可分解的高次不等式的解法

合集下载

高次、无理、指数、对数不等式的解法及应用分析

高次、无理、指数、对数不等式的解法及应用分析

高次、无理、指数、对数不等式的解法及应用分析解不等式是中学数学解决问题的重要工具,在研究函数的性质、确立问题成立的条件等方面都有广泛的应用。

本阶段的重点是不等式的“等价转化”,将高次不等式低次化,无理不等式有理化、超越不等式代数化,最终回归到一元一次不等式(组)或一元二次不等式(组)来解。

难点是解含参数的不等式,对于如何选择参数分类的标准、如何把握分类的时机是有难度和深度的。

一、高次不等式1.概念:形如不等式(x-x1)(x-x2)……(x-x n)>0(其中x1, x2, ……,x n是互不相等的实常数)叫做一元n次不等式(n∈N)。

2.解题思路:作出相应函数的图象草图。

具体步骤如下:(a)明确标出曲线与x轴的交点,(b)分析在每一个开区间上函数的那段曲线是在x轴的上方还是下方(除此之外,对草图不必做更细致的要求)。

然后根据图象草图,写出满足不等式的解集。

3.例题:例1.解不等式:(1) (x-2)(x+2)(x-1)(x+1)>0;(2)(x2-5x-6)(1-x)>0。

解:(1)做出函数y=(x-2)(x+2)(x-1)(x+1)的图象的草图(图1)。

所以不等式的解集为(-∞,-2)(-1,1)(2,+∞)。

(2)先把原不等式化成与它等价的:(x+1)(x-6)(x-1)<0。

作出函数y=(x+1)(x-6)(x-1)的草图(图2),所以解集为(-∞,-1)(1,6)。

注意:(1)解题中首先观察关于x的最高次项的系数是否为正数,如果为正数,函数y在最右边的开区间上的函数值总为正数,因此曲线总在x轴的上方,这样作草图就可以一蹴而就了,如果不是正数,那么首先化为正数;(2)解高次不等式的步骤可以概括为:找零点、分区间、画草图、写解集。

例2.解不等式(x+2)(x+1)2(x-1)3(x-3)>0。

分析:此例中y=(x+2)(x+1)2(x-1)3(x-3)出现了重因式,当x值从大于-1变化到小于-1时(不含-1),y值符号没有发生变化,而x值从大于1到小于1时(不含1),y值符号发生了变化,如图3,故解集为(-2,-1)(-1,1)(3,+∞)。

穿根法解高次不等式

穿根法解高次不等式

穿根法解高次不等式一.方法:先因式分解,再使用穿根法.注意:因式分解后,整理成每个因式中未知数得系数为正。

使用方法:①在数轴上标出化简后各因式得根,使等号成立得根,标为实点,等号不成立得根要标虚点。

②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿).③数轴上方曲线对应区域使“〉”成立, 下方曲线对应区域使“<”成立.例1:解不等式(1) (x+4)(x+5)2(2-x)3<0(2) 错误!≤1解:(1) 原不等式等价于(x +4)(x+5)2(x —2)3>0(2)根据穿根法如图 不等式解集为 {x x< 1 3 或\f( 1 , 2 )【例2】 解不等式:(1)2x 3-x 2—15x 〉0;(2)(x+4)(x+5)2(2—x)3<0。

【分析】 如果多项式f(x)可分解为n 个一次式得积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法"求解,但要注意处理好有重根得情况、 解:(1)原不等式可化为x(2x+5)(x-3)〉0顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)得阴影部分.(2)原不等式等价于(x+4)(x+5)2(x-2)3>0∴原不等式解集为{x|x<-5或-5<x〈—4或x >2}、【说明】 用“穿根法”解不等式时应注意..............:.①各一次项中......x .得.系数必为正.....;.②对于偶次或奇次重根可参照.............(.2.).得解法转化为不含重.........根得不等式.....,.也可直接用“穿根法.........",..但注意...“奇穿偶不穿”.........其法如图....(5..-.2.)... 二.数轴标根法”又称“数轴穿根法”第一步:通过不等式得诸多性质对不等式进行移项,使得右侧为0。

