则CM的最大值为________________.【答案】3##3+【解析】【分析】过点M作MD∵BC交BC的延长线于点D设AB=x利用勾股定理表示出BC利用解直角三角形表示出MD BD再利用勾股定理求得CM的长根据配方法利用非负数的性质即可得到CM的最大值.【详解】如图 过点M 作MD ∵BC 交BC 的延长线于点D设AB =x 则BC∵∵ABM 是等边三角形∵BM =AB =x ∵ABM =60°∵∵ABC =90°∵∵MBD =30°∵MD ∵BC1122MD BM x ∴==BD x ==在Rt∵MDC 中CM =∵当x 2=18时 CM369723+∵CM 的最大值为:3.故答案为:3.【点睛】本题考查勾股定理以及配方法 掌握配方法求出最值是解题的关键.15.已知点P 的坐标为(2 3) A 、B 分别是x 轴、y 轴上的动点 且90APB ∠=︒C 为AB 的中点 当OC 最小时则点B 的坐标为____.【答案】(0,3)【解析】【分析】利用中点坐标公式将C 点坐标表示出来后 运用勾股定理222AP PB AB +=得到y 与x 的关系式再将OC 的长度用含有y 的式子表示出来 利用配方法即可求出当OC 最小时点B 的坐标.【详解】解:设A 点坐标为(,0)x B 点坐标为(0,)y 则中点C 点坐标为(,)22x y;∵90APB ∠=︒∵222AP PB AB +=∵2222(2)94(3)x y x y -+++-=+化简得:2313x y +=1332yx -=∵12OC ==将1332yx -=代入上式得:12OC =变形得:OC∵当3y =时 OC 最小 此时B 点坐标为(0,3).故答案为(0,3).【点睛】本题主要考查运用配方法求解动点问题 正确理解题意、熟练掌握相关知识、灵活应用数形结合思想是解题的关键 属于综合类问题.16.已知:如图 在Rt ABC 中 90B ∠=︒ 8cm AB BC ==.点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动 同时点Q 从点B 开始沿BC 边向点C 以1cm/s 的速度移动.(1)求几秒后 PBQ △的面积等于26cm(2)求几秒后 PQ 的长度等于?(3)求几秒后 PQ 的长度能取得最小值 其最小值为多少cm ?【答案】(1)2秒或6秒;(2)1秒或7秒;(3)4 【解析】【分析】(1)设运动时间为x 秒 则8PB x =- PQ x = 根据三角形面积公式列出方程即可;(2)设运动时间为y 秒 则8PB y =- PQ y = 根据勾股定理列出方程即可;(3)设运动时间为t 秒 则8PB t =- PQ t = 根据勾股定理列出2PQ 的式子 根据配方法即可求得最小值;【详解】(1)设运动时间为x 秒 则8PB x =- PQ x = 根据题意得:()1862x x -= 解得122,6x x ==答:2秒或6秒后 PBQ △的面积等于26cm(2)设运动时间为y 秒 则8PB y =- PQ y =90B ∠=︒在Rt PQC 中222PQ PB BQ =+(()2228y y =-+ 解得121,7y y ==答:1秒或7秒后 PQ 的长度等于(3)设运动时间为t 秒 则8PB t =- PQ t =90B ∠=︒在Rt PQC 中222PQ PB BQ =+22(8)t t =-+221664t t =-+22(816)32t t =-++22(4)32t =-+32≥∴当4t =时 取得最小值为PQ ==即4秒后 PQ 取得最小值 最小值为【点睛】本题考查了一元二次方程的应用 配方法的应用 根据题意列出方程是解题的关键.17.配方法在初中数学中运用非常广泛 可以求值 因式分解 求最值等.如:求代数式的最值:2222(1)1x x x 在1x =-时 取最小值1(1)求代数式24x x -的最小值.(2)2245x x --+有最大还最小值 求出其最值.(3)求221x x +的最小值.(4)22614a b ab b ++-+的最小值.(5)三角ABE 和三角形DEC 的面积分别为4和9 求四边形ABCD 的面积最小值.【答案】(1)-4;(2)有最大值 且为7;(3)2;(4)2;(5)25【解析】【分析】(1)(2)(3)(4)利用配方法变形 可得最值;(5)设S △BEC =x 由等高三角形可知:S △BEC :S △CED =S △AEB :S △AED从而可得S △AED =36x再将四边形ABCD 的面积变形得到21312++ 可得结果.【详解】解:(1)()222444424x x x x x -=-+-=--∵在x =2时 有最小值-4;(2)2245x x --+=()2225x x -++=()222115x x -++-+=()2217x -++∵当x =-1时 有最大值 且为7;(3)221x x +=2221x x ⎛⎫⎪⎭+-≥⎝∵当x =1时 221x x +的最小值为2;(4)22614a b ab b ++-+ =22213612244a ab b b b +++-++ =()22134224a b b ⎛⎫++-+ ⎪⎝⎭当a =-2 b =4时 代数式有最小值2;(5)设S △BEC =x 已知S △AEB =4 S △CED =9则由等高三角形可知:S △BEC :S △CED =S △AEB :S △AED∵x :9=4:S △AED∵S△AED=36 x∵四边形ABCD面积=4+9+x+36x=21312++∵当x=36时四边形ABCD面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用同时本题还考查了等高三角形的在面积计算中的应用.对不能直接应用公式的需要正确变形才可以应用本题中等难度略大.。

