2019中考数学试卷分析
2019年湖北省荆州市中考数学试卷及答案解析(word版)
![2019年湖北省荆州市中考数学试卷及答案解析(word版)](https://img.taocdn.com/s3/m/62d095eaac51f01dc281e53a580216fc700a53b8.png)
2019年湖北省荆州市中考数学试卷及答案解析(word版)2019年湖北省荆州市中考数学试卷一、选择题(每小题3分,共30分)1.比小1的有理数是()A。
-1 B。
1 C。
0 D。
22.下列运算正确的是()A。
m6÷m2=m3 B。
3m2-2m2=m2 C。
(3m2)3=9m6 D。
m×2m2=m23.如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2的度数是()A。
55° B。
65° C。
75° D。
85°4.我市气象部门测得某周内七天的日温差数据如下:4,6,6,5,7,6,8(单位:℃),这组数据的平均数和众数分别是()A。
7,6 B。
6,5 C。
5,6 D。
6,65.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A。
120元 B。
100元 C。
80元 D。
60元6.如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是A。
15° B。
20° C。
25° D。
30°7.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A。
2 B。
$\frac{1}{2}$ C。
$\frac{\sqrt{2}}{2}$ D。
$\frac{\sqrt{3}}{2}$8.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A。
1 B。
2 C。
3 D。
49.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2019个白色纸片,则n的值为()A。
2019年安徽省中考数学试卷(后附参考答案与试题解析)
![2019年安徽省中考数学试卷(后附参考答案与试题解析)](https://img.taocdn.com/s3/m/a0432392a8114431b90dd8dd.png)
密 封 线 学校 班级 姓名 学号密 封 线 内 不 得 答 题2019年安徽省中考数学试卷(后附参考答案与试题解析)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是正确的.1.(4分)在﹣2,﹣1,0,1这四个数中,最小的数是( ) A .﹣2B .﹣1C .0D .12.(4分)计算a 3•(﹣a )的结果是( ) A .a 2B .﹣a 2C .a 4D .﹣a 43.(4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是( )A .B .C .D .4.(4分)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为( ) A .1.61×109B .1.61×1010C .1.61×1011D .1.61×10125.(4分)已知点A (1,﹣3)关于x 轴的对称点A '在反比例函数y =的图象上,则实数k 的值为( ) A .3B .C .﹣3D .﹣6.(4分)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km /h )为( )A .60B .50C .40D .157.(4分)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =12,点D 在边BC 上,点E 在线段AD 上,EF ⊥AC 于点F ,EG ⊥EF 交AB 于点G .若EF =EG ,则CD 的长为( )A .3.6B .4C .4.8D .58.(4分)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是( ) A .2019年B .2020年C .2021年D .2022年9.(4分)已知三个实数a ,b ,c 满足a ﹣2b +c =0,a +2b +c <0,则( ) A .b >0,b 2﹣ac ≤0 B .b <0,b 2﹣ac ≤0 C .b >0,b 2﹣ac ≥0D .b <0,b 2﹣ac ≥010.(4分)如图,在正方形ABCD 中,点E ,F 将对角线AC 三等分,且AC =12,点P 在正方形的边上,则满足PE +PF =9的点P 的个数是( )密 封 线 学校 班级 姓名 学号密 封 线 内 不 得 答 题A .0B .4C .6D .8二、填空题(共4小题,每小题5分,满分20分)11.(5分)计算÷的结果是 .12.(5分)命题“如果a +b =0,那么a ,b 互为相反数”的逆命题为 . 13.(5分)如图,△ABC 内接于⊙O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D ,若⊙O 的半径为2,则CD 的长为 .14.(5分)在平面直角坐标系中,垂直于x 轴的直线l 分别与函数y =x ﹣a +1和y =x 2﹣2ax 的图象相交于P ,Q 两点.若平移直线l ,可以使P ,Q 都在x 轴的下方,则实数a 的取值范围是 .三、(本大题共2小题,每小题8分,满分16分) 15.(8分)解方程:(x ﹣1)2=4.16.(8分)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB .(1)将线段AB 向右平移5个单位,再向上平移3个单位得到线段CD ,请画出线段CD .(2)以线段CD 为一边,作一个菱形CDEF ,且点E ,F 也为格点.(作出一个菱形即可)四、(本大题共2小题,每小题8分,满分16分)17.(8分)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?18.(8分)观察以下等式: 第1个等式:=+, 第2个等式:=+, 第3个等式:=+, 第4个等式:=+, 第5个等式:=+,……按照以上规律,解决下列问题: (1)写出第6个等式: ;(2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明. 五、(本大题共2小题,每小题10分,满分20分)密 封 线 学校 班级 姓名 学号密 封 线 内 不 得 答 题19.(10分)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O 为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB 长为6米,∠OAB =41.3°,若点C 为运行轨道的最高点(C ,O 的连线垂直于AB ),求点C 到弦AB 所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)20.(10分)如图,点E 在▱ABCD 内部,AF ∥BE ,DF ∥CE . (1)求证:△BCE ≌△ADF ;(2)设▱ABCD 的面积为S ,四边形AEDF 的面积为T ,求的值.六、(本题满分12分)21.(12分)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的各数据按从小到大的顺序整理成如下表格: 编号① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ ⑬ ⑭ ⑮尺寸8.72 8.88 8.92 8.93 8.94 8.96 8.97 8.98 a 9.03 9.04 9.06 9.07 9.08 b(cm )按照生产标准,产品等次规定如下:尺寸(单位:cm ) 产品等次 8.97≤x ≤9.03 特等品 8.95≤x ≤9.05 优等品 8.90≤x ≤9.10 合格品 x <8.90或x >9.10非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9cm . (i )求a 的值;(ii )将这些优等品分成两组,一组尺寸大于9cm ,另一组尺寸不大于9cm ,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率. 七、(本题满分12分)22.(12分)一次函数y =kx +4与二次函数y =ax 2+c 的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点 (1)求k ,a ,c 的值;(2)过点A (0,m )(0<m <4)且垂直于y 轴的直线与二次函数y =ax 2+c 的图象相交于B ,C 两点,点O 为坐标原点,记W =OA 2+BC 2,求W 关于m 的函数解析式,并求W 的最小值. 八、(本题满分14分)23.(14分)如图,Rt △ABC 中,∠ACB =90°,AC =BC ,P 为△ABC 内部一点,且∠APB =∠BPC =135°. (1)求证:△PAB ∽△PBC ; (2)求证:PA =2PC ;(3)若点P 到三角形的边AB ,BC ,CA 的距离分别为h 1,h 2,h 3,求证h 12=h 2•h 3.密封 线 学校 班级 姓名 学号密 封 线 内 不 得 答 题密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题2019年安徽省中考数学试卷参考答案与试题解析(后附试卷)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是正确的.1.(4分)在﹣2,﹣1,0,1这四个数中,最小的数是( ) A .﹣2B .﹣1C .0D .1【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可. 【解答】解:根据有理数比较大小的方法,可得 ﹣2<﹣1<0<1,∴在﹣2,﹣1,0,1这四个数中,最小的数是﹣2. 故选:A .【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.(4分)计算a 3•(﹣a )的结果是( ) A .a 2B .﹣a 2C .a 4D .﹣a 4【分析】直接利用同底数幂的乘法运算法则求出答案. 【解答】解:a 3•(﹣a )=﹣a 3•a =﹣a 4. 故选:D .【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.同底数幂相乘,底数不变,指数相加.3.(4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是( )A .B .C .D .【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中. 【解答】解:几何体的俯视图是:故选:C .【点评】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.4.(4分)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为( ) A .1.61×109 B .1.61×1010C .1.61×1011D .1.61×1012【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 【解答】解:根据题意161亿用科学记数法表示为1.61×1010 . 故选:B .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.(4分)已知点A (1,﹣3)关于x 轴的对称点A '在反比例函数y =的图象上,则实数k 的值为( ) A .3B .C .﹣3D .﹣【分析】先根据关于x 轴对称的点的坐标特征确定A '的坐标为(1,3),然后把A ′的坐标代入y =中即可得到k 的值.【解答】解:点A (1,﹣3)关于x 轴的对称点A '的坐标为(1,3),把A ′(1,3)代入y =得k =1×3=3. 故选:A .密 封 线 学校 班级 姓名 学号密 封 线 内 不 得 答 题【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y =(k 为常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k . 6.(4分)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km /h )为( )A .60B .50C .40D .15【分析】根据中位数的定义求解可得.【解答】解:由条形图知,50个数据的中位数为第25、26个数据的平均数,即中位数为==40,故选:C .【点评】本题主要考查众数,熟练掌握众数的定义是解题的关键.7.(4分)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =12,点D 在边BC 上,点E 在线段AD 上,EF ⊥AC 于点F ,EG ⊥EF 交AB 于点G .若EF =EG ,则CD 的长为( )A .3.6B .4C .4.8D .5【分析】根据题意和三角形相似的判定和性质,可以求得CD 的长,本题得以解决. 【解答】解:作DH ∥EG 交AB 于点H ,则△AEG ∽△ADH ,∴,∵EF ⊥AC ,∠C =90°, ∴∠EFA =∠C =90°, ∴EF ∥CD , ∴△AEF ∽△ADC ,∴, ∴,∵EG =EF , ∴DH =CD ,设DH =x ,则CD =x , ∵BC =12,AC =6, ∴BD =12﹣x ,∵EF ⊥AC ,EF ⊥EG ,DH ∥EG , ∴EG ∥AC ∥DH , ∴△BDH ∽△BCA , ∴,即,解得,x =4, ∴CD =4, 故选:B .【点评】本题考查相似三角形的判定和性质,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.密 封 线 学校 班级 姓名 学号密 封 线 内 不 得 答 题8.(4分)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是( ) A .2019年B .2020年C .2021年D .2022年【分析】根据题意分别求出2019年全年国内生产总值、2020年全年国内生产总值,得到答案.【解答】解:2019年全年国内生产总值为:90.3×(1+6.6%)=96.2598(万亿), 2020年全年国内生产总值为:96.2598×(1+6.6%)≈102.6(万亿),∴国内生产总值首次突破100万亿的年份是2020年, 故选:B .【点评】本题考查的是有理数的混合运算,掌握有理数的混合运算法则、正确列出算式是解题的关键.9.(4分)已知三个实数a ,b ,c 满足a ﹣2b +c =0,a +2b +c <0,则( ) A .b >0,b 2﹣ac ≤0 B .b <0,b 2﹣ac ≤0 C .b >0,b 2﹣ac ≥0D .b <0,b 2﹣ac ≥0【分析】根据a ﹣2b +c =0,a +2b +c <0,可以得到b 与a 、c 的关系,从而可以判断b 的正负和b 2﹣ac 的正负情况,本题得以解决. 【解答】解:∵a ﹣2b +c =0,a +2b +c <0, ∴a +c =2b ,b =,∴a +2b +c =(a +c )+2b =4b <0, ∴b <0, ∴b 2﹣ac ==﹣ac ==≥0,即b <0,b 2﹣ac ≥0, 故选:D .【点评】本题考查因式分解的应用、不等式的性质,解答本题的关键是明确题意,判断出b 和b 2﹣ac 的正负情况.10.(4分)如图,在正方形ABCD 中,点E ,F 将对角线AC 三等分,且AC =12,点P 在正方形的边上,则满足PE +PF =9的点P 的个数是( )A .0B .4C .6D .8【分析】作点F 关于BC 的对称点M ,连接FM 交BC 于点N ,连接EM ,交BC 于点H ,可得点H 到点E 和点F 的距离之和最小,可求最小值,即可求解.【解答】解:如图,作点F 关于BC 的对称点M ,连接FM 交BC 于点N ,连接EM ,交BC 于点H∵点E ,F 将对角线AC 三等分,且AC =12, ∴EC =8,FC =4=AE ,∵点M 与点F 关于BC 对称∴CF =CM =4,∠ACB =∠BCM =45°∴∠ACM =90° ∴EM ==4则在线段BC 存在点H 到点E 和点F 的距离之和最小为4<9在点H 右侧,当点P 与点C 重合时,则PE +PF =12 ∴点P 在CH 上时,4<PE +PF ≤12在点H 左侧,当点P 与点B 重合时,BF ==2∵AB =BC ,CF =AE ,∠BAE =∠BCF ∴△ABE ≌△CBF (SAS )密 封 线 学校 班级 姓名 学号密 封 线 内 不 得 答 题∴BE =BF =2 ∴PE +PF =4∴点P 在BH 上时,4<PE +PF <4∴在线段BC 上点H 的左右两边各有一个点P 使PE +PF =9, 同理在线段AB ,AD ,CD 上都存在两个点使PE +PF =9. 即共有8个点P 满足PE +PF =9,故选:D .【点评】本题考查了正方形的性质,最短路径问题,在BC 上找到点N 使点N 到点E和点F 的距离之和最小是本题的关键.二、填空题(共4小题,每小题5分,满分20分) 11.(5分)计算÷的结果是 3 .【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可. 【解答】解:.故答案为:3【点评】本题主要考查了二次根式的乘除法运算,熟练掌握二次根式的性质是解答本题的关键.12.(5分)命题“如果a +b =0,那么a ,b 互为相反数”的逆命题为 如果a ,b 互为相反数,那么a +b =0 .【分析】根据互逆命题的定义写出逆命题即可.【解答】解:命题“如果a +b =0,那么a ,b 互为相反数”的逆命题为: 如果a ,b 互为相反数,那么a +b =0;故答案为:如果a ,b 互为相反数,那么a +b =0.【点评】本题考查的是命题与定理、互逆命题,掌握逆命题的确定方法是解题的关键. 13.(5分)如图,△ABC 内接于⊙O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D ,若⊙O 的半径为2,则CD 的长为.【分析】连接CO 并延长交⊙O 于E ,连接BE ,于是得到∠E =∠A =30°,∠EBC =90°,解直角三角形即可得到结论.【解答】解:连接CO 并延长交⊙O 于E ,连接BE , 则∠E =∠A =30°,∠EBC =90°, ∵⊙O 的半径为2, ∴CE =4, ∴BC =CE =2,∵CD ⊥AB ,∠CBA =45°, ∴CD =BC =,故答案为:.【点评】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.14.(5分)在平面直角坐标系中,垂直于x 轴的直线l 分别与函数y =x ﹣a +1和y =x 2﹣2ax 的图象相交于P ,Q 两点.若平移直线l ,可以使P ,Q 都在x 轴的下方,则实数a 的取值范围是 a >1或a <﹣1 .【分析】由y =x ﹣a +1与x 轴的交点为(1﹣a ,0),可知当P ,Q 都在x 轴的下方时,x 直线l 与x 轴的交点要在(1﹣a ,0)的左侧,即可求解; 【解答】解:y =x ﹣a +1与x 轴的交点为(a ﹣1,0), ∵平移直线l ,可以使P ,Q 都在x 轴的下方, ∴当x =a ﹣1时,y =(1﹣a )2﹣2a (a ﹣1)<0, ∴a 2﹣1>0, ∴a >1或a <﹣1; 故答案为a >1或a <﹣1;密 封 线 学校 班级 姓名 学号密 封 线 内 不 得 答 题【点评】本题考查二次函数图象及性质,一次函数图象及性质;数形结合的分析问题,将问题转化为当x =1﹣a 时,二次函数y <0是解题的关键. 三、(本大题共2小题,每小题8分,满分16分) 15.(8分)解方程:(x ﹣1)2=4.【分析】利用直接开平方法,方程两边直接开平方即可. 【解答】解:两边直接开平方得:x ﹣1=±2,∴x ﹣1=2或x ﹣1=﹣2, 解得:x 1=3,x 2=﹣1.【点评】此题主要考查了直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a ≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x 2=a (a ≥0);ax 2=b (a ,b 同号且a ≠0);(x +a )2=b (b ≥0);a (x +b )2=c (a ,c 同号且a ≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.16.(8分)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB .(1)将线段AB 向右平移5个单位,再向上平移3个单位得到线段CD ,请画出线段CD .(2)以线段CD 为一边,作一个菱形CDEF ,且点E ,F 也为格点.(作出一个菱形即可)【分析】(1)直接利用平移的性质得出C ,D 点位置,进而得出答案; (2)直接利用菱形的判定方法进而得出答案. 【解答】解:(1)如图所示:线段CD 即为所求;(2)如图:菱形CDEF 即为所求,答案不唯一.【点评】此题主要考查了菱形的判定以及平移变换,正确掌握菱形的判定方法是解题关键.四、(本大题共2小题,每小题8分,满分16分)17.(8分)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?【分析】设甲工程队每天掘进x 米,则乙工程队每天掘进(x ﹣2)米.根据“甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米”列出方程,然后求工作时间.【解答】解:设甲工程队每天掘进x 米,则乙工程队每天掘进(x ﹣2)米, 由题意,得2x +(x +x ﹣2)=26,解得x =7,所以乙工程队每天掘进5米,(天)答:甲乙两个工程队还需联合工作10天.【点评】此题主要考查了一元一次方程的应用,根据题意得出两队的工效,进而得出等量关系是解题关键. 18.(8分)观察以下等式: 第1个等式:=+, 第2个等式:=+, 第3个等式:=+, 第4个等式:=+, 第5个等式:=+,……按照以上规律,解决下列问题: (1)写出第6个等式:;(2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明.【分析】(1)根据已知等式即可得; (2)根据已知等式得出规律,再利用分式的混合运算法则验证即可.【解答】解:(1)第6个等式为:,故答案为:;(2)证明:∵右边==左边.∴等式成立,故答案为:.【点评】本题主要考查数字的变化规律,解题的关键是根据已知等式得出的规律,并熟练加以运用.五、(本大题共2小题,每小题10分,满分20分)19.(10分)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB 长为6米,∠OAB =41.3°,若点C 为运行轨道的最高点(C ,O 的连线垂直于AB ),求点C 到弦AB 所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)密 封 线 学校 班级 姓名 学号密 封 线 内 不 得 答 题【分析】连接CO 并延长,与AB 交于点D ,由CD 与AB 垂直,利用垂径定理得到D 为AB 的中点,在直角三角形AOD 中,利用锐角三角函数定义求出OA ,进而求出OD ,由CO +OD 求出CD 的长即可.【解答】解:连接CO 并延长,与AB 交于点D , ∵CD ⊥AB ,∴AD =BD =AB =3(米), 在Rt △AOD 中,∠OAB =41.3°, ∴cos41.3°=,即OA ===4(米),tan41.3°=,即OD =AD •tan41.3°=3×0.88=2.64(米),则CD =CO +OD =4+2.64=6.64(米).【点评】此题考查了解直角三角形的应用,垂径定理,以及圆周角定理,熟练掌握各自的性质是解本题的关键.20.(10分)如图,点E 在▱ABCD 内部,AF ∥BE ,DF ∥CE . (1)求证:△BCE ≌△ADF ;(2)设▱ABCD 的面积为S ,四边形AEDF 的面积为T ,求的值.【分析】(1)根据ASA 证明:△BCE ≌△ADF ;(2)根据点E 在▱ABCD 内部,可知:S △BEC +S △AED =S ▱ABCD ,可得结论. 【解答】解:(1)∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC , ∴∠ABC +∠BAD =180°, ∵AF ∥BE ,∴∠EBA +∠BAF =180°, ∴∠CBE =∠DAF , 同理得∠BCE =∠ADF ,在△BCE 和△ADF 中, ∵,∴△BCE ≌△ADF (ASA ); (2)∵点E 在▱ABCD 内部, ∴S △BEC +S △AED =S ▱ABCD , 由(1)知:△BCE ≌△ADF ,∴S △BCE =S △ADF ,∴S 四边形AEDF =S △ADF +S △AED =S △BEC +S △AED =S ▱ABCD ,密 封 线 学校 班级 姓名 学号密 封 线 内 不 得 答 题∵▱ABCD 的面积为S ,四边形AEDF 的面积为T , ∴==2.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.六、(本题满分12分)21.(12分)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的各数据按从小到大的顺序整理成如下表格: 编号① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ ⑬ ⑭ ⑮尺寸(cm )8.72 8.88 8.92 8.93 8.94 8.96 8.97 8.98 a 9.03 9.04 9.06 9.07 9.08 b 按照生产标准,产品等次规定如下:尺寸(单位:cm ) 产品等次 8.97≤x ≤9.03 特等品 8.95≤x ≤9.05 优等品 8.90≤x ≤9.10 合格品 x <8.90或x >9.10非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9cm . (i )求a 的值;(ii )将这些优等品分成两组,一组尺寸大于9cm ,另一组尺寸不大于9cm ,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.【分析】(1)由15×80%=12,不合格的有15﹣12=3个,给出的数据只有①②两个不合格可得答案;(2)(i )由可得答案;(ii )由特等品为⑦⑧⑨⑩,画树状图列出所有等可能结果,再根据概率公式求解可得. 【解答】解:(1)不合格.因为15×80%=12,不合格的有15﹣12=3个,给出的数据只有①②两个不合格;(2)(i )优等品有⑥~⑪,中位数在⑧8.98,⑨a 之间, ∴,解得a =9.02(ii )大于9cm 的有⑨⑩⑪,小于9cm 的有⑥⑦⑧,其中特等品为⑦⑧⑨⑩ 画树状图为:共有九种等可能的情况,其中抽到两种产品都是特等品的情况有4种. ∴抽到两种产品都是特等品的概率P =.【点评】本题考查的是利用树状图求概率.用到的知识点为:概率=所求情况数与总情况数之比. 七、(本题满分12分)22.(12分)一次函数y =kx +4与二次函数y =ax 2+c 的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点 (1)求k ,a ,c 的值;(2)过点A (0,m )(0<m <4)且垂直于y 轴的直线与二次函数y =ax 2+c 的图象相交于B ,C 两点,点O 为坐标原点,记W =OA 2+BC 2,求W 关于m 的函数解析式,并求W 的最小值.【分析】(1)由交点为(1,2),代入y =kx +4,可求得k ,由y =ax 2+c 可知,二次函数的顶点在y 轴上,即x =0,则可求得顶点的坐标,从而可求c 值,最后可求a 的值密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(2)由(1)得二次函数解析式为y =﹣2x 2+4,令y =m ,得2x 2+m ﹣4=0,可求x 的值,再利用根与系数的关系式,即可求解.【解答】解:(1)由题意得,k +4=﹣2,解得k =﹣2, 又∵二次函数顶点为(0,4), ∴c =4把(1,2)带入二次函数表达式得a +c =2,解得a =﹣2(2)由(1)得二次函数解析式为y =﹣2x 2+4,令y =m ,得2x 2+m ﹣4=0∴,设B ,C 两点的坐标分别为(x 1,m )(x 2,m ),则,∴W =OA 2+BC 2=∴当m =1时,W 取得最小值7【点评】此题主要考查二次函数的性质及一次函数与二次函数图象的交点问题,此类问题,通常转化为一元二次方程,再利用根的判别式,根与系数的关系进行解答即可. 八、(本题满分14分)23.(14分)如图,Rt △ABC 中,∠ACB =90°,AC =BC ,P 为△ABC 内部一点,且∠APB =∠BPC =135°. (1)求证:△PAB ∽△PBC ; (2)求证:PA =2PC ;(3)若点P 到三角形的边AB ,BC ,CA 的距离分别为h 1,h 2,h 3,求证h 12=h 2•h 3.【分析】(1)利用等式的性质判断出∠PBC =∠PAB ,即可得出结论; (2)由(1)的结论得出,进而得出,即可得出结论;(3)先判断出Rt △AEP ∽Rt △CDP ,得出,即h 3=2h 2,再由△PAB ∽△PBC ,判断出,即可得出结论.【解答】解:(1)∵∠ACB =90°,AB =BC , ∴∠ABC =45°=∠PBA +∠PBC 又∠APB =135°, ∴∠PAB +∠PBA =45° ∴∠PBC =∠PAB又∵∠APB =∠BPC =135°,∴△PAB ∽△PBC(2)∵△PAB ∽△PBC ∴在Rt △ABC 中,AB =AC , ∴∴∴PA =2PC(3)如图,过点P 作PD ⊥BC ,PE ⊥AC 交BC 、AC 于点D ,E , ∴PF =h 1,PD =h 2,PE =h 3, ∵∠CPB +∠APB =135°+135°=270° ∴∠APC =90°, ∴∠EAP +∠ACP =90°,又∵∠ACB =∠ACP +∠PCD =90° ∴∠EAP =∠PCD ,∴Rt △AEP ∽Rt △CDP , ∴,即,∴h 3=2h 2∵△PAB ∽△PBC ,密 封 线 学校 班级 姓名 学号密 封 线 内 不 得 答 题 ∴,∴∴.即:h 12=h 2•h 3.【点评】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠EAP =∠PCD 是解本题的关键.。
2019年河北省中考数学试卷和答案解析
![2019年河北省中考数学试卷和答案解析](https://img.taocdn.com/s3/m/dd7ee7ee2dc58bd63186bceb19e8b8f67c1cef12.png)