(注意:一定要保证x 前得系数为正数)例如:将x^3—2x^2—x+2>0化为(x-2)(x-1)(x+1)>0第二步:将不等号换成等号解出所有根。

常见不等式的解法--高考数学【解析版】

常见不等式的解法--高考数学【解析版】

专题04 常见不等式的解法所谓常见不等式是指,一元二次不等式、含绝对值不等式、指数对数不等式、函数不等式等,高考中独立考查的同时,更多地是在对其他知识的考查中,作为工具进行考查.正是解不等式的这一基础地位,要求务必做到求解快捷、准确.【重点知识回眸】(一)常见不等式的代数解法1、一元二次不等式:()200ax bx c a ++>≠可考虑将左边视为一个二次函数()2f x ax bx c =++,作出图象,再找出x 轴上方的部分即可——关键点:图象与x 轴的交点2、高次不等式(1)可考虑采用“数轴穿根法”,分为以下步骤:(令关于x 的表达式为()f x ,不等式为()0f x >)①求出()0f x =的根12,,x x ② 在数轴上依次标出根③ 从数轴的右上方开始,从右向左画.如同穿针引线穿过每一个根④ 观察图象,()0f x >⇒ 寻找x 轴上方的部分()0f x <⇒ 寻找x 轴下方的部分(2)高次不等式中的偶次项,由于其非负性在解不等式过程中可以忽略,但是要验证偶次项为零时是否符合不等式3、分式不等式(1)将分母含有x 的表达式称为分式,即为()()f xg x 的形式 (2)分式若成立,则必须满足分母不为零,即()0g x ≠(3)对形如()()0f x g x >的不等式,可根据符号特征得到只需()(),f x g x 同号即可,所以将分式不等式转化为()()()00f xg x g x ⋅>⎧⎪⎨≠⎪⎩ (化商为积),进而转化为整式不等式求解4、含有绝对值的不等式(1)绝对值的属性:非负性(2)式子中含有绝对值,通常的处理方法有两种:一是通过对绝对值内部符号进行分类讨论(常用);二是通过平方(3)若不等式满足以下特点,可直接利用公式进行变形求解:① ()()f x g x >的解集与()()f x g x >或()()f x g x <-的解集相同② ()()f x g x <的解集与()()()g x f x g x -<<的解集相同(4)对于其它含绝对值的问题,则要具体问题具体分析,通常可用的手段就是先利用分类讨论去掉绝对值,将其转化为整式不等式,再做处理5、指数、对数不等式的解法:(1)利用函数的单调性:1a >时,x y > log log (,0)x ya a a a x y x y ⇔>⇔>>01a <<时,x y > log log (,0)x y a a a a x y x y ⇔<⇔<>(2)对于对数的两点补充:① 对数能够成立,要求真数大于0,所以在解对数不等式时首先要考虑真数大于0这个条件,如当1a >时,()()()()()()0log log 0a a f x f x g x g x f x g x >⎧⎪>⇒>⎨⎪>⎩② 如何将常数转化为某个底的对数.可活用“1”:因为1log a a =,可作为转换的桥梁6、利用换元法解不等式利用换元法解不等式的步骤通常为:①选择合适的对象进行换元:观察不等式中是否有相同的结构,则可将相同的结构视为一个整体 ②求出新元的初始范围,并将原不等式转化为新变量的不等式③解出新元的范围④在根据新元的范围解x 的范围(二)构造函数解不等式1、函数单调性的作用:()f x 在[],a b 单调递增,则[]()()121212,,,x x a b x x f x f x ∀∈<⇔<(在单调区间内,单调性是自变量大小关系与函数值大小关系的桥梁)2、假设()f x 在[],a b 上连续且单调递增,()()00,,0x a b f x ∃∈=,则()0,x a x ∈时,()0f x <;()0,x x b ∈时,()0f x > (单调性与零点配合可确定零点左右点的函数值的符号)3、导数运算法则:(1)()()()()()()()'''f x g x fx g x f x g x =+ (2)()()()()()()()'''2f x f x g x f x g x g x g x ⎛⎫-= ⎪⎝⎭4、构造函数解不等式的技巧:(1)此类问题往往条件比较零散,不易寻找入手点.所以处理这类问题要将条件与结论结合着分析.在草稿纸上列出条件能够提供什么,也列出要得出结论需要什么.两者对接通常可以确定入手点(2)在构造函数时要根据条件的特点进行猜想,例如出现轮流求导便猜有可能是具备乘除关系的函数.在构造时多进行试验与项的调整(3)此类问题处理的核心要素是单调性与零点,对称性与图象只是辅助手段.所以如果能够确定构造函数的单调性,猜出函数的零点.那么问题便易于解决了.(三)利用函数性质与图象解不等式:1、轴对称与单调性:此类问题的实质就是自变量与轴距离大小与其函数值大小的等价关系.通常可作草图帮助观察.例如:()f x 的对称轴为1x =,且在()1,+∞但增.则可以作出草图(不比关心单调增的情况是否符合()f x ,不会影响结论),得到:距离1x =越近,点的函数值越小.从而得到函数值与自变量的等价关系2、图象与不等式:如果所解不等式不便于用传统方法解决,通常的处理手段有两种,一类是如前文所说可构造一个函数,利用单调性与零点解不等式;另一类就是将不等式变形为两个函数的大小关系如()()f x g x <,其中()(),f x g x 的图象均可作出.再由()()f x g x <可知()f x 的图象在()g x 图象的下方.按图象找到符合条件的范围即可.【典型考题解析】热点一 简单不等式的解法【典例1】(2022·全国·高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B =( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【答案】B【解析】【分析】求出集合B 后可求A B .【详解】{}|02B x x =≤≤,故{}1,2A B =,故选:B.【典例2】(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.【典例3】(2017·上海·高考真题)不等式11x x ->的解集为________【答案】(,0)-∞【解析】【详解】由题意,不等式11x x ->,得111100x x x->⇒<⇒<,所以不等式的解集为(,0)-∞. 【典例4】(2020·江苏·高考真题)设x ∈R ,解不等式2|1|||4x x ++<. 【答案】2(2,)3- 【解析】【分析】根据绝对值定义化为三个方程组,解得结果【详解】1224x x x <-⎧⎨---<⎩或10224x x x -≤≤⎧⎨+-<⎩或0224x x x >⎧⎨++<⎩21x ∴-<<-或10x -≤≤或203x << 所以解集为:2(2,)3- 【典例5】解下列高次不等式:(1)()()()1230x x x --->(2)()()()21230x x x +--< 【答案】(1)()()1,23,+∞;(2)()()1,22,3-. 【解析】(1)解:()()()()123f x x x x =---则()0f x =的根1231,2,3x x x ===作图可得:12x << 或3x >∴不等式的解集为()()1,23,+∞(2)思路:可知()220x -≥,所以只要2x ≠,则()22x -恒正,所以考虑先将恒正恒负的因式去掉,只需解()()13020x x x +-<⎧⎨-≠⎩ ,可得13x -<<且2x ≠∴不等式的解集为()()1,22,3-【名师点睛】在解高次不等式时,穿根前可考虑先将恒正恒负的项去掉,在进行穿根即可.穿根法的原理:它的实质是利用图象帮助判断每个因式符号,进而决定整个式子的符号,图象中的数轴分为上下两个部分,上面为()0f x > 的部分,下方为()0f x <的部分.以例2(1)为例,当3x >时,每一个因式均大于0,从而整个()f x 的符号为正,即在数轴的上方(这也是为什么不管不等号方向如何,穿根时一定要从数轴右上方开始的原因,因为此时()f x 的符号一定为正),当经过3x = 时,()3x -由正变负,而其余的式子符号未变,所以()f x 的符号发生一次改变,在图象上的体现就是穿根下来,而后经过下一个根时,()f x 的符号再次发生改变,曲线也就跑到x 轴上方来了.所以图象的“穿根引线”的实质是()f x 在经历每一个根时,式子符号的交替变化.【规律方法】1.含绝对值的不等式要注意观察式子特点,选择更简便的方法2.零点分段法的好处在于,一段范围可将所有的绝对值一次性去掉,缺点在于需要进行分类讨论,对学生书写的规范和分类讨论习惯提出了要求,以及如何整理结果,这些细节部分均要做好,才能保证答案的正确性.3.引入函数,通过画出分段函数的图象,观察可得不等式的解.热点二 含参数不等式问题【典例6】(2022·浙江·高考真题)已知,a b ∈R ,若对任意,|||4||25|0x a x b x x ∈-+---≥R ,则( )A .1,3a b ≤≥B .1,3a b ≤≤C .1,3a b ≥≥D .1,3a b ≥≤ 【答案】D【解析】【分析】将问题转换为|||25||4|a x b x x -≥---,再结合画图求解.【详解】由题意有:对任意的x ∈R ,有|||25||4|a x b x x -≥---恒成立.设()||f x a x b =-,()51,2525439,421,4x x g x x x x x x x ⎧-≤⎪⎪⎪=---=-<<⎨⎪-≥⎪⎪⎩,即()f x 的图像恒在()g x 的上方(可重合),如下图所示:由图可知,3a ≥,13b ≤≤,或13a ≤<,3143b a ≤≤-≤,故选:D .【典例7】(2020·浙江·高考真题)已知a ,b ∈R 且ab ≠0,对于任意x ≥0 均有(x –a )(x–b )(x–2a–b )≥0,则( )A .a <0B .a >0C .b <0D .b >0【答案】C【解析】【分析】对a 分0a >与0a <两种情况讨论,结合三次函数的性质分析即可得到答案.【详解】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 的零点为123,,2x a x b x a b ===+当0a >时,则23x x <,1>0x ,要使()0f x ≥,必有2a b a +=,且0b <,即=-b a ,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <.综上一定有0b <.故选:C【典例8】(2023·全国·高三专题练习)解关于x 的不等式()222R ax x ax a ≥-∈-.【答案】详见解析.【解析】【分析】分类讨论a ,求不等式的解集即可.【详解】原不等式变形为()2220ax a x +--≥.①当0a =时,1x ≤-;②当0a ≠时,不等式即为()()210ax x -+≥,当0a >时,x 2a≥或1x ≤-; 由于()221a a a+--=,于是 当20a -<<时,21x a≤≤-; 当2a =-时,1x =-;当2a <-时,21x a-≤≤. 综上,当0a =时,不等式的解集为(,1]-∞-;当0a >时,不等式的解集为2(,1][,)a-∞-⋃+∞; 当20a -<<时,不等式的解集为2,1a ⎡⎤-⎢⎥⎣⎦;当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为21,a ⎡⎤-⎢⎥⎣⎦. 【总结提升】关于含参数不等式,其基本处理方法就是“分类讨论”,讨论过程中应注意“不重不漏”.关于含参数的一元二次不等式问题:(1)当判别式Δ能写成一个式子的平方的形式时,可先求方程的两根,再讨论两根的大小,从而写出解集.(2)三个方面讨论:二次项系数的讨论,根有无的讨论,根大小的讨论.(3)含参数分类讨论问题最后要写综述.热点三 函数不等式问题【典例9】(2018·全国·高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D【解析】【分析】 分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果. 详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .【典例10】(2020·北京·高考真题)已知函数()21x f x x =--,则不等式()0f x >的解集是( ). A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞ 【答案】D【解析】【分析】作出函数2x y =和1y x =+的图象,观察图象可得结果.【详解】因为()21x f x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞. 故选:D.【典例11】(天津·高考真题(理))设函数f (x )=()212log ,0log ,0x xx x >⎧⎪⎨-<⎪⎩若()()f a f a >-,则实数a 的取值范围是( ) A .()()1,00,1-B .()(),11,-∞-+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃【答案】C【解析】【分析】由于a 的范围不确定,故应分0a >和0a <两种情况求解.【详解】当0a >时,0a -<,由()()f a f a >-得212log log a a>,所以22log 0a >,可得:1a >,当0a <时,0a ->,由()()f a f a >-得()()122log log a a ->-,所以()22log 0a -<,即01a <-<,即10a -<<,综上可知:10a -<<或1a >.故选:C【典例12】(2020·海南·高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得: 0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.【典例13】(2023·全国·高三专题练习)设函数()f x '是奇函数()f x (x ∈R )的导函数,f (﹣1)=0,当x >0时,()()0xf x f x '->,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣1)∪(﹣1,0)B .(0,1)∪(1,+∞)C .(﹣∞,﹣1)∪(0,1)D .(﹣1,0)∪(1,+∞)【答案】D【解析】【分析】构造函数()()f x g x x =,求导结合题意可得()()f x g x x =的单调性与奇偶性,结合()10g -=求解即可 【详解】由题意设()()f x g x x=,则()()()2xf x f x g x x '-'= ∵当x >0时,有()()0xf x f x '->,∴当x >0时,()0g x '>,∴函数()()f x g x x=在(0,+∞)上为增函数, ∵函数f (x )是奇函数,∴g (﹣x )=g (x ),∴函数g (x )为定义域上的偶函数,g (x )在(﹣∞,0)上递减,由f (﹣1)=0得,g (﹣1)=0,∵不等式f (x )>0⇔x •g (x )>0,∴()()01x g x g >⎧⎨>⎩或()()01x g x g <⎧⎨<-⎩, 即有x >1或﹣1<x <0,∴使得f (x )>0成立的x 的取值范围是:(﹣1,0)∪(1,+∞),故选:D .【总结提升】关于函数不等式问题,处理方法往往从以下几方面考虑:(1)利用函数的奇偶性、单调性.(2)借助于函数的图象(数形结合法).(3)涉及抽象函数、导数问题,利用构造辅助函数法,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.【精选精练】一、单选题1.(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.2.(2021·湖南·高考真题)不等式|21|3x -<的解集是( )A .{}2x x <B .{}1x x >-C .{}12x x -<<D .{1x x <-或}2x >【答案】C【解析】【分析】根据绝对值的几何意义去绝对值即可求解.【详解】由|21|3x -<可得:3213x -<-<,解得:12x -<<, 所以原不等式的解集为:{}12x x -<<,故选:C.3.(2021·广东·潮阳一中明光学校高三阶段练习)设集合{}11A x x =-≤≤,{}2log 1B x x =<,则A B =( )A .{}11x x -<≤B .{}11x x -<<C .{}01x x <≤D .