利用配方法求代数式最值

利用配方法求代数式最值

利用配方法求代数式最值在代数学中,我们经常需要求解代数式的最值问题。

而利用配方法是一种常见且有效的求解方法。

本文将介绍如何利用配方法来求解代数式的最值问题。

一、什么是配方法?配方法,又称配方法或配方技巧,是一种将代数式进行变形的方法,通过变形后的式子,可以更加方便地进行计算或求解。

配方法常用于求解二次函数的最值问题,也适用于其他类型的代数式。

二、如何利用配方法求解代数式的最值?下面我们通过一个具体的例子来说明如何利用配方法求解代数式的最值问题。

例1:求解函数f(x)=x²+2x+1的最小值。

解:首先,我们可以将函数f(x)进行配方,即将x²+2x+1变形为完全平方形式。

由于(x+1)²=x²+2x+1,所以f(x)可以写成f(x)=(x+1)²。

将f(x)进行变形后,我们可以发现f(x)的最小值为0,且当x=-1时取得最小值。

因此,函数f(x)=x²+2x+1的最小值为0,当且仅当x=-1时取得最小值。

通过这个例子,我们可以看到,通过配方法将代数式进行变形,可以使问题的求解变得更加简单明了。

三、配方法的注意事项在利用配方法求解代数式的最值问题时,我们需要注意以下几点:1. 配方的目的是将代数式变形为完全平方形式。

完全平方形式具有明确的最值点,从而方便我们求解最值问题。

2. 配方的过程需要仔细、有条理地进行,确保每一步的变形是准确无误的。

3. 配方后的代数式可能会有多个最值点,我们需要通过进一步的计算或分析来确定最值的具体取值。

四、其他例子除了二次函数的最值问题,配方法还可以用于其他类型的代数式求解。

例2:求解函数f(x)=x³-3x²+3x-1的最大值。

解:首先,我们可以将函数f(x)进行配方,即将x³-3x²+3x-1变形为完全平方形式。

由于(x-1)³=x³-3x²+3x-1,所以f(x)可以写成f(x)=(x-1)³。

考点03 配方法、根的判别式以及根与系数关系的9考点归类-解析版 2023-2024学年九年级数学考

考点03 配方法、根的判别式以及根与系数关系的9考点归类-解析版 2023-2024学年九年级数学考

考点03 配方法、根的判别式以及根与系数关系的9考点归类1,配方法的应用的方法技巧(1)比较大小:配方法不但可以解一元二次方程,而且能求代数式的最值,还能用于比较代数式的大小.用配方法比较代数式的大小,主要是用作差法将代数式作差后得到的新代数式配方,根据新代数式与0的关系确定代数式的大小(2)求最值:用配方法求代数式的最值是将代数式配方为完全平方式与常数的和的形式,根据完全平方式的非负性确定代数式的最值;(3)未知系数的取值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.(4)用配方法构造“非负数之和”解决问题:通过配完全平方式,利用“非负性”解决问题。