2019年河北省中考数学试卷一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2019•河北)下列图形为正多边形的是()A.B.C.D.2.(3分)(2019•河北)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3 B.﹣3 C.﹣D.+3.(3分)(2019•河北)如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC4.(3分)(2019•河北)语句“x的与x的和不超过5”可以表示为()A.+x≤5 B.+x≥5 C.≤5 D.+x=55.(3分)(2019•河北)如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°6.(3分)(2019•河北)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1 B.2 C.3 D.47.(3分)(2019•河北)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB8.(3分)(2019•河北)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣59.(3分)(2019•河北)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.210.(3分)(2019•河北)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.11.(2分)(2019•河北)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①12.(2分)(2019•河北)如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q13.(2分)(2019•河北)如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④14.(2分)(2019•河北)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S=x2+x,则S俯=()左A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x15.(2分)(2019•河北)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根16.(2分)(2019•河北)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)(2019•河北)若7﹣2×7﹣1×70=7p,则p的值为.18.(4分)(2019•河北)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.19.(4分)(2019•河北)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C 的距离相等,则C,D间的距离为km.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)(2019•河北)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.21.(9分)(2019•河北)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2﹣1 2n B勾股数组Ⅰ/ 8勾股数组Ⅱ35 /22.(9分)(2019•河北)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.又拿先拿23.(9分)(2019•河北)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.24.(10分)(2019•河北)长为300m的春游队伍,以v(m/s)的速度向东行进,如图1和图2,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O开始行进的时间为t(s),排头与O的距离为S头(m).(1)当v=2时,解答:①求S头与t的函数关系式(不写t的取值范围);②当甲赶到排头位置时,求S头的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求S甲与t的函数关系式(不写t的取值范围)(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.25.(10分)(2019•河北)如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB=.点P 为AB延长线上一点,过点A作⊙O切CP于点P,设BP=x.(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE与BC的位置关系;(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP 与劣弧长度的大小;(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围.26.(12分)(2019•河北)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y =x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.2019年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2019•河北)下列图形为正多边形的是()A.B.C.D.【考点】多边形.【分析】根据正多边形的定义;各个角都相等,各条边都相等的多边形叫做正多边形可得答案.【解答】解:正五边形五个角相等,五条边都相等,故选:D.2.(3分)(2019•河北)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3 B.﹣3 C.﹣D.+【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.【解答】解:“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.故选:B.3.(3分)(2019•河北)如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据仰角的定义进行解答便可.【解答】解:∵从点C观测点D的视线是CD,水平线是CE,∴从点C观测点D的仰角是∠DCE,故选:B.4.(3分)(2019•河北)语句“x的与x的和不超过5”可以表示为()A.+x≤5 B.+x≥5 C.≤5 D.+x=5【考点】由实际问题抽象出一元一次不等式.【分析】x的即x,不超过5是小于或等于5的数,按语言叙述列出式子即可.【解答】解:“x的与x的和不超过5”用不等式表示为x+x≤5.故选:A.5.(3分)(2019•河北)如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°【考点】菱形的性质.【分析】由菱形的性质得出AB∥CD,∠BAD=2∠1,求出∠BAD=30°,即可得出∠1=15°.【解答】解:∵四边形ABCD是菱形,∠D=150°,∴AB∥CD,∠BAD=2∠1,∴∠BAD+∠D=180°,∴∠BAD=180°﹣150°=30°,∴∠1=15°;故选:D.6.(3分)(2019•河北)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1 B.2 C.3 D.4【考点】单项式乘多项式.【分析】直接利用单项式乘以多项式以及多项式除以单项式运算法则计算得出答案.【解答】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.故选:C.7.(3分)(2019•河北)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB【考点】平行线的判定.【分析】根据图形可知※代表CD,即可判断D;根据三角形外角的性质可得◎代表∠EFC,即可判断A;利用等量代换得出▲代表∠EFC,即可判断C;根据图形已经内错角定义可知@代表内错角.【解答】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选:C.8.(3分)(2019•河北)一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:=0.00002=2×10﹣5.故选:D.9.(3分)(2019•河北)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.2【考点】利用轴对称设计图案.【分析】由等边三角形有三条对称轴可得答案.【解答】解:如图所示,n的最小值为3,故选:C.10.(3分)(2019•河北)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.【考点】三角形的外接圆与外心;作图—基本作图.【分析】根据三角形外心的定义,三角形外心为三边的垂直平分线的交点,然后利用基本作图格选项进行判断.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.11.(2分)(2019•河北)某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①【考点】调查收集数据的过程与方法;频数(率)分布表;扇形统计图.【分析】根据题意和频数分布表、扇形统计图制作的步骤,可以解答本题.【解答】解:由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类,故选:D.12.(2分)(2019•河北)如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q【考点】反比例函数的图象.【分析】由函数解析式可知函数关于y轴对称,即可求解;【解答】解:由已知可知函数y=关于y轴对称,所以点M是原点;故选:A.13.(2分)(2019•河北)如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④【考点】分式的加减法.【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【解答】解∵﹣=﹣=1﹣=又∵x为正整数,∴≤x<1故表示﹣的值的点落在②故选:B.14.(2分)(2019•河北)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S=x2+x,则S俯=()左A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x【考点】几何体的表面积;由三视图判断几何体.【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.【解答】解:∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选:A.15.(2分)(2019•河北)小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根【考点】解一元二次方程﹣公式法;根的判别式.【分析】直接把已知数据代入进而得出c的值,再解方程求出答案.【解答】解:∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1,∴(﹣1)2﹣4+c=0,解得:c=3,故原方程中c=5,则b2﹣4ac=16﹣4×1×5=﹣4<0,则原方程的根的情况是不存在实数根.故选:A.16.(2分)(2019•河北)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对【考点】矩形的性质;正方形的性质;平移的性质;旋转的性质.【分析】平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n=14;乙的思路与计算都正确;丙的思路与计算都错误,图示情况不是最长;故选:B.二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)(2019•河北)若7﹣2×7﹣1×70=7p,则p的值为﹣3 .【考点】零指数幂;负整数指数幂.【分析】直接利用同底数幂的乘法运算法则进而得出答案.【解答】解:∵7﹣2×7﹣1×70=7p,∴﹣2﹣1+0=p,解得:p=﹣3.故答案为:﹣3.18.(4分)(2019•河北)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=3x;(2)当y=﹣2时,n的值为 1 .【考点】列代数式;代数式求值.【分析】(1)根据约定的方法即可求出m;(2)根据约定的方法即可求出n.【解答】解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.19.(4分)(2019•河北)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20 km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C 的距离相等,则C,D间的距离为13 km.【考点】勾股定理的应用.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x的值.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)(2019•河北)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.【考点】有理数的混合运算.【分析】(1)根据有理数的加减法可以解答本题;(2)根据题目中式子的结果,可以得到□内的符号;(3)先写出结果,然后说明理由即可.【解答】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.21.(9分)(2019•河北)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2﹣1 2n B勾股数组Ⅰ/ 8 17勾股数组Ⅱ35 / 37【考点】幂的乘方与积的乘方;勾股数.【分析】先根据整式的混合运算法则求出A,进而求出B,再把n的值代入即可解答.【解答】解:A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,当2n=8时,n=4,∴n2+1=42+1=17;当n2﹣1=35时,n2+1=37.故答案为:17;3722.(9分)(2019•河北)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.又拿先拿【考点】分式方程的应用;中位数;众数;概率公式;列表法与树状图法.【分析】(1)由概率公式求出8元球的个数,由众数的定义即可得出答案;(2)①由中位数的定义即可得出答案;②用列表法得出所有结果,乙组两次都拿到8元球的结果有4个,由概率公式即可得出答案.【解答】解:(1)∵P(一次拿到8元球)=,∴8元球的个数为4×=2(个),按照从小到大的顺序排列为7,8,8,9,∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下:原来4个球的价格按照从小到大的顺序排列为7,8,8,9,∴原来4个球价格的中位数为=8(元),所剩的3个球价格为8,8,9,∴所剩的3个球价格的中位数为8元,∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,∴乙组两次都拿到8元球的概率为.23.(9分)(2019•河北)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.【考点】圆的综合题.【分析】(1)由条件易证△ABC≌△ADE,得∠BAC=∠DAE,∴∠BAD=∠CAE.(2)PD=AD﹣AP=6﹣x,∵点P在线段BC上且不与B、C重合,∴AP的最小值即AP⊥BC时AP的长度,此时PD可得最大值.(3)I为△APC的内心,即I为△APC角平分线的交点,应用“三角形内角和等于180°“及角平分线定义即可表示出∠AIC,从而得到m,n的值.【解答】解:(1)在△ABC和△ADE中,(如图1)∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE即∠BAD+∠DAC=∠DAC+∠CAE∴∠BAD=∠CAE.(2)∵AD=6,AP=x,∴PD=6﹣x当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值.(3)如图2,设∠BAP=α,则∠APC=α+30°,∵AB⊥AC∴∠BAC=90°,∠PCA=60°,∠PAC=90°﹣α,∵I为△APC的内心∴AI、CI分别平分∠PAC,∠PCA,∴∠IAC=∠PAC,∠ICA=∠PCA∴∠AIC=180°﹣(∠IAC+∠ICA)=180°﹣(∠PAC+∠PCA)=180°﹣(90°﹣α+60°)=α+105°∵0<α<90°,∴105°<α+105°<150°,即105°<∠AIC<150°,∴m=105,n=150.24.(10分)(2019•河北)长为300m的春游队伍,以v(m/s)的速度向东行进,如图1和图2,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O开始行进的时间为t(s),排头与O的距离为S头(m).(1)当v=2时,解答:①求S头与t的函数关系式(不写t的取值范围);②当甲赶到排头位置时,求S头的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求S甲与t的函数关系式(不写t的取值范围)(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.【考点】反比例函数的应用.【分析】(1)①排头与O的距离为S头(m).等于排头行走的路程+队伍的长300,而排头行进的时间也是t(s),速度是2m/s,可以求出S头与t的函数关系式;②甲赶到排头位置的时间可以根据追及问题的数量关系得出,代入求S即可;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m)是在S的基础上减少甲返回的路程,而甲返回的时间(总时间t减去甲从排尾赶到排头的时间),于是可以求S甲与t的函数关系式;(2)甲这次往返队伍的总时间为T(s),是甲从排尾追到排头用的时间与从排头返回排尾用时的和,可以根据追及问题和相遇问题的数量关系得出结果;在甲这次往返队伍的过程中队伍行进的路程=队伍速度×返回时间.【解答】解:(1)①排尾从位置O开始行进的时间为t(s),则排头也离开原排头t(s),∴S头=2t+300②甲从排尾赶到排头的时间为300÷(2v﹣v)=300÷v=300÷2=150 s,此时S头=2t+300=600 m甲返回时间为:(t﹣150)s∴S甲=S头﹣S甲回=2×150+300﹣4(t﹣150)=﹣4t+1200;因此,S头与t的函数关系式为S头=2t+300,当甲赶到排头位置时,求S的值为600m,在甲从排头返回到排尾过程中,S甲与t的函数关系式为S甲=﹣4t+1200.(2)T=t追及+t返回=+=,在甲这次往返队伍的过程中队伍行进的路程为:v×﹣=400;因此T与v的函数关系式为:T=,此时队伍在此过程中行进的路程为400m.25.(10分)(2019•河北)如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB=.点P 为AB延长线上一点,过点A作⊙O切CP于点P,设BP=x.(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE与BC的位置关系;(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP 与劣弧长度的大小;(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围.【考点】圆的综合题.【分析】(1)由三角函数定义知:Rt△PBC中,=tan∠PBC=tan∠DAB=,设CP=4k,BP=3k,由勾股定理可求得BP,根据“直径所对的圆周角是直角”可得PE⊥AD,由此可得PE⊥BC;(2)作CG⊥AB,运用勾股定理和三角函数可求CG和AG,再应用三角函数求∠CAP,应用弧长公式求劣弧长度,再比较它与AP长度的大小;(3)当⊙O与线段AD只有一个公共点时,⊙O与AD相切于点A,或⊙O与线段DA的延长线相交于另一点,此时,BP只有最小值,即x≥18.【解答】解:(1)如图1,AP经过圆心O,∵CP与⊙O相切于P,∴∠APC=90°,∵▱ABCD,∴AD∥BC,∴∠PBC=∠DAB∴=tan∠PBC=tan∠DAB=,设CP=4k,BP=3k,由CP2+BP2=BC2,得(4k)2+(3k)2=152,解得k1=﹣3(舍去),k2=3,∴x=BP=3×3=9,故当x=9时,圆心O落在AP上;∵AP是⊙O的直径,∴∠AEP=90°,∴PE⊥AD,∵▱ABCD,∴BC∥AD∴PE⊥BC(2)如图2,过点C作CG⊥AP于G,∵▱ABCD,∴BC∥AD,∴∠CBG=∠DAB∴=tan∠CBG=tan∠DAB=,设CG=4m,BG=3m,由勾股定理得:(4m)2+(3m)2=152,解得m=3,∴CG=4×3=12,BG=3×3=9,PG=BG﹣BP=9﹣4=5,AP=AB+BP=3+4=7,∴AG=AB+BG=3+9=12∴tan∠CAP===1,∴∠CAP=45°;连接OP,OQ,过点O作OH⊥AP于H,则∠POQ=2∠CAP=2×45°=90°,PH=AP=,在Rt△CPG中,==13,∵CP是⊙O的切线,∴∠OPC=∠OHP=90°,∠OPH+∠CPG=90°,∠PCG+∠CPG=90°∴∠OPH=∠PCG∴△OPH∽△PCG∴,即PH×CP=CG×OP,×13=12OP,∴OP=∴劣弧长度==,∵<2π<7∴弦AP的长度>劣弧长度.(3)如图3,⊙O与线段AD只有一个公共点,即圆心O位于直线AB下方,且∠OAD≥90°,当∠OAD=90°,∠CPM=∠DAB时,此时BP取得最小值,过点C作CM⊥AB于M,∵∠DAB=∠CBP,∴∠CPM=∠CBP∴CB=CP,∵CM⊥AB∴BP=2BM=2×9=18,∴x≥1826.(12分)(2019•河北)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y =x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.【考点】二次函数综合题.【分析】(1)当x=0吋,y=x﹣b=﹣b,所以B(0,﹣b),而AB=8,而A(0,b),则b﹣(﹣b)=8,b=4.所以L:y=﹣x2+4x,对称轴x=2,当x=2吋,y=x﹣4=﹣2,于是L的对称轴与a的交点为(2,﹣2 );(2)y=﹣(x﹣)2+,顶点C()因为点C在l下方,则C与l的距离b﹣=﹣(b﹣2)2+1≤1,所以点C与1距离的最大值为1;(3)由題意得,即y1+y2=2y3,得b+x0﹣b=2(﹣x02+bx0)解得x0=0或x0=b﹣.但x0#0,取x0=b﹣,对于L,当y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),解得x1=0,x2=b,右交点D(b,0).因此点(x0,0)与点D间的距离b﹣(b﹣)=(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x直线解析式a:y=x﹣2019,美点”总计4040个点,②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,“美点”共有1010个.【解答】解:(1)当x=0吋,y=x﹣b=﹣b,∴B(0,﹣b),∵AB=8,而A(0,b),∴b﹣(﹣b)=8,∴b=4.∴L:y=﹣x2+4x,∴L的对称轴x=2,当x=2吋,y=x﹣4=﹣2,∴L的对称轴与a的交点为(2,﹣2 );(2)y=﹣(x﹣)2+,∴L的顶点C()∵点C在l下方,∴C与l的距离b﹣=﹣(b﹣2)2+1≤1,∴点C与1距离的最大值为1;(3)由題意得,即y1+y2=2y3,得b+x0﹣b=2(﹣x02+bx0)解得x0=0或x0=b﹣.但x0#0,取x0=b﹣,对于L,当y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),解得x1=0,x2=b,∵b>0,∴右交点D(b,0).∴点(x0,0)与点D间的距离b﹣(b﹣)=(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x直线解析式a:y=x﹣2019联立上述两个解析式可得:x1=﹣1,x2=2019,∴可知每一个整数x的值都对应的一个整数y值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点∴总计4042个点,∵这两段图象交点有2个点重复,∴美点”的个数:4042﹣2=4040(个);②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,联立上述两个解析式可得:x1=﹣1,x2=2019.5,∴当x取整数时,在一次函数y=x﹣2019.5上,y取不到整数值,因此在该图象上“美点”为0,在二次函数y=x2+2019.5x图象上,当x为偶数时,函数值y可取整数,可知﹣1到2019.5之间有1009个偶数,并且在﹣1和2019.5之间还有整数0,验证后可知0也符合条件,因此“美点”共有1010个.故b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.。
2019年山东省济宁市中考数学试卷和答案解析
![2019年山东省济宁市中考数学试卷和答案解析](https://img.taocdn.com/s3/m/2a1b3364ff4733687e21af45b307e87101f6f861.png)
2019年山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求1.(3分)(2019•济宁)下列四个实数中,最小的是( ) A .2-B .5-C .1D .42.(3分)(2019•济宁)如图,直线a ,b 被直线c ,d 所截,若12∠=∠,3125∠=︒,则4∠的度数是( )A .65︒B .60︒C .55︒D .75︒3.(3分)(2019•济宁)下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .4.(3分)(2019•济宁)以下调查中,适宜全面调查的是( ) A .调查某批次汽车的抗撞击能力 B .调查某班学生的身高情况 C .调查春节联欢晚会的收视率 D .调查济宁市居民日平均用水量5.(3分)(2019•济宁)下列计算正确的是( ) A 2(3)3-=-B 3355-C 366=±D .0.360.6-=-6.(3分)(2019•济宁)世界文化遗产“三孔”景区已经完成5G 基站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是( )A .5005004510x x -= B .5005004510x x -= C .500050045x x-= D .500500045x x-= 7.(3分)(2019•济宁)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是( )A .B .C .D .8.(3分)(2019•济宁)将抛物线265y x x =-+向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( ) A .2(4)6y x =--B .2(1)3y x =--C .2(2)2y x =--D .2(4)2y x =--9.(3分)(2019•济宁)如图,点A 的坐标是(2,0)-,点B 的坐标是(0,6),C 为OB 的中点,将ABC ∆绕点B 逆时针旋转90︒后得到△A B C '''.若反比例函数ky x=的图象恰好经过A B '的中点D ,则k 的值是( )A .9B .12C .15D .1810.(3分)(2019•济宁)已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数⋯⋯依此类推,那么12100a a a ++⋯+的值是( ) A .7.5- B .7.5C .5.5D . 5.5-二、填空题:本大题共5小题,每小题3分,共15分。
2019年北京市中考数学试卷附分析答案
![2019年北京市中考数学试卷附分析答案](https://img.taocdn.com/s3/m/0e04847cb8f67c1cfbd6b881.png)
万
美元;(结果保留一位小数)
(4)下列推断合理的是
.
①相比于点 A,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加
快建设创新型国家”的战略任务,进一步提高国家综合创新能力;
②相比于点 B,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决
胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.
位长度,得到点 C,若 CO=BO,则 a 的值为( )
A.﹣3
B.﹣2
C.﹣1
D.1
5.(2 分)已知锐角∠AOB,如图,
(1)在射线 OA 上取一点 C,以点 O 为圆心,OC 长为半径作 ,交射线 OB 于点 D,
连接 CD;
(2)分别以点 C,D 为圆心,CD 长为半径作弧,交 于点 M,N;
26.(6 分)在平面直角坐标系 xOy 中,抛物线 y=ax2+bx 与 y 轴交于点 A,将点 A 向右 平移 2 个单位长度,得到点 B,点 B 在抛物线上. (1)求点 B 的坐标(用含 a 的式子表示); (2)求抛物线的对称轴;
(3)已知点 P( , ),Q(2,2).若抛物线与线段 PQ 恰有一个公共点,结合函数 图象,求 a 的取值范围. 27.(7 分)已知∠AOB=30°,H 为射线 OA 上一定点,OH h1,P 为射线 OB 上一点, M 为线段 OH 上一动点,连接 PM,满足∠OMP 为钝角,以点 P 为中心,将线段 PM 顺 时针旋转 150°,得到线段 PN,连接 ON. (1)依题意补全图 1;
组值,如下表:
位置 1 位置 2 位置 3 位置 4 位置 5 位置 6 位置 7 位置 8
PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83
2019年安徽中考数学试卷分析(含word版试卷及答案)
![2019年安徽中考数学试卷分析(含word版试卷及答案)](https://img.taocdn.com/s3/m/a9d211daaeaad1f346933f30.png)
2019安徽中考数学试卷分析一、试卷结构和难度较前两年有所变化试卷对于一些知识点的考查方式和分值较前两年有所变化,比如:对于圆的考查以往一般以选择或填空呈现,今年将圆与三角形结合起来,以10分的解答题出现,综合性较以往有所提高;统计问题前几年一直作为解答题,占据10或12分的分值,今年把统计以选择题的形式进行简单的考查,把概率作为12分的问题进行考查,且不仅考查了学生联系实际的想象能力,而且题目摒弃常规的解答和思考方式,具有一定的新颖性;另外,往年一直把对于三角形和四边形的综合考查作为压轴问题,今年将它们与正多边形结合起来,以14分的问题分步考查,对学生的综合能力有了更高的要求。
二、试卷考查重点分析1、试题注重学生数学实际应用能力的考查。
全卷考查学生数学实际应用的有六道试题(第5 、11 、12 、18 、20、21题),约占总分的1/3 。
这些题目涉及工农业、信息产业、交通、环境保护、正确决策等方面,具有时代气息。
这些问题都要求学生能从问题中读出必要的数学信息,并从数学的角度寻求解决问题的策略和方法。
2、试题具有一定创新性与操作性,全面考查学生的探究能力。
试卷第8、14、18、21、22、23题等都具有探究性,需要学生通过“观察、思考、猜测、推理”等思维活动分析并解决问题。
其中第22题是一个“新概念题”,题目定义了一个“同簇二次函数”的概念,然后以这个概念展开两个问题,题目很新颖,其中第(2)问学生感觉有些难度,需要较好的计算能力和丰富的解题经验。
第23题(压轴题)要求学生能将多边形问题转化为三角形问题进行研究,体现了“化归”的数学思想;同时要求学生能够合理运用图形变换,正确添加辅助线,体现出学生的创新思维。
启示:1、关注学生思考方法的培养,提高学生思维水平。
今年试卷第9、10、14、21、23题都对学生的思维广度和思维深度有一定的要求,所以平常在练习过程中一定要关注思考方法,切忌缺乏思考只追求答案的题海练习。
2019年山东省济南市中考数学试卷及答案解析
![2019年山东省济南市中考数学试卷及答案解析](https://img.taocdn.com/s3/m/6d9940dcdbef5ef7ba0d4a7302768e9951e76ee8.png)
2019年山东省济南市中考数学试卷及答案解析一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-7的相反数是()A.7B.-7C.D.1 7【答案】A【解析】【详解】根据概念,(-7的相反数)+(-7)=0,则-7的相反数是7.故选A.2.以下给出的几何体中,主视图是矩形,俯视图是圆的是()A. B. C. D.【答案】D【解析】【分析】根据几何体的正面看得到的图形,可得答案.【详解】A、主视图是圆,俯视图是圆,故A不符合题意;B、主视图是矩形,俯视图是矩形,故B不符合题意;C、主视图是三角形,俯视图是圆,故C不符合题意;D、主视图是个矩形,俯视图是圆,故D符合题意;故选D.【点睛】本题考查了简单几何体的三视图,熟记简单几何的三视图是解题关键.3.2019年1月3日,“嫦娥四号”探测器成功着陆在月球背面东经177.6度、南纬45.5度附近,实现了人类首次在月球背面软着陆.数字177.6用科学记数法表示为()A.0.1776×103B.1.776×102C.1.776×103D.17.76×102【答案】B【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,据此判断即可.【详解】解:177.6=1.776×102.故选B .【点睛】本题考查用科学记数法表示较大的数,一般形式为a×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.4.如图,//DE BC ,BE 平分ABC ∠,若170=︒∠,则CBE ∠的度数为()A.20︒B.35︒C.55︒D.70︒【答案】B【解析】【分析】根据平行线的性质可得170ABC ∠=∠=︒,再根据角平分线的定义可得答案.【详解】解:∵//DE BC∴170ABC ∠=∠=︒∵BE 平分ABC∠∴1352CBE ABC ∠=∠=︒故选B .【点睛】此题主要考查了平行线的性质,以及角平分线的定义,关键是掌握两直线平行,内错角相等.5.实数,a b 在数轴上的对应点的位置如图所示,下列关系式不成立的是()A.55a b ->-B.66a b >C.a b ->-D.0a b ->【答案】C【解析】【分析】根据数轴判断出,a b 的正负情况以及绝对值的大小,然后解答即可.【详解】由图可知,0b a <<,且b a <,∴55a b ->-,66a b >,a b -<-,0a b ->,∴关系式不成立的是选项C .故选C .【点睛】本题考查了实数与数轴,实数的大小比较,利用了两个负数相比较,绝度值大的反而小.6.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A.赵爽弦图B.笛卡尔心形线C.科克曲线D.斐波那契螺旋线【答案】C【解析】【分析】根据把一个图形绕某一点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】A .不是轴对称图形,是中心对称图形,故此选项错误;B .是轴对称图形,不是中心对称图形,故此选项错误;C .是轴对称图形,是中心对称图形,故此选项正确;D .不是轴对称图形,不是中心对称图形,故此选项错误;故选C .【点睛】此题主要考查了轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.化简24142x x +-+的结果是()A.2x - B.12x - C.22x - D.22x +【答案】B【解析】【分析】原式通分并利用同分母分式的加法法则计算即可求出值.【详解】原式4221(2)(2)(2)(2)(2)(2)2x x x x x x x x x -+=+==+-+-+--故选B .【点睛】本题考查分式的加减法;熟练掌握分式的运算法则,正确进行因式分解是解题的关键.8.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m ,9.9mB.9.7m ,9.8mC.9.8m ,9.7mD.9.8m ,9.9m【答案】B【解析】【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m ,因此中位数是9.7m ,平均数为:(9.59.69.79.79.810.110.2)79.8++++++÷=m ,故选B .【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.9.函数y ax a =-+与a y x =(0a ≠)在同一坐标系中的图象可能是()A. B. C. D.【答案】D【解析】【分析】根据反比例函数与一次函数的图象特点解答即可.【详解】0a >时,0a -<,y ax a =-+在一、二、四象限,a y x=在一、三象限,无选项符合.a<0时,0a ->,y ax a =-+在一、三、四象限,a y x=(0a ≠)在二、四象限,只有D 符合;故选D .【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由a 的取值确定函数所在的象限.10.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心、CE 为半径作弧,交CD 于点F ,连接,AE AF .若6AB =,60B ∠= ,则阴影部分的面积为()A.3π-B.2πC.9π-D.6π-【答案】A【解析】【分析】连接AC ,根据菱形的性质求出BCD ∠和6BC AB ==,求出AE 长,再根据三角形的面积和扇形的面积求出即可.【详解】连接AC ,∵四边形ABCD 是菱形,∴6AB BC ==,∵60B ∠= ,E 为BC 的中点,∴3CE BE CF ===,ABC ∆是等边三角形,//AB CD ,∵60B ∠= ,∴180120BCD B ∠=-∠= ,由勾股定理得:AE ==,∴11622AEB AEC AFC S S S ∆∆∆==⨯⨯==,∴阴影部分的面积212033360AEC AFC CEFS S S S ππ∆∆⨯=+-==扇形,故选A .【点睛】本题考查了等边三角形的性质和判定,菱形的性质,扇形的面积计算等知识点,能求出AEC ∆、AFC ∆和扇形ECF 的面积是解此题的关键.11.某数学社团开展实践性研究,在大明湖南门A 测得历下亭C 在北偏东37°方向,继续向北走105m 后到达游船码头B ,测得历下亭C 在游船码头B 的北编东53°方向.