晶体管混频电路

晶体管混频电路
晶体管混频电路

晶体管混频电路

一.实验目的

1.了解调幅接收机的工作原理及组成

2.加深对混频概念的认识。

二.实验原理

混频电路是超外差接收机的重要组成部分,它的作用是将载频为f C的已调信号u S(t)不失真地变换成载频为f I的已调信号u I(t)(固定中频),其电路框图如图一所示。它是将输入调幅信号u S(t)与本振信号(高频等幅信号)u L(t) 同时加到变频器,经频

图1 混频电路框图

率变换后通过滤波器,输出中频调幅信号u I (t),u I (t) 与u S(t) 载波振幅的包络形状完全相同,唯一的差别是信号载波频率f C变换成中频频率f I。

混频器有很多种,在高质量的通信接收机中常采用二极管环形混频器和双差分对混频器,而在一般的广播接收中则通常采用晶体管混频器。本实验电路采用的是晶体三极管混频电路,本振信号由晶体振荡器产生,其频率为 6.965MHz,混频后成生的中频信号频率为465KHz。完整的电路中还包括包络检波电路,可以观察到变频后的包络和检波后还原的低频信号波形。

混频(调幅接收)电路、调频接收电路实验板(G7)的完整实验电路见图2。

三.实验仪表设备

1.双踪示波器

2.万用表

3.XFG-7高频信号发生器(或其他可成生调幅信号的高频信号源)

4.高频电路学习机

5.混频(调幅接收)电路、调频接收电路实验板(G7)

图2 混频(调幅接收)电路、调频接收电路

四.实验内容及步骤

1.晶体本机震荡电路的调整

⑴按图连接好+12V电源。将J3的1、2端断开,暂时不要使本振信号接入混频电

路。

⑵用示波器在TP3处观察波形,其最大不失真波形应接近6V,最小振荡电压大

约为0.5V左右,调整CT2,可改善振荡器的谐振条件。

⑶调整Rp3,使输出电压为1.4V左右待用。

2.接收回路的调整

将扫频仪的输出探头和检波探头同时接到TP1,调整T1或CT1,使输入回路谐振在6.5MHz。

6.5MHz

3.中放电路及混频电路的调整

⑴用RP1、RP2电位器调整晶体管V1和V2的工作点,使V1e为0.6V,V2e为1V。

⑵将f m=465KHz,峰-峰值为60mV的中频电压加至P1端,短接J1的1、2端,同

时将示波器探头连接到TP4观察输出波形,调整两级中周的磁帽,使输出波形

幅值最大(大约2V),且失真最小,波形上不得有叠加的毛刺。由于中周变压器

在出厂时已做过调整,故此处只宜微调,而不应过度调整。

⑶将高频信号源(XFG-7)的输出信号调整为f S=6.5MHz,峰峰值为60mV的等幅

信号,将f S从TP1端输入,同时将J3的1、2端短接,使本振信号加至混频管

的发射极。仔细调整晶体管V1和V2的工作点,在输出端会得到一465KHz的

中频电压,其幅值大约为2V,此步骤有时需调整本机振荡的输出电压的幅度。

⑷将高频信号源(XFG-7)的输出信号调整为调幅波,调制度大约在30%,在TP4

端可以得到频率为465KHz的包络信号,此时可能会发生限幅现象,只要仔细调

整RP1、RP2电位器和天线回路的CT1(或T1的磁芯),就会得到比较理想的包

络信号。除有必要,一般不需要再调整中周变压器。若在TP5端观察可得到解

调后的低频信号(幅值大约为200mV p-p)。

4.注意事项:

⑴调整过程须仔细,不要过度调整中周变压器的磁帽和T1的磁芯,以免损坏。

⑵调整时务必避免出现中频自激现象,否则难以完成实验。

五.实验报告要求

1. 整理测量数据和结果,画出波形图。

2. 分析如果输入信号f S的频率为7.430MHz时,会产生什么样的结果?