2,根的判别式的应用的方法【技巧】根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.(1)判断根的情况:式子b2-4ac叫做方程ax2+bx+c=0(a≠0)根的判别式,通常用希腊字母△表示它,即△=b2-4ac.(2)求字母的值或取值范围:根据判别式,确定与0的关系,直接代入解不等式即可。

(3)与三角形结合:一般会把根与三角形的边进行结合考察,考虑到三角形的三边关系能否构成三角形即可,有时候还会与等腰三角形结合。

(4)与一次函数结合:通过一次函数与方程和不等式的关系,观察图像即可。

3,根与系数的关系方法根与系数的关系:若x1,x2是一元二次方程ax²+bx+c=0(a≠0)的两根时,x1+x2=-ba ,x1x2=ca.考点1比较大小考点2求最值考点3未知系数的取值考点4用配方法构造“非负数之和”解决问题考点5判断根的情况考点6求字母的值或取值范围考点7与三角形结合考点8与一次函数结合考点9 根与系数的关系求变形式子考点1 利用配方法比较大小【详解】(1)224622x x x -+=-+(),所以当2x =时,代数式246x x -+有最小值,这个最值为2,故答案为:2-;2;2;小;2;(2)2123x x ---()222x x =-+2110x =-+()>则2123x x -->.【点睛】本题考查的是配方法的应用,掌握配方法的一般步骤是解题的关键,注意偶次方的非负性的应用.2.(2022秋·七年级单元测试)我们知道20a ≥,所以代数式2a 的最小值为0.学习了多项式乘法中的完全平方公式,可以逆用公式,即用()2222a ab b a b ±+=±来求一些多项式的最小值.例如,求263x x ++的最小值问题.解:∵()2226369636x x x x x ++=++-=+-,又∵()230x +≥,∴()2366x +-≥-,∴263x x ++的最小值为6-.请应用上述思想方法,解决下列问题:(1)探究:()2245____________x x x -+=+;(2)求224x x +的最小值.(3)比较代数式:21x -与23x -的大小.【答案】(1)2-,1(2)2-(3)21>23x x --【分析】(1)根据完全平方式的特征求解.(2)先配方,再求最值.(3)作差后配方比较大小即可.【详解】(1)解:22245441(2)1x x x x x -+=-++=-+.(2)222242(211)2(1)2x x x x x +=++-=+-,故答案为:2,2-(2)解:221612611x x x x --+=-+2692x x =-++()232x =-+()30,x -³Q()23220,x \-+³>21612.x x \->-(3)解:()222323x x x x -++=--+()22113x x =--+-+()214x =--+ ()210,x --£Q ()2144,x \--+£ ∴223x x -++的最大值为4.【点睛】本题考查的是配方法的应用,掌握“配方法的步骤与非负数的性质”是解本题的关键.考点2利用配方法求最值【分析】(1)根据完全平方式的特征求解;(2)先配方,再求最值;(3)作差后配方比较大小.【详解】(1)解:()2224644222x x x x x +=-++=-+-故当20x -=,即2x =时,代数式246x x -+最小值为2;(2)∵224250x x y y -+++=,则2244210x x y y -++++=,∴()()22210x y -++=,即20x -=,10y +=,∴2x =,1y =-,∴211x y +=-=;(3)()()2221232211x x x x x ---=-+=-+,∵()210x -≥,∴()2110x -+>,∴2123x x ->-.【点睛】本题考查配方法的应用,正确配方,充分利用平方的非负性是求解本题的关键.7.(2023春·陕西咸阳·八年级统考期末)把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.