{}01x x <<【答案】C【解析】【分析】根据对数函数定义域以及对数函数不等式求解集合B ,再进行交集运算即可.【详解】 由题意得,{}{}2log 102B x x x x =<=<<,所以{}|01A B x x ⋂=<≤,故选:C.4.(2022·江苏·南京市第一中学高三开学考试)已知集合{}230A x x x =-<,{}|33x B x =≥,则A B =( ) A .10,2⎛⎫⎪⎝⎭ B .1,32⎡⎫⎪⎢⎣⎭ C .(2 D .()1,3【答案】B【解析】【分析】求出集合A 、B ,再由交集的定义求解即可【详解】 集合{}{}23003A x x x x x =-<=<<,{}1332x B x x x ⎧⎫==≥⎨⎬⎩⎭, 则132A B x x ⎧⎫⋂=≤<⎨⎬⎩⎭.故选:B.5.(天津·高考真题(理))设x ∈R ,则“21x -<”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】求绝对值不等式、一元二次不等式的解集,根据解集的包含关系即可判断充分、必要关系.【详解】 由21x -<,可得13x <<,即x ∈(1,3);由22(1)(2)0x x x x +-=-+>,可得2x <-或1x >,即x ∈(,2)(1,)-∞-+∞;∴(1,3)是(,2)(1,)-∞-+∞的真子集,故“21x -<”是“220x x +->”的充分而不必要条件.故选:A6.(2023·全国·高三专题练习)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为( )A .4B .3C .9D .94【答案】C【解析】【分析】根据函数的值域求出a 与b 的关系,然后根据不等式的解集可得()f x c =的两个根为,6m m +,最后利用根与系数的关系建立等式,解之即可.【详解】∵函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),∴f (x )=x 2+ax +b =0只有一个根,即Δ=a 2﹣4b =0则b 24a =, 不等式f (x )<c 的解集为(m ,m +6),即为x 2+ax 24a +<c 解集为(m ,m +6), 则x 2+ax 24a +-c =0的两个根为m ,m +6 ∴|m +6﹣m |22444a a c c ⎛⎫=-- ⎪⎝⎭6 解得c =9故选:C .7.(2022·吉林·长春市第二实验中学高三阶段练习)已知函数()y f x =是奇函数,当0x >时,()22x f x =-,则不等式()0f x >的解集是( )A .()()1,00,1-B .()()1,01,-⋃+∞C .()(),10,1-∞-⋃D .()(),11,-∞-⋃+∞ 【答案】B【解析】【分析】根据函数为奇函数求出当0x <时,函数()f x 的函数解析式,再分0x <和0x >两种情况讨论,结合指数函数的单调性解不等式即可.【详解】解:因为函数()y f x =是奇函数,所以()()f x f x -=-,且()00f =当0x <时,则0x ->,则()()22x f x f x --=-=-,所以当0x <时,()22x f x -=-+,则()0220x x f x >⎧⎨=->⎩,解得1x >,()0220x x f x -<⎧⎨=-+>⎩,解得10x -<<,所以不等式()0f x >的解集是()()1,01,-⋃+∞.故选:B.8.(2023·全国·高三专题练习)已知函数33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,则不等式()(31)<-f a f a 的解集为()A .10,2⎛⎫⎪⎝⎭ B .1,02⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭ D .1,2⎛⎫-∞- ⎪⎝⎭【答案】C【解析】【分析】由函数解析式判断函数的单调性,根据单调性将函数不等式转化为自变量的不等式,解得即可;【详解】解:因为33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,当0x <时()33f x x =-+函数单调递减,且()3033f x >-⨯+=,当0x ≥时()e 1x f x -=+函数单调递减,且()00e 123f =+=<,所以函数()f x 在(,)-∞+∞上是单调递减,所以不等式()(31)<-f a f a 等价于31a a >-,解得12a <. 即不等式的解集为1,2⎛⎫-∞ ⎪⎝⎭; 故选:C9.(2020·海南·高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得: 0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.10.(2023·全国·高三专题练习)定义在(0)+∞,上的函数()f x 满足()()110,2ln 2xf x f '+=>,则不等式)(e 0x f x +> 的解集为( ) A .(02ln2),B .(0,ln2)C .(ln21),D .(ln2)+∞, 【答案】D【解析】【分析】构造新函数()()ln ,(0)g x f x x x =+>,利用导数说明其单调性,将)(e 0x f x +>变形为)>(e (2)x g g ,利用函数的单调性即可求解.【详解】令()()ln ,(0)g x f x x x =+> , 则()11()()xf x g x f x x x'+''=+=,由于()10xf x '+>, 故()0g x '>,故()g x 在(0)+∞,单调递增, 而1(2)(2)ln2ln ln 202g f =+=+= , 由)(e 0x f x +>,得)>(e (2)x g g ,∴e 2x > ,即ln2x > ,∴不等式)(e 0x f x +>的解集为(ln2)+∞,, 故选:D .二、填空题11.(2023·全国·高三专题练习)不等式组230,340.x x x ->⎧⎨-->⎩的解集为_________. 【答案】()4,+∞【解析】【分析】解一元二次不等式取交集即可.【详解】原不等式组化简为3034(4)(1)041x x x x x x x ->>⎧⎧⇒⇒>⎨⎨-+>><-⎩⎩或 故答案为:()4,+∞.12.(2019·浙江·高考真题)已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 【答案】max 43a =【解析】【分析】本题主要考查含参绝对值不等式、函数方程思想及数形结合思想,属于能力型考题.从研究()2(2)()23642f t f t a t t +-=++-入手,令2364[1,)m t t =++∈+∞,从而使问题加以转化,通过绘制函数图象,观察得解.【详解】使得()222(2)()2(2)(2)2234{}2]6f t f t a t t t t a t t +-=•[++++-=++-,使得令2364[1,)m t t =++∈+∞,则原不等式转化为存在11,|1|3m am ≥-≤, 由折线函数,如图只需11133a -≤-≤,即2433a ≤≤,即a 的最大值是43【点睛】对于函数不等式问题,需充分利用转化与化归思想、数形结合思想.13.(2023·全国·高三专题练习)若函数f (x )=ln x +e x -sin x ,则不等式f (x -1)≤f (1)的解集为________.【答案】(1,2]【解析】【分析】先利用导数判断函数的单调性,再利用其单调性解不等式.【详解】解:f (x )的定义域为(0,+∞),∴()1f x x'=+e x -cos x . ∵x >0,∴e x >1,∴()f x '>0,∴f (x )在(0,+∞)上单调递增,又f (x -1)≤f (1),∴0<x -1≤1,即1<x ≤2,则原不等式的解集为(1,2].故答案为:(1,2]三、双空题14.(2019·北京·高考真题(理))李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】 130. 15.【解析】【分析】由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得x 的最大值.【详解】(1)10x =,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8y y x y x -≥≤,即min158y x ⎛⎫≤= ⎪⎝⎭元. 所以x 的最大值为15.【点睛】本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.15.(2023·全国·高三专题练习)已知函数f (x )111()12x x x x -≤⎧⎪=⎨⎪⎩,,>,则()()2f f =__,不等式()()32f x f -<的解集为__.【答案】12## 0.5 {x |x 72<或x >5} 【解析】【分析】第一空先求出()2f 的值,再求()()2f f 的值;第二空将3x -分为大于1或小于等于1两种情况讨论,分别解出不等式,写出解集即可.【详解】解:f (2)211122-⎛⎫== ⎪⎝⎭,1122f ⎛⎫= ⎪⎝⎭, ∴()()122f f =, 当x ﹣3>1时,即x >4时,311122x --⎛⎫ ⎪⎝⎭<,解得x >5, 当x ﹣3≤1时,即x ≤4时,x ﹣312<,解得x 72<, 综上所述不等式f (x ﹣3)<f (2)的解集为752x x x ⎧⎫⎨⎬⎩⎭或 故答案为:12,752x x x ⎧⎫⎨⎬⎩⎭或. 四、解答题16.(2020·山东·高考真题)已知函数()225,02,0x x f x x x x -≥⎧=⎨+<⎩. (1)求()1f f ⎡⎤⎣⎦的值;(2)求()13f a -<,求实数a 的取值范围.【答案】(1)3;(2)35a -<<.【解析】【分析】(1)根据分段函数的解析式,代入计算即可;(2)先判断1a -的取值范围,再代入分段函数解析式,得到()13f a -<的具体不等式写法,解不等式即可.【详解】解:(1)因为10>,所以()12153f =⨯-=-,因为30-<,所以()()()()2133233f f f =-=-+⨯⎤⎦-⎣=⎡.(2)因为10a -≥, 则()1215f a a -=--, 因为()13f a -<,所以2153a --<, 即14a -<,解得35a -<<.17.(2021·全国·高考真题(理))已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.【答案】(1)(][),42,-∞-+∞.(2)3,2⎛⎫-+∞ ⎪⎝⎭. 【解析】【分析】(1)利用绝对值的几何意义求得不等式的解集.(2)利用绝对值不等式化简()f x a >-,由此求得a 的取值范围.【详解】(1)[方法一]:绝对值的几何意义法当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和,则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6, 当4x =-或2x =时所对应的数轴上的点到13-,所对应的点距离之和等于6, ∴数轴上到13-,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x ≤-或2x ≥, 所以()6f x ≥的解集为(][),42,-∞-+∞.[方法二]【最优解】:零点分段求解法当1a =时,()|1||3|f x x x =-++.当3x ≤-时,(1)(3)6-+--≥x x ,解得4x ≤-;当31x -<<时,(1)(3)6-++≥x x ,无解;当1≥x 时,(1)(3)6-++≥x x ,解得2x ≥.综上,|1||3|6-++≥x x 的解集为(,4][2,)-∞-+∞.(2)[方法一]:绝对值不等式的性质法求最小值依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,当且仅当()()30a x x -+≥时取等号,()3min f x a ∴=+, 故3a a +>-,所以3a a +>-或3a a +<, 解得32a >-. 所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭. [方法二]【最优解】:绝对值的几何意义法求最小值由||x a -是数轴上数x 表示的点到数a 表示的点的距离,得()|||3||3|f x x a x a =-++≥+,故|3|a a +>-,下同解法一.[方法三]:分类讨论+分段函数法当3a ≤-时,23,,()3,3,23,3,x a x a f x a a x x a x -+-<⎧⎪=--≤≤-⎨⎪-+>-⎩则min [()]3=--f x a ,此时3-->-a a ,无解.当3a >-时,23,3,()3,3,23,,x a x f x a x a x a x a -+-<-⎧⎪=+-≤≤⎨⎪-+>⎩则min [()]3=+f x a ,此时,由3a a +>-得,32a >-. 综上,a 的取值范围为32a >-. [方法四]:函数图象法解不等式由方法一求得()min 3f x a =+后,构造两个函数|3|=+y a 和y a =-,即3,3,3,3a a y a a --<-⎧=⎨+≥-⎩和y a =-, 如图,两个函数的图像有且仅有一个交点33,22⎛⎫- ⎪⎝⎭M , 由图易知|3|a a +>-,则32a >-.【整体点评】(1)解绝对值不等式的方法有几何意义法,零点分段法.方法一采用几何意义方法,适用于绝对值部分的系数为1的情况,方法二使用零点分段求解法,适用于更广泛的情况,为最优解;(2)方法一,利用绝对值不等式的性质求得()3min f x a =+,利用不等式恒成立的意义得到关于a 的不等式,然后利用绝对值的意义转化求解;方法二与方法一不同的是利用绝对值的几何意义求得()f x 的最小值,最有简洁快速,为最优解法方法三利用零点分区间转化为分段函数利用函数单调性求()f x 最小值,要注意函数()f x 中的各绝对值的零点的大小关系,采用分类讨论方法,使用与更广泛的情况;方法四与方法一的不同在于得到函数()f x 的最小值后,构造关于a 的函数,利用数形结合思想求解关于a 的不等式.18.(2023·全国·高三专题练习)已知函数2()2f x x ax =++,R a ∈.(1)若不等式()0f x 的解集为[1,2],求不等式2()1f x x -的解集;(2)若对于任意的[1x ∈-,1],不等式()2(1)4f x a x -+恒成立,求实数a 的取值范围;(3)已知2()(2)1g x ax a x =+++,若方程()()f x g x =在1(,3]2有解,求实数a 的取值范围. 【答案】(1)(-∞,1][12,)∞+ (2)13a ≤ (3)[0,1).【解析】【分析】(1)根据不等式的解集转化为一元二次方程,利用根与系数之间的关系求出a ,然后解一元二次不等式即可;(2)问题转化为222x a x --在[1x ∈-,1]恒成立,令22()2x h x x -=-,[1x ∈-,1],根据函数的单调性求出a 的范围即可;(3)利用参数分离法进行转化求解即可.(1)解:若不等式()0f x 的解集为[1,2],即1,2是方程220x ax ++=的两个根,则123a +=-=,即3a =-,则2()32f x x x =-+,由2()1f x x -得,22321x x x -+-即22310x x -+得(21)(1)0x x --,得1x 或12x ,即不等式的解集为(-∞,1][12,)∞+. (2)解:不等式()2(1)4f x a x -+恒成立,即222x a x --在[1x ∈-,1]恒成立,令22()2x h x x -=-,[1x ∈-,1],则2242()(2)x x h x x -+'=-,令()0h x '=,解得:22x =,故()h x 在[1-,22)递增,在(221]递减,故()min h x h =(1)或1()h -,而h (1)1=,1(1)3h -=,故13a . (3)解:由()()f x g x =得22(2)12ax a x x ax +++=++,2(1)210a x x ∴-+-=,即2(1)12a x x -=-,若方程()()f x g x =在1(2,3]有解,等价为2212121x a x x x --==-有解,设22121()(1)1h x x x x =-=--,1(2x ∈,3],∴11[3x ∈,2),即1()0h x -<,即110a --<,则01a <,即实数a 的取值范围是[0,1).。