场效应晶体管混频器原理及其电路

场效应晶体管混频器原理及其电路 混频器一般由输入信号回路、本机振荡器、非线性器件和滤波网络等4部分组成,如图1所示。这里的非线性器件本身仅实现频率变换,本振信号由本机振荡器产生。若非线性器件既产生本振信号,又实现频率变换,则图1变为变频器。所谓混频,是将两个不同的信号(如一个有用信号和一个本机振荡信号)加到非线性器件上,取其差频或和频。 图1 混频器的组成部分 混频器可根据所用非线性器件的不同分为二极管混频器、晶体管混频器、场效应管混频器和变容管混频器等。混频器又可根据工作特点的不同,分为单管混频器、平衡混频器、环形混频器、差分对混频器和参量混频器等。在设计混频器时应注意如下几点:(1)要求混频放大系数越大越好。混频放大系数是指混频器的中频输出电压振幅与变频输入信号电压振幅之比,也称混频电压增益。增大混频放大系数是提高接收机灵敏度的一项有力措施。(2)要求混频器的中频输出电路有良好的选择性,以抑制不需要的干扰频率。(3)为了减少混频器的频率失真和非线性失真以及本振频率产生的各种混频现象,要求混频器工作在非线性特性不过于严重的区域,使之既能完成频率变换,又能少产生各种形式的干扰。(4)要求混频器的噪声系数越小越好,在设计混频器时,必须按设备总噪声系数分配给出的要求,合理地选择线路和器件以及器件的工作点电流。(5)要考虑混频器的工作稳定性,如本机振荡器频率不稳定引起的混频器输出不稳等。(6)注意混频器的输入端和输出端的连接条件,在选定电路和设计回路时,应充分考虑如何匹配的问题。场效应管混频性能比三极管混频好,原因在于场效应管工作频率高,其特性近似平方率,动态范围大,非线性失真小,噪声系数低,单向传播性能好。场效应管混频器实际电路举例(1)有源混频器1)200MHz 场效应管混频器电路(有源混频器) 为提高混频增益,在下列的A、B电路中输入、输出端都有匹配网络完成阻抗匹配,获得大的变频增益;并且L3,C5均谐振ωL,起了抑制本振信号输出的作用。电路A)υs,υ L均从栅极注入(如图2所示)。 图2 υs,υL均从栅极注入电路图 电路B)υs从栅极注入,本振υL从源极注入(如图3所示)。

混频器原理分析

郑州轻工业学院 课程设计任务书 题目三极管混频器工作原理分析 专业、班级学号姓名 主要内容、基本要求、主要参考资料等: 一、主要内容 分析三极管混频器工作原理。 二、基本要求 1:混频器工作原理,组成框图,工作波形,变频前后频谱图。 2:晶体管混频器的电路组态及优缺点。 3:自激式变频器电路工作原理分析。 4:完成课程设计说明书,说明书应含有课程设计任务书,设计原理说明,设计原理图,要求字迹工整,叙述清楚,图纸齐备。 5:设计时间为一周。 三、主要参考资料 1、李银华电子线路设计指导北京航天航空大学出版社2005.6 2、谢自美电子线路设计·实验·测试华中科技大学出版社2003.10 3、张肃文高频电子线路高等教育出版社 2004.11 完成期限:2010.6.24-2010.6.27 指导教师签名: 课程负责人签名: 2010年6月20日

目录 第一章混频器工作原理------------------------------------------4 第一节混频器概述------------------------------------------------4 第二节晶体三极管混频器的工作原理及组成框图---------5 第三节三极管混频器的工作波形及变频前后频谱图------8 第二章晶体管混频器的电路组态及优缺点------10 第一节三极管混频器的电路组态及优缺点------- 第二节三极管混频器的技术指标------ 第三章自激式变频器电路工作原理分析--------------------12 第一节自激式变频器工作原理分析---------------------12 第二节自激式变频器与他激式变频器的比较------------------------13 第四章心得体会---------------------------------------14 第五章参考文献---------------------------------------15

晶振电路原理介绍

晶体振荡器,简称晶振。在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。 晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。 一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。 一般的晶振的负载电容为15p或12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择。 晶体振荡器也分为无源晶振和有源晶振两种类型。无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。 谐振振荡器包括石英(或其晶体材料)晶体谐振器,陶瓷谐振器,LC谐振器等。

晶振与谐振振荡器有其共同的交集有源晶体谐振振荡器。 石英晶片所以能做振荡电路(谐振)是基于它的压电效应,从物理学中知道,若在晶片的两个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械力,又会在相应的方向上产生电场,这种现象称为压电效应。如在极板间所加的是交变电压,就会产生机械变形振动,同时机械变形振动又会产生交变电场。一般来说,这种机械振动的振幅是比较小的,其振动频率则是很稳定的。但当外加交变电压的频率与晶片的固有频率(决定于晶片的尺寸)相等时,机械振动的幅度将急剧增加,这种现象称为压电谐振,因此石英晶体又称为石英晶体谐振器。其特点是频率稳定度很高。 石英晶体振荡器与石英晶体谐振器都是提供稳定电路频率的一种电子器件。石英晶体振荡器是利用石英晶体的压电效应来起振,而石英晶体谐振器是利用石英晶体和内置IC来共同作用来工作的。振荡器直接应用于电路中,谐振器工作时一般需要提供3.3V电压来维持工作。振荡器比谐振器多了一个重要技术参数为:谐振电阻(RR),谐振器没有电阻要求。RR 的大小直接影响电路的性能,也是各商家竞争的一个重要参数。 概述 微控制器的时钟源可以分为两类:基于机械谐振器件的时钟源,如晶振、陶瓷谐振槽路;基于相移电路的时钟源,如:RC (电阻、电容)振荡器。硅振荡器通常是完全集成的RC振荡器,为了提高稳定性,包含有时钟源、匹配电阻和电容、温度补偿等。图1给出了两种时钟源。图1给出了两个分立的振荡器电路,其中图1a为皮尔斯振荡器配置,用于机械式谐振器件,如晶振和陶瓷谐振槽路。图1b为简单的RC反馈振荡器。 机械式谐振器与RC振荡器的主要区别 基于晶振与陶瓷谐振槽路(机械式)的振荡器通常能提供非常高的初始精度和较低的温 度系数。相对而言,RC振荡器能够快速启动,成本也比较低,但通常在整个温度和工作电源电压范围内精度较差,会在标称输出频率的5%至50%范围内变化。图1所示的电路能产生可靠的时钟信号,但其性能受环境条件和电路元件选择以及振荡器电路布局的影响。需认真对待振荡器电路的元件选择和线路板布局。在使用时,陶瓷谐振槽路和相应的负载电容必须根据特定的逻辑系列进行优化。具有高Q值的晶振对放大器的选择并不敏感,但在过驱动时很容易产生频率漂移(甚至可能损坏)。影响振荡器工作的环境因素有:电磁干扰(EMI)、机械震动与冲击、湿度和温度。这些因素会增大输出频率的变化,增加不稳定性,并且在有些情况下,还会造成振荡器停振。 振荡器模块 上述大部分问题都可以通过使用振荡器模块避免。这些模块自带振荡器、提供低阻方波