请计算一下南门A 与历下亭C 之间的距离约为()(参考数据:3tan 374≈ ,4tan 533≈ )A.225mB.275mC.300mD.315m【答案】C【解析】【分析】如图,作CE BA ⊥于E .设EC x =m ,BE y =m .构建方程组求出x ,y 即可解决问题.【详解】如图,作CE BA ⊥于E .设EC x =m ,BE y =m .在Rt ECB ∆中,tan 53EC EB= ,即43x y =,在Rt AEC ∆中,tan 37EC AE = ,即34105x y =+,解得180x =,135y =,∴300AC ===(m ),故选C .【点睛】本题考查解直角三角形的应用﹣方向角等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程组解决问题,属于中考常考题型.12.关于x 的一元二次方程2102ax bx ++=有一个根是﹣1,若二次函数212y ax bx =++的图象的顶点在第一象限,设2t a b =+,则t 的取值范围是()A.1142t << B.114t -<≤ C.1122t -≤< D.112t -<<【答案】D【解析】【分析】二次函数的图象过点(1,0)-,则102a b -+=,而2t a b =+,则216t a -=,226t b +=,二次函数的图象的顶点在第一象限,则02b a ->,21024b a->,即可求解.【详解】∵关于x 的一元二次方程2102ax bx ++=有一个根是﹣1,∴二次函数212y ax bx =++的图象过点(1,0)-,∴102a b -+=,∴12b a =+,2t a b =+,则216t a -=,226t b +=,∵二次函数212y ax bx =++的图象的顶点在第一象限,∴02b a ->,21024b a->,将216t a -=,226t b +=代入上式得:22602126t t +>-⨯,解得:112t -<<,222()1602124()6t t +->-,解得:12t <或13t <<,故:112t -<<,故选D .【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用二、填空题(本大题共6个小题,每题4分,共24分,将答案填在答题纸上)13.分解因式:a 2-4a +4=___【答案】(a -2)2.【解析】【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.【详解】解:a 2-4a +4=(a -2)2.故答案为:(a -2)2.14.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在红色区域的概率等于_____.【答案】13.【解析】【分析】首先确定在图中红色区域的面积在整个面积中占的比例,根据这个比例即可求出指针落在红色区域的概率.【详解】由于一个圆平均分成6个相等的扇形,而转动的转盘又是自由停止的,所以指针指向每个扇形的可能性相等,即有8种等可能的结果,在这6种等可能结果中,指针指向红色部分区域的有2种可能结果,所以指针落在红色区域的概率是21 63=;故答案为1 3.【点睛】此题考查了概率公式,用到的知识点为:概率=相应的面积与总面积之比.15.如果一个正多边形的内角和是720︒,则这个正多边形是正______边形.【答案】六【解析】【分析】根据多边形的内角和公式求解即可.【详解】设这个正多边形是正n边形,则()2180720n-⨯︒=︒,解得:6n=.∴这个正多边形是正六边形.故答案为:六.【点睛】本题考查多边形的内角和公式.掌握n边形的内角和为()2180n-⨯︒是解题关键.16.代数式213x-与代数式32x-的和为4,则x=_____.【答案】﹣1.【解析】【分析】根据题意列出方程,求出方程的解即可得到x的值.【详解】根据题意得:213243x x -+-=,去分母得:219612x x -+-=,移项合并得:44x -=,解得:=1x -,故答案为﹣1.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.17.某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中1l 、2l 分别表示去年、今年水费y (元)与用水量x (3m )之间的关系.小雨家去年用水量为1503m ,若今年用水量与去年相同,水费将比去年多_____元.【答案】210.【解析】【分析】根据函数图象中的数据可以求得120x >时,2l 对应的函数解析式,从而可以求得150x =时对应的函数值,由1l 的的图象可以求得150x =时对应的函数值,从而可以计算出题目中所求问题的答案,本题得以解决.【详解】设当120x >时,2l 对应的函数解析式为y kx b =+,120480160720k b k b +=⎧⎨+=⎩,得6240k b =⎧⎨=-⎩,即当120x >时,2l 对应的函数解析式为6240y x =-,当150x =时,6150240660y =⨯-=,由图象可知,去年的水价是4801603÷=(元/3m ),故小雨家去年用水量为1503m ,需要缴费:1503450⨯=(元),660450210-=(元),即小雨家去年用水量为1503m ,若今年用水量与去年相同,水费将比去年多210元,故答案为210.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.如图,在矩形纸片ABCD 中,将AB 沿BM 翻折,使点A 落在BC 上的点N 处,BM 为折痕,连接MN ;再将CD 沿CE 翻折,使点D 恰好落在MN 上的点F 处,CE 为折痕,连接EF 并延长交BM 于点P ,若8AD =,5AB =,则线段PE 的长等于_____.【答案】203.【解析】【分析】根据折叠可得ABNM 是正方形,5CD CF ==,90D CFE ∠=∠= ,ED EF =,可求出三角形FNC 的三边为3,4,5,在Rt MEF ∆中,由勾股定理可以求出三边的长,通过作辅助线,可证FNC ∆∽PGF ∆,三边占比为3:4:5,设未知数,通过PG HN =,列方程求出待定系数,进而求出PF 的长,然后求PE 的长.【详解】过点P 作PG FN ⊥,PH BN ⊥,垂足为G 、H ,由折叠得:ABNM 是正方形,5AB BN NM MA ====,5CD CF ==,90D CFE ∠=∠= ,ED EF =,∴853NC MD ==-=,在Rt FNC ∆中,4FN ==,∴541MF =-=,在Rt MEF ∆中,设EF x =,则3ME x =-,由勾股定理得,2221(3)x x +-=,解得:53x =,∵90CFN PFG ∠+∠= ,90PFG FPG ∠+∠= ,∴FNC ∆∽PGF ∆,∴::::3:4:5FG PG PF NC FN FC ==,设3FG m =,则4PG m =,5PF m =,∴43GN PH BH m ===-,5(43)134HN m m PG m =--=+==,解得:1m =,∴55PF m ==,∴520533PE PF FE =+=+=,故答案为203.【点睛】考查折叠轴对称的性质,矩形、正方形的性质,直角三角形的性质等知识,知识的综合性较强,是有一定难度的题目.三、解答题:本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.19.计算:101((1)2cos 602π-++-+ 【答案】5.【解析】【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【详解】101((1)2cos 602π-++-+ 121232=+-⨯+313=-+5=【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.解不等式组53291032x x x x -≤+⎧⎪⎨+>⎪⎩,并写出它的所有整数解.【答案】不等式组的解集为24x <≤;所有整数解为3、4.【解析】【分析】先求出不等式的解集,再求出不等式组的解集,即可得出答案.【详解】解不等式组如下:53291032x x x x -≤+⎧⎪⎨+>⎪⎩①②解①得:4x ≤;解②得:2x >;∴原不等式组的解集为24x <≤;∴原不等式组的所有整数解为3、4.【点睛】本题考查了解一元一次不等式组,一元一次不等式的应用,解此题的关键是能根据不等式的解集求出不等式组的解集.21.如图,在ABCD Y 中,,E F 分别是AD 和BC 上的点,DAF BCE ∠=∠.求证:BF DE =.【答案】见解析【解析】【分析】由平行四边形的性质得出B D ∠=∠,BAD BCD ∠=∠,AB CD =,证出BAF DCE ∠=∠,证明ABF ∆≌CDE ∆(ASA ),即可得出BF DE =.【详解】证明:∵四边形ABCD 是平行四边形,∴B D ∠=∠,BAD BCD ∠=∠,AB CD =,∵DAF BCE ∠=∠,∴BAF DCE ∠=∠,在ABF ∆和CDE ∆中,B D AB CD BAF DCE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABF ∆≌CDE ∆(ASA ),∴BF DE =.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质;解题的关键是熟练掌握平行四边形的性质,证明三角形全等.22.为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A 种图书花费了3000元,购买B 种图书花费了1600元,A 种图书的单价是B 种图书的1.5倍,购买A 种图书的数量比B 种图书多20本.(1)求A 和B 两种图书的单价;(2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售学校当天购买了A 种图书20本和B 种图书25本,共花费多少元?【答案】(1)A 种图书的单价为30元,B 种图书的单价为20元;(2)共花费880元.【解析】【分析】(1)设B 种图书的单价为x 元,则A 种图书的单价为1.5x 元,根据数量=总价÷单价结合花3000元购买的A 种图书比花1600元购买的B 种图书多20本,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)根据总价=单价×数量,即可求出结论.【详解】(1)设B 种图书的单价为x 元,则A 种图书的单价为1.5x 元,依题意,得:30001600201.5x x-=,解得:20x =,经检验,20x =是所列分式方程的解,且符合题意,∴1.530x =.答:A 种图书的单价为30元,B 种图书的单价为20元.(2)300.820200.825880⨯⨯+⨯⨯=(元).答:共花费880元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.如图,AB 、CD 是O 的两条直径,过点C 的O 的切线交AB 的延长线于点E ,连接AC 、BD .(1)求证:ABD CAB ∠=∠;(2)若B 是OE 的中点,12AC =,求O 的半径.【答案】(1)见解析;(2)O 的半径为43【解析】【分析】(1)根据半径相等可知OAC OCA ∠=∠,ODB OBD ∠=∠,再根据对顶角相等和三角形内角和定理证明ABD CAB ∠=∠;(2)连接BC .由CE 为O 的切线,可得90OCE ∠= ,因为B 是OE 的中点,得BC OB =,又OB OC =,可知OBC ∆为等边三角形,60ABC ∠= ,所以3433BC AC ==O 的半径为43【详解】(1)证明:∵AB 、CD 是O 的两条直径,∴OA OC OB OD ===,∴OAC OCA ∠=∠,ODB OBD ∠=∠,∵AOC BOD ∠=∠,∴OAC OCA ODB OBD ∠=∠=∠=∠,即ABD CAB ∠=∠;(2)连接BC .∵AB 是O 的两条直径,∴∠ACB =90°,∵CE 为O 的切线,∴90OCE ∠= ,∵B 是OE 的中点,∴BC OB =,∵OB OC =,∴OBC ∆为等边三角形,∴60ABC ∠= ,∴30A ∠= ,∴33BC AC ==∴OB =,即O 的半径为【点睛】本题考查了切线的性质、圆周角定理、含30 角的直角三角形的性质,正确的作出辅助线是解题的关键.24.某学校八年级共400名学生,为了解该年级学生的视力情况,从中随机抽取40名学生的视力数据作为样本,数据统计如下:4.24.14.74.14.34.34.44.64.15.25.24.55.04.54.34.44.85.34.55.24.44.24.35.34.95.24.94.84.65.14.24.44.54.14.55.14.45.05.25.3根据数据绘制了如下的表格和统计图:等级视力(x )频数频率A 4.2x<40.1B 4.2 4.4x≤≤120.3C 4.5 4.7x≤≤aD 4.8 5.0x≤≤bE 5.1 5.3x≤≤100.25合计401根据上面提供的信息,回答下列问题:(1)统计表中的=a,b=;(2)请补全条形统计图;(3)根据抽样调查结果,请估计该校八年级学生视力为“E级”的有多少人?(4)该年级学生会宣传部有2名男生和2名女生,现从中随机挑选2名同学参加“防控近视,爱眼护眼”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.【答案】(1)8、0.15;(2)补全图形见解析;(3)估计该校八年级学生视力为“E级”的有100人;(4)恰好选到1名男生和1名女生的概率2 3.【解析】【分析】(1)由所列数据得出a的值,继而求出C组对应的频率,再根据频率之和等于1求出b的值;(2)总人数乘以b的值求出D组对应的频数,从而补全图形;(3)利用样本估计总体思想求解可得;(4)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.a=,【详解】(1)由题意知C等级的频数8÷=,则C组对应的频率为8400.2b=-+++=,∴1(0.10.30.20.25)0.15故答案为8、0.15;⨯=,(2)D组对应的频数为400.156补全图形如下:⨯=(人);(3)估计该校八年级学生视力为“E级”的有4000.25100(4)列表如下:男男女女男(男,男)(女,男)(女,男)男(男,男)(女,男)(女,男)女(男,女)(男,女)(女,女)女(男,女)(男,女)(女,女)得到所有等可能的情况有12种,其中恰好抽中一男一女的情况有8种,所以恰好选到1名男生和1名女生的概率82123=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图.25.如图1,点(0,8)A 、点(2,)B a 在直线2y x b =-+上,反比例函数ky x=(0x >)的图象经过点B .(1)求a 和k 的值;(2)将线段AB 向右平移m 个单位长度(0m >),得到对应线段CD ,连接AC 、BD .①如图2,当3m =时,过D 作DF x ⊥轴于点F ,交反比例函数图象于点E ,求DEEF的值;②在线段AB 运动过程中,连接BC ,若BCD ∆是以BC 为腰的等腰三形,求所有满足条件的m 的值.【答案】(1)4a =,8k =;(2)①32DE EF =;②BCD ∆是以BC 为腰的等腰三形,满足条件的m 的值为4或5.【解析】【分析】(1)先将点A 坐标代入直线AB 的解析式中,求出a ,进而求出点B 坐标,再将点B 坐标代入反比例函数解析式中即可得出结论;(2)①先确定出点(5,4)D ,进而求出点E 坐标,进而求出DE ,EF ,即可得出结论;②先表示出点C ,D 坐标,再分两种情况:Ⅰ、当BC CD =时,判断出点B 在AC 的垂直平分线上,即可得出结论;Ⅱ、当BC BD =时,先表示出BC ,用BC BD =建立方程求解即可得出结论.【详解】(1)∵点(0,8)A 在直线2y x b =+上,∴208b -⨯+=,∴8b =,∴直线AB 的解析式为28y x =-+,将点(2,)B a 代入直线AB 的解析式28y x =-+中,得228a -⨯+=,∴4a =,∴(2,4)B ,将(2,4)B 在反比例函数解析式ky x=(0x >)中,得248k xy ==⨯=;(2)①由(1)知,(2,4)B ,8k =,∴反比例函数解析式为8y x=,当3m =时,∴将线段AB 向右平移3个单位长度,得到对应线段CD ,∴(23,4)D +,即:(5,4)D ,∵DF x ⊥轴于点F ,交反比例函数8y x=的图象于点E ,∴8(5,)5E ,∴812455DE =-=,85EF =,∴1235825DE EF==;②如图,∵将线段AB 向右平移m 个单位长度(0m >),得到对应线段CD ,∴CD AB =,AC BD m ==,∵(0,8)A ,(2,4)B ,∴(,8)C m ,((2),4)D m +,∵BCD ∆是以BC 腰的等腰三形,∴Ⅰ、当BC CD =时,∴BC AB =,∴点B 在线段AC 的垂直平分线上,∴224m =⨯=,Ⅱ、当BC BD =时,∵(2,4)B ,(,8)C m ,∴BC =,m =,∴5m =,即:BCD ∆是以BC 为腰的等腰三形,满足条件的m 的值为4或5.【点睛】此题是反比例函数综合题,主要考查了待定系数法,平移的性质,等腰三角形的性质,线段的垂直平分线的性质,用方程的思想解决问题是解本题的关键.26.小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究在ABC ∆中,AB AC =,M 是平面内任意一点,将线段AM 绕点A 按顺时针方向旋转与BAC ∠相等的角度,得到线段AN ,连接NB .(1)如图1,若M 是线段BC 上的任意一点,请直接写出NAB ∠与MAC ∠的数量关系是,NB 与MC 的数量关系是;(2)如图2,点E 是AB 延长线上点,若M 是CBE ∠内部射线BD 上任意一点,连接MC ,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(二)拓展应用如图3,在111A B C ∆中,118A B =,11160A B C ∠= ,11175B A C ∠=,P 是11B C 上的任意点,连接1A P ,将1A P 绕点1A 按顺时针方向旋转75 ,得到线段1AQ ,连接1B Q .求线段1B Q 长度的最小值.【答案】(一)(1)结论:NAB MAC ∠=∠,BN MC =.理由见解析;(2)如图2中,①中结论仍然成立.理由见解析;(二)1QB 的最小值为-.【解析】【分析】(一)①结论:NAB MAC ∠=∠,BN MC =.根据SAS 证明NAB ∆≌MAC ∆即可.②①中结论仍然成立.证明方法类似.(二)如图3中,在11A C 上截取11A N A Q =,连接PN ,作11NH B C ⊥于H ,作111A MBC ⊥于M .理由全等三角形的性质证明1B Q PN =,推出当PN 的值最小时,1QB 的值最小,求出HN 的值即可解决问题.【详解】(一)(1)结论:NAB MAC ∠=∠,BN MC =.理由:如图1中,∵MAN CAB ∠=∠,∴NAB BAM BAM MAC ∠+∠=∠+∠,∴NAB MAC ∠=∠,∵AB AC =,AN AM =,∴NAB ∆≌MAC ∆(SAS ),∴BNCM =.故答案为NAB MAC ∠=∠,BNCM =.(2)如图2中,①中结论仍然成立.理由:∵MAN CAB ∠=∠,∴NAB BAM BAM MAC ∠+∠=∠+∠,∴NAB MAC ∠=∠,∵AB AC =,AN AM =,∴NAB ∆≌MAC ∆(SAS ),∴BNCM =.(二)如图3中,在11A C 上截取111A N A B =,连接PN ,作11NH B C ⊥于H ,作111A M B C ⊥于M .∵1111C A B PA Q ∠=∠,∴111QA B PA N ∠=∠,∵11A Q A P =,11A B AN =,∴11QA B ∆≌1PA N ∆(SAS ),∴1B Q PN =,∴当PN 的值最小时,1QB 的值最小,在11Rt A B M ∆中,∵1160A B M ∠=,118A B =,∴111sin 60A M A B =∙= ∵1111111753045MAC B AC B A M ∠=∠-∠=-=,∴11A C =∴11118NC A C A N =-=,在1Rt NHC ∆,∵145C ∠= ,∴NH =-,根据垂线段最短可知,当点P 与H 重合时,PN 的值最小,∴1QB 的最小值为-.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰三角形的性质,解直角三角形,垂线段最短等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.27.如图1,抛物线2:C y ax bx =+经过点(4,0)A -、(1,3)B -两点,G 是其顶点,将抛物线C 绕点O 旋转180 ,得到新的抛物线'C .(1)求抛物线C 的函数解析式及顶点G 的坐标;(2)如图2,直线12:5l y kx =-经过点A ,D 是抛物线C 上的一点,设D 点的横坐标为m (2m <-),连接DO 并延长,交抛物线'C 于点E ,交直线l 于点M ,2DE EM =,求m 的值;(3)如图3,在(2)的条件下,连接AG 、AB ,在直线DE 下方的抛物线C 上是否存在点P ,使得DEP GAB ∠=∠?若存在,求出点P 的横坐标;若不存在,请说明理由.【答案】(1)24y x x =--,顶点为:(2,4)G -;(2)m 的值为﹣3;(3)存在,点P 的横坐标为:7734-或7374.【解析】【分析】(1)运用待定系数法将(4,0)A -、(1,3)B -代入2y ax bx =+中,即可求得a 和b 的值和抛物线C 解析式,再利用配方法将抛物线C 解析式化为顶点式即可求得顶点G 的坐标;(2)根据抛物线C 绕点O 旋转180 ,可求得新抛物线'C 的解析式,再将(4,0)A -代入125y kx =-中,即可求得直线l 解析式,根据对称性可得点E 坐标,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K ,由2DE EM =,即可得13ME MD =,再证明MEK ∆∽MDH ∆,即可得3DH EK =,建立方程求解即可;(3)连接BG ,易证ABG ∆是Rt ∆,90ABG ∠= ,可得1tan tan 3DEP GAB ∠=∠=,在x 轴下方过点O 作OH OE ⊥,在OH 上截取13OH OE ==过点E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点;通过建立方程组求解即可.【详解】(1)将(4,0)A -、(1,3)B -代入2y ax bx =+中,得16403a b a b -=⎧⎨-=⎩解得14a b =-⎧⎨=-⎩∴抛物线C 解析式为:24y x x =--,配方,得:224(2)4y x x x =--=-++,∴顶点为:(2,4)G -;(2)∵抛物线C 绕点O 旋转180 ,得到新的抛物线'C .∴新抛物线'C 的顶点为:'(2,4)G -,二次项系数为:'1a =∴新抛物线'C 的解析式为:22(2)44y x x x =--=-将(4,0)A -代入125y kx =-中,得12045k =--,解得35k =-,∴直线l 解析式为31255y x =--,∵2(,4)D m m m --,∴直线DO 的解析式为(4)y m x =-+,由抛物线C 与抛物线'C 关于原点对称,可得点D 、E 关于原点对称,∴2(,4)E m m m -+如图2,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K ,则312(,)55H m m --,312(,)55K m m --,∴2231217124()5555DH m m m m m =-----=--+,2231217124(5555EK m m m m m =+--=++,∵2DE EM =∴13ME MD =,∵//DH y 轴,//EK y 轴∴//DH EK ∴MEK ∆∽MDH ∆∴13EK ME DH MD ==,即3DH EK =∴22171217123()5555m m m m --+=++解得:13m =-,225m =-,∵2m <-∴m 的值为:﹣3;(3)由(2)知:3m =-,∴(3,3)D -,(3,3)E -,OE =,如图3,连接BG ,在ABG ∆中,∵222(14)(30)18AB =-++-=,22BG =,220AG =∴222AB BG AG +=∴ABG ∆是直角三角形,90ABG ∠= ,∴1tan 3BG GAB AB ∠===,∵DEP GAB∠=∠∴1tan tan 3DEP GAB ∠=∠=,在x 轴下方过点O 作OH OE ⊥,在OH上截取13OH OE ==过点E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点;∵(3,3)E -,∴45EOT ∠=∵90EOH ∠=∴45HOT ∠=∴(1,1)H --,设直线EH 解析式为y px q =+,则331p q p q +=-⎧⎨-+=-⎩,解得1232p q ⎧=-⎪⎪⎨⎪=-⎪⎩∴直线EH 解析式为1322y x =--,解方程组213224y x y x x ⎧=--⎪⎨⎪=--⎩,得117458x y ⎧--=⎪⎪⎨-⎪=⎪⎩,227458x y ⎧-+=⎪⎪⎨+⎪=-⎪⎩,∴点P的横坐标为:7734-或7374.【点睛】本题考查了二次函数图象和性质,待定系数法求函数解析式,旋转变换,相似三角形判定和性质,直线与抛物线交点,解直角三角形等知识点;属于中考压轴题型,综合性强,难度较大.。
2019年江苏连云港中考数学试题(附详细解题分析)
![2019年江苏连云港中考数学试题(附详细解题分析)](https://img.taocdn.com/s3/m/f542c6ffe53a580216fcfed8.png)
2019年江苏省连云港市中考数学试卷一、选择题:本大题共 小题,每小题 分,合计分. {题目}1.(2019年连云港)﹣2的绝对值是A .﹣2B .12-C .2D .12{答案}C{解析}本题考查了,绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.因此本题选C . {分值}3{章节:[1-1-2-4]绝对值} {考点:绝对值的性质} {类别:常考题} {难度:1-最简单}{题目}2.(2019年连云港)有意义,则实数x 的取值范围是 A .x ≥1 B .x ≥0 C .x ≥﹣1 D .x ≤0 {答案}A{解析}本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.因此本题选A . {分值}3{章节:[1-16-1]二次根式}{考点:二次根式的有意义的条件} {类别:常考题} {难度:1-最简单}{题目}3.(2019年连云港)计算下列代数式,结果为x 5的是A .23x x +B .5x x ⋅C .6x x -D .552x x - {答案}D{解析}本题考查了合并同类项法则,能正确求出每个式子的值是解此题的关键.因此本题选D . {分值}3{章节:[1-2-2]整式的加减} {考点:合并同类项} {类别:常考题} {难度:1-最简单}{题目}4.(2019年连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是{答案}B{解析}本题考查了复原几何体,正确判断几何体的特征是解题的关键,考查空间想象能力.因此本题选B . {分值}3{章节:[1-4-1-1]立体图形与平面图形} {考点:几何体的展开图} {类别:常考题} {难度:1-最简单}{题目}5.(2019年连云港)一组数据3,2,4,2,5的中位数和众数分别是A.3,2 B.3,3 C.4,2 D.4,3{答案}A{解析}本题考查了本题结合众数与中位数考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.众数是出现次数最多的数.把已知按照由小到大的顺序排序后为2,2,3,4,5,∴中位数为3,∵2出现的次数最多,∴众数为2.因此本题选A.{分值}3{章节:[1-20-1-2]中位数和众数}{考点:中位数}{考点:众数}{类别:常考题}{难度:2-简单}{题目}6.(2019年连云港)在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”,“兵”所在位置的格点构成的三角形相似A.①处B.②处 C.③处 D.④处{答案}B{解析}本题考查了本题考查了相似三角形的知识,解题的关键是利用勾股定理求得三角形的各边的长,帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长分别为2、25、42;“车”、“炮”之间的距离为1,“炮”②之间的距离为5,“车”②之间的距离为22,∵525=2242=12.∴马应该落在②的位置,因此本题选B.{分值}3{章节:[1-27-1-2]相似三角形的性质}{考点:相似三角形的性质}{类别:高度原创}{类别:常考题}{难度:3-中等难度}{题目}7.(2019年连云港)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是A.18m2B.2C.m2D 2{答案}C{解析}本题考查了梯形的性质、矩形的性质、含30°角的直角三角形的性质、勾股定理、二次函数的运用,利用梯形的面积建立二次函数,如图,过点C 作CE ⊥AB 于E , 则四边形ADCE 为矩形,CD =AE =x ,∠DCE =∠CEB =90°, 则∠BCE =∠BCD ﹣∠DCE =30°,BC =12﹣x , 在Rt △CBE 中,∵∠CEB =90°, ∴BE =12BC =6﹣12x , ∴AD =CE =3BE =63﹣32x ,AB =AE +BE =x +6﹣12x =12x +6, ∴梯形ABCD 面积S =12(CD +AB )•CE =12(x +12x +6)•(63﹣32x )=﹣338x 2+33x +183=﹣338(x ﹣4)2+243,∴当x =4时,S 最大=243. 即CD 长为4m 时,使梯形储料场ABCD 的面积最大为243m 2.因此本题选C .{分值}3{章节:[1-22-3]实际问题与二次函数} {考点:几何图形最大面积问题} {类别:发现探究}{类别:常考题} {难度:3-中等难度}{题目}8.(2019年连云港)如图,在矩形ABCD 中,AD =B .将矩形ABCD 对折,得到折痕MN ;沿着CM 折叠,点D 的对应点为E ,ME 与BC 的交点为F ;再沿着MP 折叠,使得AM 与EM 重合,折痕为MP ,此时点B 的对应点为G .下列结论:①△CMP 是直角三角形;②点C 、E 、G 不在同一条直线上;③PC =2MP ;④BP =2AB ;⑤点F 是△CMP 外接圆的圆心.其中正确的个数为A .2个B .3个C .4个D .5个{答案}B{解析}本题考查了本题考查了三角形的外接圆与外心,折叠的性质,直角三角形的性质,矩形的性质,∵沿着CM 折叠,点D 的对应点为E ,∴∠DMC =∠EMC ,∵再沿着MP 折叠,使得AM 与EM 重合,折痕为MP ,∴∠AMP =∠EMP ,∵∠AMD =180°,∴∠PME +∠CME =12×180°=90°,∴△CMP 是直角三角形;故①正确;∵沿着CM 折叠,点D 的对应点为E ,∴∠D =∠MEC =90°,∵再沿着MP 折叠,使得AM 与EM 重合,折痕为MP ,∴∠MEG =∠A =90°,∴∠GEC =180°,∴点C 、E 、G 在同一条直线上,故②错误;∵AD =22AB ,∴设AB =x ,则AD =22x ,∵将矩形ABCD 对折,得到折痕MN ; ∴DM =12AD =2x ,∴CM =DM 2+CD 2=3x ,∵∠PMC =90°,MN ⊥PC , ∴CM 2=CN •CP ,∴CP =3x 22x =32x ,∴PN =CP ﹣CN =22x ,∴PM =62x , ∴PCPM=3,∴PC =3MP ,故③错误;∵PC =32x ,∴PB =22x ﹣32x =22x ,∴AB PB =x22x,∴PB =2AB ,故④, ∵CD =CE ,EG =AB ,AB =CD ,∴CE =EG ,∵∠CEM =∠G =90°,∴FE ∥PG ,∴CF =PF , ∵∠PMC =90°,∴CF =PF =MF ,∴点F 是△CMP 外接圆的圆心,故⑤正确.因此本题选B . {分值}3{章节:[1-24-2-1]点和圆的位置关系} {考点:三角形的外接圆与外心} {类别:高度原创}{类别:常考题} {难度:5-高难度}{题型:2-填空题}二、填空题:本大题共8小题,每小题3分,合计24分. {题目}9.(2019年连云港)64的立方根是 .{答案}4{解析}本题考查了立方根,熟练掌握立方根的定义是解本题的关键.因此本题填4. {分值}3{章节:[1-6-2]立方根} {考点:立方根} {类别:常考题} {难度:1-最简单}{题目}10.(2019年连云港)计算2(2)x = .{答案}x 2-4x +4{解析}本题考查了完全平方公式,需要注意完全平方公式与平方差公式的区别.因此本题填4﹣4x +x 2.{分值}3{章节:[1-14-2]乘法公式} {考点:完全平方公式} {类别:常考题} {难度:1-最简单}{题目}11.(2019年连云港)连镇铁路正线工程的投资总额约为46 400 000 000元.数据“46 400 000 000”用科学记数法可表示为 .{答案}4.64×1010{解析}本题考查了本题主要考查科学记数法的表示,把一个数表示成a 与10的n 次幂相乘的形式(1≤a <10,n 为整数),这种记数法叫做科学记数法.因此本题填4.64×1010. {分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法} {类别:常考题} {难度:1-最简单}{题目}12.(2019年连云港)一圆锥的底面半径为2,母线长为3,则这个圆锥的侧面积为 .{答案}6π{解析}本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.因此本题填6π. {分值}3{章节:[1-24-4]弧长和扇形面积} {考点:圆锥侧面展开图} {类别:常考题}{类别:易错题} {难度:2-简单}{题目}13.(2019年连云港)如图,点A 、B 、C 在⊙O 上,BC =6,∠BAC =30°,则⊙O 的半径为 .{答案}6{解析}本题考查了运用圆周角定理以及等边三角形的判定和性质.∵∠BOC =2∠BAC =60°,又OB =OC ,∴△BOC 是等边三角形∴OB =BC =6.因此本题填6. {分值}3{章节:[1-24-1-4]圆周角} {考点:圆周角定理} {类别:常考题} {难度:2-简单}{题目}14.(2019年连云港)已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于 .{答案}2{解析}本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.根据题意得: △=4﹣4a (2﹣c )=0,整理得:4ac ﹣8a =﹣4,4a (c ﹣2)=﹣4,∵方程ax 2+2x +2﹣c =0是一元二次方程,∴a ≠0,等式两边同时除以4a 得:c ﹣2=﹣1a ,则1a+c =2. 因此本题填2. {分值}3{章节:[1-21-3] 一元二次方程根与系数的关系} {考点:根的判别式} {类别:常考题} {难度:2-简单}{题目}15.