如:①用配方法分解因式: ²43a a ++.解:原式:²441(2)²1(21)(21)(3)(1)a a a a a a a =++-=+-=+++-=++②2246M a a =-+, 利用配方法求M 的最小值.解:2²462(²21)622(1)²4M a a a a a =-+=-++-=-+222(1)02(1)44a a -≥∴-+≥,,∴当1a =时,M 有最小值4.请根据上述材料解决下列问题:(1)用配方法因式分解²412x x --;(2)若 2441M x x =+-, 求M 的最小值.【答案】(1)(6)(2)x x -+考点3 利用配方法未知系数的取值∴2a =,1b =,∴1a b -=,故选A .【点睛】本题考查了解一元二次方程的方法—配方法,熟练一元二次方程的解法是解题的关键.10.(2023春·山东威海·八年级统考期末)用配方法解方程2610x x --=,若配方后结果为2()x m n -=,则n 的值为( )A .10-B .10C .3-D .9【答案】B【分析】利用配方法将方程2610x x --=配成2()x m n -=,然后求出n 的值即可.【详解】∵2610x x --=,∴261x x -=,∴26919x x -+=+,即2(3)10x -=, 10n ∴=.故选:B .【点睛】本题主要考查了利用配方法解一元二次方程,熟练掌握配方法的步骤是解题的关键.11.(2023秋·全国·九年级专题练习)用配方法解一元二次方程2630x x ++=时,将它化为2()x m n +=的形式,则m n -的值为( )A .6-B .3-C .0D .2【答案】B【分析】由2630x x ++=,配方可得()236x +=,进而可得m n ,的值,然后代入m n -,计算求解即可.【详解】解:∵2630x x ++=,∴2696x x ++=,∴()236x +=,∴3m =,6n =,∴3m n -=-,故选:B .【点睛】本题考查了配方法解一元二次方程,代数式求值.解题的关键在于正确的配方求出m n ,的值.考点4 用配方法构造“非负数之和”解决问题∵三角形的三条边为a,b,c,∴b-a<c<b+a,∴3<c<13.又∵这个三角形的最大边为c,∴8<c<13.故选:C.【点睛】本题考查了配方法在三角形的三边关系中的应用,熟练掌握配方法、偶次方的非负性及三角形的三边关系是解题的关键.14.(2023春·浙江·七年级专题练习)已知2248200++-+=,那么y x=()x y x yA.-16B.16C.-8D.8【答案】B【分析】利用配方法把已知条件变形为(x+2)2+(y-4)2=0,再根据非负数的性质得x+2=0,y-4=0,即可求出x与y的值,进一步代入求得答案即可.【详解】∵x2+4x+y2-8y+20=0,∴x2+4x+4+y2-8y+16=0,∴(x+2)2+(y-4)2=0,∴x+2=0,y-4=0,∴x=-2,y=4,∴x y=16.故选B.【点睛】此题考查配方法的应用,非负数的性质,掌握完全平方公式是解决问题的关键.15.(2023春·山东淄博·八年级统考期中)不论x、y为什么实数,代数式x2+y2+2x-4y+9的值()A.总不小于4B.总不小于9C.可为任何实数D.可能为负数【答案】A【分析】要把代数式x2+y2+2x-4y+9进行拆分重组凑完全平方式,来判断其值的范围即可.【详解】x2+y2+2x-4y+9=(x2+2x+1)+(y2-4y+4)+4=(x+1)2+(y-2)2+4,∵(x+1)2≥0,(y-2)2≥0,∴(x+1)2+(y-2)2+4≥4,考点5 利用根的判别式判断根的情况根.20.(2023·全国·九年级假期作业)若1x =是一元二次方程220(0)ax bx a -+=≠的一个根,那么方程220ax bx ++=的根的情况是( )A .有两个不相等的实数根B .有一个根是=1x -C .没有实数根D .有两个相等的实数根【答案】B【分析】先将1x =代入220(0)ax bx a -+=≠中得到20a b -+=,再根据一元二次方程根的判别式进行求解即可得出结论.