三极管混频器

1.三极管混频器的设计内容及要求 1.1设计内容 在本次通信电子线路课程设计中我采用了Multisim仿真软件对三极管混频器进行设计及绘制,并模拟仿真,在仿真的基础上再做了实物。从理论上对电路进行了分析。选择合适的元器件,设计出满足要求的三极管混频器。 1.2设计要求 设计一个三极管混频器。要求中心频率为10MHz, 本振频率为16.455MHz。 1.3设计框图及原理说明 1.3.1混频原理框图 混频器是一种典型的线性时变参数电路,要完成频谱的线性搬移,关键是要获得两个输入信号的乘积,能找到这个乘积项,就可完成所需的线性搬移功能。如下图1.1为混频器的组成电路,它由非线性器件、本地振荡器和带通滤波器组成。 图1.1 混频工作原理 1.3.2混频原理说明 混频电路输入的是载频为f c 的高频已调波信号u i (t)和频率为f r的本地振 荡信号u r (t),经过非线性器件变频后输出端有两个信号的差频(f r-f c)、和频(f r+f c)及其他频率分量,再经滤波器滤掉不需要的频率分量,取差频(或和频) f I 作为中频已调波信号u I (t),即中频f I=(f r-f c),或f I=(f r+f c),从而实现变频作用。 通常从输出端取出差频的混频称为下混频,而取出和频的混频称为上混频。 本次课程设计我的电路是用10MHZ的交流信号电压源、本振电路(产生

16.455MHZ)、三极管混频器电路以及选频电路组成。信号源所产生的10MHZ 的正弦波与本振电路所产生的16.455MHZ正弦波通过三极管进行混频后产生和频、差频信号及其它频率信号,然后通过滤波网络滤掉不需要的频率分量,取出差频(6.455MHZ)的信号,即为所需的6.455MHZ信号。

晶振的测试电路

晶振的测试电路 利用简单几个元件制作一个可测量10kHz-100MHz晶振的测试电路(电路如图),BG1和所接多频振荡器,经C3、D1、D2进行检波后可在LED上得到下正上负的电压,驱动LED发光。若晶振已坏,LED 不亮。可将此小电路安装在维修用的电源上,留两个插测晶振元件的小孔。 制作中应注意:晶振的两条引出线不能相距过近,否则振荡幅度大大减小导致发光管不亮。 一种简单的晶振检验器 用一般的万用表是不能测出晶振的好坏的,这里提供了一种简单而实用的晶振检验器,它只采用一个N 沟道结型场效应管(FET),两个普通NPN 小功率晶体三极管,一个发光管和一些阻容元件,便可有效的检验任何晶振的好坏。 如图所示,2N3823 结型N 沟道场效应管(可用任何其它型号的同类小功率场效应管,如3DJ6,3DJ7 等)与被测晶体(晶振)等组成一个振荡器,两个两个NPN 三极管2N3904(也可用其它任何型号的小功率NPN 三极管)接成复合检波放大器,驱动发光二极管LED。若被测晶振良好时,振荡器起振,其振荡信号经0.01uF 的电容耦合至检波放大器的输入端,经放大后驱动发光二极管发光。如果被测晶振不好,则晶振不起振,发光二极管就不发光。 本装置可检验任何频率的晶振但其最佳的工作状态是在3---10MHz 范围内。 下图为电路原理图:

下图为印刷板图 简易晶振测试电路 贡献人:时间:2009-12-24 本文介绍一款简单易作的晶振测试装置,原理电路如附图所示。图中,V1及其外围元件(包括被测晶振)共同组成一个电容三点式振荡器。当探头X1、X2两端接入被测晶振时,电路振荡。振荡信号经V2射极跟随级放大后输出,经C4耦合、D1、D2倍压整流后为V3提供偏置电流,V3导通,LED发光。若晶振不良或断路,电路则不能起振,因而LED不发光。该装置结构简单,所用元件极为普遍,而且只要元件质量良好,装配无误,不需调试即可一次成功。探头可利用两个插孔代替。也可以选用带电缆的表笔或测试棒,但引线不宜过长。该测试议可测试频率为450KHz~49MHz的各种晶振,工作电源推荐采用6V叠层电池。