1.3.1一元二次不等式和简单高次不等式的解法

1.3.1一元二次不等式和简单高次不等式的解法
§1.3.1一元二次不等式和简单高次不 一元二次不等式和简单高次不 等式的解法
§1.3.1一元二次不等式和简单高次不等式的解法
复 习 目 标 及 教 学 建 议 基 知 双 能 规 础 识 基 力 律 训 练 要 固 提 总 点 化 升 结
2011-3-8
2
§1.3.1一元二次不等式和简单高次不等式的解法
2011-3-8 16
§1.3.1一元二次不等式和简单高次不等式的解法
(2)已知集合 已知集合A={x|(x+1)(2x-1)>0},B={x|x2+ax+b≤0},且 已知集合 > 且 1 全集U=R, ðU 全集 , (A∩B)={x|x>3或x≤ },求实数 、b的取值 > 或 ,求实数a、 的取值 2 范围. 范围
2011-3-8 4
§1.3.1一元二次不等式和简单高次不等式的解法
2+bx+2>0的解集为(− 1 , 1) ,则a+b的值 2.若不等式 若不等式ax 若不等式 > 的解集为 则 的值
为 A.10 . 个根.
2 3
B.-10 .
C.14 .
(D ) D.-14 .
1 1 【解析】由已知得:a<0且- , 是ax2+bx+2=0的两 2 3
2011-3-8 3
§1.3.1一元二次不等式和简单高次不等式的解法
基 础 训 练
1.设集合A={x|x2-5x+4≤0},B={x|x2-5x+6≥0}, .设集合 , ( A) 则A∩B= A.{x|1≤x≤2或3≤x≤4} . 或 B.{1,2,3,4} . , , , C.{x|1≤x≤4} . D.R . 【解析】∵A={x|1≤x≤4}, 解析】 , B={x|x≤2或x≥3}, 或 , ∴A∩B= {x|1≤x≤2或3≤x≤4}. 或

穿根法解高次不等式

穿根法解高次不等式

穿根法解高次不等式一.方法:先因式分解,再使用穿根法.注意:因式分解后,整理成每个因式中未知数的系数为正.使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点.②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿).③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立.例1:解不等式(1) (x+4)(x+5)2(2-x)3<0(2) x 2-4x+1 3x 2-7x+2 ≤1解:(1) 原不等式等价于(x+4)(x+5)2(x-2)3>0根据穿根法如图不等式解集为{x ∣x>2或(2) 变形为 (2x-1)(x-1)(3x-1)(x-2) ≥0根据穿根法如图不等式解集为{x x< 1 3 或 1 2 ≤x ≤1或x>2}.【例2】 解不等式:(1)2x 3-x 2-15x >0;(2)(x+4)(x+5)2(2-x)3<0.【分析】 如果多项式f(x)可分解为n 个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法”求解,但要注意处理好有重根的情况.解:(1)原不等式可化为x(2x+5)(x-3)>0顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)的阴影部分.(2)原不等式等价于(x+4)(x+5)2(x-2)3>0∴原不等式解集为{x|x <-5或-5<x <-4或x >2}.【说明】 用“穿根法”解不等式时应注意:①各一次项中.....................x .的系..数必为正;②对于偶次或奇次重根可参照..................(2)...的解法转化为不含重根..........的不等式,也可直接用“穿根法”,但注意...................“奇穿偶不穿”........其法如....图.(5..-.2)....二.数轴标根法”又称“数轴穿根法”第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0。