(2019年连云港)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A 的坐标可表示为(1,2,5),点B 的坐标可表示为(4,1,3),按此方法,则点C 的坐标可表示为 .{答案}(2,4,2){解析}本题考查了规律型:点的坐标,等边三角形的性质,找出题中的规律是解题的关键.根据点A 的坐标可表示为(1,2,5),点B 的坐标可表示为(4,1,3)得到经过点的三条直线对应着等边三角形三边上的三个数,依次为左、右,下,即为该点的坐标,于是得到结论. 因此本题填(2,4,2).{分值}3{章节:[1-7-2]平面直角坐标系} {考点:点的坐标的应用}{类别:高度原创}{类别:新定义} {难度:4-较高难度}{题目}16.(2019年连云港)如图,在矩形ABCD 中,AB =4,AD =3,以点C 为圆心作OC 与直线BD 相切,点P 是OC 上一个动点,连接AP 交BD 于点T ,则APAT的最大值是 .{答案}3{解析}本题考查了矩形的性质,圆的切线的性质,相似三角形的性质,构造出相似三角形是解本题的关键.如图,过点P 作PE ∥BD 交AB 的延长线于E ,∴∠AEP =∠ABD ,△APE ∽△ATB ,∴APAT =AE AB ,∵AB =4,∴AE =AB +BE =4+BE ,∴AP AT =1+BE 4,∴BE 最大时,APAT 最大,∵四边形ABCD 是矩形,∴BC =AD =3,CD =AB =4,过点C 作CH ⊥BD 于H ,交PE 于M ,并延长交AB 于G ,∵BD 是⊙C 的切线,∴∠GME =90°,在Rt △BCD 中,BD =5,∵∠BHC =∠BCD =90°,∠CBH =∠DBC ,∴△BHC ∽△BCD ,∴BH BC =CH DC =BC BD ,∴BH 3=CH 4=35,∴BH =95,CH =125,∵∠BHG =∠BAD =90°,∠GBH =∠DBA ,∴△BHG ∽△BAD ,∴HG AD =BG BD =BH AB ,∴HG 3=BG 5=954,∴HG =2720,BG =94,在Rt △GME 中,GM =EG •sin ∠AEP =EG ×35=35EG ,而BE =GE ﹣BG =GE ﹣94, ∴GE 最大时,BE 最大,∴GM 最大时,BE 最大,∵GM =HG +HM =2720+HM ,即:HM 最大时,BE 最大,延长MC 交⊙C 于P ',此时,HM 最大=HP '=2CH =245,∴GP '=HP '+HG =1234, 过点P '作P 'F ∥BD 交AB 的延长线于F ,∴BE 最大时,点E 落在点F 处,即:BE 最大=BF , 在Rt △GP 'F 中,FG =GP ′sin ∠F =GP ′sin ∠ABD=1234 35=414, ∴BF =FG ﹣BG =8,∴AP AT 最大值为1+84=3.因此本题填3. {分值}3{章节:[1-27-1-3]相似三角形应用举例}{考点:几何填空压轴}{考点:几何综合}{考点:切线的性质}{考点:三角函数的关系}{考点:相似三角形的应用} {类别:高度原创} {难度:5-高难度}{题型:4-解答题}三、解答题:本大题共11小题,合计102分.{题目}17.(2019年连云港)计算:11(1)2()3--⨯.{解析}本题考查了实数的运算法则,属于基础题,解答本题的关键是熟练掌握二次根式的化简以及负整数指数幂.{答案}解: 原式=-2+2+3=3 {分值}6{章节:[1-6-3]实数} {难度:1-最简单} {类别:常考题}{考点:简单的实数运算}{题目}18.(2019年连云港)解不等式组:2412(3)1x x x >-⎧⎨-->+⎩.{解析}本题考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). {答案}解: 解不等式2x >-4,得x >-2, 解不等式1-2(2x -3)>x +1,得x <2, 所以原不等式组的解集是-2<x <2. {分值}6{章节:[1-9-3]一元一次不等式组} {难度:1-最简单} {类别:常考题}{考点:解一元一次不等式组}{题目}19.(2019年连云港)化简:22(1)42m m m ÷+--. {解析}本题考查了分式的混合运算.解决本题的关键是掌握分式的运算顺序和分式加减乘除的运算法则.{答案}解: 原式=m(m +2)(m -2)÷m -2+2m -2=m(m +2)(m -2)×m -2m=1m+2{分值}6{章节:[1-15-2-1]分式的乘除}{难度:2-简单}{类别:常考题}{类别:易错题}{考点:分式的混合运算}{题目}20.(2019年连云港)为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.(1)本次调查共随机抽取了名中学生,其中课外阅读时长“2~4小时”的有人;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为 °;(3)若该地区共有2000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.{解析}本题考查了条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.(1)根据统计图中的数据可以求得本次调查的学生数和课外阅读时长“2~4小时”的人数;(2)根据统计图中的数据可以求得扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数;(3)根据统计图的数据可以计算出该地区中学生一周课外阅读时长不少于4小时的人数.{答案}解:(1)200,400;(2)144;(3)20000×(40%+25%)=13000(人)答:该地区中学生一周课外阅读时长不少于4小时的约有13000人.{分值}8{章节:[1-10-2]直方图}{难度:1-最简单}{类别:常考题}{考点:扇形统计图}{考点:条形统计图}{考点:用样本估计总体}{题目}21.(2019年连云港)现有A、B、C三个不透明的盒子,A盒中装有红球、黄球、蓝球各1个,B盒中装有红球、黄球各1个,C盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A、B、C三个盒子中任意摸出一个球.(1)从A盒中摸出红球的概率为;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.{解析}本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.(1)从A 盒中摸出红球的结果有一个,由概率公式即可得出结果;(2)画树状图展示所有12种等可能的结果数,摸出的三个球中至少有一个红球的结果有10种,由概率公式即可得出结果.{答案}解:(1)从A 盒子中摸出红球的概率为13;(2)列出树状图如图所示:由图可知,共有12种等可能的结果,其中至少有一个红球的结果有10种.所以,P (摸出的三个球中至少有一个红球)=1012=56. {分值}10{章节:[1-25-2]用列举法求概率} {难度:2-简单} {类别:常考题} {考点:三步事件}{题目}22.(2019年连云港)如图,在△ABC 中,AB =A C .将△ABC 沿着BC 方向平移得到△DEF ,其中点E 在边BC 上,DE 与AC 相交于点O . (1)求证:△OEC 为等腰三角形;(2)连接AE 、DC 、AD ,当点E 在什么位置时,四边形AECD 为矩形,并说明理由.{解析}本题考查了矩形的判定、平行四边形的判定、平移的性质、等腰三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键.(1)根据等腰三角形的性质得出∠B =∠ACB ,根据平移得出AB ∥DE ,求出∠B =∠DEC ,再求出∠ACB =∠DEC 即可;(2)求出四边形AECD 是平行四边形,再求出四边形AECD 是矩形即可.{答案}解:(1) ∵AB =AC ,∴∠ABC =∠ACB∵△ABC 平移得到△DEF ,∴AB ∥DE ∴∠ABC =∠DEF ,∴∠DEF =∠ACB 即△OEC 为等腰三角形(2)当E 为BC 中点时,四边形AECD 为矩形 ∵AB =A C .且E 为BC 中点, ∴.AE ⊥B C .BE = EC ∵△ABC 平移得到△DEF ,∴BE//A D.BE=AD∴AD//E C.AD=EC∴四边形AECD为平行四边形又∵AE⊥BC,∴四边形AECD为矩形.{分值}10{章节:[1-18-2-1]矩形}{难度:3-中等难度}{类别:常考题}{考点:矩形的性质}{题目}23.(2019年连云港)某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.{解析}本题考查了一次函数和不等式组综合应用题,准确地根据题目中数量之间的关系,求利润y与甲产品生产的吨数x的函数表达式,然后再利用一次函数的增减性和自变量的取值范围,最后确定函数的最值.也是常考内容之一.(1)利润y(元)=生产甲产品的利润+生产乙产品的利润;而生产甲产品的利润=生产1吨甲产品的利润0.3万元×甲产品的吨数x,即0.3x万元,生产乙产品的利润=生产1吨乙产品的利润0.4万元×乙产品的吨数(2500﹣x),即0.4(2500﹣x)万元.(2)由(1)得y是x的一次函数,根据函数的增减性,结合自变量x的取值范围再确定当x取何值时,利润y最大.{答案}解:(1)y=x×0.3+( 2500-x)×0.4=-0.1x+1000(2)由题意得:x×0.25+( 2500-x)×0.5≤1000,解得z≥1000又因为x≤2500.所以1000≤x≤2500由(1)可知,-0.1<0,所以y的值随着x的增加而减小所以当x= 1000时,y取最大值,此时生产乙种产品2500-1000 =1500(吨)答:工厂生产甲产品1000吨,乙产品1500吨时,能获得最大利润.{分值}10{章节:[1-19-4]课题学习选择方案}{难度:3-中等难度}{类别:常考题}{考点:调配问题}{题目}24.(2019年连云港)如图,海上观察哨所B位于观察哨所A正北方向,距离为25海里.在某时刻,哨所A与哨所B同时发现一走私船,其位置C位于哨所A北偏东53°的方向上,位于哨所B南偏东37°的方向上.(1)求观察哨所A与走私船所在的位置C的距离;(2)若观察哨所A发现走私船从C处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D处成功拦截.(结果保留根号)(参考数据:sin37°=cos53°≈35,cos37 =sin53°≈45,tan37°≈34,tan76°≈4){解析}本题考查了解直角三角形的应用﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.(1)先根据三角形内角和定理求出∠ACB =90°,再解Rt △ABC ,利用正弦函数定义得出AC 即可;(2)过点C 作CM ⊥AB 于点M ,易知,D 、C 、M 在一条直线上.解Rt △AMC ,求出CM 、AM .解Rt △AMD 中,求出DM 、AD ,得出CD .设缉私艇的速度为x 海里/小时,根据走私船行驶CD 所用的时间等于缉私艇行驶AD 所用的时间列出方程,解方程即可.{答案}解: (1)在△ABC 中,∠ACB =180°﹣∠B ﹣∠BAC =180°﹣37°﹣53°=90°. 在Rt △ABC 中,sin B =AC AB ,∴AC =AB •sin37°=25×35=15(海里). 答:观察哨所A 与走私船所在的位置C 的距离为15海里;(2)过点C 作CM ⊥AB 于点M ,由题意易知,D 、C 、M 在一条直线上.在Rt △AMC 中,CM =AC •sin ∠CAM =15×35=12,AM =AC •cos ∠CAM =15×35=9. 在Rt △AMD 中,tan ∠DAM =DMAM,∴DM =AM •tan76°=9×4=36,∴AD =917, CD =DM ﹣CM =36﹣12=24.设缉私艇的速度为x 海里/小时,则有2416=917x ,解得x =617. 经检验,x =617是原方程的解.答:当缉私艇的速度为617海里/小时时,恰好在D 处成功拦截.{分值}10{章节:[1-28-2-2]非特殊角} {难度:3-中等难度} {类别:常考题}{考点:解直角三角形-方位角}{题目}25.(2019年连云港)如图,在平面直角坐标系xOy 中,函数y x b =-+的图像与函数ky x=(x <0)的图像相交于点A (﹣1,6),并与x 轴交于点C .点D 是线段AC 上一点,△ODC 与△OAC 的面积比为2:3. (1)k = ,b = ; (2)求点D 的坐标;(3)若将△ODC 绕点O 逆时针旋转,得到△△OD ′C ′,其中点D ′落在x 轴负半轴上,判断点C ′是否落在函数ky x=(x <0)的图像上,并说明理由.{解析}本题考查了待定系数法求解析式,三角形的面积,反比例函数的性质,勾股定理等,解题关键是能够熟练运用反比例函数的性质.(1)将A (﹣1,6)代入y =﹣x +b 可求出b 的值;将A (﹣1,6)代入y =kx可求出k 的值; (2)过点D 作DM ⊥x 轴,垂足为M ,过点A 作AN ⊥x 轴,垂足为N ,由△ODC 与△OAC 的面积比为2:3,可推出DN AN =23,由点A 的坐标可知AN =6,进一步求出DM =4,即为点D 的纵坐标,把y =4代入y =﹣x +5中,可求出点D 坐标;(3)过点C '作C 'G ⊥x 轴,垂足为G ,由题意可知,OD '=OD =17,由旋转可知S △ODC =S △OD 'C ',可求出C 'G =201717,在Rt △OC 'G 中,通过勾股定理求出OG 的长度,即可写出点C '的坐标,将其坐标代入y =﹣6x 可知没有落在函数y =kx(x <0)的图象上.{答案}解: (1)将A (﹣1,6)代入y =﹣x +b ,得,6=1+b ,∴b =5,将A (﹣1,6)代入y =kx,得,6=k-1,∴k =﹣6,故答案为:﹣6,5;(2)如图1,过点D 作DM ⊥x 轴,垂足为M ,过点A 作AN ⊥x 轴,垂足为N ,∵S △ODCS △OAC =12OC ⋅DM 12OC ⋅AN =23,∴DN AN =23,又∵点A 的坐标为(﹣1,6),∴AN =6,∴DM =4,即点D 的纵坐标为4,把y =4代入y =﹣x +5中,得,x =1,∴D (1,4);(3)由题意可知,OD '=OD =17, 如图2,过点C '作C 'G ⊥x 轴,垂足为G ,2017在Rt △OC 'G 中,∵OG =51717,∴C '的坐标为(﹣51717,201717), ∵(﹣51717)×201717≠﹣6, ∴点C '不在函数y =﹣6x的图象上.{分值}10{章节:[1-26-1]反比例函数的图像和性质} {难度:4-较高难度} {类别:高度原创}{考点:二次函数与平行四边形综合}{题目}26.(2019年连云港)如图,在平面直角坐标系xOy 中,抛物线L 1:2y x bx c =++过点C (0,﹣3),与抛物线L 2:213222y x x =--+的一个交点为A ,且点A 的横坐标为2,点P 、Q 分别是抛物线L 1、抛物线L 2上的动点.(1)求抛物线L 1对应的函数表达式;(2)若以点A 、C 、P 、Q 为顶点的四边形恰为平行四边形,求出点P 的坐标;(3)设点R 为抛物线L 1上另一个动点,且CA 平分∠PCR ,若OQ ∥PR ,求出点Q 的坐标.{解析}本题考查了二次函数的综合题,主要考查了待定系数法求函数的解析式,平行四边形的性质,解直角三角形的应用,相似三角形的性质与判定,角平分线的性质,动点问题探究,突破第(2)题的方法是分情况讨论;突破第(3)的方法是作直角三角形,构造相似三角形,用相似三角形的相似比列方程.(1)先求出A 点的坐标,再用待定系数法求出函数解析式便可; (2)设点P 的坐标为(x ,x 2﹣2x ﹣3),分两种情况讨论:AC 为平行四边形的一条边,AC 为平行四边形的一条对角线,用x 表示出Q 点坐标,再把Q 点坐标代入抛物线L 2:y =﹣12x 2﹣32x +2中,列出方程求得解便可;(3)当点P 在y 轴左侧时,抛物线L 1不存在点R 使得CA 平分∠PCR ,当点P 在y 轴右侧时,不妨设点P 在CA 的上方,点R 在CA 的下方,过点P 、R 分别作y 轴的垂线,垂足分别为S 、T ,过点P 作PH ⊥TR 于点H ,设点P 坐标为(x 1,x 12-2x 1-3),点R 坐标为(x 2,x 22-2x 2-3),证明△PSC ∽△RTC ,由相似比得到x 1+x 2=4,进而得tan ∠PRH 的值,过点Q 作QK ⊥x 轴于点K ,设点Q 坐标为(m ,﹣12m 2﹣32m +2),由tan ∠QOK =tan ∠PRH ,移出m 的方程,求得m 便可.{答案}解:(1)将x =2代入y =﹣12x 2﹣32x +2,得y =﹣3,故点A 的坐标为(2,﹣3), 将A (2,﹣1),C (0,﹣3)代入y =x 2+bx +c ,得⎩⎨⎧-3=22+2b +c -3=0+0+c ,解得⎩⎨⎧b =-2c =-3,∴抛物线L 1:y =x 2﹣2x ﹣3;(2)设点P 的坐标为(x ,x 2﹣2x ﹣3), 第一种情况:AC 为平行四边形的一条边,①当点Q 在点P 右侧时,则点Q 的坐标为(x +2,﹣2x ﹣3),将Q (x +2,﹣2x ﹣3)代入y =﹣12x 2﹣32x +2,得﹣2x ﹣3=﹣12(x +2)2﹣32(x +2)+2,解得,x =0或x =﹣1, 因为x =0时,点P 与C 重合,不符合题意,所以舍去,此时点P 的坐标为(﹣1,0); ②当点Q 在点P 左侧时,则点Q 的坐标为(x ﹣2,x 2﹣2x ﹣3),将Q (x ﹣2,x 2﹣2x ﹣3)代入y =﹣12x 2﹣32x +2,得y =﹣12x 2﹣32x +2,得x 2﹣2x ﹣3=﹣12(x ﹣2)2﹣32(x ﹣2)+2,解得,x =3,或x =﹣43,此时点P 的坐标为(3,0)或(﹣43,139); 第二种情况:当AC 为平行四边形的一条对角线时,由AC 的中点坐标为(1,﹣3),得PQ 的中点坐标为(1,﹣3),故点Q 的坐标为(2﹣x ,﹣x 2+2x ﹣3),将Q (2﹣x ,﹣x 2+2x ﹣3)代入y =﹣12x 2﹣32x +2,得﹣x 2+2x ﹣3═﹣12(2﹣x )2﹣32(2﹣x )+2,解得,x =0或x =﹣3,因为x =0时,点P 与点C 重合,不符合题意,所以舍去, 此时点P 的坐标为(﹣3,12),综上所述,点P 的坐标为(﹣1,0)或(3,0)或(﹣43,139)或(﹣3,12); (3)当点P 在y 轴左侧时,抛物线L 1不存在点R 使得CA 平分∠PCR ,当点P 在y 轴右侧时,不妨设点P 在CA 的上方,点R 在CA 的下方,过点P 、R 分别作y 轴的垂线,垂足分别为S 、T ,过点P 作PH ⊥TR 于点H ,则有∠PSC =∠RTC =90°,由CA 平分∠PCR ,得∠PCA =∠RCA ,则∠PCS=∠RCT ,∴△PSC ∽△RTC ,∴PS CS =RTCT, 设点P 坐标为(x 1,x 12-2x 1-3),点R 坐标为(x 2,x 22-2x 2-3), 所以有x 1 x 12-2x 1-3-(-3)=x 2-3-(x 22-2x 2-3),整理得,x 1+x 2=4,在Rt △PRH 中,tan ∠PRH =PH RH =x 12-2x 1-3-(x 22-2x 2-3)x 1-x 2=x 1+x 2-2=2 过点Q 作QK ⊥x 轴于点K ,设点Q 坐标为(m ,﹣12m 2﹣32m +2),若OQ ∥PR ,则需∠QOK =∠PRH ,所以tan ∠QOK =tan ∠PRH =2,所以2m =﹣12m 2﹣32m +2, 解得,m =-7±652, 所以点Q 坐标为(-7+652,﹣7+65)或(-7-652,﹣7﹣65).{分值}12{章节:[1-22-3]实际问题与二次函数} {难度:4-较高难度} {类别:高度原创}{考点:一元二次方程的应用—增长率问题}{题目}27.(2019年连云港)问题情境:如图1,在正方形ABCD 中,E 为边BC 上一点(不与点B 、C 重合),垂直于AE 的一条直线MN 分别交AB 、AE 、CD 于点M 、P 、N .判断线段DN 、MB 、EC 之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上,(1)如图2,若垂足P 恰好为AE 的中点,连接BD ,交MN 于点Q ,连接EQ ,并延长交边AD于点F .求∠AEF 的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN翻折,点P落在点P'处.若正方形ABCD的边长为4 ,AD的中点为S,求P'S的最小值.问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂足分别为G、H.若AG=52,请直接写出FH的长.{解析}本题考查了四边形综合题目,考查了正方形的性质、翻折变换的性质、勾股定理、相似三角形的判定与性质、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解题的关键.问题情境:过点B作BF ∥MN分别交AE、CD于点G、F,证出四边形MBFN为平行四边形,得出NF=MB,证明△ABE ≌△BCF得出BE=CF,即可得出结论;问题探究:(1)连接AQ,过点Q作HI∥AB,分别交AD、BC于点H、I,证出△DHQ是等腰直角三角形,HD=HQ,AH=QI,证明Rt△AHQ≌Rt△QIE得出∠AQH=∠QEI,得出△AQE是等腰直角三角形,得出∠EAQ=∠AEQ=45°,即可得出结论;(2)连接AC交BD于点O,则△APN的直角顶点P在OB上运动,设点P与点B重合时,则点P′与点D 重合;设点P 与点O 重合时,则点P ′的落点为O ′,由等腰直角三角形的性质得出∠ODA =∠ADO ′=45°,当点P 在线段BO 上运动时,过点P 作PG ⊥CD 于点G ,过点P ′作P ′H ⊥CD 交CD 延长线于点H ,连接PC ,证明△APB ≌△CPB 得出∠BAP =∠BCP ,证明Rt △PGN ≌Rt △NHP '得出PG =NH ,GN =P 'H ,由正方形的性质得出∠PDG =45°,易得出PG =GD ,得出GN =DH ,DH =P 'H ,得出∠P 'DH =45°,故∠P 'DA =45°,点P '在线段DO '上运动;过点S 作SK ⊥DO ',垂足为K ,即可得出结果;问题拓展:延长AG 交BC 于E ,交DC 的延长线于Q ,延长FH 交CD 于P ,则EG =AG =52,PH =FH ,得出AE =5,由勾股定理得出BE =3,得出CE =BC ﹣BE =1,证明△ABE ∽△QCE ,得出QE =13AE=53,AQ =AE +QE =203,证明△AGM ∽△ABE ,得出AM =258,由折叠的性质得:AB '=EB =3,∠B '=∠B =90°,∠C '=∠BCD =90°,求出B 'M =78,AC '=1,证明△AFC '∽△MAB ',得出AF =257,DF =4﹣257=37,证明△DFP ∽△DAQ ,得出FP =57,得出FH =12FP =514. {答案}解: 问题情境:解:线段DN 、MB 、EC 之间的数量关系为:DN +MB =EC ;理由如下: ∵四边形ABCD 是正方形,∴∠ABE =∠BCD =90°,AB =BC =CD ,AB ∥CD , 过点B 作BF ∥MN 分别交AE 、CD 于点G 、F ,如图1所示:∴四边形MBFN 为平行四边形,∴NF =MB ,∴BF ⊥AE ,∴∠BGE =90°, ∴∠CBF +∠AEB =90°,∵∠BAE +∠AEB =90°,∴∠CBF =∠BAE ,在△ABE 和△BCF 中,⎩⎪⎨⎪⎧∠BAE =∠CBFAB =BC ∠ABE =∠BCF,∴△ABE ≌△BCF (ASA ),∴BE =CF ,∵DN +NF +CF =BE +EC ,∴DN +MB =EC ; 问题探究:解:(1)连接AQ ,过点Q 作HI ∥AB ,分别交AD 、BC 于点H 、I ,如图2所示:∵四边形ABCD 是正方形,∴四边形ABIH 为矩形,∴HI ⊥AD ,HI ⊥BC ,HI =AB =AD , ∵BD 是正方形ABCD 的对角线,∴∠BDA =45°,∴△DHQ 是等腰直角三角形,HD =HQ ,AH =QI ,∵MN 是AE 的垂直平分线,∴AQ =QE ,在Rt △AHQ 和Rt △QIE 中,⎩⎨⎧AQ =QEAH =QI,∴Rt △AHQ ≌Rt △QIE (HL ),∴∠AQH =∠QEI ,∴∠AQH +∠EQI =90°,∴∠AQE =90°,∴△AQE 是等腰直角三角形, ∴∠EAQ =∠AEQ =45°,即∠AEF =45°; (2)连接AC 交BD 于点O ,如图3所示: 则△APN 的直角顶点P 在OB 上运动,设点P 与点B 重合时,则点P ′与点D 重合;设点P 与点O 重合时,则点P ′的落点为O ′,。
山西省2019年中考数学试题含答案解析(Word版)
![山西省2019年中考数学试题含答案解析(Word版)](https://img.taocdn.com/s3/m/2603615eae1ffc4ffe4733687e21af45b307fe20.png)
山西省2019年中考数学试题含答案解析(Word版)2019年山西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。
在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑。
)1.(2019·山西)下列选项中,哪个是1的相反数?A。
6/11B。
-6C。
6D。
-662.(2019·山西)以下不等式组的解集是?2x < 6.x ≥ 5}A。
x。
5B。
x < 3C。
-5 < x < 3D。
x < 53.(2019·山西)以下问题不适合进行全面调查的是?A。
调查某班学生每周课前预的时间。
B。
调查某中学在职教师的身体健康状况。
C。
调查全国中小学生课外阅读情况。
D。
调查某篮球队员的身高。
4.(2019·山西)如图所示,由几个大小相同的小正方体搭成的几何体的俯视图如下,小正方体中的数字表示该位置小正方体的个数。
则该几何体的左视图是?因为无法插入图片,请参考原文)5.(2019·山西)我国计划在2020年左右发射火星探测卫星。
据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为?A。
5.5×10^6B。
5.5×10^7C。
55×10^6D。
0.55×10^86.(2019·山西)下列运算正确的是?A。
(-3/2)^2 = 9/4B。
91 ÷ 3(3a^2) = 9a^6C。
5 - 3 ÷ 5 - 5 = -2/5D。
8 - 50 = -427.(2019·山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等。
求甲、乙两人每小时分别搬运多少kg货物。
设甲每小时搬运xkg货物,则可列方程为?5000 ÷ x = (8000 ÷ (x + 600))A。
2019年安徽省中考数学试卷附分析答案
![2019年安徽省中考数学试卷附分析答案](https://img.taocdn.com/s3/m/aa0725627c1cfad6185fa781.png)
A.3.6
B.4
C.4.8
【解答】解:作 DH∥EG 交 AB 于点 H,则△AEG∽△ADH,
t
∴
,
tt
第 8页(共 20页)
D.5
∵EF⊥AC,∠C=90°, ∴∠EFA=∠C=90°, ∴EF∥CD, ∴△AEF∽△ADC,
∴
,
tt
t
∴
,
t
t
∵EG=EF,
∴DH=CD,
设 DH=x,则 CD=x,
六、(本题满分 12 分) 21.(12 分)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量
其尺寸,在一天的抽检结束后,检测员将测得的各数据按从小到大的顺序整理成如下表 格:
编号 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ ⑬ ⑭ ⑮
尺寸 8.72 8.88 8.92 8.93 8.94 8.96 8.97 8.98 a 9.03 9.04 9.06 9.07 9.08 b (cm)
第 7页(共 20页)
故选:B.
5.(4 分)已知点 A(1,﹣3)关于 x 轴的对称点 A'在反比例函数 y 的图象上,则实数 k 的值为( )
A.3
B.
C.﹣3
D.
【解答】解:点 A(1,﹣3)关于 x 轴的对称点 A'的坐标为(1,3),
把 A′(1,3)代入 y 得 k=1×3=3. 故选:A. 6.(4 分)在某时段由 50 辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所 示的条形统计图,则这 50 辆车的车速的众数(单位:km/h)为( )
∵BC=12,AC=6,
∴BD=12﹣x,
∵EF⊥AC,EF⊥EG,DH∥EG,
2019年山东省潍坊市中考数学试卷和答案解析
![2019年山东省潍坊市中考数学试卷和答案解析](https://img.taocdn.com/s3/m/fc1d00040166f5335a8102d276a20029bd6463a0.png)
2019年山东省潍坊市中考数学试卷一、选择题(本大题共12小题,共36分。
在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分)1.(3分)(2019•潍坊)2019的倒数的相反数是( )A .2019-B .12019-C .12019D .20192.(3分)(2019•潍坊)下列运算正确的是( )A .326a a a ⨯=B .842a a a ÷=C .3(1)33a a --=-D .32911()39a a = 3.(3分)(2019•潍坊)“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资111.00210⨯元.数据111.00210⨯可以表示为( )A .10.02亿B .100.2亿C .1002亿D .10020亿4.(3分)(2019•潍坊)如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是( )A .俯视图不变,左视图不变B .主视图改变,左视图改变C .俯视图不变,主视图不变D .主视图改变,俯视图改变5.(3分)(2019•潍坊)利用教材中时计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是( )A .2.5B .2.6C .2.8D .2.96.(3分)(2019•潍坊)下列因式分解正确的是( )A .22363(2)ax ax ax ax -=-B .22()()x y x y x y +=-+--C .22224(2)a ab b a b +-=+D .222(1)ax ax a a x -+-=--7.(3分)(2019•潍坊)小莹同学10个周综合素质评价成绩统计如下: 成绩(分)94 95 97 98 100 周数(个) 1 2 2 4 1这10个周的综合素质评价成绩的中位数和方差分别是( )A .97.5 2.8B .97.5 3C .97 2.8D .97 38.(3分)(2019•潍坊)如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD . ②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .③连接OE 交CD 于点M .下列结论中错误的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠ D .12OCED S CD OE =⋅四边形 9.(3分)(2019•潍坊)如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .10.(3分)(2019•潍坊)关于x 的一元二次方程2220x mx m m +++=的两个实数根的平方和为12,则m 的值为( )A .2m =-B .3m =C .3m =或2m =-D .3m =-或2m =11.(3分)(2019•潍坊)如图,四边形ABCD 内接于O ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点E ,连接AC 交DE 于点F .若3sin 5CAB ∠=,5DF =,则BC 的长为( )A .8B .10C .12D .1612.(3分)(2019•潍坊)抛物线23y x bx =++的对称轴为直线1x =.若关于x 的一元二次方程230(x bx t t ++-=为实数)在14x -<<的范围内有实数根,则t 的取值范围是( )A .211t <B .2tC .611t <<D .26t <二、填空题(本题共6小题,满分18分。
2019年湖北省襄阳市中考数学试卷含解析
![2019年湖北省襄阳市中考数学试卷含解析](https://img.taocdn.com/s3/m/fe5f8c64f342336c1eb91a37f111f18583d00cde.png)
2019年湖北省襄阳市中考数学试卷一、选择题:本大题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将其标号在答题卡上涂黑作答1. (3分)(2019・襄阳)计算|-3|的结果是()C. - 3D. ±3A. 3 B. -L32. (3 分)(2019*襄阳)下列运算正确的是(), 3 2A. Cl ~ CL =。
2. 3— 6B . ci * ci —a八 6 . 2 3 z 2、 - 3 - 6C. a ~a =a D. (a ) =a 3. (3 分)(2019*襄阳)的度数是( )N E如图,直线BC//AE,CD1AB 于点 D,若ZBCD=40° ,则Z1CB A. 60° B. 50° C. 40° D. 30°4. (3分)(2019-襄阳)某正方体的平面展开图如图所示,则原正方体中与“春”字所在的面相对的面上的字是( )s L 区司A.青B.来C.斗D.奋5. (3分)(2019・襄阳)下列图形中,既是轴对称图形,又是中心对称图形的是( )6. (3分)(2019・襄阳)不等式组"的解集在数轴上用阴影表示正确的是()〔3+x 》3x+9A.c.7.(3分)(2019・襄阳)如图,分别以线段AB的两个端点为圆心,大于AB的一半的长为半径画弧,两孤分别交于C,Q两点,连接AG BC,AD,BD,则四边形ADBC-定是C.梯形D.菱形8.(3分)(2019・襄阳)下列说法错误的是()A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得9.(3分)(2019・襄阳)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A.5x-45=7x-3B.5x+45=7x+3C.x+45=x+3D.x~45-x~3575710.(3分)(2019・襄阳)如图,A。
2019年陕西省中考数学试题(解析)
![2019年陕西省中考数学试题(解析)](https://img.taocdn.com/s3/m/08649b461fb91a37f111f18583d049649b660e00.png)
∴∠2=∠BOC=64°,
故选C.
【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解本题的关键.
4.若正比例函数 的图象经过点O(a-1,4),则a的值为()
A. -1B. 0C. 1D. 2
【答案】A
【解析】
【分析】
把点(a-1,4)直接代入正比例函数y=-2x中求解即可.