混频器的设计与仿真知识讲解

混频器的设计与仿真

目录 前言 0 工程概况 0 正文 (1) 3.1设计的目的及意义 (1) 3.2 目标及总体方案 (1) 3.2.1课程设计的要求 (1) 3.2.2 混频电路的基本组成模型及主要技术特点 (1) 3.2.3 混频电路的组成模型及频谱分析 (1) 3.3工具的选择—Multiusim 10 (3) 3.3.1 Multiusim 10 简介 (3) 3.3.2 Multisim 10的特点 (3) 3.4 混频器 (3) 3.4.1混频器的简介 (3) 3.4.2混频器电路主要技术指标 (4) 3.5 混频器的分类 (4) 3.6详细设计 (5) 3.6.1混频总电路图 (5) 3.6.2 选频、放大电路 (5) 3.6.3 仿真结果 (6) 3.7调试分析 (9) 致谢 (9) 参考文献 (10) 附录元件汇总表 (10)

混频器的设计与仿真 前言 混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。特别是在超外差式接收机中,混频器应用较为广泛,如AM 广播接收机将已调幅信号535KHZ-一1605KHZ要变成为465KHZ中频信号,电视接收机将已调48.5M一870M 的图像信号要变成38MHZ的中频图像信号。移动通信中一次中频和二次中频等。在发射机中,为了提高发射频率的稳定度,采用多级式发射机。用一个频率较低石英晶体振荡器作为主振荡器,产生一个频率非常稳定的主振荡信号,然后经过频率的加、减、乘、除运算变换成射频,所以必须使用混频电路,又如电视差转机收发频道的转换,卫星通讯中上行、下行频率的变换等,都必须采用混频器。由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 工程概况 混频的用途是广泛的,它一般用在接收机的前端。除了在各类超外差接收机中应用外在频率合成器中为了产生各波道的载波振荡,也需要用混频器来进行频率变换及组合在多电路微波通信中,微波中继站的接收机把微波频率变换为中频,在中频上进行放大,取得足够的增益后,在利用混频器把中频变换为微波频率,转发至下一站此外,在测量仪器中如外差频率计,微伏计等也都采用混频器。因此,做有关混频电路的课题设计很能检验对高频电子线路的掌握程度;通过混频器设计,可以巩固已学的高频理论知识。混频器是频谱线性搬移电路,能够将输入的两路信号进行混频。 具体原理框图如图2-1所示。

高频电路原理与分析

. 高频电路原理与分析 期末复习资料 陈皓编 10级通信工程 2012年12月 1.

单调谐放大电路中,以LC并联谐振回路为负载,若谐振频率f0=10.7MH Z,C Σ = 50pF,BW0.7=150kH Z,求回路的电感L和Q e。如将通频带展宽为300kH Z,应在回路两端并接一个多大的电阻? 解:(1)求L和Q e (H)= 4.43μH (2)电阻并联前回路的总电导为 47.1(μS) 电阻并联后的总电导为 94.2(μS) 因 故并接的电阻为 2.图示为波段内调谐用的并联振荡回路,可变电容C的变化范围为12~260 pF,Ct为微调电容,要求此回路的调谐范围为535~1605 kHz,求回路电感L 和C t的值,并要求C的最大和最小值与波段的最低和最高频率对应。 12 min , 22(1210) 3 3 根据已知条件,可以得出: 回路总电容为因此可以得到以下方程组 160510 t t C C C LC L C ππ ∑ - =+ ? ?== ? ?+ ? ?

题2图 3.在三级相同的单调谐放大器中,中心频率为465kH Z ,每个回路的Q e =40,试 问总的通频带等于多少?如果要使总的通频带为10kH Z ,则允许最大的Q e 为多少? 解:(1 )总的通频带为 121212121232 260109 121082601091210260108 10198 1 253510260190.3175-12 6 1605 535 ()()10103149423435 t t t t C C C C pF L mH π-----?+==?+=?-??-= ?==??+?=≈

模拟乘法器MC1496 1596设计混频电路

班级: 姓名: 学号: 指导教师:林森 成绩: 电子与信息工程学院 信息与通信工程系

混频器的设计 1概述 在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频等调制与解调的过程均可视为两个信号相乘的过程,而集成模拟乘法器正是实现两个模拟量,电压或电流相乘的电子器件。采用集成模拟乘法器实现上述功能比用分立器件要简单得多,而且性能优越,因此集成模拟乘法器在无线通信、广播电视等方面应用较为广泛。 混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。特别是在超外差式接收机中,混频器应用较为广泛,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 本次设计主要内容是基于MC1496的混频器应用设计与仿真,阐述混频器基本原理,并在电路设计与Multisim仿真环境中创建集成电路乘法器MC1496电路模块,利用模拟乘法器MC1496完成各项电路的设计与仿真,并结合双踪示波器实现对信号的混频,对接收信号进行频率的转换,变成需要的中频信号。 1.1混频器原理 混频技术应用的相当广泛,混频器是超外差接收机中的关键部件。直放式接收机是高频小信号检波,工作频率变化范围大时,工作频率对高频通道的影响比较大(频率越高,放大量越低,反之频率低,增益高),而且对检波性能的影响也较大,灵敏度较低。采用超外差技术后,将接收信号混频到一固定中频,放大量基本不受接收频率的影响,这样,频段内信号的放大一致性好,灵敏度可以做得很高,选择性也较好。因为放大功能主要放在中放,