不等式高次不等式和分式不等式的解法ppt

不等式高次不等式和分式不等式的解法ppt
>2\ • 3<x<2\ • \end{matrix} \right$.这个公共部分作为不等式组的解。
THANK YOU.
分式不等式的解法
可以通过对分子或分母进行分离,然后将分离后的部分转化为一 次不等式或高次不等式进行求解。
不等式组的解法
可以先对各个不等式进行求解,然后取其公共部分作为不等式组 的解。
实例分析
• 高次不等式的例子:对于$x^3 - x^2 - 6x > 0$这个高次不等式,可以将其转化为$(x - 3)(x + 2)(x - 1) > 0$这个一次不等式的组合,通过求解一次不等式得到其解为$x < - 2$或$1 < x < 3$。
注意
在转化过程中要注意符号和不等号 的方向。
分式不等式的应用
解决实际问题
分式不等式可以用来解决一些实际问题,如求解最大值、最小值等。
数学竞赛
在数学竞赛中,分式不等式的求解也是重要的考点之一。
05
高次不等式的解法
高次不等式的概念
定义
高次不等式是指形如$ax^{n} + bx^{n1} + cx^{n-2} + ... + dy + e > 0$或$< 0$的不等式,其中$a,b,c,d,e$是常数, $a \neq 0$。
一元一次不等式的概念
定义
一元一次不等式是指形如ax+b>0或ax+b<0的不等式,其中a、b为实数, 且a不为0
类型
标准型、一般型、严格型
一元一次不等式的解法
步骤
去分母、去括号、移项、合并同类项、系数化为1
注意事项
不等式两边同时乘以或除以一个负数时,不等号方向要改变的解集后,可以解决各种实际问题,如 不等关系、最值问题、几何问题等

高一数学-§6.4不等式解法 精品

高一数学-§6.4不等式解法 精品

课 题:高次、分式不等式的解法(根轴法)教学目标:1、掌握高次不等式的解法(根轴法);2、掌握分式不等式常规变形;3、进一步熟练掌握不等式的性质。

重点难点:重点是掌握高次不等式的解法(根轴法);难点是进一步熟练掌握不等式的性质。

教学过程:一、作业讲评:二、新授:例1 解不等式:x 2-2x -8>0这里我们不使用图象法,而是用因式分解,考虑各因式的符号来求得不等式的解。

由此研究高次不等式的解的情况:例2 解不等式:(1) (x -1)(x -2)(x -3)>0(2) (1-x )(x -2)2(x +1)(x +2)<0 (3)322322+-+-x x x x <0 (4)1034322-+--x x x x >1三、课堂练习:P 22:5、6补充练习:1.解不等式:x (x -1)(x -2)2(x 2-1)(x 3-1)>02.解不等式:152++-x x x ≤1; 3.解不等式:22)1)(14()2)(23)(3(-++--x x x x x >0 4.满足不等式0<1)1(2+-x x <1的整数值是________. 5.已知关于x 的不等式cx b x a x ---))((≥0的解集是{x |-1≤x <2,或x ≥3},则不等式))((b x a x c x ---≤0的解集是_______________. k 为何值时,不等式0<16322+-++x x kx x ≤6对任意实数x 恒成立。

四、小结:分式、高次不等式的解法:师生共同讨论完成。

五、作业:P 29:4、5、6。

分式不等式与高次不等式解法

分式不等式与高次不等式解法

-1
2/3
3
所以原不等式的解集为
x
1
x
2 3
或x
3
高次不等式的解法——根轴法
1、分解因式,保证x的系数为正; 2、求零点x; 3、在数轴上按从小到大标出每一个根; 4、画曲线(从右上角开始); 5、写解集,数轴上方大于0,下方小于0, 数轴上的点使不等式等于0。
练习1:解不等式
(x 1)2 (x 2) 0 (x 4)
∴不等式的解集为{x|-2≤x≤-1或x≥0}.
(1) (x 1)3(x 2) 0 x3
(2) (x 2)(x 1)2 (x 1)3(x 3) 0
例3:解不等式 (x 1)( x 3) 0 (3x 2)
解:原不等式同解于
(x 1)(x 3)(3x 2) 0 3x 2 0
复习指导
解分式不等式的关键就 是如何等价转化(化归) 所给不等式!
问题: 解不等式 (x 1)(3x 2) 0
解(一):原不等式的解集为
x
x1或x
2 3
解(二): 原不等式等价于 13xx1200或23xx1 200
解(1)得: x 2 3
解(2)得: x 1
所以原不等式的解集为
x
g (x)
f (x) g (x)
0
f (x)g(x) g(x) 0
0
4.解不等式
x 1 2 3x 2
解:原不等式可化为
x1 2 0 3x 2
整理得 7x 5 0 3x 2
即: (7x 5)(3x 2) 0
所以原不等式的解集为
x
x
2 3
或x
5
7
5. 解不等式 2x 1 1 x5

解高次不等式

解高次不等式

解高次不等式
解高次不等式
一、解高次不等式的方法:
1、先化简:
首先先将不等式本身化简,如果能化简得到一个二次以内的不等式,就可以进行求解,如果不能,就需要进一步化简。

2、先分解:
如果不能进行化简,可以尝试用方程求解的方法做分解,将整个不等式分成多个不等式来求解,这样比较容易求解。

3、合并:
有时候,如果不等式的右边有多个项,可以将多个项合并,这样可以把高次不等式简化为低次不等式,从而较容易求解。

4、变形求解:
有时,不等式右边有多项时,可以利用变量变换,将不等式右边的多项变换成一个式子,就可以较容易求解。

二、实例演示
例题:已知a>0,求解不等式:
a^3-3a^2+2a≤0
解:将不等式化简,令f(a)=a^3-3a^2+2a,
f'(a)=3a^2-6a+2=3(a-1)(a-2),
可以得出f(a)在a=1处取得最小值,f(1)=0,
即a^3-3a^2+2a=0,
所以a≤1时,不等式a^3-3a^2+2a≤0成立。

高次不等式的解法完整版

高次不等式的解法完整版

高次不等式的解法标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]高次不等式的解法---穿根法一.方法:先因式分解,再使用穿根法.注意:因式分解后,整理成每个因式中未知数的系数为正.使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点.②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿).③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立.例1:解不等式(1)(x+4)(x+5)2(2-x)3<0(2)x2-4x+13x2-7x+2≤1解:(1)原不等式等价于(x+4)(x+5)2(x-2)3>0根据穿根法如图不等式解集为{x∣x>2或x<-4(2)变形为 (2x-1)(x-1)(3x-1)(x-2)≥0根据穿根法如图不等式解集为{xx< 13或12≤x≤1或x>2}.【例2】解不等式:(1)2x3-x2-15x>0;(2)(x+4)(x+5)2(2-x)3<0.【分析】如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法”求解,但要注意处理好有重根的情况.解:(1)原不等式可化为x(2x+5)(x-3)>0顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)的阴影部分.(2)原不等式等价于(x+4)(x+5)2(x-2)3>0∴原不等式解集为{x|x<-5或-5<x<-4或x>2}.【说明】用“穿根法”解不等式时应注意:①各一次项中.....................x.的系数必为正;②对于..........偶次或奇次重根可参照..........(2)...的解法转化为不含重根的不等式,也可直接用“穿根法”,但...........................注意..“奇穿偶不穿”........其法如图.....(5..-.2)....数轴标根法”又称“数轴穿根法”第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0。

高三数学各种不等式的解法

高三数学各种不等式的解法
2
loga N logan N n logan N
n
返回
例4:
1 log1 (5 x ) log2 2 2 0 x 2
2
解:原不等式等价于:
1 log1 (5 x ) log1 x log1 0 2 2 2 4
2 2
等价吗?

1 log1 [(5 x ) x ] log1 1 4 2 2
x2 ③解不等式: 1 x 3
高次不等式的解法——根轴法
1、分解因式,保证x的系数为正;
2、求零点x;
3、在数轴上按从小到大标出每一个根; 4、画曲线(从右上角开始); 5、写解集,数轴上方大于0,下方小于0, 数轴上的点使不等式等于0。
例题3、①解不等式x(x 1) (x 3) (x 1) 0
3 3
例2:
log1 ( x 3x 4) log1 (2 x 10)
2 3 3
解:原不等式等价于不等 式组

x 3x 4 2 x 10
2
x 3x 4 0
2

2 x 7 x 1 或 x 4
x 5
2 x 10 0
解之得 数轴
x 2 x 1,或 4 x 7
x 1
2
8
5 (2 )
x 1 2
解法2
2
4
x4
x
256 5 2
2
8
2 x2
2 2
4t 64 5t (t 0)
2
5 2 2
2
2x
解法1
2
x4
256 5 2
2 x2

高一数学不等式解法经典例题

高一数学不等式解法经典例题

不等式解法经典例题典型例题一:高次不等式的解法分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f )可用“穿根法”求解,但要注意处理好有重根的情况.例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .解:(1)原不等式可化为 0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.典型例题二:分式不等式的解法分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或例2 解下列分式不等式:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x (1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x xx x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,((2)解法一:原不等式等价于027313222>+-+-x x x x 21213102730132027301320)273)(132(222222><<<⇔⎪⎩⎪⎨⎧<+-<+-⎪⎩⎪⎨⎧>+->+-⇔>+-+-⇔x x x x x x x x x x x x x x x 或或或 ∴原不等式解集为),2()1,21()31,(+∞⋃⋃-∞。