把y=4代入 ,得4= ,解得:x= ,
∴M点的横坐标为 ,
∴点M的坐标为 ,
故答案为 .
【点睛】本题考查了矩形的对称性,反比例函数图象上点的坐标特征,三角形的中位线等知识,熟练掌握和灵活运用相关知识是解题的关键.注意数形结合思想的运用.
14.如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6. P为对角线BD上一点,则PM—PN的最大值为___.
【答案】2.
【解析】
【分析】
如图所示,以BD为对称轴作N的对称点 ,连接 ,根据对称性质可知, ,由此可得 ,当 三点共线时,取“=”,此时即PM—PN的值最大,由正方形的性质求出AC的长,继而可得 , ,再证明 ,可得PM∥AB∥CD,∠ 90°,判断出△ 为等腰直角三角形,求得 长即可得答案.
【详解】如图所示,以BD为对称轴作N的对称点 ,连接 ,根据对称性质可知, ,∴ ,当 三点共线时,取“=”,
16.化简:
【答案】a
【解析】
【分析】
括号内先通分进行分式的加减法运算,然后再进行分式的乘除运算即可.
【详解】原式=
=
=a.
【点睛】本题考查了分式的混合运算,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.
2019年上海市中考数学试卷解析版
![2019年上海市中考数学试卷解析版](https://img.taocdn.com/s3/m/2800b51e336c1eb91a375dca.png)
2019年上海市中考数学试卷解析版一、选择题:(本大题共6题.每题4分,满分24)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)下列运算正确的是()A.3x+2x=5x2B.3x﹣2x=x C.3x•2x=6x D.3x÷2x=2 3【解答】解:(A)原式=5x,故A错误;(C)原式=6x2,故C错误;(D)原式=32,故D错误;故选:B.2.(4分)如果m>n,那么下列结论错误的是()A.m+2>n+2B.m﹣2>n﹣2C.2m>2n D.﹣2m>﹣2n 【解答】解:∵m>n,∴﹣2m<﹣2n,故选:D.3.(4分)下列函数中,函数值y随自变量x的值增大而增大的是()A.y=x3B.y=−x3C.y=3x D.y=−3x【解答】解:A、该函数图象是直线,位于第一、三象限,y随x的增大而增大,故本选项正确.B、该函数图象是直线,位于第二、四象限,y随x的增大而减小,故本选项错误.C、该函数图象是双曲线,位于第一、三象限,在每一象限内,y随x的增大而减小,故本选项错误.D、该函数图象是双曲线,位于第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误.故选:A.4.(4分)甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A .甲的成绩比乙稳定B .甲的最好成绩比乙高C .甲的成绩的平均数比乙大D .甲的成绩的中位数比乙大【解答】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为15×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4; 乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为15×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低, 故选:A .5.(4分)下列命题中,假命题是( )A .矩形的对角线相等B .矩形对角线交点到四个顶点的距离相等C .矩形的对角线互相平分D .矩形对角线交点到四条边的距离相等【解答】解:A 、矩形的对角线相等,正确,是真命题;B 、矩形的对角线的交点到四个顶点的距离相等,正确,是真命题;C 、矩形的对角线互相平分,正确,是真命题;D 、矩形的对角线的交点到一组对边的距离相等,故错误,是假命题,故选:D .6.(4分)已知⊙A 与⊙B 外切,⊙C 与⊙A 、⊙B 都内切,且AB =5,AC =6,BC =7,那么⊙C 的半径长是( )A .11B .10C .9D .8【解答】解:如图,设⊙A ,⊙B ,⊙C 的半径为x ,y ,z .由题意:{x +y =5z −x =6z −y =7,解得{x =3y =2z =9,故选:C .二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答纸的相应位置上】7.(4分)计算:(2a 2)2= 4a 4 .【解答】解:(2a 2)2=22a 4=4a 4.8.(4分)已知f (x )=x 2﹣1,那么f (﹣1)= 0 .【解答】解:当x =﹣1时,f (﹣1)=(﹣1)2﹣1=0.故答案为:0.9.(4分)如果一个正方形的面积是3,那么它的边长是 √3 .【解答】解:∵正方形的面积是3,∴它的边长是√3.故答案为:√310.(4分)如果关于x 的方程x 2﹣x +m =0没有实数根,那么实数m 的取值范围是 m >14 .【解答】解:由题意知△=1﹣4m <0,∴m >14.故填空答案:m >14.11.(4分)一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是 13 .【解答】解:∵在这6种情况中,掷的点数大于4的有2种结果,∴掷的点数大于4的概率为26=13, 故答案为:13. 12.(4分)《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛56 斛米.(注:斛是古代一种容量单位)【解答】解:设1个大桶可以盛米x 斛,1个小桶可以盛米y 斛,则{5x +y =3x +5y =2, 故5x +x +y +5y =5,则x +y =56.答:1大桶加1小桶共盛56斛米. 故答案为:56. 13.(4分)在登山过程中,海拔每升高1千米,气温下降6℃,已知某登山大本营所在的位置的气温是2℃,登山队员从大本营出发登山,当海拔升高x 千米时,所在位置的气温是y ℃,那么y 关于x 的函数解析式是 y =﹣6x +2 .【解答】解:由题意得y 与x 之间的函数关系式为:y =﹣6x +2.故答案为:y =﹣6x +2.14.(4分)小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约 90 千克.【解答】解:估计该小区300户居民这一天投放的可回收垃圾共约30050×100×15%=90(千克),故答案为:90.15.(4分)如图,已知直线11∥l 2,含30°角的三角板的直角顶点C 在l 1上,30°角的顶点A 在l 2上,如果边AB 与l 1的交点D 是AB 的中点,那么∠1= 120 度.【解答】解:∵D 是斜边AB 的中点,∴DA =DC ,∴∠DCA =∠DAC =30°,∴∠2=∠DCA +∠DAC =60°,∵11∥l 2,∴∠1+∠2=180°,∴∠1=180°﹣60°=120°.故答案为120.16.(4分)如图,在正六边形ABCDEF 中,设BA →=a →,BC →=b →,那么向量BF →用向量a →、b →表示为 2a →+b →.【解答】解:连接CF .∵多边形ABCDEF 是正六边形,AB ∥CF ,CF =2BA ,∴CF →=2a →,∵BF →=BC →+CF →,∴BF →=2a →+b →,故答案为2a →+b →.17.(4分)如图,在正方形ABCD 中,E 是边AD 的中点.将△ABE 沿直线BE 翻折,点A落在点F 处,联结DF ,那么∠EDF 的正切值是 2 .【解答】解:如图所示,由折叠可得AE =FE ,∠AEB =∠FEB =12∠AEF ,∵正方形ABCD 中,E 是AD 的中点,∴AE =DE =12AD =12AB ,∴DE =FE ,∴∠EDF =∠EFD ,又∵∠AEF 是△DEF 的外角,∴∠AEF =∠EDF +∠EFD ,∴∠EDF =12∠AEF ,∴∠AEB =∠EDF ,∴tan ∠EDF =tan ∠AEB =AB AE =2.故答案为:2.18.(4分)在△ABC 和△A 1B 1C 1中,已知∠C =∠C 1=90°,AC =A 1C 1=3,BC =4,B 1C 1=2,点D 、D 1分别在边AB 、A 1B 1上,且△ACD ≌△C 1A 1D 1,那么AD 的长是 53 .【解答】解:如图,∵在△ABC 和△A 1B 1C 1中,∠C =∠C 1=90°,AC =A 1C 1=3,BC =4,B 1C 1=2,∴AB =√32+42=5,设AD =x ,则BD =5﹣x ,∵△ACD ≌△C 1A 1D 1,∴C 1D 1=AD =x ,∠A 1C 1D 1=∠A ,∠A 1D 1C 1=∠CDA ,∴∠C 1D 1B 1=∠BDC ,∵∠B =90°﹣∠A ,∠B 1C 1D 1=90°﹣∠A 1C 1D 1,∴∠B 1C 1D 1=∠B ,∴△C 1B 1D 1∽△BCD ,∴BDC 1D 1=BC C 1B 1,即5−x x =2, 解得x =53,∴AD 的长为53,故答案为53.三、解答题(本大题共7题,满分78分)19.(10分)计算:|√3−1|−√2×√6+12−3823 【解答】解:|√3−1|−√2×√612−√3−823 =√3−1﹣2√3+2+√3−4=﹣320.(10分)解方程:2x x−2−8x 2−2x =1【解答】解:去分母得:2x 2﹣8=x 2﹣2x ,即x 2+2x ﹣8=0,分解因式得:(x ﹣2)(x +4)=0,解得:x =2或x =﹣4,经检验x =2是增根,分式方程的解为x =﹣4.21.(10分)在平面直角坐标系xOy 中(如图),已知一次函数的图象平行于直线y =12x ,且经过点A (2,3),与x 轴交于点B .(1)求这个一次函数的解析式;(2)设点C 在y 轴上,当AC =BC 时,求点C 的坐标.【解答】解:(1)设一次函数的解析式为:y =kx +b ,∵一次函数的图象平行于直线y=12x,∴k=1 2,∵一次函数的图象经过点A(2,3),∴3=12×2+b,∴b=2,∴一次函数的解析式为y=12x+2;(2)由y=12x+2,令y=0,得12x+2=0,∴x=﹣4,∴一次函数的图形与x轴的解得为B(﹣4,0),∵点C在y轴上,∴设点C的坐标为(0,y),∵AC=BC,∴√(2−0)2+(3−y)2=√(−4−0)2+(0−y)2,∴y=−1 2,经检验:y=−12是原方程的根,∴点C的坐标是(0,−1 2).22.(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE 落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.【解答】解:(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD是矩形,∴AD∥BC,∴∠AFD′=∠BHD′=90°.在Rt△AD′F中,D′F=AD′•sin∠DAD′=90×sin60°=45√3厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(45√3+70)厘米.答:点D′到BC的距离为(45√3+70)厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE.∵四边形ABCD是矩形,∴∠ADE=90°.在Rt△ADE中,AD=90厘米,DE=30厘米,∴AE=√AD2+DE2=30√10厘米,∴EE′=30√10厘米.答:E、E′两点的距离是30√10厘米.23.(12分)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC是菱形.【解答】证明:(1)如图1,连接BC,OB,OC,∵AB、AC是⊙O的两条弦,且AB=AC,∴A在BC的垂直平分线上,∵OB =OA =OC ,∴O 在BC 的垂直平分线上,∴AO 垂直平分BC ,∴BD =CD ;(2)如图2,连接OB ,∵AB 2=AO •AD ,∴AB AO =AD AB ,∵∠BAO =∠DAB ,∴△ABO ∽△ADB ,∴∠OBA =∠ADB ,∵OA =OB ,∴∠OBA =∠OAB ,∴∠OAB =∠BDA ,∴AB =BD ,∵AB =AC ,BD =CD ,∴AB =AC =BD =CD ,∴四边形ABDC 是菱形.24.(12分)在平面直角坐标系xOy 中(如图),已知抛物线y =x 2﹣2x ,其顶点为A .(1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”. ①试求抛物线y =x 2﹣2x 的“不动点”的坐标;②平移抛物线y =x 2﹣2x ,使所得新抛物线的顶点B 是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.【解答】解:(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1),当x>1,y随x的增大而增大,当x<1,y随x增大而减小;(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,解得:t=0或3,故“不动点”坐标为(0,0)或(3,3);②当OC∥AB时,∵新抛物线顶点B为“不动点”,则设点B(m,m),∴新抛物线的对称轴为:x=m,与x轴的交点C(m,0),∵四边形OABC是梯形,∴直线x=m在y轴左侧,∵BC与OA不平行,∴OC∥AB,又∵点A(1,﹣1),点B(m,m),∴m=﹣1,故新抛物线是由抛物线y=x2﹣2x向左平移2个单位得到的;当OB∥AC时,同理可得:抛物线的表达式为:y=(x﹣2)2+2=x2﹣4x+6,当四边形OABC是梯形,字母顺序不对,故舍去,综上,新抛物线的表达式为:y=(x+1)2﹣1.25.(14分)如图1,AD 、BD 分别是△ABC 的内角∠BAC 、∠ABC 的平分线,过点A 作AE ⊥AD ,交BD 的延长线于点E .(1)求证:∠E ═12∠C ; (2)如图2,如果AE =AB ,且BD :DE =2:3,求cos ∠ABC 的值;(3)如果∠ABC 是锐角,且△ABC 与△ADE 相似,求∠ABC 的度数,并直接写出S △ADE S △ABC的值.【解答】(1)证明:如图1中,∵AE ⊥AD ,∴∠DAE =90°,∠E =90°﹣∠ADE ,∵AD 平分∠BAC ,∴∠BAD =12∠BAC ,同理∠ABD =12∠ABC ,∵∠ADE =∠BAD +∠DBA ,∠BAC +∠ABC =180°﹣∠C ,∴∠ADE =12(∠ABC +∠BAC )=90°−12∠C ,∴∠E =90°﹣(90°−12∠C )=12∠C .(2)解:延长AD 交BC 于点F .∵AB =AE ,∴∠ABE =∠E ,BE 平分∠ABC ,∴∠ABE =∠EBC ,∴∠E =∠CBE ,∴AE ∥BC ,∴∠AFB =∠EAD =90°,BF AE =BD DE , ∵BD :DE =2:3,∴cos ∠ABC =BF AB =BF AE =23.(3)∵△ABC 与△ADE 相似,∠DAE =90°, ∴∠ABC 中必有一个内角为90°∵∠ABC 是锐角,∴∠ABC ≠90°.①当∠BAC =∠DAE =90°时,∵∠E =12∠C ,∴∠ABC =∠E =12∠C ,∵∠ABC +∠C =90°,∴∠ABC =30°,此时S △ADES △ABC =2−√3.②当∠C =∠DAE =90°时,∠E =12∠C =45°,∴∠EDA =45°,∵△ABC 与△ADE 相似,∴∠ABC =45°,此时S △ADES △ABC =2−√2.综上所述,∠ABC =30°或45°,S △ADES △ABC =2−√3或2−√2.。
2019年辽宁省大连市中考数学试卷及解析
![2019年辽宁省大连市中考数学试卷及解析](https://img.taocdn.com/s3/m/4cbb86c3a76e58fafbb00325.png)
2019年辽宁省大连市中考数学试卷一、选择题(本题共10小題,每小題3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1、(3分)﹣2的绝对值是()A、2B、C、﹣D、﹣22、(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A、B、C、D、3、(3分)2019年6月5日,长征十一号运载火箭成功完成了“一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为()A、58×103B、5.8×103C、0.58×105D、5.8×1044、(3分)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为()A、(3,﹣1)B、(3,3)C、(1,1)D、(5,1)5、(3分)不等式5x+1≥3x﹣1的解集在数轴上表示正确的是()A、B、C、D、6、(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A、等腰三角形B、等边三角形C、菱形D、平行四边形7、(3分)计算(﹣2a)3的结果是()A、﹣8a3B、﹣6a3C、6a3D、8a38、(3分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A、B、C、D、9、(3分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC=8、则D′F的长为()A、2B、4C、3D、210、(3分)如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB、AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为()A、B、2C、D、2二、填空题(本题共6小题,每小題分,共18分)11、(3分)如图AB∥CD,CB∥DE,∠B=50°,则∠D=°、12、(3分)某男子足球队队员的年龄分布如图所示,这些队员年龄的众数是、13、(3分)如图,△ABC是等边三角形,延长BC到点D,使CD=AC,连接AD、若AB=2,则AD的长为、14、(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛、问大小器各容几何、”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位)、1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为、15、(3分)如图,建筑物C上有一杆AB、从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)、16、(3分)甲、乙两人沿同一条直路走步,如果两人分别从这条直路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时间x(单位:min)的函数图象,图2是甲、乙两人之间的距离y(单位:m)与甲行走时间x(单位:min)的函数图象,则a﹣b=、三、解答题(本题共4小题,17、18、19题各9分,20题12分,共39分)17、(9分)计算:(﹣2)2++618、(9分)计算:÷+19、(9分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE、20、(12分)某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分、成绩等级频数(人)频率优秀150.3良好及格不及格5根据以上信息,解答下列问题(1)被测试男生中,成绩等级为“优秀”的男生人数为人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为%;(2)被测试男生的总人数为人,成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为%;(3)若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数、四、解答题(本共3小,其中21、22题各分,23题10分,共28分)21、(9分)某村2016年的人均收入为20000元,2018年的人均收入为24200元(1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?22、(9分)如图,在平面直角坐标系xOy中,点A(3,2)在反比例函数y=(x>0)的图象上,点B在OA的廷长线上,BC⊥x轴,垂足为C,BC与反比例函数的图象相交于点D,连接AC,AD、(1)求该反比例函数的解析式;(2)若S△ACD=,设点C的坐标为(a,0),求线段BD的长、23、(10分)如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P、且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径、五、解答题(本题共3小题,其中24题11分,25、26題各12分,共35分)24、(11分)如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD为邻边作▱COED、设点C的坐标为(0,m),▱COED在x轴下方部分的面积为S、求:(1)线段AB的长;(2)S关于m的函数解析式,并直接写出自变量m的取值范围、25、(12分)阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC 上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明、同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等、”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系、”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值、”(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;(3)直接写出的值(用含k的代数式表示)、26、(12分)把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数、C2的图象的对称轴与x轴交点坐标为(t,0)、(1)填空:t的值为(用含m的代数式表示)(2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式;(3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧)、与y轴相交于点D、把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围、参考答案与试题解析一、选择题(本题共10小題,每小題3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1、(3分)﹣2的绝对值是()A、2B、C、﹣D、﹣2试题分析:根据绝对值是实数轴上的点到原点的距离,可得答案、试题解答:解:﹣2的绝对值是2、故选:A、点评:本题考查了绝对值,正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值等于0、2、(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A、B、C、D、试题分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中、试题解答:解:左视图有3列,每列小正方形数目分别为2,1,1、故选:B、点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图、3、(3分)2019年6月5日,长征十一号运载火箭成功完成了“一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为()A、58×103B、5.8×103C、0.58×105D、5.8×104试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数、确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同、当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数、试题解答:解:将数58000用科学记数法表示为5.8×104、故选:D、点评:此题考查科学记数法的表示方法、科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值、4、(3分)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为()A、(3,﹣1)B、(3,3)C、(1,1)D、(5,1)试题分析:根据向下平移,横坐标不变、纵坐标相减列式计算即可得解、试题解答:解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),故选:A、点评:本题考查了坐标与图形变化﹣平移,熟记平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键、5、(3分)不等式5x+1≥3x﹣1的解集在数轴上表示正确的是()A、B、C、D、试题分析:先求出不等式的解集,再在数轴上表示出来即可、试题解答:解:5x+1≥3x﹣1,移项得5x﹣3x≥﹣1﹣1,合并同类项得2x≥﹣2,系数化为1得,x≥﹣1,在数轴上表示为:故选:B、点评:本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集、有几个就要几个、在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示、6、(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A、等腰三角形B、等边三角形C、菱形D、平行四边形试题分析:根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解、试题解答:解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误、故选:C、点评:本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合、7、(3分)计算(﹣2a)3的结果是()A、﹣8a3B、﹣6a3C、6a3D、8a3试题分析:利用积的乘方的性质求解即可求得答案、试题解答:解:(﹣2a)3=﹣8a3;故选:A、点评:此题考查了积的乘方的性质、此题比较简单,注意掌握指数的变化是解此题的关键、8、(3分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A、B、C、D、试题分析:用列表法或树状图法可以列举出所有等可能出现的结果,然后看符合条件的占总数的几分之几即可、试题解答:解:两次摸球的所有的可能性树状图如下:∴P两次都是红球=、故选:D、点评:考查用树状图或列表法求等可能事件发生的概率,关键是列举出所有等可能出现的结果数,然后用分数表示,同时注意“放回”与“不放回”的区别、9、(3分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC=8、则D′F的长为()A、2B、4C、3D、2试题分析:由矩形的性质得出∠B=∠D=90°,CD=AB=4,AD∥BC,得出∠AFE=∠CEF,由折叠的性质得:∠AEF=∠CEF,AE=CE,∠D'=∠D=90°,AD'=CD=4,∠AFE=∠AEF,得出AF=AE=CE,设AF=AE=CE=x,则BE=8﹣x,在Rt△ABE 中,由勾股定理得出方程,解方程得出AF=5,在Rt△AFD'中,由勾股定理即可得出结果、试题解答:解:∵四边形ABCD是矩形,∴∠B=∠D=90°,CD=AB=4,AD∥BC,∴∠AFE=∠CEF,由折叠的性质得:∠AEF=∠CEF,AE=CE,∠D'=∠D=90°,AD'=CD=4,∴∠AFE=∠AEF,∴AF=AE=CE,设AF=AE=CE=x,则BE=8﹣x,在Rt△ABE中,由勾股定理得:AB2+BE2=AE2,即42+(8﹣x)2=x2,解得:x=5,∴AF=5,在Rt△AFD'中,由勾股定理得:D'F===3;故选:C、点评:本题考查了折叠的性质、矩形的性质、等腰三角形的判定、勾股定理等知识,熟练掌握折叠的性质,由勾股定理得出方程是解题的关键、10、(3分)如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB、AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为()A、B、2C、D、2试题分析:利用二次函数图象上点的坐标特征可求出点A,B,C,D的坐标,由点A,D 的坐标,利用待定系数法可求出直线AD的解析式,利用一次函数图象上点的坐标特征可求出点E的坐标,再利用二次函数图象上点的坐标特征可得出点P,Q的坐标,进而可求出线段PQ的长、试题解答:解:当y=0时,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴点A的坐标为(﹣2,0);当x=0时,y=﹣x2+x+2=2,∴点C的坐标为(0,2);当y=2时,﹣x2+x+2=2,解得:x1=0,x2=2,∴点D的坐标为(2,2)、设直线AD的解析式为y=kx+b(k≠0),将A(﹣2,0),D(2,2)代入y=kx+b,得:,解得:,∴直线AD的解析式为y=x+1、当x=0时,y=x+1=1,∴点E的坐标为(0,1)、当y=1时,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴点P的坐标为(1﹣,1),点Q的坐标为(1+,1),∴PQ=1+﹣(1﹣)=2、故选:B、点评:本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征求出点P,Q的坐标是解题的关键、二、填空题(本题共6小题,每小題分,共18分)11、(3分)如图AB∥CD,CB∥DE,∠B=50°,则∠D=130°、试题分析:首先根据平行线的性质可得∠B=∠C=50°,再根据BC∥DE可根据两直线平行,同旁内角互补可得答案、试题解答:解:∵AB∥CD,∴∠B=∠C=50°,∵BC∥DE,∴∠C+∠D=180°,∴∠D=180°﹣50°=130°,故答案为:130、点评:此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补、两直线平行,内错角相等、12、(3分)某男子足球队队员的年龄分布如图所示,这些队员年龄的众数是25、试题分析:根据条形统计图找到最高的条形图所表示的年龄数即为众数、试题解答:解:观察条形统计图知:为25岁的最多,有8人,故众数为25岁,故答案为:25、点评:考查了众数的定义及条形统计图的知识,解题的关键是能够读懂条形统计图及了解众数的定义,难度较小、13、(3分)如图,△ABC是等边三角形,延长BC到点D,使CD=AC,连接AD、若AB=2,则AD的长为2、试题分析:AB=AC=BC=CD,即可求出∠BAD=90°,∠D=30°,解直角三角形即可求得、试题解答:解:∵△ABC是等边三角形,∴∠B=∠BAC=∠ACB=60°,∵CD=AC,∴∠CAD=∠D,∵∠ACB=∠CAD+∠D=60°,∴∠CAD=∠D=30°,∴∠BAD=90°,∴AD===2、故答案为2、点评:本题考查了等边三角形的性质,等腰三角形的性质以及解直角三角形等,证得△ABD是含30°角的直角三角形是解题的关键、14、(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛、问大小器各容几何、”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位)、1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为、试题分析:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”即可得出关于x、y的二元一次方程组、试题解答:解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意得:,故答案为、点评:本题考查了由实际问题抽象出二元一次方程组,根据数量关系列出关于x、y的二元一次方程组是解题的关键、15、(3分)如图,建筑物C上有一杆AB、从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为3m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)、试题分析:根据正切的定义分别求出AC、BC,结合图形计算即可、试题解答:解:在Rt△BCD中,tan∠BDC=,则BC=CD•tan∠BDC=10,在Rt△ACD中,tan∠ADC=,则AC=CD•tan∠ADC≈10×1.33=13.3,∴AB=AC﹣BC=3.3≈3(m),故答案为:3、点评:本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键、16、(3分)甲、乙两人沿同一条直路走步,如果两人分别从这条直路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时间x(单位:min)的函数图象,图2是甲、乙两人之间的距离y(单位:m)与甲行走时间x(单位:min)的函数图象,则a﹣b=、试题分析:从图1,可见甲的速度为=60,从图2可以看出,当x=时,二人相遇,即:(60+V乙)×=120,解得:乙的速度V乙=80,乙的速度快,从图2看出乙用了b 分钟走完全程,甲用了a分钟走完全程,即可求解、试题解答:解:从图1,可见甲的速度为=60,从图2可以看出,当x=时,二人相遇,即:(60+V乙)×=120,解得:乙的速度V=80,乙∵乙的速度快,从图2看出乙用了b分钟走完全程,甲用了a分钟走完全程,a﹣b==,故答案为、点评:本题考查了一次函数的应用,把一次函数和行程问题结合在一起,关键是能正确利用待定系数法求一次函数的解析式,明确三个量的关系:路程=时间×速度、三、解答题(本题共4小题,17、18、19题各9分,20题12分,共39分)17、(9分)计算:(﹣2)2++6试题分析:直接利用完全平方公式以及结合二次根式的性质化简进而得出答案、试题解答:解:原式=3+4﹣4+2+6×=3+4﹣4+2+2=7、点评:此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键、18、(9分)计算:÷+试题分析:直接利用分式的乘除运算法则化简,进而利用分式的加减运算法则计算得出答案;试题解答:解:原式=×﹣=﹣=、点评:此题主要考查了分式的混合运算,正确化简是解题关键、19、(9分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE、试题分析:利用SAS定理证明△ABF≌△DCE,根据全等三角形的性质证明结论、试题解答:证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS)∴AF=DE、点评:本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键、20、(12分)某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分、成绩等级频数(人)频率优秀150.3良好及格不及格5根据以上信息,解答下列问题(1)被测试男生中,成绩等级为“优秀”的男生人数为15人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为20%;(2)被测试男生的总人数为50人,成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为10%;(3)若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数、试题分析:(1)由统计图表可知,成绩等级为“优秀”的男生人数为15人,被测试男生总数15÷0.3=50(人),成绩等级为“及格”的男生人数占被测试男生总人数的百分比为20%(2)被测试男生总数15÷0.3=50(人),成绩等级为“不及格”的男生人数占被测试男生总人数的百分比:;(3)由(1)(2)可知,优秀30%,及格20%,不及格10%,则良好40%,该校八年级男生成绩等级为“良好”的学生人数180×40%=72(人)、试题解答:解:(1)由统计图表可知,成绩等级为“优秀”的男生人数为15人,被测试男生总数15÷0.3=50(人),成绩等级为“及格”的男生人数占被测试男生总人数的百分比为20%、故答案为15,20;(2)被测试男生总数15÷0.3=50(人),成绩等级为“不及格”的男生人数占被测试男生总人数的百分比:,故答案为50,10;(3)由(1)(2)可知,优秀30%,及格20%,不及格10%,则良好40%,该校八年级男生成绩等级为“良好”的学生人数180×40%=72(人)答:该校八年级男生成绩等级为“良好”的学生人数72人、点评:本题考查的是表格统计图和扇形统计图的综合运用、读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键、表格统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小、四、解答题(本共3小,其中21、22题各分,23题10分,共28分)21、(9分)某村2016年的人均收入为20000元,2018年的人均收入为24200元(1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?