石英晶体振荡器原理

石英晶体振荡器的基本工作原理及作用 (1)石英晶体振荡器(简称晶振)的结构石英晶体振荡器是利用石英晶体(二氧化矽的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑胶封装的。(2)压电效应 若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐 振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。 (3)符号和等效电路石英晶体谐振器的符号和等效电路如图所示。当晶体不振动时,可把它看 成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个pF到几十pF。当晶体振荡时,机械振动的惯性可用电感L來等效。一般L的值为几十mH到几 百mH。晶片的弹性可用电容C來等效,C的值很小,一般只有0.0002~0.1pF。晶片振动时因 摩擦而造成的损耗用R來等效,它的數值约为100Ω。由于晶片的等效电感很大,而C很小, R也小,因此回路的品质因數Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只 与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定性。

高频电路原理与分析

高频电路原理与分析期末复习资料 陈皓编 10级通信工程 2012年12月

1.单调谐放大电路中,以LC 并联谐振回路为负载,若谐振频率f 0 =10.7MH Z , C Σ= 50pF ,BW 0.7=150kH Z ,求回路的电感L 和Q e 。如将通频带展宽为300kH Z ,应在回路两端并接一个多大的电阻? 解:(1)求L 和Q e (H )= 4.43μH (2)电阻并联前回路的总电导为 47.1(μS) 电阻并联后的总电导为 94.2(μS) 因 故并接的电阻为 2.图示为波段内调谐用的并联振荡回路,可变电容 C 的变化范围为 12~260 pF ,Ct 为微调电容,要求此回路的调谐范围为 535~1605 kHz ,求回路电感L 和C t 的值,并要求C 的最大和最小值与波段的最低和最高频率对应。 题2图 12min 12max ,22(1210) 22(26010)3 3根据已知条件,可以得出: 回路总电容为因此可以得到以下方程组16051053510t t t C C C LC L C LC L C ππππ∑ --=+? ?== ??+?? ??== ??+?

3.在三级相同的单调谐放大器中,中心频率为465kH Z ,每个回路的Q e =40,试 问总的通频带等于多少?如果要使总的通频带为10kH Z ,则允许最大的Q e 为多少? 解:(1)总的通频带为 4650.51 5.928()40 e z e Q kH =≈?= (2)每个回路允许最大的Q e 为 4650.5123.710 e e Q =≈?= 4.图示为一电容抽头的并联振荡回路。谐振频率f 0 =1MHz ,C 1 =400 pf ,C 2= 100 pF 121212121232 260109 121082601091210260108 10198 1 253510260190.3175-12 6 1605 535 ()()10103149423435 t t t t C C C C pF L mH π-----?+==?+=?-??-= ?==??+?=≈

晶体振荡器电路+PCB布线设计指南

AN2867 应用笔记 ST微控制器振荡器电路 设计指南 前言 大多数设计者都熟悉基于Pierce(皮尔斯)栅拓扑结构的振荡器,但很少有人真正了解它是如何工 作的,更遑论如何正确的设计。我们经常看到,在振荡器工作不正常之前,多数人是不愿付出 太多精力来关注振荡器的设计的,而此时产品通常已经量产;许多系统或项目因为它们的晶振 无法正常工作而被推迟部署或运行。情况不应该是如此。在设计阶段,以及产品量产前的阶 段,振荡器应该得到适当的关注。设计者应当避免一场恶梦般的情景:发往外地的产品被大批 量地送回来。 本应用指南介绍了Pierce振荡器的基本知识,并提供一些指导作法来帮助用户如何规划一个好的 振荡器设计,如何确定不同的外部器件的具体参数以及如何为振荡器设计一个良好的印刷电路 板。 在本应用指南的结尾处,有一个简易的晶振及外围器件选型指南,其中为STM32推荐了一些晶 振型号(针对HSE及LSE),可以帮助用户快速上手。

目录ST微控制器振荡器电路设计指南目录 1石英晶振的特性及模型3 2振荡器原理5 3Pierce振荡器6 4Pierce振荡器设计7 4.1反馈电阻R F7 4.2负载电容C L7 4.3振荡器的增益裕量8 4.4驱动级别DL外部电阻R Ext计算8 4.4.1驱动级别DL计算8 4.4.2另一个驱动级别测量方法9 4.4.3外部电阻R Ext计算 10 4.5启动时间10 4.6晶振的牵引度(Pullability) 10 5挑选晶振及外部器件的简易指南 11 6针对STM32?微控制器的一些推荐晶振 12 6.1HSE部分12 6.1.1推荐的8MHz晶振型号 12 6.1.2推荐的8MHz陶瓷振荡器型号 12 6.2LSE部分12 7关于PCB的提示 13 8结论14