第4讲------不等式的解法

第4讲------不等式的解法

第4讲 不等式的解法一、简单一元高次不等式解法(解一元高次不等式,一般采取数轴标根法) 其步骤如下:(1)将f(x)的最高次项的系数化为正数;(2)将f(x)分解为若干个一次因式的积;(3)将每一个根顺次表在数轴上,再从右到左依次标出区间;(4)f(x)>0时取奇数区间;f(x)<0时取偶数区间.例1、解不等式(1)2 >0; (2)(x+4) <0.解析:(1)原式=x (2 -x-15)>0⟹x (x-3)(2x+5)>0,得不等式的解集为奇数区间,即{x ∣- <x <0或x >3}.(2)学生自行解决.答案:{x ∣x <-5或-5<x <-4或x >2}.二、分式不等式的解法例2、解不等式: > . 解析:原式变为 >0,通分 ( ) ( )>0, ⟹ ( )( )>0⟹ >0⟹ 或0<x<1. 练习:1、解下列不等式(1)2 ; (2)-4 ;(3)(x-2)( ;(4)(x-3)(x+2) (x-4)>0.2、解不等式:<0. 三、无理不等式解法 (1) g(x)⇔ 或 ;-5/203(2)g(x)⇔ ;(3)f(x)>g(x)0.例3、若不等式+的解集为(4,b),求a、b的值.解析:设=u,则原不等式为u>a+,即a-u+<0,∵不等式的解集为(4,b),∴方程a-u+=0的两个根分别为2,,由韦达定理得解得.练习:解不等式(1)<x-1;(2)>x+3.解析:(1)<x-1,⟹x∈(2,3];①等价转化法:⟹或②换元法:设t=(t0)x=3-,即t<3--1, ⟹(t-1)(t+2)<0,-2<t<1,故0t<1,0<1⟹2<x3.③求补集法:x-1⟹ 或⟹x2或x>3,故原不等式解集为(2,3].<即x∈(2,3].(2)>x+3,解析:用①②③④种方法由学生完成.答案:(-∞,-).四、指数、对数不等式的解法例4、解关于x的不等式lg(2ax)-lg(a+x)<1.解析:⟹a>0,x>0⟹ lg(2ax)<lg(10a+10x)⟹2ax<10a+10x,即(a-5)x<5a.当0<a<5时,a-5<0,x>0当a=5时,不等式0x<25,得x>0;当a>5时,a-5>0,解得0<x<.五、含绝对值不等式的解法例5、解不等式:∣∣x+1∣+∣x-1∣∣<+1.解析:+1>0恒成立,x>-2.①当x1时,原不等式可以变形为2x<+1,,无解;②当-1x<1时,∣∣x+1∣+∣x-1∣∣=2,则原不等式可变形为无解;③当-2<x<-1时,原不等式可以变形为,无解.综合①②③可知,原不等式无解.六、含参不等式的解法例4、试求不等式>-1对一切实数x恒成立的θ取值范围.解析:∵>0,故原不等式变为(θθ)θθθθ>0,令θθ=t,则t∈[-,],不等式变为(t+1)-(t-4)x+t+4>0对x∈R恒成立,由二次函数可知,∴t>0或t<(舍),故0<θθ ,即2k-<θ2k+(k∈Z).练习:1、解不等式(1)2ax>5-x(a∈R);(2)mx>k-nx (m、n、k∈R)解析:(1)(2a+1)x>5,(2)(m+n)x>ka>-时,x>;m+n>0,x>;a<- 时,x<;m+n<0,x<;a=- 时,x∈∅. m+n=0,,∈,∈∅.2、解不等式>1.解析:原不等式变为>0⟹[(a-1)x-(a-2)](x-2)>0,⟹(a-1)[x-](x-2)>0,当a>1时,[x-](x-2)>0⟹(-∞,)∪(2,+∞);当a<1时,[x-](x-2)<0,∵2-=,①当0<a<1时,解是(2,)②当a=0时,解为空集,即x∈∅;③a<0时,解为(,2).课外练习:一、选择题1、若0<a<1,则不等式(a-x)(x- )>0的解集为()A 、{x∣a<x<};B、{x∣<x<a};C、{x∣x>或x<a};D、{x∣x<或x>a}.2、不等式∣x+1∣(2x-1)0的解集为()A、{x∣x=-1或x};B、{x∣x-1或x};C、{x∣x};D、{x∣-1x}.3、若a>1且0<b<1,则不等式的解集为()A、x>3;B、x<4;C、3<x<4;D、x>4.4、不等式2的解集是()A、[-3,];B、[- ,3];C、[,1)∪(1,3];D、[- ,1)∪(1,3].5、已知∣a-c∣<∣b∣,则()A、a<b+c;B、a>c-b;C、∣a∣>∣b∣-∣c∣;D、∣a∣<∣b∣+∣c∣.6、设f(x),,则不等式f(x)>2的解集为()A、(1,2)∪(3,+∞);B、(,+∞);C、(1,2)∪(,+∞);D、(1,2).二、填空题7、不等式-∣x∣<0的解集是 .8、不等式的解集是.9、定义符号函数sgn x=,当x∈R时,则不等式x+2>的解集为.三、解答题10、解不等式(∣3x-1∣-1)(.11、已知函数f(x)=,当a>0时,解关于x的不等式f(x)<0.12、设有关于x的不等式lg(∣x+3∣+∣x-7∣)>a.(1)当a=1时,解此不等式;(2)求当a为何值时,此不等式的解集为R.。

一元二次不等式及其解法,分式及高次不等式解法

一元二次不等式及其解法,分式及高次不等式解法

因为2x2-4x+3=2(x-1)2+1>0,
所以原不等式的解集是
例5.求函数 f ( x )
2 x x 3 lo g 3 (3 2 x x )
2 2
的定义域。
解:由函数f(x)的解析式有意义得
2x x 3≥ 0 2 3 2x x 0
2

( 2 x 3)( x 1) ≥ 0 ( x 3)( x 1) 0
8 8
所以不等式的解集是
{x | 1 8 17 x 1 8 17 }
例3.解不等式x2+4x+4>0. 解:因为△=42-4×1×4=0,
原不等式化为(x+2)2>0,
所以不等式的解集是{x∈R| x≠-2}.
例4.解不等式-2x2+4x-3>0. 解:原不等式化为2x2-4x+3<0,
答案
cx 2 x a 0。
a 12 , c 2 解集 x 2 x 3
1.
2.
3.
判别式 △=b2- 4ac △>0 y y=ax2+bx+c (a>0)的图象 x1 O x2 x O x1 ax2+bx+c=0 (a>0)的根 有两相异实根 x1, x2 (x1<x2) x O 没有实根 x
△=0
y
△<0
y
有两相等实根 b x1=x2=
2a
ax2+bx+c>0 大于取两边 (a>0)的解集 {x|x<x1,或 x>x2} ax2+bx+c<0 小于取中间 (a>0)的解集 {x|x1< x <x2 }

不等式解法

不等式解法

不等式解法补充讲义第一课时:分式与高次不等式解法分式不等式的解法:(1) 化分式不等式为标准型:方法:移项,通分,右边化为0,左边化为)()(x g x f 的形式 (2) 将分式不等式转化为整式不等式求解如:()0()f x g x >⇔ 0)()(>x g x f ()0()f x g x <⇔0)()(<x g x f ()0()f xg x ≥⇔⎩⎨⎧≠≥0)(0)()(x g x g x f ()0()f x g x ≤⇔⎩⎨⎧≠≤0)(0)()(x g x g x f 例1 解不等式:073<+-x x . 解法1:化为两个不等式组来解: ∵073<+-x x ⇔⎩⎨⎧>+<-⎩⎨⎧<+>-07030703x x x x 或⇔x ∈φ或37<<-x ⇔37<<-x , ∴原不等式的解集是{}37|<<-x x . 解法2:化为二次不等式来解: ∵073<+-x x ⇔0)7)(3(<+-x x ⇔37<<-x , ∴原不等式的解集是{}37|<<-x x 例2:解不等式073≤+-x x 解:073≤+-x x ⇔70)7)(3(-≠≤+-x x x 且⇔37≤<-x 原不等式∴的解集是{x| -7<x ≤3}例3:解不等式173<+-x x 解:}7{707100173173->∴->∴<+-⇔<-+-⇔<+-x x x x x x x x 原不等式的解集是练习:1. 解不等式01122≥---x x x 解: 原不等式等价于(Ⅰ)⎩⎨⎧>-≥--,01,0122x x x (Ⅱ)⎩⎨⎧<-≤--,01,0122x x x解(Ⅰ)得: x≥1+2, 解(Ⅱ)得: 1-2≤x<1.∴ 原不等式的解集为 {x ∣x≥1+2 或1-2≤x<1 }. 2.解不等式-1<2213<+-x x 原不等式的解集为 {x ∣-41<x<5}. 高次不等式的解法:数轴标根法(零点分段法)或者(穿针引线法)的步骤①将不等式化为)0(0)())()((321<>----n x x x x x x x x 形式,并将各因式x 的系数化“+”; ②求方程0)())()((321=----n x x x x x x x x 各根,并在数轴上表示出来(从小根到大根按从左至右方向表示)。