试题分析:(1)设2016年到2018年该村人均收入的年平均增长率为x,根据某村2016年的人均收入为20000元,2018年的人均收入为24200元,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由2019年村该村的人均收入=2018年该村的人均收入×(1+年平均增长率),即可得出结论、试题解答:解:(1)设2016年到2018年该村人均收入的年平均增长率为x,根据题意得:20000(1+x)2=24200,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去)、答:2016年到2018年该村人均收入的年平均增长率为10%、(2)24200×(1+10%)=26620(元)、答:预测2019年村该村的人均收入是26620元、点评:本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算、22、(9分)如图,在平面直角坐标系xOy中,点A(3,2)在反比例函数y=(x>0)的图象上,点B在OA的廷长线上,BC⊥x轴,垂足为C,BC与反比例函数的图象相交于点D,连接AC,AD、(1)求该反比例函数的解析式;(2)若S△ACD=,设点C的坐标为(a,0),求线段BD的长、试题分析:(1)把点A(3,2)代入反比例函数y=,即可求出函数解析式;(2)直线OA的关系式可求,由于点C(a,0),可以表示点B、D的坐标,根据S△ACD =,建立方程可以解出a的值,进而求出BD的长、试题解答:解:(1)∵点A(3,2)在反比例函数y=(x>0)的图象上,∴k=3×2=6,∴反比例函数y=;答:反比例函数的关系式为:y=;(2)过点A作AE⊥OC,垂足为E,连接AC,设直线OA的关系式为y=kx,将A(3,2)代入得,k=,∴直线OA的关系式为y=x,∵点C(a,0),把x=a代入y=x,得:y=a,把x=a代入y=,得:y=,∴B(a,),即BC═a,D(a,),即CD=∵S△ACD=,∴CD•EC=,即,解得:a=6,∴BD=BC﹣CD==3;答:线段BD的长为3、点评:考查正比例函数的图象和性质、反比例函数的图象和性质,将点的坐标转化为线段的长,利用方程求出所设的参数,进而求出结果是解决此类问题常用的方法、23、(10分)如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P、且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径、试题分析:(1)作DF⊥BC于F,连接DB,根据切线的性质得到∠P AC=90°,根据圆周角定理得到∠ADC=90°,得到∠DBC=∠DCB,得到DB=DC,根据线段垂直平分线的性质、圆周角定理证明即可;(2)根据垂径定理求出FC,证明△DEC≌△CFD,根据全等三角形的性质得到DE=FC =3,根据射影定理计算即可、试题解答:(1)证明:作DF⊥BC于F,连接DB,∵AP是⊙O的切线,∴∠P AC=90°,即∠P+∠ACP=90°,∵AC是⊙O的直径,∴∠ADC=90°,即∠PCA+∠DAC=90°,∴∠P=∠DAC=∠DBC,∵∠APC=∠BCP,∴∠DBC=∠DCB,∴DB=DC,∵DF⊥BC,∴DF是BC的垂直平分线,∴DF经过点O,∵OD=OC,∴∠ODC=∠OCD,∵∠BDC=2∠ODC,∴∠BAC=∠BDC=2∠ODC=2∠OCD;(2)解:∵DF经过点O,DF⊥BC,∴FC=BC=3,在△DEC和△CFD中,,∴△DEC≌△CFD(AAS)∴DE=FC=3,∵∠ADC=90°,DE⊥AC,∴DE2=AE•EC,则EC==,∴AC=2+=,∴⊙O的半径为、点评:本题考查的是切线的性质、全等三角形的判定和性质、垂径定理、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键、五、解答题(本题共3小题,其中24题11分,25、26題各12分,共35分)24、(11分)如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD为邻边作▱COED、设点C的坐标为(0,m),▱COED在x轴下方部分的面积为S、求:(1)线段AB的长;(2)S关于m的函数解析式,并直接写出自变量m的取值范围、试题分析:(1)由直线y=﹣x+3与令x=0,或y=0,分别求出对应的y、x的值,从而确定A、B两点的坐标;(2)分两种情况进行分别探究,①当<m≤3时,②当0<m≤时,分别画出相应的图象,根据三角形相似,求出相应的边的长用含有m的代数式表示,再表示面积,从而确定在不同情况下S与m的函数解析式、试题解答:解:(1)当x=0时,y=3,当y=0时,x=4,∴直线y=﹣x+3与x轴点交A(4,0),与y轴交点B(0,3)∴OA=4,OB=3,∴AB=,因此:线段AB的长为5、(2)当CD∥OA时,如图,∵BD=OC,OC=m,∴BD=m,由△BCD∽△BOA得:,即:,解得:m=;①当<m≤3时,如图1所示:过点D作DF⊥OB,垂足为F,此时在x轴下方的三角形与△CDF全等,∵△BDF∽△BAO,∴,∴DF=,同理:BF=m,∴CF=2m﹣3,∴S△CDF==(2m﹣3)×=m2﹣2m,即:S=m2﹣2m,(<m≤3)②当0<m≤时,如图2所示:DE=m≤,此时点E在△AOB的内部,S=0 (0<m≤);③当﹣3<m≤0时,如图3所示:同理可得:点D(﹣m,m+3)设直线CD关系式为y=kx+b,把C(0,m)、D(﹣m,m+3)代入得:,解得:k=﹣,b=m,直线CD关系式为y=﹣x+m,当y=0时,0=﹣x+m,解得x=m2F(,0)∴S△COF=OC•OF=(﹣m)×=﹣m3,即:S=﹣m3,(﹣3<m≤0)④当m<﹣3时,如图4所示:同理可得:点D(﹣m,m+3)此时,DF=﹣m﹣3,OC=﹣m,OF=﹣,∴S梯形OCDF=(﹣m﹣3﹣m)×(﹣)=即:S=(m<﹣3)综上所述:S与m的函数关系式为:S=、点评:考查了平行四边形的性质、相似三角形的性质,全等三角形等知识,分类讨论,分别探究在不同情况下,存在的不同函数解析式,根据不同情况,画出相应的图形,再利用所学的知识探究出不同函数解析式、25、(12分)阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC 上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明、同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等、”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系、”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值、”(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;(3)直接写出的值(用含k的代数式表示)、试题分析:(1)利用三角形的外角性质可求解;(2)由直角三角形的性质和角平分线的性质可得AF=FC,AF=BF,通过证明△ABG ∽△BCA和△ABF∽△BAD,利用相似三角形的性质可求解;(3)通过证明△ABH∽△ACB,可得AB2=AC×AH,设BD=m,AB=km,由勾股定理可求AC的长,可求AH,HC的长,即可求解、试题解答:证明:(1)∵AB=AD∴∠ABD=∠ADB∵∠ADB=∠ACB+∠DAC,∠ABD=∠ABC=∠ACB+∠BAE∴∠BAE=∠DAC(2)设∠DAC=α=∠BAE,∠C=β∴∠ABC=∠ADB=α+β∵∠ABC+∠C=α+β+β=α+2β=90°,∠BAE+∠EAC=90°=α+∠EAC∴∠EAC=2β∵AF平分∠EAC∴∠F AC=∠EAF=β∴∠F AC=∠C,∠ABE=∠BAF=α+β∴AF=FC,AF=BF∴AF=BC=BF∵∠ABE=∠BAF,∠BGA=∠BAC=90°∴△ABG∽△BCA。
2019年山东省聊城市中考真题数学试题(解析版)(含考点分析)
![2019年山东省聊城市中考真题数学试题(解析版)(含考点分析)](https://img.taocdn.com/s3/m/6e32a7b20066f5335b812182.png)
2019年山东省聊城市中考数学试卷考试时间:120分钟 满分:120分一、选择题:本大题共12小题,每小题3分,合计36分.1.(2019年聊城T1的相反数是( )A.2-B.2CD{答案}D{解析},因此本题选D .2.(2019年聊城T2)如图所示的几何体的左视图是( )A .B .C .D . {答案}B{解析}本题考查了几何体的三视图.我们从不同的方向观察同一物体时,把从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,因此本题选B .3.(2019年聊城T3)如果分式11x x -+的值为0,那么x 的值为( )A .-1B .1C .-1或1D .1或0{答案}B{解析}本题考查了分式的值为0的条件.当分式的分子为0,分母不为0时,则分式的值为0,易错点是忽视了分母不为0.因为分式11x x -+的值为0,所以1x -=0且1x +≠0,即x =1,因此本题选B .4.(2019年聊城T4)在光明中学组织的全效师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是( ) A .96分,98分 B .97分,98分 C .98分,96分 D .97分,96分{答案}A{解析}本题考查了中位数和众数.一组数据中按照从大到小(或从小到大)的顺序排列,若有奇数个数据,则最中间的那个数就是中位数,若有偶数个数据,则中间两个数的平均数是中位数;一组数据中出现次数最多的那个数或那几个数是这组数据的众数.从统计图中可以看出这25个数中有3个100分,9个98分,8个96分,5个94分,所以中位数为96分,众数为98分,因此本题选A .5.(2019年聊城T5)下列计算正确的是( ) A .66122a a a +=B .25822232-÷⨯=C .()32233122ab a b a b ⎛⎫-⋅-= ⎪⎝⎭D .()721120a a a a ⋅-⋅=-{答案}D{解析}本题考查了合并同类项、同底数幂乘法和除法、幂的乘方、积的乘方以及单项式乘单项式等知识点.A .6662a a a +=,故A 错误;B .2582582222222---÷⨯=⨯⨯=,故B 错误;C .()()322263*********ab a b ab a b a b ⎛⎫-⋅-=-⋅-= ⎪⎝⎭,故C 错误;D .()7211271120a a a a a a a ⋅-⋅=-⋅⋅=-,故D 正确;因此本题选D .}6.(2019年聊城T6)下列各式不成立的是( )A= B=C5==D={答案}C{解析}本题考查了二次根式的加减,A3==A 正确;B===,故B 正确;C522==≠,故C 错误;D+==D 正确;因此本题选C .7.(2019年聊城T7)若不等式组11,324x xx m+⎧-⎪⎨⎪⎩<< 无解,则m 的取值范围为( ) A .m ≤2B .m <2C .m ≥2D .m >2{答案}A{解析}本题考查了解一元一次不等式组以及不等式组解集,解1132x x+-<得x >8,而不等式组11,324x xx m+⎧-⎪⎨⎪⎩<< 无解,则4m ≤8,解得m ≤2,因此本题选A .8.(2019年聊城T8)如图,BC 是半圆O 的直径,D 、E 是»BC 上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果∠A =70°,那么∠DOE 的度数为( ) A .35° B .38° C .40° D .42°{答案}C{解析}本题考查了三角形内角和定理以及圆周角等知识.在△ABC 中,∠B +∠C =180°-∠A =110°,由“在同圆或等圆中,同弧所对的圆周角的度数等于圆心角度数的一半”,故∠B =12∠DOC ,∠C =12∠BOE ,所以∠B +∠C =12∠DOC +12∠BOE =12(∠DOC +∠BOE )=12(180°+∠DOE )=90°+12∠DOE ,所以∠DOE =40°,因此本题选C .9.(2019年聊城T9)若关于x 的一元二次方程()2226k x kx k --+=有实数根,则k 的取值范围为( ) A .k ≥0 B .k ≥0且k ≠2C .k ≥32D .k ≥32且k ≠2{答案}D{解析}本题考查了一元二次方程的根的判别式,易错点是忽视了二次项系数不为0的要求.由题意得:()()()22426k k k ----≥0且k -2≠0,解得k ≥32且k ≠2,因此本题选D .10.(2019年聊城)某快递公司每天上午9:00-10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y (件)与时间x (分)之间的函数图像如图所示,那么当两仓库快递件数相同时,此刻的时间为( ) A .9:15 B .9:20 C .9:25 D .9:30{答案}B{解析}本题考查了运用待定系数法求一次函数的表达式以及解二元一次方程组等知识.根据图像信息可求出y 甲=6x +40,y 乙=-4x +240,当y 甲=y 乙时,解得x =20,即9:20时两仓库快递件数相同,因此本题选B .11.(2019年聊城)如图,在等腰直角三角形ABC 中,∠BAC =90°,一个三角尺的直角顶点与BC 边的中点O 重合,且两条直角边分别经过点A 和点B ,将三角尺绕点O 按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB,AC分别交于点E,F时,下列结论中错误的是()A.AE+AF=AC B.∠BEO+∠OFC=180°C.OE+OF=2BC D.12ABCAEOFS S=V四形{答案}C{解析}本题考查了等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半以及全等三角形的判定的知识点.由题意易证△AOE≌△COF、△BEO≌△AFO,所以AE=CF,BE=AF.所以A.AE+AF=CF+AF=AC,B.∠BEO+∠OFC=∠BEO+∠OEA=180°,C.OE+OF=2OE≠,D.12ABCAEOFS S=V四形,因此本题选C.12.(2019年聊城)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且1=3 ACCB,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2)B.(5522,)C.(8833,)D.(3,3){答案}C{解析}本题考查了轴对称的性质及一次函数与二元一次方程组的知识.四边形PDBC的周长=BD+DP+PC+CB,其中BD、CB为定值,使四边形PDBC周长最小,只需DP+PC的和最小.作点D关于AO的对称点D′,点P为线段OA和线段CD′的交点.由题意得y OA=x,y CD′=124x+,所以它们的交点P的坐标(8833,),因此本题选C.COB ACBx{题型:2-填空题}二、填空题:本大题共5小题,每小题3分,合计15分.13.(2019年聊城)计算:115324⎛⎫--÷ ⎪⎝⎭= .{答案}23-{解析}本题考查了有理数的混合运算,有括号的先算括号内,先乘方再乘除后加减,同一级运算从左至右运算.115324⎛⎫--÷ ⎪⎝⎭=5564-÷=23-,因此本题答案为23-.14.(2019年聊城)如图是一个圆锥的主视图,根据图中标出的数据(单位:cm ),计算这个圆锥侧面展开图圆心角的度数为 .{答案}120°{解析}本题考查了由视图到实物、圆锥侧面展开图等有关知识.由视图可知该圆锥的底面半径为1,高为3=,所以底面周长为2π×1=2π,侧面展开图的弧长为:32180n ⋅=ππ,所以n =120,即侧面展开图的圆心角为120°,因此本题答案为120°.15.(2019年聊城)在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分A ,B ,C ,D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是 .{答案}14{解析}本题考查了运用列表或画树状图求简单事件的概率,如下表所示,共有16种情况,其中小亮和大刚恰好抽到同一个组有4中,所以他俩抽到同一个的概率为4=14,因此本题答案为14. x16.(2019年聊城)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,DE为△ABC的中位线,延长BC至F,使得CF=12BC,连接FE并延长交AB于点M.若BC=a,则△FMB的周长为.{答案}92a{解析}本题考查了锐角三角函数、等边三角形的判定等知识.由题意可知CF=12a,BF=12a+a=32a,CE=12CA,在Rt△CEF中,tan∠CFE=212CECF a==CFE=60°,而∠B=60°,故△BFM为等边三角形,所以其周长为3×32a=92a,因此本题答案为92a.17.(2019年聊城)数轴上O,A两点的距离为4,一动点P从点A出发,按以下规律跳动,第1次跳动到AO的中点A1处,第2次从A1点跳动到A1O的中点A2处,第3次从A2点跳动到A2O的中点A3处.按照这样的规律继续跳动到点A1,A2,A3,…,A n(n≥3,n是整数)处,那么线段的长度A n A为(n≥3,n是整数).{答案}2142n--{解析}本题考查了探究数式规律.由题意可知A n O=12A n-1O=212A n-2O=…=112n-A1O=12nAO,所以A n A=AO-A n O=4-42n=2142n--,因此本题答案为2142n--.321三、解答题:本大题共8小题,合计69分.18.(2019年聊城)计算:2216313969a a a a a +⎛⎫-+÷ ⎪+--+⎝⎭. {解析}本题考查了分式的混合运算.本题先算括号内的,分式的除法要化为乘法,易错的地方是整式减分式,将整式看成是分母为1的分式,通分后再计算.本题先算括号内,再算除法,最后算减法.{答案}解: 原式=()2233193a a a a ++-÷-- =()()()2331333a a a a a -+-⋅+-+ =313a a --+=63a +.19.(2019年聊城)学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:min )进行了抽样调查,并将抽查得到的数据分成5组,下面是未完成的频数,频率分布表和频数分布扇形图:请根据图表中的信息,回答下列问题:(1)本次调查的样本容量为 ,表中的a = ,b = ,c = ; (2)试计算第4组人数所对应的扇形圆心角的度数;(3)该校九年级共有1000名学生,请估计这些学生中每天课前预习时间不少于20min 的学生人数.{解析}本题考查了统计的有关知识,涉及到频数、频率、扇形统计图中的圆心角计算以及用样本估计总体的统计思想.(1)运用“频数÷样本容量=频率”、“频数之和等于样本容量”、“频率之和等于1”,这几个公式直接求得;(2)运用“频率×360°=对应扇形圆心角的度数”直接求得;(3)用样本的估计总体的思想. {答案}解:(1)50,5,24,0.48; (2)2450×360°=172.8°. 答:第4组人数所对应的的扇形圆心角的度数为172.8°.(3)由数据知每天课前预习时间不少于20min 的人数的频率为210.100.8650--= ,∴1000×0.86=860(人). 答:九年级每天课前预习时间不少于20min 的学生约有860人.20.(2019年聊城)某商城的运动服装专柜,对A ,B 两种品牌的运动服分两次采购试销后,效益(1)问A ,B (2)由于B 品牌运动服的销量明显好于A 品牌,商家决定采购B 品牌的件数比A 品牌件数的32倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B 品牌运动服?{解析}本题考查了二元一次方程组和一元一次不等式的实际应用.(1)分别设出A ,B 两种品牌运动服的进货单价,根据图表列出方程组求解;(2)设购进A 品牌运动服的件数,根据题意列出不等式求解.{答案}解: (1)设A ,B 两种品牌运动服的进货单价分别为x 元和y 元.根据题意,得203010200,304014400x y x y +=⎧⎨+=⎩ 解之,得 240,180.x y =⎧⎨=⎩经检验,方程组的解符合题意.答:A ,B 两种品牌运动服的进货单价分别为240元和180元. (2)设购进A 品牌运动服m 件,则购进B 品牌运动服(352m +)件, ∴204m +180(352m +)≤21300, 解得,m ≤40.经检验,不等式的解符合题意.所以352m +≤34052⨯+=65. 答:最多能购进65件B 品牌运动服.21.(2019年聊城)在菱形ABCD 中,点P 时BC 边上一点,连接AP ,点E ,F 是AP 上的两点,连接DE ,BF ,使得∠AED =∠ABC ,∠ABF =∠BPF . 求证:(1)△ABF ≌△DAE ; (2)DE =BF +EF .{解析}本题考查了菱形的性质、全等三角形的判定和性质.(1)△ABF ≌△DAE 可由“ASA ”证出;(2)由△ABF ≌△DAE 可得出AE =BF ,DE =AF ,易证出DE =BF +EF .{答案}证明: (1)∵四边形ABCD 为菱形, ∴AB =AD ,AD ∥BC , ∴∠BPA =∠DAE .在△ABP 和△DAE 中,又∵∠ABC =∠AED , ∴∠BAF =∠ADE .∵∠ABF =∠BPF 且∠BPA =∠DAE , ∴∠ABF =∠DAE , 又∵AB =DA ,∴△ABF ≌△DAE (ASA ). (2)∵△ABF ≌△DAE , ∴AE =BF ,DE =AF .∵AF =AE +EF =BF +EF , ∴.22.(2019年聊城)某数学兴趣小组要测量实验大楼部分楼体的高度(如图①所示,CD 部分),在起点A 处测得大楼部分楼体CD 的顶端C 点的仰角为45°,底端D 点的仰角为30°,在同一剖面水平地面向前走20米到达B 处,测得顶端C 的仰角为63.4°(如图②所示),求大楼部分楼体CD 的高度约为多少米?(精确到1米)(参考数据:sin63.4°≈0.89,cos63.4≈0.45,tan63.4°≈2.00≈1.41)图① 图②{解析}本题考查了解直角三角形的实际应用.根据题意构造出直角三角形,根据几个仰角的正切值列出方程求解.{答案}解:设楼高CE 为x 米. ∵在Rt △AEC 中,∠CAE =45°,∴AE =CE =x , ∴AB =20,∴BE =x -20,在Rt △CEB 中,CE =BE ·tan63.4°≈2(x -20). ∴2(x -20)=x . 解得x =40米.在Rt △DAE 中,DE =AE ·tan30°=, ∴CD =CE -DE =40≈17米. 答:大楼部分楼体CD 的高度约为17米. 23.(2019年聊城)如图,点A (32,4),B (3,m )是直线AB 与反比例函数ny x(x >0)图像的两个交点.AC ⊥x 轴,垂足为点C ,已知D (0,1),连接AD ,BD ,BC .(1)求直线AB 的表达式;63.4°45°30°A(2)△ABC 和△ABD 的面积分别为S 1,S 2,求S 2-S 1.{解析}本题考查了运用待定系数法求反比例函数、一次函数的表达式,在平面直角坐标系中求几何图形的面积.(1)先由A 点坐标求出反比例函数的表达式,再求出B 点坐标,最后运用待定系数法求直线AB 的表达式;(2)△ABC 的面积可由“底乘高除以2”直接求得,△ABD 的面积运用“补”的思想求出.{答案}解:(1)由点A 、B 在反比例函数ny x=(x >0)的图像上, ∴4=32n,∴n =6. ∴反比例函数的表达式为6y x=(x >0). 将点B (3,m )代入6y x=得m =2,∴B (3,2). 设直线AB 的表达式为y =kx +b ,34,223k b k b ⎧=+⎪⎨⎪=+⎩ 解得4,36.k b ⎧=-⎪⎨⎪=⎩∴直线AB 的表达式为463y x =-+.(2)由点A ,B 的坐标得AC =4,点B 到AC 的距离为3-32=32.∴S 1=13422⨯⨯=3.设AB 与y 轴的交点为E ,可得E (0,6),∴DE =6-1=5,由点A (32,4),B (3,2)知点A ,B 到DE 的距离分别为32,3. ∴S 2=S △BCD -S △ACD =1532⨯⨯-13522⨯⨯=154.S 2-S 1=154-3=34.24.(2019年聊城)如图,△ABC 内接于⊙O ,AB 为直径,作OD ⊥AB 交AC 于点D ,延长BC ,OD交于点F ,过点C 作⊙O 的切线CE ,交OF 于点E . (1)求证:EC =ED ;(2)如果OA =4,EF =3,求弦AC 的长.{解析}本题考查了圆与相似的综合运用.(1)要证EC =ED ,只需证∠CDE =∠ACE ,而∠ODA =∠CDE ,∠OCA +∠ACE =90°,这个可以通过.可以由CE 与 ⊙O 相切证出;(2)要求弦AC 的长,可以通过Rt △AOD ∽Rt △ACB 列出等式求出.{答案}解:(1)证明:连接OC ,∵CE 与 ⊙O 相切,OC 是⊙O 的半径,∴OC ⊥CE ,∴∠OCA +∠ACE =90°.∵OA =OC ,∴∠A =∠OCA ,∴∠ACE +∠A =90°.∵OD ⊥AB ,∴∠ODA +∠A =90°.又∵∠ODA =∠CDE ,∴∠CDE +∠A =90°.∴∠CDE =∠ACE ,∴EC =ED .(2)解:∵AB 为直径,∴∠ACB =90°.在Rt △DCF 中,∠DCE +∠ECF =90°,又∠DCE =∠CDE ,∴∠CDE +∠ECF =90°,又∵∠CDE +∠F =90°,∴∠ECF =∠F ,∴EC =EF .∵EF =3,∴EC =DE =3.在Rt △OCE 中,OC =4,CE =3,∴OE5.∴OD =OE -DE =2.在Rt △OAD 中,AD=在Rt △AOD 和Rt △ACB 中,∵∠A =∠A ,∴Rt △AOD ∽Rt △ACB , ∴AO AD AC AB=,即48AC =,∴AC=5. 25.(2019年聊城)如图,在平面直角坐标系中,抛物线与x 轴交于点A (-2,0)、点B (4,0),与y 轴交于点C (0,8),连接BC ,又已知位于y 轴右侧且垂直于x 轴的动直线l ,沿x 轴正方向从O 运动到B (不含O 点和B 点),且分别交抛物线,线段BC 以及x 轴于点P ,D ,E .(1)求抛物线的表达式;(2)连接AC ,AP ,当直线l 运动时,求使得△PEA 和△AOC 相似的点P 的坐标;(3)作PF ⊥BC ,垂足为F ,当直线l 运动时,求Rt △PFD 面积的最大值.{解析}本题考查了二次函数与三角形相似性质等知识,属于二次函数的综合题.(1)运用待定系数法直接求二次函数的表达式;(2)由于相似三角形的对应元素不确定,所以要分类讨论,根据相似的性质列出方程求解;(3)先运用相似三角形的面积比等于相似比的平方,用△BOC 的面积表示出△DFP 的面积,表达式是一个二次函数,求出这个二次函数的最值即可.{答案}解: (1)由已知,将C (0,8)代入2y ax bx c =++,∴c =8,将点A (-2,0)和B (4,0)代入28y ax bx =++,得 4280,16480,a b a b -+=⎧⎨++=⎩ 解得1,2.a b =-⎧⎨=⎩∴抛物线的表达式为228y x x =-++.(2)∵A (-2,0),C (0,8),∴OA =2,OC =8.∵l ⊥x 轴,∴∠PEA =∠AOC =90°,∵∠PAE ≠∠CAO ,∴只有当∠PAE =∠ACO 时,△PEA ∽△AOC , 此时AE PE CO AO = ,即82AE PE =,∴AE =4PE . 设点P 的纵坐标为k ,则PE =k ,AE =4k ,∴OE =4k -2,∴P 点的坐标为(4k -2,k ),将P (4k -2,k )代入y =-x 2+2x +8,得-(4k -2)2+2(4k -2)+8=k ,解得k 1=0(舍去),k 2=2316. 当k =2316时,4k -2=4×2316-2=154. ∴P 点的坐标为(154,2316).(3)在Rt △PFD 中,∠PFD =∠COB =90°,∵l ∥y 轴,∴∠PDF =∠OCB ,∴Rt △PFD ∽Rt △BOC , ∴2=PFD BOC S PD S BC ⎛⎫ ⎪⎝⎭V V ,∴2=PFD BOC PD S S BC ⎛⎫⋅ ⎪⎝⎭V V .x由B (4,0),知OB =4,又OC =8,∴BC 又11==22BOC S OB OC ⋅V ×4×8=16. ∴221=165PFD S PD ⨯=V ∴当PD 最大时,S △PFD 最大.由B (4,0),C (0,8)可解得BC 所在直线的表达式为y =-2x +8.设P (m ,-m 2+2m +8),则D (m ,-2m +8),∴PD =-m 2+2m +8-(-2m +8)=-m 2+4m =-(m -2)2+4.∴当m =2时,PD 有最大值4.∴当PD =4时,()PDF S V 最大 =15×42=165 .。
2019年湖北省荆门市中考数学试卷以及答案解析
![2019年湖北省荆门市中考数学试卷以及答案解析](https://img.taocdn.com/s3/m/79d042d9e53a580217fcfe23.png)
2019年湖北省荆门市中考数学试卷一、选择题:本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有项是符合题目要求的1.(3分)﹣的倒数的平方是()A.2B.C.﹣2D.﹣2.(3分)已知一天有86400秒,一年按365天计算共有31536000秒,用科学记数法表示31536000正确的是()A.3.1536×106B.3.1536×107C.31.536×106D.0.31536×1083.(3分)已知实数x,y满足方程组则x2﹣2y2的值为()A.﹣1B.1C.3D.﹣34.(3分)将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则∠1的度数是()A.95°B.100°C.105°D.110°5.(3分)抛物线y=﹣x2+4x﹣4与坐标轴的交点个数为()A.0B.1C.2D.36.(3分)不等式组的解集为()A.﹣<x<0B.﹣<x≤0C.﹣≤x<0D.﹣≤x≤07.(3分)投掷一枚质地均匀的骰子两次,向上一面的点数依次记为a,b.那么方程x2+ax+b =0有解的概率是()A.B.C.D.8.(3分)欣欣服装店某天用相同的价格a(a>0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是()A.盈利B.亏损C.不盈不亏D.与售价a有关9.(3分)如果函数y=kx+b(k,b是常数)的图象不经过第二象限,那么k,b应满足的条件是()A.k≥0且b≤0B.k>0且b≤0C.k≥0且b<0D.k>0且b<0 10.(3分)如图,Rt△OCB的斜边在y轴上,OC=,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B',则B点的对应点B′的坐标是()A.(,﹣1)B.(1,﹣)C.(2,0)D.(,0)11.(3分)下列运算不正确的是()A.xy+x﹣y﹣1=(x﹣1)(y+1)B.x2+y2+z2+xy+yz+zx=(x+y+z)2C.(x+y)(x2﹣xy+y2)=x3+y3D.(x﹣y)3=x3﹣3x2y+3xy2﹣y312.(3分)如图,△ABC内心为I,连接AI并延长交△ABC的外接圆于D,则线段DI与DB的关系是()A.DI=DB B.DI>DB C.DI<DB D.不确定二、填空题:本题共5小题,每小题3分,共15分。
长春市2019年中考数学试卷及答案解析(word版)
![长春市2019年中考数学试卷及答案解析(word版)](https://img.taocdn.com/s3/m/ca6980ee6f1aff00bed51eb4.png)