数字电路中最简单的混频知识

数字电路中最简单的混频知识 混频就是把两个不同的频率信号混合,得到第三个频率。在模拟电路中经常见到的就是把接收机接收到的高频信号,经过混频变成中频信号,再进行中频放大,以提高接收机的灵敏度。 数字电路中最简单的混频便是两个信号做乘法,可以得到它们的和频信号与差频信号。数字混频在通信的调制、解调、DUC(数字上变频)、DDC(数字下变频)等系统中应用广泛。通常把其中一个信号称为本振信号(local oscillator),另一个信号称为混频器的输入信号。 程序设计 程序设计系统时钟5MHz,625kHz的输入信号与625kHz的本振信号做混频,根据混频原理会得到1.25MHz的和频信号与0Hz(直流),将直流滤除掉得到1.25MHz的有效信号。设计的顶层模块接口如下所示: 程序中首先生成本振信号。Quartus和Vivado中都提供了类似功能的IP核:Vivado中叫DDS(Direct Digital Synthesizers)Compiler;Quartus中叫NCO(Numerically controlled oscillators)。下面以实例化NCO为例,具体的设计方法在下文讲解。 接下来用乘法进行混频。我们都知道计算机中有带符号数signed和无符号数unsigned,还知道计算机经常以二进制补码的形式的表示带符号数。 在FPGA设计中,不管是Altera还是Xilinx,它们的IP核几乎都是采用二进制补码带符号数,也有很多的ADC、DAC芯片的数据接口也采用的是二进制补码。因此,在设计中,我们要清楚什么时候用什么数值表示法。比如NCO的输出为带符号数二进制补码,假设混频的输入信号也是带符号数二进制补码,则在整个混频程序设计中都要保持这个数值表示方法,否则就会出错。

高频电子线路设计(三极管混频器的设计)

通信电子线路课程设计说明书 三极管混频器 院、部:电气与信息工程学院 学生姓名:蔡双 指导教师:俞斌职称讲师 专业:电子信息工程 班级:电子1002 完成时间:2012-12-20

摘要 随着社会的发展,现代化通讯在我们的生活中显得越来越重要。混频器在通信工程和无线电技术中,得到非常广泛的应用,混频器是高频集成电路接收系统中必不可少的部件。要传输的基带信号都要经过频率的转换变成高频已调信号,才能在空中无线传输,在接收端将接收的已调信号要进行解调得到有用信号,然而在解调过程中,接收的已调高频信号也要经过频率的转换,变成相应的中频信号,这就要用到混频器。其原理是运用一个相乘器件将本地振荡信号与调制信号相乘,经过选频回路选出差频项(中频),在超外差式接收机中,混频器应用十分广泛,如:AM广播接收机将已调振幅信号535K~1605KHZ要变成465KHZ的中频信号;还有移动通信中的一次混频、二次混频等。由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 关键词混频器;中频信号;选频回路

ABSTRACT With the development of society, the modernization of communication in our life becomes more and more important. Mixer in communication engineering and radio technology, widely used, the mixer is high frequency integrated circuit receiving system essential components. To transmit baseband signal to go through frequency conversion into a high frequency modulated signal, can in the air, wireless transmission, at the receiving end receives the modulated signal to demodulate the received useful signal, however in the demodulation process, receives the modulated high frequency signal to go through frequency conversion, into the corresponding intermediate frequency signal, this will be used mixer. Its principle is to use a multiplication device will be local oscillation signal and modulated signal by frequency selective circuit multiplication, choose the difference frequency term (MF ), in a superheterodyne receiver, mixer, a wide range of applications, such as: AM radio receiver will be modulated amplitude signal 535K ~ 1605KHZ to become 465KHZ intermediate frequency signal; and mobile communication a mixer, a two mixer etc.. Therefore, the mixer circuit is the application of electronic technology and radio professional must grasp the key circuit. Key words mixer;intermediate frequency signal;frequency selective circuit

混频电路设计3

通信电路实验报告 ——谐振功率放大器设计及仿真 姓名:陈强华 学号: 班级: 专业:通信工程

实验三混频器设计及仿真 一、实验目的 1、理解和掌握二极管双平衡混频器电路组成和工作原理。 2、理解和掌握二极管双平衡混频器的各种性能指标。 3、进一步熟悉电路分析软件。 二、实验准备 1、学习二极管双平衡混频器电路组成和工作原理。 2、认真学习附录相关内容,熟悉电路分析软件的基本使用方法。 三、设计要求及主要指标 1、 LO 本振输入频率:, RF 输入频率: 1MHz, IF 中频输出频率: 450KHz。 2、 LO 本振输入电压幅度: 5V, RF 输入电压幅度:。 3、混频器三个端口的阻抗为50Ω 。 4、在本实验中采用二极管环形混频器进行设计,二极管采用 DIN4148。 5、分析混频器的主要性能指标:混频增益、混频损耗、1dB 压缩点、输入阻抗,互调失真等;画出输入、输出功率关系曲线。 四、设计步骤 1、原理分析混频器作为一种三端口非线性器件,它可以将两种不同频率的输入信号变为一系列的输出频谱,输出频率分别为两个输入频率的和频、差频及其谐波。两个输入端分别为射频端( RF)和本振( LO),输出端称为中频端( IF)其基本的原理如下图所示。