【详解】解:∵1x =是一元二次方程220(0)ax bx a -+=≠的一个根,∴20a b -+=,即2b a =+,对于方程220ax bx ++=,∵242b a ∆=-⨯()228a a =+-()220a =-≥,∴方程220ax bx ++=有两个实数根,故选项A 、C 、D 错误,不符合题意;当=1x -时,2220ax bx a b ++=-+= ,即=1x -是方程220ax bx ++=的一个根,故选项B 正确,符合题意,故选:B .【点睛】本题考查了一元二次方程的解和根的判别式,解答的关键是理解一元二次方程的解的意义,掌握一元二次方程20ax bx c ++=根的情况与根的判别式24b ac ∆=-的关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.考点6 利用根的判别式求字母的值或取值范围故选:A .【点睛】本题考查了根的判别式:一元二次方程200ax bx c a ++=≠()的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当0∆<时,方程无实数根.24.(2023春·吉林长春·八年级长春外国语学校校考期末)已知关于x 的一元二次方程()21210k x x --+=有两个实数根,则k 的取值范围是( )A .21k k ≤-≠且B .21k k ≤≠且C .21k k ≥-≠且D .2k ≥【答案】B【分析】根据方程有两个实数根,得出0∆≥且10k -≠,求出k 的取值范围,即可得出答案.【详解】解:由题意知,24441840b ac k k ∆=-=--=-≥(),且10k -≠,解得:2k ≤,且1k ≠,则k 的取值范围是2k ≤,且1k ≠,故选:B .【点睛】此题考查了根的判别式,(1)一元二次方程根的情况与判别式∆的关系:①0∆>⇔方程有两个不相等的实数根;②0∆=⇔方程有两个相等的实数根;③0∆⇔<方程没有实数根.(2)一元二次方程的二次项系数不为0.考点7 利用根的判别式与三角形结合【详解】(1)证明:2(2)42k k∆=+-⨯2448k k k=++-2(2)0k =-≥所以此方程总有实根.(2)解:①若b c =,则此方程有两个相等实根此时20k -=,则2k =,原方程为:2440x x -+=,122x x ==,∴另外两边长为2和2,②若a c =,则1a =是方程2(2)20x k x k -++=的根,∴21(2)20k k -++=,∴1k =,原方程为2320x x -+=,解得:11x =,22x =,而1、1、2为边不能构成三角形.所以,三角形另外两边长为2,2.【点睛】本题考查了一元二次方程根的判别式、解一元二次方程、等腰三角形存在性、三角形三边关系等知识点,熟练掌握相关知识点是解决本题的关键.26.(2023春·广东河源·九年级校考开学考试)若方程(c 2+a 2)x +2(b 2-c 2)x +c 2-b 2=0有两个相等的实数根,且a ,b ,c 是三角形ABC 的三边,证明此三角形是等腰三角形.【答案】见解析【分析】先根据方程有两个相等的实数根得出△=0,再得出b 、c 的关系即可.【详解】解:Δ=[2(b 2-c 2)]2-4(c 2+a 2)(c 2-b 2)=4(b 2-c 2)(b 2-c 2+a 2+c 2)=4(b+c )(b-c )(b 2+a 2).∵方程有两个相等实根.∴Δ= 0,即4(b+c )(b-c )(b 2+a 2)=0.∵a ,b ,c 是三角形的三边,∴b+c≠0,a 2+b 2≠0,只有b-c=0,解得b=c .出判别式的值的情况,从而得到关于a、b、c及k的等式是解题的关键.28.(2011秋·江苏无锡·九年级统考期中)已知关于x的方程22a x bx c x-+++=有两个相等的实数(1)2(1)0根,试证明以a、b、c为三边的三角形是直角三角形.【答案】【详解】考点:根的判别式;勾股定理的逆定理.分析:先把方程变为一般式:(c-a)x2+2bx+a+c=0,由方程有两个相等的实数根,得到△=0,即△=(2b)2-4(c-a)(a+c)=4(b2+c2-a2)=0,则有b2+c2-a2=0,即b2+c2=a2,根据勾股定理的逆定理可以证明以a、b、c 为三边的三角形是直角三角形.