不等式高次不等式和分式不等式的解法ppt

不等式高次不等式和分式不等式的解法ppt

例子1
解析1
例子2
解析2
分式不等式的例子及解析
01
02
03
04
04
特殊类型不等式的解法
绝对值不等式具有一些特殊的性质,例如,如果$|a| > |b|$,那么$a^2 > b^2$。利用这些性质可以简化绝对值不等式的证明过程。
绝对值不等式的性质
绝对值不等式的解法一般采用零点分段法,即根据绝对值的定义将不等式转化为若干个不等式组,然后分别求解。
优化问题
热力学
在物理学中,我们经常使用不等式来描述热力学中的某些不等关系,例如在热力学第二定律中,热量总是自发地从高温物体传导到低温物体。
力学
在物理学中,我们经常使用不等式来描述两个物体之间的作用力和反作用力,例如在牛顿第三定律中,作用力和反作用力总是相等且方向相反。
电学
在物理学中,我们经常使用不等式来描述电路中的电压和电流之间的关系,例如在欧姆定律中,电流与电压成正比,与电阻成反比。
高次不等式的例子及解析
例子1
解不等式x^2 - 4x + 4 > 0
解析
原不等式转化为(x-2)^2 > 0,利用平方差公式可得解集为{x|x≠2}。
例子2
解不等式x^3 - x^2 - 2x + 2> 0
03
分式不等式的解法
定义
分式不等式是一种含有未知数的不等式,其分子是一个多项式,分母是一个多项式或一个一次式。
分解因式
将高次不等式转化为几个一次不等式的积的形式,便于求解。
高次不等式的定义
高次不等式的解法公式
利用平方差公式或者完全平方公式将高次不等式转化为几个一次不等式的积的形式。

不等式专题:分式不等式、高次不等式、绝对值不等式的解法-【题型分类归纳】2022-2023学年高一数

不等式专题:分式不等式、高次不等式、绝对值不等式的解法-【题型分类归纳】2022-2023学年高一数

不等式专题:分式不等式、高次不等式、绝对值不等式的解法一、分式不等式的解法解分式不等式的实质就是讲分式不等式转化为整式不等式。

设A 、B 均为含x 的多项式(1)00>⇔>AAB B(2)00<⇔<AAB B(3)000≥⎧≥⇔⎨≠⎩AB AB B (4)000≤⎧≤⇔⎨≠⎩AB AB B 【注意】当分式右侧不为0时,可过移项、通分合并的手段将右侧变为0;当分母符号确定时,可利用不等式的形式直接去分母。

二、高次不等式的解法如果将分式不等式转化为正式不等式后,未知数的次数大于2,一般采用“穿针引线法”,步骤如下:1、标准化:通过移项、通分等方法将不等式左侧化为未知数的正式,右侧化为0的形式;2、分解因式:将标准化的不等式左侧化为若干个因式(一次因式或高次因式不可约因式)的乘积,如()()()120--->…n x x x x x x 的形式,其中各因式中未知数的系数为正;3、求根:求如()()()120---=…n x x x x x x 的根,并在数轴上表示出来(按照从小到大的顺序标注)4、穿线:从右上方穿线,经过数轴上表示各根的点,(奇穿偶回:经过偶次根时应从数轴的一侧仍回到这一侧,经过奇数次根时应从数轴的一侧穿过到达数轴的另一侧)5、得解集:若不等式“>0”,则找“线”在数轴上方的区间;若不等式“<0”,则找“线”在数轴下方的区间三、含绝对值不等式1、绝对值的代数意义正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩2、绝对值的几何意义一个数的绝对值,是数轴上表示它的点到原点的距离.3、两个数的差的绝对值的几何意义b a -表示在数轴上,数a 和数b 之间的距离.4、绝对值不等式:(1)(0)<>x a a 的解集是{|}-<<x a x a ,如图1.(2)(0)>>x a a 的解集是{|}<->或x x a x a ,如图2.(3)(0)+<>⇔-<+<ax b c c c ax b c .(4)(0)+>>⇔+>ax b c c ax b c 或ax b c+<-题型一解分式不等式【例1】不等式02xx ≤-的解集为()A .[0,2]B .(0,2)C .(,0)[2,)-∞+∞ D .[0,2)【答案】D【解析】原不等式可化为()2020⎧-≤⎨-≠⎩x x x ,解得02≤<x .故选:D .【变式1-1】不等式2112x x +≥-的解集为()A .[3,2]-B .[3,2)-C .(,3][2,)-∞-⋃+∞D .(,3](2,)-∞-+∞U 【答案】D【解析】∵21310022++-⇒--x x x x ,解得:2>x 或3-x ,∴不等式的解集为(,3](2,)-∞-+∞U ,故选:D.【变式1-2】解下列分式不等式:(1)123x x +-≤1;(2)211x x+-<0.【答案】(1){3|2x x <或4x ≥};(2){1|2x x <-或1x >}.【解析】(1)∵123x x +-≤1,∴123x x +--1≤0,∴423x x -+-≤0,即432x x --≥0.此不等式等价于(x -4)32x ⎛⎫- ⎪⎝⎭≥0且x -32≠0,解得x <32或x ≥4.∴原不等式的解集为{3|2x x <或4x ≥}(2)由211x x +-<0得121x x +->0,此不等式等价于12x ⎛⎫+ ⎪⎝⎭(x -1)>0,解得x <-12或x >1,∴原不等式的解集为1{|2x x <-或1x >}.【变式1-3】解不等式:2121332x x x x ++≥--【答案】21332⎧⎫><≠-⎨⎬⎩⎭或且x x x x 【解析】通分整理,原不等式化为:2(12)0(3)(32)+>--x x x ,它等价于:(3)(32)0210-->⎧⎨+≠⎩x x x ,得到:3>x 或23<x 且12≠-x 【变式1-4】不等式()2131x x +≥-的解集是()A .1,23⎡⎤⎢⎥⎣⎦B .1,23⎡⎤-⎢⎥⎣⎦C .(]1,11,23⎡⎫⎪⎢⎣⎭U D .(]1,11,23⎡⎫-⎪⎢⎣⎭【答案】C 【解析】因为()2131x x +≥-,所以213(1)x x +≥-且10x -≠,所以23720x x -+≤且10x -≠,所以123x ≤≤且1x ≠,所以不等式的解集为(]1,11,23⎡⎫⋃⎪⎢⎣⎭,故选:C题型二解高次不等式【例2】不等式()()()21350x x x ++->的解集为___________.【答案】1(,3),52⎛⎫-∞-⋃- ⎪⎝⎭【解析】不等式()()()()()()2135021350++->⇔++-<x x x x x x ,由穿针引线法画出图线,可得不等式的解集为1(,3),52⎛⎫-∞-⋃- ⎪⎝⎭.故答案为:1(,3),52⎛⎫-∞-- ⎪⎝⎭⋃.【变式2-1】解不等式(x +2)(x -1)9(x +1)12(x -3)≥0.【答案】[][)-213⋃+∞,,.【解析】根据不等式标根所以原不等式的解为[][)-213⋃+∞,,.故答案为:[][)-213⋃+∞,,.【变式2-2】不等式()()1203x x x +-≥-的解集为()A .{1x x ≤-或}23x ≤<B .{1x x ≤-或}23x ≤≤C .{3x x ≥或}12x -≤≤D .{3x x >或}12x -≤≤【答案】A【解析】不等式(1)(2)03x x x +-≥-,化为:(1)(2)0330x x x x +-⎧≤⎪-⎨⎪-≠⎩,由穿根法可知:不等式的解集为:{1x x ≤-或}23x ≤<.故选:A.【变式2-3】解下列分式不等式:(1)23221x x x -+≥-;(2)22520(32)(11)x x x x -+≥-+;(3)2256034x x x x ++≤--;(4)222232x x x x x +-<+-.【答案】(1)[4,)+∞;(2)12(,11)[,)[2,)23-∞-+∞ ;(3)4[3,2](1,)3--- ;(4)(1,2)(3,)-⋃+∞.【解析】(1)23221x x x -+≥-,所以232201x x x -+-≥-,所以()2322101x x x x -+--≥-,即()()24154011x x x x x x ---+=≥--,解得4x ≥,故原不等式的解集为[4,)+∞;(2)22520(32)(11)x x x x -+≥-+,所以()()2120(32)(11)x x x x --≥-+等价于()()()()()()2123211032110x x x x x x ⎧---+≥⎪⎨-+≠⎪⎩,解得2x ≥或1223x ≤<或11x <-,故原不等式的解集为12(,11)[,[2,)23-∞-+∞ (3)2256034x x x x ++≤--,所以()()()()230341x x x x ++≤-+,等价于()()()()()()2334103410x x x x x x ⎧++-+≤⎪⎨-+≠⎪⎩,解得32x --≤≤或413x -<<,故原不等式的解集为4[3,2](1,)3--- ;(4)222232x x x x x +-<+-,所以2222032x x x x x +--<+-,即()2222232032x x x x x x x +--+-<+-,即()()()()201231x x x x x -+++>-,因为210x x ++>恒成立,所以原不等式等价于()()2031x x x ->-+,即()()()2310x x x --+>,解得12x -<<或3x >,故原不等式的解集为(1,2)(3,)-⋃+∞【变式2-4】关于x 的不等式0ax b +>的解集为{|1}x x >,则关于x 的不等式2056ax bx x +>--的解集为()A .{|11x x -<<或6}x >B .{|1x x <-或16}x <<C .{|1x x <-或23}x <<D .{|12x x -<<或3}x >【答案】A【解析】因为关于x 的不等式0ax b +>的解集为{|1}x x >00a a b >⎧∴⎨+=⎩,则原式化为:()()()()()()()10061106161-->⇔>⇔-+->-+-+ax a x x x x x x x x 所以不等式的解为11x -<<或6x >.故选:A.题型三解绝对值不等式【例3】解不等式:(1)3<x ;(2)3>x (3)2≤x 【答案】(1){|33}-<<x x (2){|33}<->或x x x (3){|22}-≤≤x x 【变式3-1】解不等式:(1)103-<x ;(2)252->x ;(3)325-≤x ;【答案】(1){|713}<<x x ;(2)73{|}22><或x x x ;(3){|14}-≤<x x 【解析】(1)由题意,3103-<-<x ,解得713<<x ,所以原不等式的解集为{|713}<<x x .(2)由题意,252->x 或252-<-x ,解得72>x 或32<x ,所以原不等式的解集为73{|}22><或x x x .(3)由题意,5325-<-≤x ,解得14-≤<x ,所以原不等式的解集为{|14}-≤<x x .【变式3-2】不等式1123x <-≤的解集是___________【答案】[)(]1,01,2- 【解析】不等式可化为1213x <-≤,∴1213x <-≤,或3211x --<-≤;解之得:12x <≤或10x -≤<,即不等式1123x <-≤的解集是[)(]1,01,2- .故答案为:[)(]1,01,2- .【变式3-3】不等式111x x +<-的解集为()A .{}{}011x x x x <<⋃>B .{}01x x <<C .{}10x x -<<D .{}0x x <【答案】D 【解析】不等式()()221111111101+<⇔+<-≠⇔+<-≠⇔<-x x x x x x x x x .故选:D.【变式3-4】解不等式:4321->+x x 【答案】1{|2}3<>或x x x 【解析】方法一:(零点分段法)(1)当34≤x 时,原不等式变为:(43)21-->+x x ,解得13<x ,所以13<x ;(2)当34>x 时,原不等式变为:4321->+x x ,解得2>x ,所以2>x ;综上所述,原不等式的解集为1{|2}3<>或x x x .方法二:43214321->+⇔->+x x x x 或43(21)-<-+x x ,解得13<x 或2>x ,所以原不等式的解集为1{|2}3<>或x x x .【变式3-5】不等式125-+-<x x 的解集为【答案】(1,4)-【解析】当1x ≤时,1251x x x -+-<⇒>-,故11x -<≤;当12x <<时,12515x x -+-<⇒<恒成立,故12x <<;当2x ≥时,1254x x x -+-<⇒<,故24x ≤<综上:14x -<<故不等式的解集为:(1,4)-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可分解的高次不等式的解法
浙江省诸暨市学勉中学(311811) 郭天平
解不等式是初等数学重要内容之一,高中数学常出现高次不等式,通常解法是化为不等式组或者用列表法或者用数轴标根法求解。