通常,混频器通过在时变电路中采用非线性元件来完成频率转换,混频器通过两个信号相乘进行频率变换,如下: 输入的两个信号的频率分别为ωRF \ωLO ,则输出混频信号的频率为ωRF LO +ω (上变频)或ωRF LO ?ω (下变频),从而实现变频功能。在本试验中,我们采用二极管环形混频器,其的原理电路如图 3-2 所示,其中v V t RF RF RF = cosω ,v V t LO LO LO = cosω ,并且有V V LO RF >> ,因此二极管主要受到大信号v LO 控制,四个二极管均按开关状态工作,各电流电压的极性如图 3-2 所示。在本振电压的正半周,二极管D2 \ D3 导通,D1 \ D4 截止;在本振电压的负半周,二极管D1 \ D4 导通,D2 \ D3截止。因此,混频电路可以拆分成两个单平衡混频器。

石英晶体振荡器电路设计

辽宁工业大学 高频电子线路课程设计(论文)题目:石英晶体振荡器电路设计 院(系):电子与信息工程学院 专业班级: 学号: 学生姓名: 指导教师: 起止时间: 2014.6.16-2014.6.27

课程设计(论文)任务及评语 院(系):电子与信息工程学院 教研室: 电子信息工程 注:成绩:平时20% 论文质量50% 答辩30% 以百分制计算 学 号 学生姓名 专业班级 课程设计(论文)题目 石英晶体振荡器电路设计 课 程设计(论文)任务 要求:1.设计一个石英晶体振荡器 2.能够观察输入输出波形。 3.观察振荡频率。 参数:振荡频率10000HZ 左右。 设计要求: 1 .分析设计要求,明确性能指标。必须仔细分析课题要求、性能、指标及应用环境等,广开思路,构思出各种总体方案,绘制结构框图。 2 .确定合理的总体方案。对各种方案进行比较,以电路的先进性、结构的繁简、成本的高低及制作的难易等方面作综合比较,并考虑器件的来源,敲定可行方案。 3 .设计各单元电路。总体方案化整为零,分解成若干子系统或单元电路,逐个设计。 4 .组成系统。在一定幅面的图纸上合理布局,通常是按信号的流向,采用左进右出的规律摆放各电路,并标出必要的说明。 指导教师评语及成绩 平时成绩(20%): 论文成绩(50%): 答辩成绩(30%): 总成绩: 学生签字: 年 月 日

目录 第1章绪论 (1) 1.1石英晶体振荡器 (1) 1.2设计要求 (1) 第2章石英晶体振荡器设计电路 (2) 2.1石英晶体振荡器总体设计方案 (2) 2.2具体电路设计 (2) 2.2.1串联型晶体振荡器 (2) 2.2.2并联型晶体振荡器 (4) 2.2.3输出缓冲级设计 (5) 2.3元件参数的计算 (5) 2.4Multisim软件仿真 (6) 2.4.1串联型振荡器输出测试 (6) 2.4.2并联型振荡器输出测试 (7) 第3章课程设计总结 (9) 参考文献 (10) 附录Ⅰ总体电路图 (11) 附录Ⅱ元器件清单 (12)

三极管混频器——高频课程设计

高频电子线路课程设计说明书 三极管混频器 系、部:电气与信息工程系 学生姓名:罗佳 指导教师:贾雅琼职称讲师 专业:电子信息工程 班级:电信0901班 学号:09400230123 完成时间:2011年6月7日

摘要 混频,又称变频,也是一种频谱的线性搬移过程,它是使信号自某一个频率变换成另一个频率。完成这种功能的电路称为混频器。混频技术的应用十分广泛。混频器是超外差式收音机中的关键部件。直放式接收机高频小信号检波,工作频率变化范围大时,工作频率对高频通道的影响比较大,灵敏度较低。采用超外差技术后,将接收信号混频到一固定中频,放大量基本不受接收频率的影响,这样,频段内信号的放大一致性好,灵敏度可以做得很高,选择性也较好。因为放大功能主要在中放,可以用良好的滤波电路。采用超外差接收后,调整方便,放大量、选择性主要由中频部分决定,且中频较高频信号的频率低,性能指标容易得到满足。混频器在一些发射设备中也是必不可少的。在频分多址信号的合成、微波接力通信、卫星通信等系统中也有其重要的地位。此外,混频器也是许多电子设备、测量仪器的重要组成部分。 关键字:信号;频率;混频器

ABSTRACT Frequency mixing, say again, is also a kind of variable frequency spectrum of linear moving process, it is to make the signal from a certain frequency conversion to another frequency. Complete the functions of the circuit is called the mixer. Mixing technique used widely. The mixer is the superheterodyne key component. Straight put type small signal detection, high-frequency receivers working frequency variation range, the working frequency of high-frequency channels of influence is bigger, a low sensitiity. Using specialized superheterodyne technology after receiving signal frequency mixing into a fixed frequency, put large basic from receive frequency influence, such, frequency signal within the amplification good consistency, sensitivity can do so tall that selective is better also. Because magnifier function mainly in putting, can use good filter circuits. Using specialized superheterodyne after receipt and easy to adjust, put large, selectivity consists mainly of intermediate frequency part decision, and intermediate frequency is of high frequency signals low frequency, performance index easily be satisfied. The mixer in some launch equipment is also essential. In frequency division multiple access signal synthesis, microwave relay communications, satellite communications, etc system also has its important position. In addition, the mixer is also many electronic equipment, measurement instrument important component. Key words signal;frequency;mixer