2019年吉林省长春市中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分1.﹣5的相反数是()A.B.C.﹣5 D.52.吉林省在践行社会主义核心价值观活动中,共评选出各级各类“吉林好人”45000多名,45000这个数用科学记数法表示为()A.45×103B.4.5×104C.4.5×105D.0.45×1033.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A.B.C.D.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.把多项式x2﹣6x+9分解因式,结果正确的是()A.(x﹣3)2B.(x﹣9)2C.(x+3)(x﹣3)D.(x+9)(x﹣9)6.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,点A 在边B′C上,则∠B′的大小为()A.42° B.48° C.52° D.58°7.如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.π B.π C.D.8.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD 交PA于点E,随着m的增大,四边形ACQE的面积()A.减小B.增大C.先减小后增大D.先增大后减小二、填空题:本大题共6小题,每小题3分,共18分9.计算(ab)3=.10.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.11.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD 的周长为.12.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),顶点B在第一象限,若点B在直线y=kx+3上,则k的值为.13.如图,在⊙O中,AB是弦,C是上一点.若∠OAB=25°,∠OCA=40°,则∠BOC的大小为度.14.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D 是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.三、解答题:本大题共10小题,共78分15.先化简,再求值:(a+2)(a﹣2)+a(4﹣a),其中a=.16.一个不透明的口袋中有三个小球,上面分别标有数字0,1,2,每个小球除数字不同外其余均相同,小华先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字、用画树状图(或列表)的方法,求小华两次摸出的小球上的数字之和是3的概率.17.A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,求A型机器每小时加工零件的个数.18.某中学为了解该校学生一年的课外阅读量,随机抽取了n名学生进行调查,并将调查结果绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该校1100名学生中一年的课外阅读量超过10本的人数.19.如图,为了解测量长春解放纪念碑的高度AB,在与纪念碑底部B相距27米的C处,用高1.5米的测角仪DC测得纪念碑顶端A的仰角为47°,求纪念碑的高度(结果精确到0.1米)【参考数据:sin47°=0.731,cos47°=0.682,tan47°=1.072】20.如图,在▱ABCD中,点E在边BC上,点F在边AD的延长线上,且DF=BE,BE与CD交于点G (1)求证:BD∥EF;(2)若=,BE=4,求EC的长.21.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.22.感知:如图1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC.应用:如图3,四边形ABCD中,∠B=45°,∠C=135°,DB=DC=a,则AB﹣AC=(用含a 的代数式表示)23.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E 运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为;当OO′⊥AD 时,t的值为.24.如图,在平面直角坐标系中,有抛物线y=a(x﹣h)2.抛物线y=a(x﹣3)2+4经过原点,与x轴正半轴交于点A,与其对称轴交于点B,P是抛物线y=a(x﹣3)2+4上一点,且在x轴上方,过点P作x轴的垂线交抛物线y=(x﹣h)2于点Q,过点Q作PQ的垂线交抛物线y=(x﹣h)2于点Q′(不与点Q重合),连结PQ′,设点P的横坐标为m.(1)求a的值;(2)当抛物线y=a(x﹣h)2经过原点时,设△PQQ′与△OAB重叠部分图形的周长为l.①求的值;②求l与m之间的函数关系式;(3)当h为何值时,存在点P,使以点O,A,Q,Q′为顶点的四边形是轴对称图形?直接写出h的值.2019年吉林省长春市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分1.﹣5的相反数是()A.B.C.﹣5 D.5【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣5的相反数是5.故选:D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.吉林省在践行社会主义核心价值观活动中,共评选出各级各类“吉林好人”45000多名,45000这个数用科学记数法表示为()A.45×103B.4.5×104C.4.5×105D.0.45×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:45000这个数用科学记数法表示为4.5×104,故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】从上面看到的平面图形即为该组合体的俯视图,据此求解.【解答】解:从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,故选C.【点评】本题考查了简单组合体的三视图的知识,解题的关键是了解俯视图的定义,属于基础题,难度不大.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x>﹣2,由②得,x≤3,故不等式组的解集为:﹣2<x≤3.在数轴上表示为:.故选C.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.把多项式x2﹣6x+9分解因式,结果正确的是()A.(x﹣3)2B.(x﹣9)2C.(x+3)(x﹣3)D.(x+9)(x﹣9)【考点】因式分解-运用公式法.【专题】计算题;因式分解.【分析】原式利用完全平方公式分解即可.【解答】解:x2﹣6x+9=(x﹣3)2,故选A【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.6.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,点A 在边B′C上,则∠B′的大小为()A.42° B.48° C.52° D.58°【考点】旋转的性质.【分析】先根据旋转的性质得出∠A′=∠BAC=90°,∠ACA′=48°,然后在直角△A′CB′中利用直角三角形两锐角互余求出∠B′=90°﹣∠ACA′=42°.【解答】解:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=48°,∴∠B′=90°﹣∠ACA′=42°.故选A.【点评】本题考查了转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形两锐角互余的性质.7.如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.π B.π C.D.【考点】弧长的计算;切线的性质.【专题】计算题;与圆有关的计算.【分析】由PA与PB为圆的两条切线,利用切线的性质得到两个角为直角,再利用四边形内角和定理求出∠AOB的度数,利用弧长公式求出的长即可.【解答】解:∵PA、PB是⊙O的切线,∴∠OBP=∠OAP=90°,在四边形APBO中,∠P=60°,∴∠AOB=120°,∵OA=2,∴的长l==π,故选C【点评】此题考查了弧长的计算,以及切线的性质,熟练掌握弧长公式是解本题的关键.8.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD 交PA于点E,随着m的增大,四边形ACQE的面积()A.减小B.增大C.先减小后增大D.先增大后减小【考点】反比例函数系数k的几何意义.【分析】首先利用m和n表示出AC和AQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.【解答】解:AC=m﹣1,CQ=n,=AC•CQ=(m﹣1)n=mn﹣n.则S四边形ACQE∵P(1,4)、Q(m,n)在函数y=(x>0)的图象上,∴mn=k=4(常数).∴S=AC•CQ=4﹣n,四边形ACQE∵当m>1时,n随m的增大而减小,∴S=4﹣n随m的增大而增大.四边形ACQE故选B.【点评】本题考查了二次函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键.二、填空题:本大题共6小题,每小题3分,共18分9.计算(ab)3=a3b3.【考点】幂的乘方与积的乘方.【专题】计算题;整式.【分析】原式利用积的乘方运算法则计算即可得到结果.【解答】解:原式=a3b3,故答案为:a3b3【点评】此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.10.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是1.【考点】根的判别式.【分析】由于关于x的一元二次方程x2+2x+m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.【解答】解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.【点评】本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程有两个相等的实数根,则可得△=0,此题难度不大.11.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD 的周长为10.【考点】作图—基本作图;线段垂直平分线的性质.【分析】根据题意可知直线MN是线段BC的垂直平分线,推出DC=DB,可以证明△ADC的周长=AC+AB,由此即可解决问题.【解答】解:由题意直线MN是线段BC的垂直平分线,∵点D在直线MN上,∴DC=DB,∴△ADC的周长=AC+CD+AD=AC+AD+BD=AC+AB,∵AB=6,AC=4,∴△ACD的周长为10.故答案为10.【点评】本题考查基本作图、线段垂直平分线性质、三角形周长等知识,解题的关键是学会转化,把△ADC 的周长转化为求AC+AB来解决,属于基础题,中考常考题型.12.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),顶点B在第一象限,若点B在直线y=kx+3上,则k的值为﹣2.【考点】一次函数图象上点的坐标特征;正方形的性质.【分析】先求出B点坐标,再代入直线y=kx+3,求出k的值即可.【解答】解:∵正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),∴B(1,1).∵点B在直线y=kx+3上,∴1=k+3,解得k=﹣2.故答案为:﹣2.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.如图,在⊙O中,AB是弦,C是上一点.若∠OAB=25°,∠OCA=40°,则∠BOC的大小为30度.【考点】圆周角定理.【分析】由∠BAO=25°,利用等腰三角形的性质,可求得∠AOB的度数,又由∠OCA=40°,可求得∠CAO 的度数,继而求得∠AOC的度数,则可求得答案.【解答】解:∵∠BAO=25°,OA=OB,∴∠B=∠BAO=25°,∴∠AOB=180°﹣∠BAO﹣∠B=130°,∵∠ACO=40°,OA=OC,∴∠C=∠CAO=40°,∴∠AOC=180°﹣∠CAO﹣∠C=100°,∴∠BOC=∠AOB﹣∠AOC=30°.故答案为30°.【点评】本题考查了圆周角定理以及等腰三角形的性质.注意利用等腰三角形的性质求解是关键.14.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D 是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.【考点】二次函数的性质;菱形的性质.【分析】设D(x,﹣x2+6x),根据勾股定理求得OC,根据菱形的性质得出BC,然后根据三角形面积公式得出∴S△BCD=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+,根据二次函数的性质即可求得最大值.【解答】解:∵D是抛物线y=﹣x2+6x上一点,∴设D(x,﹣x2+6x),∵顶点C的坐标为(4,3),∴OC==5,∵四边形OABC是菱形,∴BC=OC=5,BC∥x轴,∴S△BCD=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+,∵﹣<0,∴S△BCD有最大值,最大值为,故答案为.【点评】本题库存了菱形的性质,二次函数的性质,注意数与形的结合是解决本题的关键.三、解答题:本大题共10小题,共78分15.先化简,再求值:(a+2)(a﹣2)+a(4﹣a),其中a=.【考点】整式的混合运算—化简求值.【专题】计算题;探究型.【分析】根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=代入化简后的式子,即可解答本题.【解答】解:(a+2)(a﹣2)+a(4﹣a)=a2﹣4+4a﹣a2=4a﹣4,当a=时,原式=.【点评】本题考查整式的混合运算﹣化简求值,解题的关键是明确整式的混合运算的计算方法.16.一个不透明的口袋中有三个小球,上面分别标有数字0,1,2,每个小球除数字不同外其余均相同,小华先从口袋中随机摸出一个小球,记下数字后放回并搅匀;再从口袋中随机摸出一个小球记下数字、用画树状图(或列表)的方法,求小华两次摸出的小球上的数字之和是3的概率.【考点】列表法与树状图法.【分析】列举出符合题意的各种情况的个数,再根据概率公式即可求出两次摸出的小球上的数字之和是3的概率.【解答】解:列表得:1 2 3和1 2 3 42 3 4 53 4 5 6∴P(和为3)=.【点评】本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题的关键是要区分放回实验还是不放回实验.17.A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,求A型机器每小时加工零件的个数.【考点】分式方程的应用.【分析】关键描述语为:“A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同”;等量关系为:400÷A型机器每小时加工零件的个数=300÷B型机器每小时加工零件的个数.【解答】解:设A型机器每小时加工零件x个,则B型机器每小时加工零件(x﹣20)个.根据题意列方程得:=,解得:x=80.经检验,x=80是原方程的解.答:A型机器每小时加工零件80个.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.18.某中学为了解该校学生一年的课外阅读量,随机抽取了n名学生进行调查,并将调查结果绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该校1100名学生中一年的课外阅读量超过10本的人数.【考点】条形统计图;用样本估计总体.【分析】(1)可直接由条形统计图,求得n的值;(2)首先求得统计图中课外阅读量超过10本的百分比,继而求得答案.【解答】解:(1)根据题意得:n=6+33+26+20+15=100,答:n的值为100;(2)根据题意得:×1100=385(人),答:估计该校1100名学生中一年的课外阅读量超过10本的人数为:385人.【点评】此题考查了条形统计图的知识以及由样本估计总体的知识.注意能准确分析条形统计图是解此题的关键.19.如图,为了解测量长春解放纪念碑的高度AB,在与纪念碑底部B相距27米的C处,用高1.5米的测角仪DC测得纪念碑顶端A的仰角为47°,求纪念碑的高度(结果精确到0.1米)【参考数据:sin47°=0.731,cos47°=0.682,tan47°=1.072】【考点】解直角三角形的应用-仰角俯角问题.【分析】作DE⊥AB于E,根据正切的概念求出AE的长,再结合图形根据线段的和差计算即可求解.【解答】解:作DE⊥AB于E,由题意得DE=BC=27米,∠ADE=47°,在Rt△ADE中,AE=DE•tan∠ADE=27×1.072=28.944米,AB=AE+BE≈30.4米,答:纪念碑的高度约为30.4米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.20.如图,在▱ABCD中,点E在边BC上,点F在边AD的延长线上,且DF=BE,BE与CD交于点G (1)求证:BD∥EF;(2)若=,BE=4,求EC的长.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)根据平行四边的判定与性质,可得答案;(2)根据相似三角形的判定与性质,可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∵DF=BE,∴四边形BEFD是平行四边形,∴BD∥EF;(2)∵四边形BEFD是平行四边形,∴DF=BE=4.∵DF∥EC,∴△DFG∽CEG,∴=,∴CE==4×=6.【点评】本题考查了相似三角形的判定与性质,利用了平行四边形的判定与性质,相似三角形的判定与性质.21.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.【考点】一次函数的应用.【分析】(1)根据题意列算式即可得到结论;(2)根据题意列方程组即可得到结论;(3)根据题意列算式即可得到结论.【解答】解:(1)300÷(180÷1.5)=2.5(小时),答:甲车从A地到达B地的行驶时间是2.5小时;(2)设甲车返回时y与x之间的函数关系式为y=kx+b,∴,解得:,∴甲车返回时y与x之间的函数关系式是y=﹣100x+550;(3)300÷[(300﹣180)÷1.5]=3.75小时,当x=3.75时,y=175千米,答:乙车到达A地时甲车距A地的路程是175千米.【点评】本题考查了待定系数法一次函数的解析式的运用,行程问题的数量关系的运用,解答时求出一次函数的解析式是关键.22.感知:如图1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC.应用:如图3,四边形ABCD中,∠B=45°,∠C=135°,DB=DC=a,则AB﹣AC=a(用含a的代数式表示)【考点】全等三角形的判定与性质.【分析】探究:欲证明DB=DC,只要证明△DFC≌△DEB即可.应用:先证明△DFC≌△DEB,再证明△ADF≌△ADE,结合BD=EB即可解决问题.【解答】探究:证明:如图②中,DE⊥AB于E,DF⊥AC于F,∵DA平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC和△DEB中,,∴△DFC≌△DEB,∴DC=DB.应用:解;如图③连接AD、DE⊥AB于E,DF⊥AC于F,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC和△DEB中,,∴△DFC≌△DEB,∴DF=DE,CF=BE,在RT△ADF和RT△ADE中,,∴△ADF≌△ADE,∴AF=AE,∴AB﹣AC=(AE+BE)﹣(AF﹣CF)=2BE,在RT△DEB中,∵∠DEB=90°,∠B=∠EDB=45°,BD=a,∴BE=a,∴AB﹣AC=a.故答案为a.【点评】本题考查全等三角形的判定和性质、角平分线的性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,属于中考常考题型.23.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E 运动的时间为t秒(1)求线段EF的长(用含t的代数式表示);(2)求点H与点D重合时t的值;(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为4;当OO′⊥AD时,t的值为3.【考点】四边形综合题.【分析】(1)由题意知:AE=2t,由锐角三角函数即可得出EF=t;(2)当H与D重合时,FH=GH=8﹣t,由菱形的性质和EG∥AD可知,AE=EG,解得t=;(3)矩形EFHG与菱形ABCD重叠部分图形需要分以下两种情况讨论:①当H在线段AD上,此时重合的部分为矩形EFHG;②当H在线段AD的延长线上时,重合的部分为五边形;(4)当OO′∥AD时,此时点E与B重合;当OO′⊥AD时,过点O作OM⊥AD于点M,EF与OA相交于点N,然后分别求出O′M、O′F、FM,利用勾股定理列出方程即可求得t的值.【解答】解:(1)由题意知:AE=2t,0≤t≤4,∵∠BAD=60°,∠AFE=90°,∴sin∠BAD=,∴EF=t;(2)∵AE=2t,∠AEF=30°,∴AF=t,当H与D重合时,此时FH=8﹣t,∴GE=8﹣t,∵EG∥AD,∴∠EGA=30°,∵四边形ABCD是菱形,∴∠BAC=30°,∴∠BAC=∠EGA=30°,∴AE=EG,∴2t=8﹣t,∴t=;(3)当0≤t≤时,此时矩形EFHG与菱形ABCD重叠部分图形为矩形EFHG,∴由(2)可知:AE=EG=2t,∴S=EF•EG=t•2t=2t2,当<t≤4时,如图1,设CD与HG交于点I,此时矩形EFHG与菱形ABCD重叠部分图形为五边形FEGID,∵AE=2t,∴AF=t,EF=t,∴DF=8﹣t,∵AE=EG=FH=2t,∴DH=2t﹣(8﹣t)=3t﹣8,∵∠HDI=∠BAD=60°,∴tan∠HDI=,∴HI=DH,∴S=EF•EG﹣DH•HI=2t2﹣(3t﹣8)2=﹣t2+24t﹣32;(4)当OO′∥AD时,如图2此时点E与B重合,∴t=4;当OO′⊥AD时,如图3,过点O作OM⊥AD于点M,EF与OA相交于点N,由(2)可知:AF=t,AE=EG=2t,∴FN=t,FM=t,∵O′O⊥AD,O′是FG的中点,∴O′O是△FNG的中位线,∴O′O=FN=t,∵AB=8,∴由勾股定理可求得:OA=4∴OM=2,∴O′M=2﹣t,∵FE=t,EG=2t,∴由勾股定理可求得:FG2=7t2,∴由矩形的性质可知:O′F2=FG2,∵由勾股定理可知:O′F2=O′M2+FM2,∴t2=(2﹣t)2+t2,∴t=3或t=﹣6(舍去).故答案为:t=4;t=3.【点评】本题考查四边形的综合问题,涉及矩形和菱形的性质,勾股定理,锐角三角函数,解方程等知识,综合程度较高,考查学生灵活运用知识的能力.24.如图,在平面直角坐标系中,有抛物线y=a(x﹣h)2.抛物线y=a(x﹣3)2+4经过原点,与x轴正半轴交于点A,与其对称轴交于点B,P是抛物线y=a(x﹣3)2+4上一点,且在x轴上方,过点P作x轴的垂线交抛物线y=(x﹣h)2于点Q,过点Q作PQ的垂线交抛物线y=(x﹣h)2于点Q′(不与点Q重合),连结PQ′,设点P的横坐标为m.(1)求a的值;(2)当抛物线y=a(x﹣h)2经过原点时,设△PQQ′与△OAB重叠部分图形的周长为l.①求的值;②求l与m之间的函数关系式;(3)当h为何值时,存在点P,使以点O,A,Q,Q′为顶点的四边形是轴对称图形?直接写出h的值.【考点】二次函数综合题.【分析】(1)把(0,0)代入y=a(x﹣3)2+4即可解决问题.(2)①用m的代数式表示PQ、QQ′,即可解决问题.②分0<m≤3或3<m<6两种情形,画出图形,利用相似三角形或锐角三角函数求出相应线段即可解决.(3),①当h=3时,两个抛物线对称轴x=3,四边形OAQQ′是等腰梯形.②当四边形OQ′1Q1A是菱形时,求出抛物线对称轴即可解决问题.【解答】解:(1)∵抛物线y=a(x﹣3)2+4经过原点,∴x=0时,y=0,∴9a+4=0,∴a=﹣.(2)∵抛物线y=a(x﹣h)2经过原点时,∴h=0,∵a=﹣,∴y=﹣x2.①∵P(m,﹣+m),Q(m,﹣),∴PQ=﹣+m﹣(﹣)=m,QQ′=2m,∴==.②如图1中,当0<m≤3时,设PQ与OB交于点E,与OA交于点F,∵=,∠PQQ′=∠BMO=90°,∴△PQQ′∽△BMO,∴∠QPQ′=∠OBM,∵EF∥BM,∴∠OEF=∠OBM,∴∠OEF=∠QPQ′,∴OE∥PQ′,∵=,∴EF=,OE=,∴l=OF+EF+OE=m++m=4m,当3<m<6时,如图2中,设PQ′与AB交于点H,与x轴交于点G,PQ交AB于E,交OA于F,作HM⊥OA 于M.∵AF=6﹣m,tan∠EAF==,∴EF=m,AE=,∵tan∠PGF==,PF=﹣+,∴GF=﹣m2+2m,∴AG=﹣m2+m+6,∴GM=AM=﹣m2+m+3,∵HG=HA=,=﹣m2+m+5,∴l=GH+EH+EF+FG=﹣m2++10.综上所述l=.(3)如图3中,①当h=3时,两个抛物线对称轴x=3,∴点O、A关于对称轴对称,点Q,Q′关于对称轴对称,∴OA∥QQ′,OQ′=AQ,∴四边形OAQQ′是等腰梯形,属于轴对称图形.②当四边形OQ′1Q1A是菱形时,OQ′1=OA=6,∵Q′1Q1=OA=6,∴点Q1的纵坐标为4,在RT△OHQ′1,中,OH=4,OQ′1=6,∴HQ′1=2,∴h=3﹣2或3+2,综上所述h=3或3﹣2或3+2时点O,A,Q,Q′为顶点的四边形是轴对称图形.【点评】本题考查二次函数的综合题、相似三角形的性质和判定、菱形的性质、等腰梯形的性质,锐角三角函数等知识,解题的关键是学会分类讨论,需要正确画出图象解决问题,属于中考压轴题.。
山东省青岛市2019年中考数学试题(含解析)和答案
![山东省青岛市2019年中考数学试题(含解析)和答案](https://img.taocdn.com/s3/m/df3ba1ec9fc3d5bbfd0a79563c1ec5da50e2d639.png)
2019年山东省青岛市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m55.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y =bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是环.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)1 7≤t<8 m2 8≤t<9 113 9≤t<10 n4 10≤t<11 4请根据以上信息,解答下列问题:(1)m=,n=,a=,b=;(2)抽取的这40名学生平均每天睡眠时间的中位数落在组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B 位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y (件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的 2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c 个棱长为1的小立方体.在图⑧的不同位置共可以找到个图⑦这样的几何体.24.(12分)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC=8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q 从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t 的值;若不存在,请说明理由.2019年山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.﹣B.﹣C.±D.【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:根据相反数、绝对值的性质可知:﹣的相反数是.故选:D.【点评】本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.2.(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A.38.4×104km B.3.84×105kmC.0.384×10 6km D.3.84×106km【分析】利用科学记数法的表示形式即可【解答】解:科学记数法表示:384 000=3.84×105km故选:B.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.4.(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A.8m5B.﹣8m5C.8m6D.﹣4m4+12m5【分析】根据积的乘方以及合并同类项进行计算即可.【解答】解:原式=4m2•2m3=8m5,故选:A.【点评】本题考查了幂的乘方、积的乘方以及合并同类项的法则,掌握运算法则是解题的关键.5.(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【分析】连接OC、OD,根据切线性质和∠A=45°,易证得△AOC和△BOD是等腰直角三角形,进而求得OC=OD=4,∠COD=90°,根据弧长公式求得即可.【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.【点评】本题考查了切线的性质,等腰直角三角形的判定和性质,弧长的计算等,证得∠COD=90°是解题的关键.6.(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A.(﹣4,1)B.(﹣1,2)C.(4,﹣1)D.(1,﹣2)【分析】在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【解答】解:将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D.【点评】本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD,∠AFB=∠EFB,根据全等三角形的性质得到AF=EF,AB=BE,求得AD=DE,根据三角形的内角和得到∠BAC=180°﹣∠ABC﹣∠C=95°,根据全等三角形的性质得到∠BED=∠BAD=95°,根据四边形的内角和平角的定义即可得到结论.【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD,∠AFB=∠EFB,∵BF=BF,∴△ABF∽△EBF(ASA),∴AF=EF,AB=BE,∴AD=DE,∵∠ABC=35°,∠C=50°,∴∠BAC=180°﹣∠ABC﹣∠C=95°,在△DAB与△DEB中,∴△ABD≌△EAD(SSS),∴∠BED=∠BAD=95°,∴∠ADE=360°﹣95°﹣95°﹣35°=145°,∴∠CDE=180°﹣∠ADE=35°,故选:A.【点评】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.8.(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y =bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】先根据抛物线y=ax2﹣2过原点排除A,再反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【解答】解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.【点评】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:﹣()0=2+1 .【分析】根据二次根式混合运算的法则计算即可.【解答】解:﹣()0=2+2﹣1=2+1,故答案为:2+1.【点评】本题考查了二次根式的混合运算,熟记法则是解题的关键.10.(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.【分析】根据“关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可.【解答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.【点评】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.11.(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是8.5 环.【分析】由加权平均数公式即可得出结果.【解答】解:该队员的平均成绩为(1×6+1×7+2×8+4×9+2×10)=8.5(环);故答案为:8.5.【点评】本题考查了加权平均数和条形统计图;熟练掌握加权平均数的计算公式是解决问题的关键.12.(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54 °.【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.【点评】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.13.(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为6﹣cm.【分析】设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x方程,求解x,最后用4﹣x即可.【解答】解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.【点评】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.14.(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走 4 个小立方块.【分析】根据新几何体的三视图与原来的几何体的三视图相同解答即可.【解答】解:若新几何体与原正方体的表面积相等,则新几何体的三视图与原来的几何体的三视图相同,所以最多可以取走4个小立方块.故答案为:4【点评】本题主要考查了几何体的表面积,理解三视图是解答本题的关键.用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠α,直线l及l上两点A,B.求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α.【分析】先作∠DAB=α,再过B点作BE⊥AB,则AD与BE的交点为C点.【解答】解:如图,△ABC为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共9小题,共74分)16.(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解.【分析】(1)按分式的运算顺序和运算法则计算求值;(2)先确定不等式组的解集,再求出满足条件的正整数解.【解答】解:(1)原式=÷=×=;(2)由①,得x≥﹣1,由②,得x<3.所以该不等式组的解集为:﹣1≤x<3.所以满足条件的正整数解为:1、2.【点评】本题考查了分式的混合运算、不等式组的正整数解等知识点.解决(1)的关键是掌握分式的运算法则,解决(2)的关键是确定不等式组的解集.17.(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.【分析】列表得出所有等可能的情况数,找出两次数字差的绝对值小于2的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.【解答】解:这个游戏对双方不公平.理由:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,故小明获胜的概率为:=,则小刚获胜的概率为:=,∵≠,∴这个游戏对两人不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)1 7≤t<8 m2 8≤t<9 113 9≤t<10 n4 10≤t<11 4请根据以上信息,解答下列问题:(1)m=7 ,n= 1 ,a=17.5% ,b=45% ;(2)抽取的这40名学生平均每天睡眠时间的中位数落在 3 组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.【分析】(1)根据40名学生平均每天的睡眠时间即可得出结果;(2)由中位数的定义即可得出结论;(3)由学校总人数×该校学生中睡眠时间符合要求的人数所占的比例,即可得出结果.【解答】解:(1)7≤t<8时,频数为m=7;9≤t<10时,频数为n=18;∴a=×100%=17.5%;b=×100%=45%;故答案为:7,18,17.5%,45%;(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为:3;(3)该校学生中睡眠时间符合要求的人数为800×=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人.【点评】本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息.19.(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行.在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B 位于北偏西32°方向.已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数).(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)【分析】过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,于是得到CE∥DF,推出四边形CDFE是矩形,得到EF=CD=120,DF=CE,解直角三角形即可得到结论.【解答】解:过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,则CE∥DF,∵AB∥CD,∴四边形CDFE是矩形,∴EF=CD=120,DF=CE,在Rt△BDF中,∵∠BDF=32°,BD=80,∴DF=cos32°•BD=80×≈68,BF=sin32°•BD=80×≈,∴BE=EF﹣BF=,在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE•tan42°=68×=,∴AB=AE+BE=+≈134m,答:木栈道AB的长度约为134m.【点评】本题考查解直角三角形﹣方向角问题,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?【分析】(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可.【解答】解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义.答:甲每天加工60个零件,乙每天加工,40个零件.(2)设甲加工了x天,乙加工了y天,则由题意得由①得y=75﹣1.5x③将③代入②得150x+120(75﹣1.5x)≤7800解得x≥40,当x=40时,y=15,符合问题的实际意义.答:甲至少加工了40天.【点评】本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大.21.(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点评】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y (件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,即可求解;(3)由题意得(x﹣30)(﹣2x+160)≥800,解不等式即可得到结论.【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:x≤70,∴每天的销售量y=﹣2x+160≥20,∴每天的销售量最少应为20件.【点评】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.23.(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的 2 2×方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有(4a﹣4)种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到(2a﹣2)个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(8a﹣8)种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的。