本文通过不同解法的比较,来说明“数轴标根法”在求解一类可分解的高次不等式独特之处。

例1 解不等式()()()0423>--+x x x
解法一:原不等式可化为()()⎩⎨
⎧>-->+04203x x x 或()()⎩
⎨⎧<--<+0420
3x x x
即⎩⎨
⎧><->423x x x 或或⎩⎨⎧<<-<4
23
x x ,即23<<-x 或4>x
∴原不等式的解集为{}423|><<-x x x 或
【评注】 此种方法的本质是分类讨论,强化了“或”与“且”,进一步渗透了“交”与“并”的思想方法。

解法二:不等式(或方程)有三个零点,-3,2,4,先在数轴上标出零点,这些零点把数轴分成了若干个区间。

针对这些区间,逐一讨论各因式的符号,情况列表如下:
从上表可看出()()()0423>--+x x x 的解集为{}423|><<-x x x 或 解法三:先在数轴上标出零点(标出根)。

根标出来后,不是分区间进行验证讨论,而是直接标出综合因式()()()423--+x x x 的正负号
(如上图),再根据题目要求,直接写出解集为{}423|><<-x x x 或
【评注】这种方法常称为是“数轴标根法”,有些书上称为是“串针引线法”。

这种方
x
法的本质是“列表讨论法”的简化及提炼。

这样的“线”也可看成是函数
()()()423--+=x x x y 的图象草图。

(y 轴未画)
通过上述三种方法的比较,我们不难看出,用“数轴标根法”来解可分解的高次不等式直观又简单。

具体方法步骤如下:
①将不等式等价化为()()21x x x x --…())0(0<>-n x x 形式,并将各因式x 的系数化“+”;(为了统一方便)
②求出对应方程()()21x x x x --…()0=-n x x 的根(或称零点),并在数轴上表示出来;
③由右上方穿线,经过数轴上表示各根的点,但要注意“奇穿偶不穿”(“奇穿偶不穿”是指当左侧()x f 有相同因式()n
x x 1-时,n 为奇数时,曲线在1x 点处穿过数轴;n 为偶
数时,曲线在1x 点处不穿过数轴)
④若不等式(x 的系数化“+”后)是“0>”,则找“线”在x 轴上方的区间;若不等式是“0<”,则找“线”在x 轴下方的区间.
例2 解不等式()()()01323
2
<+--x x x
解析 ①检查各因式中x 的符号均正;
②求得相应方程的根为:-1,2,3(注意:2是二重根,3是三重根); ③在数轴上表示各根并穿线,每个根穿一次(自右上方开始),如下图:
④∴原不等式的解集为()()3,22,1 -
【评注】∵3是三重根,∴在C 处来回穿三次,∵2是二重根,∴在B 处穿两次,结果相当于没穿. 若些不等式若带“=”号,点画为实心,解集边界处应有等号;另外,线虽不穿2点,但2=x 满足“=”的条件,不能漏掉.
例3 解不等式()()03
24
32≤+---x x x x x
解析 先将原不等式等价化为不等式()
()()032432<+---x x x x x 且
2,0,3≠≠-≠x x x ,
即()()()()04132<-++-x x x x x 且2,0,3≠≠-≠x x x ,用“数轴标根法”
∴原不等式的解是()[)(]4,20,13, --∞-
【评注】在不等式时我们应该考虑不等式左式的定义域,也就是在标根时要注意根的取舍,否则会产生增根或失根的误解.
例4 解关于x 的不等式:()
()0122<++-a x x x .
解析 此不等式是含参数a 的高次不等式,a x -=是不等式对应方程的其中一根,但对它的位置我们无法确定,因此要对a 的所处位置进行讨论
①将二次项系数化“+”并分解为:()()()034>++-a x x x ; ②相应方程的根为:a --,4,3; ③讨论:
ⅰ)当4>-a ,即4-<a 时,各根在数轴上的分布及穿线如下:
∴原不等式的解集为()()+∞--,4,3a .
ⅱ)当43<-<-a ,即34<<-a 时,各根在数轴上的分布及穿线如下:
∴原不等式的解集为()()+∞--,4,3 a
ⅲ)当3-<-a ,即3>a 时,各根在数轴上的分布及穿线如下:
∴原不等式的解集为()()+∞--,43, a
ⅳ0)当4=-a ,即4=a 时,各根在数轴上的分布及穿线如下:
∴原不等式的解集为()+∞-,3
ⅴ)当3-=-a ,即3=a 时,各根在数轴上的分布及穿线如下:
∴原不等式的解集为()+∞,4。

综上所得,当4-<a 时,原不等式的解集为()()+∞--,4,3a ; 当34<<-a 时,原不等式的解集为()()+∞--,4,3 a ; 当3>a 时,原不等式的解集为()()+∞--,43, a ; 当4=a 时,原不等式的解集为()+∞-,3; 当3=a 时,原不等式的解集为()+∞,4。

【评注】此题意在于让大家熟练用“数轴标根法”解高次不等式,培养分类讨论的思想,题中对当3=a 与4=a 时这两种情况,不少同学容易漏解,不加以讨论。

相关文档
最新文档