解答:证明:a(1-x2)+2bx+c(1+x2)=0去括号,整理为一般形式为:(c-a)x2+2bx+a+c=0,∵关于x的一元二次方程a(1-x2)+2bx+c(1+x2)=0有两个相等的实数根.∴△=0,即△=△=(2b)2-4(c-a)(a+c)=4(b2+c2-a2)=0,∴b2+c2-a2=0,即b2+c2=a2.∴以a、b、c为三边的三角形是直角三角形.点评:本题考查了一元二次方程的根的判别式和勾股定理的逆定理等知识.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.考点8 利用根的判别式与一次函数结合【分析】根据一元二次方程2210mx x --=无实数根得0m ≠且2(2)4(1)0m ∆=--⨯-<,即可得1m <-,又∵20b =>,可得一次函数2y mx =+的图象经过一、二、四象限,即可得.【详解】解:∵一元二次方程2210mx x --=无实数根,∴0m ≠且2(2)4(1)0m ∆=--⨯-<,440m +<,44m <-,1m <-,又∵20b =>,∴一次函数2y mx =+的图象经过一、二、四象限,∴一次函数2y mx =+的图象不经过第三象限,故选:C .【点睛】本题考查了一元二次方程的根的判别式,一次函数的图像性质,解题的关键是理解题意,掌握这些知识点.30.(2023·广东汕头·广东省汕头市聿怀初级中学校考三模)一元二次方程2240x x --=有两个实数根a ,b ,那么一次函数(1)y ab x a b =-++的图象一定不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】根据根与系数的关系即可求出ab 与a b +的值,然后根据一次函数的图象与性质即可求出答案.【详解】解:由根与系数的关系可知:2a b +=,4ab =-,∴15ab -=∴一次函数解析式为:52y x =+,故一次函数的图象一定不经过第四象限.故选:D .【点睛】本题考查了一元二次方程,解题的关键是熟练运用根与系数的关系以及一次函数的图象与性质.31.(2020秋·贵州贵阳·九年级校考阶段练习)若关于x 的一元二次方程2210x x kb ++=-没有实数根,则一次函数y kx b =+的大致图象可能是( )A .B .C .D .【答案】A【分析】首先根据一元二次方程没有实数根确定k ,b 的取值范围,然后根据一次函数的性质确定其图象的位置.【详解】解:∵方程2210x x kb ++=-没有实数根,∴()4410kb ∆=-+<,解得:0kb >,即k b 、同号,当00k b >>,时,一次函数y kx b =+的图象过一,二,三象限,当00k b <<,时,一次函数y kx b =+的图象过二,三,四象限,故选:A .【点睛】本题考查了根的判别式及一次函数的图象的问题,解题的关键是根据一元二次方程的根的判别式确定k ,b 的取值范围,难度不大.32.(2023·安徽合肥·统考二模)关于x 的一元二次方程2210mx x --=无实数根,则一次函数y mx m =-的图像不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【分析】根据一元二次方程根与判别式的关系,求得m 的取值范围,再根据一次函数的图象与系数的关系求解即可.【详解】解:∵一元二次方程2210mx x --=无实数根∴224(2)4(1)0b ac m ∆=-=--⨯⨯-<,解得1m <-,由一次函数y mx m =-可得0k m =<,0b m =->,∴一次函数y mx m =-过一、二、四象限,不过第三象限,故选:C【点睛】此题考查了一元二次方程根与判别式的关系,以及一次函数图象与系数的关系,解题的关键是熟练掌握相关基础知识.考点9 利用根与系数的关系求变形式子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档