2019年辽宁省葫芦岛市中考数学试卷及解析
![2019年辽宁省葫芦岛市中考数学试卷及解析](https://img.taocdn.com/s3/m/148c7cfa0722192e4436f67c.png)
2019年辽宁省葫芦岛市中考数学试卷一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目)1、(3分)﹣6的绝对值是()A、6B、﹣6C、D、﹣2、(3分)下列运算正确的是()A、x2•x2=x6B、x4+x4=2x8C、﹣2(x3)2=4x6D、xy4÷(﹣xy)=﹣y33、(3分)甲、乙、丙、丁四位同学都参加了5次数学模拟测试,每个人这5次成绩的平均数都是125分,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则这5次测试成绩最稳定的是()A、甲B、乙C、丙D、丁4、(3分)如图是由5个完全相同的小正方体组成的立体图形,它的俯视图是()A、B、C、D、5、(3分)某校女子排球队12名队员的年龄分布如下表所示:年龄(岁)13141516人数(人)1254则该校女子排球队12名队员年龄的众数、中位数分别是()A、13,14B、14,15C、15,15D、15,146、(3分)不等式组的解集在数轴上表示正确的是()A、B、C、D、7、(3分)某工厂计划生产300个零件,由于采用新技术,实际每天生产零件的数量是原计划的2倍,因此提前5天完成任务、设原计划每天生产零件x个,根据题意,所列方程正确的是()A、﹣=5B、﹣=5C、﹣=5D、﹣=58、(3分)二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象大致是()A、B、C、D、9、(3分)如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为()A、70°B、55°C、45°D、35°10、(3分)如图,正方形ABCD的对角线AC,BD相交于点O,点E在BD上由点B向点D运动(点E不与点B重合),连接AE,将线段AE绕点A逆时针旋转90°得到线段AF,连接BF交AO于点G、设BE的长为x,OG的长为y,下列图象中大致反映y与x之间的函数关系的是()A、B、C、D、二、填空题(本题共8小题,每小题3分,共24分)11、(3分)太阳的半径大约为696000000,将数据696000000用科学记数法表示为、12、(3分)分解因式:x3y﹣xy3=、13、(3分)若关于x的一元二次方程x2+(2+a)x=0有两个相等的实数根,则a的值是、14、(3分)在一个不透明的袋子中只装有n个白球和2个红球,这些球除颜色外其他均相同、如果从袋子中随机摸出一个球,摸到红球的概率是,那么n的值为、15、(3分)如图,河的两岸a,b互相平行,点A,B,C是河岸b上的三点,点P是河岸a上的一个建筑物,某人在河岸b上的A处测得∠P AB=30°,在B处测得∠PBC=75°,若AB=80米,则河两岸之间的距离约为米、(≈1.73,结果精确到0.1米)16、(3分)如图,BD是▱ABCD的对角线,按以下步骤作图:①分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于E,F两点;②作直线EF,分别交AD,BC于点M,N,连接BM,DN、若BD=8,MN=6,则▱ABCD的边BC上的高为、17、(3分)如图,在Rt△ABC的纸片中,∠C=90°,AC=5,AB=13、点D在边BC上,以AD为折痕将△ADB折叠得到△ADB′,AB′与边BC交于点E、若△DEB′为直角三角形,则BD的长是、18、(3分)如图,点P是正方形ABCD的对角线BD延长线上的一点,连接P A,过点P作PE⊥P A交BC的延长线于点E,过点E作EF⊥BP于点F,则下列结论中:①P A=PE;②CE=PD;③BF﹣PD=BD;④S△PEF=S△ADP正确的是(填写所有正确结论的序号)三、解答题(第19题10分,第20题12分,共22分)19、(10分)先化简,再求值:÷(﹣),其中a=()﹣1﹣(﹣2)0、20、(12分)某学校为了解学生“第二课堂“活动的选修情况,对报名参加A、跆拳道,B、声乐,C、足球,D、古典舞这四项选修活动的学生(每人必选且只能选修一项)进行抽样调查、并根据收集的数据绘制了图①和图②两幅不完整的统计图、根据图中提供的信息,解答下列问题:(1)本次调查的学生共有人;在扇形统计图中,B所对应的扇形的圆心角的度数是;(2)将条形统计图补充完整;(3)在被调查选修古典舞的学生中有4名团员,其中有1名男生和3名女生,学校想从这4人中任选2人进行古典舞表演、请用列表或画树状图的方法求被选中的2人恰好是1男1女的概率、四、解答题(第21题12分,第22题12分,共24分)21、(12分)在平面直角坐标系中,△ABC的三个顶点坐标分别是A(﹣1,1),B(﹣4,1),C(﹣3,3)(1)将△ABC向下平移5个单位长度后得到△A1B1C1,请画出△A1B1C1;并判断以O,A1,B为顶点的三角形的形状(直接写出结果);(2)将△ABC绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2,并求出点C旋转到C2所经过的路径长、22、(12分)如图,一次函数y=k1x+b的图象与x轴、y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,点C(2,4),点B是线段AC的中点、(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取什么值时,k1x+b<、五、解答题(满分12分)23、(12分)某公司研发了一款成本为50元的新型玩具,投放市场进行试销售、其销售单价不低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时间内,每天销售数量y(个)与销售单价x(元)符合一次函数关系,如图所示:(1)根据图象,直接写出y与x的函数关系式;(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?六、解答题(满分12分)24、(12分)如图,点M是矩形ABCD的边AD延长线上一点,以AM为直径的⊙O交矩形对角线AC于点F,在线段CD上取一点E,连接EF,使EC=EF、(1)求证:EF是⊙O的切线;(2)若cos∠CAD=,AF=6,MD=2,求FC的长、七、解答题(满分12分)25、(12分)如图,△ABC是等腰直角三角形,∠ACB=90°,D是射线CB上一点(点D不与点B重合),以AD为斜边作等腰直角三角形ADE(点E和点C在AB的同侧),连接CE、(1)如图①,当点D与点C重合时,直接写出CE与AB的位置关系;(2)如图②,当点D与点C不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当∠EAC=15°时,请直接写出的值、八、解答题(满分14分)26、(14分)如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A、点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M、(1)求抛物线的解析式;(2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当=时,求t的值;(3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值、参考答案与试题解析一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目)1、(3分)﹣6的绝对值是()A、6B、﹣6C、D、﹣题目分析:根据负数的绝对值是它的相反数,可得负数的绝对值、试题解答:解:|﹣6|=6,故选:A、点评:本题考查了绝对值,负数的绝对值是它的相反数、2、(3分)下列运算正确的是()A、x2•x2=x6B、x4+x4=2x8C、﹣2(x3)2=4x6D、xy4÷(﹣xy)=﹣y3题目分析:根据同底数幂的乘除法的运算方法,幂的乘方与积的乘方的运算方法,以及合并同类项的方法,逐项判断即可、试题解答:解:∵x2•x2=x4,∴选项A不符合题意;∵x4+x4=2x4,∴选项B不符合题意;∵﹣2(x3)2=﹣2x6,∴选项C不符合题意;∵xy4÷(﹣xy)=﹣y3,∴选项D符合题意、故选:D、点评:此题主要考查了同底数幂的乘除法的运算方法,幂的乘方与积的乘方的运算方法,以及合并同类项的方法,要熟练掌握、3、(3分)甲、乙、丙、丁四位同学都参加了5次数学模拟测试,每个人这5次成绩的平均数都是125分,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则这5次测试成绩最稳定的是()A、甲B、乙C、丙D、丁题目分析:直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可、试题解答:解:∵S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,∴S丁2<S丙2<S乙2<S甲2,∴成绩最稳定的是丁、故选:D、点评:此题主要考查了方差,正确理解方差的意义是解题关键、4、(3分)如图是由5个完全相同的小正方体组成的立体图形,它的俯视图是()A、B、C、D、题目分析:根据从上面看得到的图形是俯视图,可得答案、试题解答:解:从上面看是四个小正方形,如图所示:故选:B、点评:本题考查了简单组合体的三视图,解题时注意从上面看得到的图形是俯视图、5、(3分)某校女子排球队12名队员的年龄分布如下表所示:年龄(岁)13141516人数(人)1254则该校女子排球队12名队员年龄的众数、中位数分别是()A、13,14B、14,15C、15,15D、15,14题目分析:根据众数和中位数的定义求解可得、试题解答:解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,∴中位数为=15岁,故选:C、点评:此题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数、6、(3分)不等式组的解集在数轴上表示正确的是()A、B、C、D、题目分析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集、试题解答:解:解不等式3x<2x+2,得:x<2,解不等式﹣x≤1,得:x≥﹣1,则不等式组的解集为﹣1≤x<2,故选:A、点评:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键、7、(3分)某工厂计划生产300个零件,由于采用新技术,实际每天生产零件的数量是原计划的2倍,因此提前5天完成任务、设原计划每天生产零件x个,根据题意,所列方程正确的是()A、﹣=5B、﹣=5C、﹣=5D、﹣=5题目分析:根据实际每天生产零件的数量是原计划的2倍,可以提前5天完成任务可以列出相应的分式方程,本题得以解决、试题解答:解:由题意可得,,故选:C、点评:本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程、8、(3分)二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象大致是()A、B、C、D、题目分析:可先根据二次函数的图象判断a、b的符号,再判断一次函数图象与实际是否相符,判断正误、试题解答:解:由二次函数图象,得出a<0,﹣<0,b<0,A、一次函数图象,得a>0,b>0,故A错误;B、一次函数图象,得a<0,b>0,故B错误;C、一次函数图象,得a>0,b<0,故C错误;D、一次函数图象,得a<0,b<0,故D正确;故选:D、点评:本题考查了二次函数图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等、9、(3分)如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为()A、70°B、55°C、45°D、35°题目分析:根据圆周角定理可得出∠AOB的度数,再由OA=OB,可求出∠ABO的度数试题解答:解:连接OA、OC,∵∠BAC=15°,∠ADC=20°,∴∠AOB=2(∠ADC+∠BAC)=70°,∵OA=OB(都是半径),∴∠ABO=∠OAB=(180°﹣∠AOB)=55°、故选:B、点评:本题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半、10、(3分)如图,正方形ABCD的对角线AC,BD相交于点O,点E在BD上由点B向点D运动(点E不与点B重合),连接AE,将线段AE绕点A逆时针旋转90°得到线段AF,连接BF交AO于点G、设BE的长为x,OG的长为y,下列图象中大致反映y与x之间的函数关系的是()A、B、C、D、题目分析:连接FD,证明△BAE≌△DAF,得到∠ADF=∠ABE=45°,FD=BE,再说明GO为△BDF的中位线OG=FD,则y=x,且x>0,是在第一象限的一次函数图象、试题解答:解:连接FD,∵∠BAE+∠EAD=90°,∠F AD+∠EAD=90°,∴∠BAE=∠F AD、又BA=DA,EA=F A,∴△BAE≌△DAF(SAS)、∴∠ADF=∠ABE=45°,FD=BE、∴∠FDO=45°+45°=90°、∵GO⊥BD,FD⊥BD,∴GO∥FD、∵O为BD中点,∴GO为△BDF的中位线、∴OG=FD、∴y=x,且x>0,是在第一象限的一次函数图象、故选:A、点评:本题主要考查了动点问题的函数图象、全等三角形的判定和性质、中位线的性质定理,解题的关键是通过辅助线构造全等三角形而后转化线段、二、填空题(本题共8小题,每小题3分,共24分)11、(3分)太阳的半径大约为696000000,将数据696000000用科学记数法表示为 6.96×108、题目分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数、确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同、当数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数、试题解答:解:将数据6 9600 0000用科学记数法表示为6.96×108、故答案为:6.96×108、点评:此题考查科学记数法的表示方法、科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值、12、(3分)分解因式:x3y﹣xy3=xy(x+y)(x﹣y)、题目分析:首先提取公因式xy,再对余下的多项式运用平方差公式继续分解、试题解答:解:x3y﹣xy3,=xy(x2﹣y2),=xy(x+y)(x﹣y)、点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式,要首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止、13、(3分)若关于x的一元二次方程x2+(2+a)x=0有两个相等的实数根,则a的值是﹣2、题目分析:根据根的判别式得出△=(2+a)2﹣4×1×0=0,求出即可、试题解答:解:∵关于x的一元二次方程x2+(2+a)x=0有两个相等的实数根,∴△=(2+a)2﹣4×1×0=0,解得:a=﹣2,故答案为:﹣2、点评:本题考查了根的判别式和一元二次方程的解,能根据根的判别式和已知得出△=(2+a)2﹣4×1×0=0是解此题的关键、14、(3分)在一个不透明的袋子中只装有n个白球和2个红球,这些球除颜色外其他均相同、如果从袋子中随机摸出一个球,摸到红球的概率是,那么n的值为4、题目分析:根据概率公式得到=,然后利用比例性质求出n即可、试题解答:解:根据题意得=,解得n=4,经检验:n=4是分式方程的解,故答案为:4、点评:本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数、15、(3分)如图,河的两岸a,b互相平行,点A,B,C是河岸b上的三点,点P是河岸a上的一个建筑物,某人在河岸b上的A处测得∠P AB=30°,在B处测得∠PBC=75°,若AB=80米,则河两岸之间的距离约为54.6米、(≈1.73,结果精确到0.1米)题目分析:过点A作AE⊥a于点E,过点B作BD⊥P A于点D,然后锐角三角函数的定义分别求出AD、PD后即可求出两岸之间的距离、试题解答:解:过点A作AE⊥a于点E,过点B作BD⊥P A于点D,∵∠PBC=75°,∠P AB=30°,∴∠DPB=45°,∵AB=80,∴BD=40,AD=40,∴PD=DB=40,∴AP=AD+PD=40+40,∵a∥b,∴∠EP A=∠P AB=30°,∴AE=AP=20+20≈54.6,故答案为:54.6点评:本题考查解直角三角形,解题的关键是熟练运用含30度角的直角三角形性质以及锐角三角函数的定义,本题属于中等题型、16、(3分)如图,BD是▱ABCD的对角线,按以下步骤作图:①分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于E,F两点;②作直线EF,分别交AD,BC于点M,N,连接BM,DN、若BD=8,MN=6,则▱ABCD的边BC上的高为、题目分析:由作法得MN垂直平分BD,则MB=MD,NB=ND,再证明△BMN为等腰三角形得到BM=BN,则可判断四边形BMDN为菱形,利用菱形的性质和勾股定理计算出BN=5,然后利用面积法计算▱ABCD的边BC上的高、试题解答:解:由作法得MN垂直平分BD,∴MB=MD,NB=ND,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠MDB=∠NBD,而MB=MD,∴∠MBD=∠MDB,∴∠MBD=∠NBD,而BD⊥MN,∴△BMN为等腰三角形,∴BM=BN,∴BM=BN=ND=MD,∴四边形BMDN为菱形,∴BN==5,设▱ABCD的边BC上的高为h,∵MN•BD=2BN•h,∴h==,即▱ABCD的边BC上的高为、故答案为、点评:本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)、也考查了平行四边形的性质、17、(3分)如图,在Rt△ABC的纸片中,∠C=90°,AC=5,AB=13、点D在边BC上,以AD为折痕将△ADB折叠得到△ADB′,AB′与边BC交于点E、若△DEB′为直角三角形,则BD的长是7或、题目分析:由勾股定理可以求出BC的长,由折叠可知对应边相等,对应角相等,当△DEB′为直角三角形时,可以分为两种情况进行考虑,分别利用勾股定理可求出BD的长、试题解答:解:在Rt△ABC中,BC===12,(1)当∠EDB′=90°时,如图1,过点B′作B′F⊥AC,交AC的延长线于点F,由折叠得:AB=AB′=13,BD=B′D=CF,设BD=x,则B′D=CF=x,B′F=CD=12﹣x,在Rt△AFB′中,由勾股定理得:(5+x)2+(12﹣x)2=132,即:x2﹣7x=0,解得:x1=0(舍去),x2=7,因此,BD=7、(2)当∠DEB′=90°时,如图2,此时点E与点C重合,由折叠得:AB=AB′=13,则B′C=13﹣5=8,设BD=x,则B′D=x,CD=12﹣x,在Rt△B′CD中,由勾股定理得:(12﹣x)2+82=x2,解得:x=,因此BD=、故答案为:7或、点评:考查轴对称的性质、直角三角形的性质、勾股定理等知识,分类讨论思想的应用注意分类的原则是不遗漏、不重复、18、(3分)如图,点P是正方形ABCD的对角线BD延长线上的一点,连接P A,过点P作PE⊥P A交BC的延长线于点E,过点E作EF⊥BP于点F,则下列结论中:①P A=PE;②CE=PD;③BF﹣PD=BD;④S△PEF=S△ADP正确的是①②③(填写所有正确结论的序号)题目分析:①解法一:如图1,作辅助线,构建三角形全等和平行四边形,证明△BFG ≌△EFP(SAS),得BG=PE,再证明四边形ABGP是平行四边形,可得结论;解法二:如图2,连接AE,利用四点共圆证明△APE是等腰直角三角形,可得结论;②如图3,作辅助线,证明四边形DCGP是平行四边形,可得结论;③证明四边形OCGF是矩形,可作判断;④证明△AOP≌△PFE(AAS),则S△AOP=S△PEF,可作判断、试题解答:解:①解法一:如图1,在EF上取一点G,使FG=FP,连接BG、PG,∵EF⊥BP,∴∠BFE=90°,∵四边形ABCD是正方形,∴∠FBC=∠ABD=45°,∴BF=EF,在△BFG和△EFP中,∵,∴△BFG≌△EFP(SAS),∴BG=PE,∠PEF=∠GBF,∵∠ABD=∠FPG=45°,∴AB∥PG,∵AP⊥PE,∴∠APE=∠APF+∠FPE=∠FPE+∠PEF=90°,∴∠APF=∠PEF=∠GBF,∴AP∥BG,∴四边形ABGP是平行四边形,∴AP=BG,∴AP=PE;解法二:如图2,连接AE,∵∠ABC=∠APE=90°,∴A、B、E、P四点共圆,∴∠EAP=∠PBC=45°,∵AP⊥PE,∴∠APE=90°,∴△APE是等腰直角三角形,∴AP=PE,故①正确;②如图3,连接CG,由①知:PG∥AB,PG=AB,∵AB=CD,AB∥CD,∴PG∥CD,PG=CD,∴四边形DCGP是平行四边形,∴CG=PD,CG∥PD,∵PD⊥EF,∴CG⊥EF,即∠CGE=90°,∵∠CEG=45°,∴CE=CG=PD;故②正确;③如图4,连接AC交BD于O,由②知:∠CGF=∠GFD=90°,∵四边形ABCD是正方形,∴AC⊥BD,∴∠COF=90°,∴四边形OCGF是矩形,∴CG=OF=PD,∴BD=OB=BF﹣OF=BF﹣PD,故③正确;④如图4中,在△AOP和△PFE中,∵,∴△AOP≌△PFE(AAS),∴S△AOP=S△PEF,∴S△ADP<S△AOP=S△PEF,故④不正确;本题结论正确的有:①②③,故答案为:①②③、点评:此题属于四边形综合题,涉及的知识有:全等三角形的判定与性质,正方形的性质,平行四边形和矩形的判定和性质,勾股定理,以及等腰直角三角形的性质,熟练掌握判定与性质是解本题的关键、三、解答题(第19题10分,第20题12分,共22分)19、(10分)先化简,再求值:÷(﹣),其中a=()﹣1﹣(﹣2)0、题目分析:根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题、试题解答:解:÷(﹣)====,当a=()﹣1﹣(﹣2)0=3﹣1=2时,原式=、点评:本题考查分式的化简求值、零指数幂、负整数指数幂,解答本题的关键是明确分式化简求值的方法、20、(12分)某学校为了解学生“第二课堂“活动的选修情况,对报名参加A、跆拳道,B、声乐,C、足球,D、古典舞这四项选修活动的学生(每人必选且只能选修一项)进行抽样调查、并根据收集的数据绘制了图①和图②两幅不完整的统计图、根据图中提供的信息,解答下列问题:(1)本次调查的学生共有200人;在扇形统计图中,B所对应的扇形的圆心角的度数是144°;(2)将条形统计图补充完整;(3)在被调查选修古典舞的学生中有4名团员,其中有1名男生和3名女生,学校想从这4人中任选2人进行古典舞表演、请用列表或画树状图的方法求被选中的2人恰好是1男1女的概率、题目分析:(1)由A活动的人数及其所占百分比可得总人数,用360°乘以B活动人数所占比例即可得;(2)用总人数减去其它活动人数求出C的人数,从而补全图形;(3)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率、试题解答:解:(1)本次调查的学生共有30÷15%=200(人),扇形统计图中,B所对应的扇形的圆心角的度数是360°×=144°,故答案为:200、144;(2)C活动人数为200﹣(30+80+20)=70(人),补全图形如下:(3)画树状图为:或列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能情况,1男1女有6种情况,∴被选中的2人恰好是1男1女的概率=、点评:本题考查了扇形统计图,条形统计图,树状图等知识点,解题时注意:概率=所求情况数与总情况数之比、四、解答题(第21题12分,第22题12分,共24分)21、(12分)在平面直角坐标系中,△ABC的三个顶点坐标分别是A(﹣1,1),B(﹣4,1),C(﹣3,3)(1)将△ABC向下平移5个单位长度后得到△A1B1C1,请画出△A1B1C1;并判断以O,A1,B为顶点的三角形的形状(直接写出结果);(2)将△ABC绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2,并求出点C旋转到C2所经过的路径长、题目分析:(1)利用点平移的坐标变换规律写出A1、B1、C1的坐标,则描点即可得到△A1B1C1;然后利用勾股定理的逆定理判断以O,A1,B为顶点的三角形的形状;(2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2,从而描点得到△A2B2C2,然后利用弧长公式计算出点C旋转到C2所经过的路径长、试题解答:解:(1)如图,△A1B1C1为所作,∵OB==,OA1==,BA1==,∴OB2+OA12=BA12,∴以O,A1,B为顶点的三角形为等腰直角三角形;(2)如图,△A2B2C2为所作,点C旋转到C2所经过的路径长==π、点评:本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形、22、(12分)如图,一次函数y=k1x+b的图象与x轴、y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,点C(2,4),点B是线段AC的中点、(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取什么值时,k1x+b<、题目分析:(1)把点C的坐标代入反比例函数,利用待定系数法即可求得反比例函数的解析式,作CE⊥x轴于E,根据题意求得B的坐标,然后利用待定系数法求得一次函数的解析式;(2)联立方程求得D的坐标,然后根据S△COD=S△BOC+S△BOD即可求得△COD的面积;(3)根据图象即可求得k1x+b<时,自变量x的取值范围、试题解答:解:(1)∵点C(2,4)在反比例函数y=的图象上,∴k2=2×4=8,∴y2=;如图,作CE⊥x轴于E,∵C(2,4),点B是线段AC的中点,∴B(0,2),∵B、C在y1=k1x+b的图象上,∴,解得k1=1,b=2,∴一次函数为y1=x+2;(2)由,解得或,∴D(﹣4,﹣2),∴S△COD=S△BOC+S△BOD=×2×2+×2×4=6;(3)由图可得,当0<x<2或x<﹣4时,k1x+b<、点评:本题考查了反比例函数和一次函数的交点问题,待定系数法求一次函数和二次函数的解析式,方程组的解以及三角形的面积等,求得B点的坐标是解题的关键、五、解答题(满分12分)23、(12分)某公司研发了一款成本为50元的新型玩具,投放市场进行试销售、其销售单价不低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时间内,每天销售数量y(个)与销售单价x(元)符合一次函数关系,如图所示:(1)根据图象,直接写出y与x的函数关系式;(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?题目分析:(1)由待定系数法可得函数的解析式;(2)根据利润等于每件的利润乘以销售量,列方程可解;(3)设每天获得的利润为w元,由题意得二次函数,写成顶点式,可求得答案、试题解答:解:(1)设y=kx+b(k≠0,b为常数)将点(50,160),(80,100)代入得解得∴y与x的函数关系式为:y=﹣2x+260(2)由题意得:(x﹣50)(﹣2x+260)=3000化简得:x2﹣180x+8000=0解得:x1=80,x2=100∵x≤50×(1+90%)=95∴x2=100>95(不符合题意,舍去)答:销售单价为80元、(3)设每天获得的利润为w元,由题意得w=(x﹣50)(﹣2x+260)=﹣2x2+360x﹣13000=﹣2(x﹣90)2+3200∵a=﹣2<0,抛物线开口向下∴w有最大值,当x=90时,w最大值=3200答:销售单价为90元时,每天获得的利润最大,最大利润是3200元、点评:本题综合考查了待定系数法求一次函数的解析式、一元二次方程的应用、二次函数的应用等知识点,难度中等略大、六、解答题(满分12分)24、(12分)如图,点M是矩形ABCD的边AD延长线上一点,以AM为直径的⊙O交矩形对角线AC于点F,在线段CD上取一点E,连接EF,使EC=EF、(1)求证:EF是⊙O的切线;(2)若cos∠CAD=,AF=6,MD=2,求FC的长、题目分析:(1)根据等腰三角形的性质和直角三角形两锐角互余证得∠EFC+∠OF A=90°,即可证得∠EFO=90°,即EF⊥OF,从而证得结论;(2)根据圆周角定理得出∠AFM=90°,通过解直角三角形求得AM=10,得出AD=8,进而求得AC=,即可求得FC=﹣6=、试题解答:(1)证明:连接OF,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠CAD+∠DCA=90°,∵EC=EF,∴∠DCA=∠EFC,∵OA=OF,∴∠CAD=∠OF A,∴∠EFC+∠OF A=90°,∴∠EFO=90°,∴EF⊥OF,∵OF是半径,∴EF是⊙O的切线;(2)连接MF,∵AM是直径,∴∠AFM=90°,在Rt△AFM中,cos∠CAD==,∵AF=6,∴=,∴AM=10,∵MD=2,∴AD=8,在Rt△ADC中,cos∠CAD==,∴=,∴AC=,∴FC=﹣6=点评:本题考查了切线的判定和性质,矩形的性质,圆周角定理的应用以及解直角三角形等,作出辅助线构建直角三角形是解题的关键、七、解答题(满分12分)25、(12分)如图,△ABC是等腰直角三角形,∠ACB=90°,D是射线CB上一点(点D不与点B重合),以AD为斜边作等腰直角三角形ADE(点E和点C在AB的同侧),连接CE、(1)如图①,当点D与点C重合时,直接写出CE与AB的位置关系;(2)如图②,当点D与点C不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当∠EAC=15°时,请直接写出的值、题目分析:(1)根据等腰直角三角形的性质、平行线的判定定理解答;(2)在AF上截取AF=CD,连接EF,证明△EAF≌△EDC,根据全等三角形的性质得到EF=EC,∠AEF=∠DEC,根据平行线的判定定理证明;(3)分图②、图③两种情况,根据全等三角形的性质、等腰直角三角形的性质计算,得到答案、试题解答:解:(1)当点D与点C重合时,CE∥AB,理由如下:∵△ABC是等腰直角三角形,∴∠CAB=45°,∵△ADE是等腰直角三角形,∴∠ADE=45°,∴∠CAB=∠ADE,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年数学中考试卷分析
今年的题目与去年相比,在延续以往成功做法的基础上有所创新:选择题由8个题改为10个,填空题由7个调整为5个。
概率计算在选择题中考查,第18题对圆的考察由动态型题目改为常规的几何证明与计算,同时第21题不再是考查函数学习过程的探究题,替换为第20题考察反比例函数与一次函数的综合应用;使得整套试题梯度更为合理,有助于学生发挥出自己的数学学习水平!
整套试卷在继续对初中数学的重点知识进行重点考查的同时,着重突出对数学思想和方法的考查。
今年的试卷中着重考查了转化,数形结合(20题),分类讨论,运动思想(第15、22、23等题)。
此外,21题应用题以海报的形式呈现,题型新颖有趣,体现了数学来源于生活实际,又服务于于生活实际!但21题的描述“所需费用相同”容易产生歧义,估计会造成学生丢分。
整套试卷进一步加强对开放性、探索性试题的考查,如22题的类比探究,23题的“和谐点”等内容,为学生提供自主探索与创新的空间;符合课程标准的要求,体现了对学生数学核心素养的考查要求。
2017年的中招数学试卷通过试题的设计,既可给学生更广阔的思维空间,使其创造性的发挥,为他们提供展示自己聪明才智的机会,又有助于引导师教师在平时的教学中以学生发展为本,尽量发挥学生思维活
跃的优势,培养学生的创新精神和实践能力。
为学生的可持续发展打好基础!
今后复习方向:
一、切实抓好“双基”的训练。
初中数学的基础知识、基本技能,是学生进行数学运算、数学推理的基本材料,是形成数学能力的基石。
一是要紧扣教材,依据教材的要求,不断提高,注重基础。
二是要突出复习的特点上出新意,以调动学生的积极性,提高复习效率。
从复习安排上来看,搞好基础知识的复习主要依赖于系统的复习,在每一个章节复习中,为了有效地使学生弄清知识的结构,让学生按照自己的实际查漏补缺,有目的地自由复习。
要求学生在复习中重点放在理解概念、弄清定义、掌握基本方法上,然后让学生通过恰当的训练,加深对概念的理解、结论的掌握,方法的运用和能力的提高。
二、抓好教材中例题、习题的归类、变式的教学。
在数学复习课教学中,挖掘教材中的例题、习题等的功能,既是大面积提高教学质量的需要,又是对付考试的一种手段。
因此在复习中根据教学的目的、教学的重点和学生实际,对相关例题进行分析、归类,总结解题规律,提高复习效率。
对具有可变性的典例题,引导学生进行变式训练,使学生从多方面感知数学的方法、提高学生综合分析问题、解决问题的能力。
三、落实各种数学思想与数学方法的训练,提高学生的数学素质。
理解掌握各种数学思想和方法是形成数学技能技巧,提高数学的能力的前提。
通过不同形式的训练,使学生熟练掌握重要数学思想方法。
推荐参考书的建议:
在今后的复习中,用哪些参考书较好,我个人认为,只要是重基础,灵活性较强,难易程度适中,有梯度,紧扣大纲的,都是好书。
像今年用的《试题研究》就不错,如果针对每个知识点有对应的习题,我想会更好一点。