三极管混频器

1 三极管混频器任务、功能要求说明及总体方案 1.1课题任务 设计一个三极管混频器。要求中心频率为10MHz, 本振频率为16.455MHz 。 1.2 课题总体方案介绍及工作原理 1.2.1 总体方案 图1.1 结构和原理 (1)输出中频调幅波与输入高频调幅波规律完全相同,即载波振幅的包络形状完全相同。唯一的差别是载波频率不同。 (2)从频谱上看,输出中频信号与输入高频信号的频谱结构相同,只不过在频谱上搬移了一个位置。 (3) (称为下混频) 低中频 (称为上混频) 高中频 一般,用于振幅调制与解调的电路均可用于混频,需要改变的只是输入、输出回路和输出滤波器的参数。若非线性器件本身仅实现混频,本振信号由单独的本地振荡器提供,称为混频器; 若非线性器件既产生本振信号又实现混频,则称为变频器。 S I L S I L S I S I L S I f f f f f f f f f f f f f >+=-=<-=

1.2.2 工作原理 混频电路的基本原理: 图1.2 图2中,U s (t)为输入信号,U c (t)为本振信号。U i (t)输出信号。 分析: 当st sm s cos U (t)U ψ= (1.1) 则: (t)(t)U U (t)U c s p = (1.2) = ct cm st sm cos U cos U ψψ = ct st cos cos Am ψψ 其中: cm sm U U Am = (1.3) 对上式进行三角函数的变换则有: ()t c st 1p cos cos Am t U ψψ=:)t]-(c s)t c [cos( Am 2 1s c ψψψψos ++ 从上式可推出,U p (t)含有两个频率分量和为(ψc +ψS ),差为(ψC -ψS )。若选频 网络是理想上边带滤波器则输出为 ]t Amcos[2 1(t)U s c i ψψ+= (1.4) 若选频网络是理想下边带滤波器则输出: ]t -Amcos[2 1(t)U s c i ψψ= (1.5) 工程上对于超外差式接收机而言,如广播电视接收机则有ψc >>ψS .往往混频器 的选频网络为下边带滤波器,则输出为差频信号,]t -Amcos[ 21(t)U s c i ψψ=。 高频电路中的混频器利用电路中的非线性,可以对两个输入信号进行频率加或减,产生和频信号或差频信号。本实验采用晶体三极管作混频电路,产生茶品信号,将高频信号转化成低频信号。 晶体管混频电路原理图如下图2-2所示。其中,晶体管起信号的混频作用,两个输入信号分别为和;电容C in1、C in2、C out 为信号输入和输出的耦合电容,起到隔直流的作用,使前后级的直流电位不相互影响,保证各级工作的稳定性;电容C e 对高频交流信号相当于短路,消除偏置电阻R e 对高频信号的负反馈作用,提高高频信号的增益;电阻元件R b1、R b2、R e 决定晶体管的工作点;电路中的电感L 和电容C 组成的谐振电路起选频作用,在产生的组合频率中选择所需要的中频输出信号。

多通道混频器电路的设计 protel 软件实训 课设 沈阳理工大学

成绩评定表 学生姓名张丽班级学号1203060101 专业通信工程课程设计题目多通道混频器电路 的设计 评 语 组长签字: 成绩 日期20 年月日

课程设计任务书 学院信息科学与工程学院专业通信工程 学生姓名张丽班级学号1203060101 课程设计题目多通道混频器电路的设计 实践教学要求与任务 1. 认真完成protel软件学习,熟练掌握基本操作。 2.绘制多通道混频器的电路原理图,要求布局符合电器规范、制图美观、可读性好。 3.采用protel绘制多通道混频器的电路原理图并用PCB完成相应的双面印刷版图。 4. 提交课程设计报告,要求条理清楚、图文并茂,体现制图的必要过程。 工作计划与进度安排 1:分析题目,查阅课题相关资料; 2:使用protel软件绘制多通道混频器电路的原理图; 3:绘制多通道混频器电路的双层印刷版原理图; 4:撰写课程设计报告,进行答辩验收。 指导教师: 201 5年1月5 日专业负责人: 201 5 年1 月5 日 学院教学副院长: 201 5 年1月5 日

摘要 混频是一种频率变换过程,是将信号从某一频率变换为另一频率,把已调制信号(调幅波或调频波)的载波频率从高频变换成固定的中频。设计的混频器电路,带有8个输入通道,2个输出通道。利用多通道设计方法,子图上建立一个输入通道,一个输出通道,就可以完成。通过熟悉对多通道混频器电路的Protel DXP设计,增强对复杂的电路的设计能力和对Protel DXP的应用能力。并对PCB板的整个设计过程有一个更为清晰的认识,掌握自上而下的层次原理图并实现双面印刷板设计。 关键字:混频器、Protel DXP、PCB

相关文档
最新文档