新人教版七年级数学下册《实数》题型
人教版七年级数学下册 第六章 实数。单元测试题精选(Word版附答案)
人教版七年级数学下册第六章实数。
单元测试题精选(Word版附答案)人教版七年级数学第6章《实数》单元测试题精选完成时间:120分钟满分:150分得分评卷人:______________ 姓名:______________ 成绩:______________一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10答案 B A D A A C D C B B二、填空题(每题5分,共20分)11.m = 3.n = 1.(m+n)^5 = 243.12.(1) 0.000 521 7 (2) 0.002 284.13.3.14.x = 8.三、解答题(共90分)15.1) x = ±5/3;2) x = 3/5.16.1.17.a = 9.b = -8.3a+b的算术平方根为 5.18.已知 $m=\lfloor 313\rfloor$。
$n=0.13$,求 $m-n$ 的值。
19.如图,计划围一个面积为 $50\text{ m}^2$ 的长方形场地,一边靠旧墙(墙长为 $10$ m),另外三边用篱笆围成,并且它的长与宽之比为 $5:2$。
讨论方案时,XXX说:“我们不可能围成满足要求的长方形场地。
”小军说:“面积和长宽比例是确定的,肯定可以围得出来。
”请你判断谁的说法正确,为什么?解:设长为 $5x$,宽为 $2x$,则面积为 $10x^2$,另一条边长为 $10-5x$,由题意得 $10x^2=(10-5x)\times2x$,解得$x=1$,长为 $5$,宽为 $2$,可以围成满足要求的长方形场地,小军的说法正确。
20.若 $x+3+(y-3)^2=3$,则 $(xy)^{\frac{2015}{3}}$ 等于多少?解:移项得 $(y-3)^2=3-x-3=-x$,所以 $xy=\frac{3-x}{y-3}$,将其代入 $(xy)^{\frac{2015}{3}}$ 得 $\left(\frac{3-x}{y-3}\right)^{\frac{2015}{3}}$,根据乘方的运算法则,得$\left(\frac{3-x}{y-3}\right)^{671}$。
(新人教版)数学七年级下册:《实数》习题及答案
实数一、填空:1.若无理数a 满足:1<a<4,请写出两个你熟悉的无理数:•_____,•______.2._________.的相反数是________.π|=________.5.比较大小:3______,1636.大于_______.7.设a 是最小的自然数数,b 是最大负整数,c 是绝对值最小的实数,则a+b+c=______.二、选择:8.(2003年上海市)下列命题中正确的是( )A.有限小数不是有理数B.无限小数是无理数C.数轴上的点与有理数一一对应D.数轴上的点与实数一一对应9.(2004年安徽省)下列四个实数中是无理数的是( ) A.2.5 B.103C.πD.1.414 10.(2004年杭州市)有下列说法:①带根号的数是无理数;•②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根,其中正确的有( )A.0个B.1个C.2个D.3个11.-53、、-2π四个数中,最大的数是( )A.53D.-2π12.在实数范围内,下列各式一定不成立的有( )(1)=0;(2)+a=0;(3)+=0;(4)12a-=0.A.1个B.2个C.3个D.4个三、解答:13.把下列各数分别填在相应的集合中:-1112.4π,..0.23,3.14有理数集合无理数集合14.根据右图拼图的启示:(1)面积为8(2)(3)15.已知坐标平面内一点A(-2,3),将点A个单位,再向个单位,得到A′,则A′的坐标为________.16.阅读下面的文字,解答问题.是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,-1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,的整数部分是1,•将这个数减去其整数部分,差就是小数部分.请解答:已知=x+y,其中x是整数,且0<y<1,求x-y的相反数.答案:1.答案不唯一,如:12.±3.- ,-π-3 5.<,>,>,= 6.-4 7.-18.D 9.C 10.B 11.B 12.C13.有理数集合: -1112..0.23,3.14 .无理数集合4π..-1, x-y 。
人教版七年级下册数学第六章实数 测试题及答案
人教版七年级下册数学第六章实数测试题及答案人教版七年级数学下册第六章实数一、单选题1.下列说法正确的是()A。
真命题的逆命题都是真命题B。
无限小数都是无理数C。
0.720精确到了百分位D。
16的算术平方根是22.(-9)²的平方根是x,6根是y,则x+y的值为()A。
3B。
7C。
3或7D。
1或73.3(-1)²的立方根是()A。
-1B。
1C。
-4D。
44.若在数轴上画出表示下列各数的点,则与原点距离最近的点是()A。
-1B。
-1/2C。
3/2D。
25.若a=2,则a的值为()A。
2B。
±2C。
4D。
±46.下列计算中,错误的是()A。
30.125=0.5B。
3-273=-644C。
33/31=1/82D。
-3/8²=-125/577.下列说法正确的是()A。
实数分为正实数和负实数B。
3/2是有理数C。
0.9是有理数D。
30.01是无理数8.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a²的算术平方根是a;④(π-4)²的算术平方根是π-4;⑤算术平方根不可能是负数。
其中,不正确的有() A。
2个B。
3个C。
4个D。
5个9.一个正方体的水晶砖,体积为100 cm³,它的棱长大约在()A。
4 cm~5 cm之间B。
5 cm~6 cm之间C。
6 cm~7 cm之间D。
7 cm~8 cm之间10.计算-4-|-3|的结果是()A。
-1B。
-5C。
1D。
5二、填空题11.已知(x-1)³=64,则x的值为4.12.若式子1/(x-1)有意义,则化简|1-x|+|x+2|=3.13.若a与b互为相反数,则它们的立方根的和是0.14.若3x+3y=0,则x与y关系是x=-y。
15.平方等于1/64的数是1/8.16.-27的立方根是-3.三、解答题17.1) 33+53=36;2) |1-2|+|3-2|=2.18.1) (x+1)²=16,解得x=3或x=-5;2) 3(x+2)²=27,解得x=1或x=-5.19.1) 16+3-27-1=-9;2) (-2)²+|2-1|-(2-1)=1.20.a²-b²-(a-b)²=2ab,所以a=3,b=2,代入得9/16.21.1) x=±11/3;2) x=2.22.对于实数a,规定用符号$\lfloor a \rfloor$表示不大于a 的最大整数,称$\lfloor a \rfloor$为a的根整数,例如:$\lfloor 9 \rfloor = 3$,$\lfloor 10 \rfloor = 3$。
七年级下册人教版数学第六章实数知识要点及经典题型
七年级下册人教版数学第六章实数知识要点及经典题型
摘要:
I.实数的分类
A.整数
B.有理数
C.无理数
II.实数的性质
A.实数的运算
B.实数的比较
C.实数的绝对值
III.经典题型解析
A.整数和有理数的运算
B.无理数的求解
C.实数的比较和排序
IV.实数的应用
A.生活中的实数应用
B.科学中的实数应用
C.实数与其他领域的联系
正文:
实数是数学中的一个重要概念,它在我们的日常生活中有着广泛的应用。
在七年级下册人教版数学中,第六章主要介绍了实数的相关知识要点和经典题
型。
首先,实数可以分为整数、有理数和无理数三类。
整数包括正整数、负整数和零;有理数是可以表示为两个整数之比的数,包括整数、分数和小数(有限小数和循环小数);无理数则是不能表示为两个整数之比的数,如圆周率π等。
其次,实数具有许多性质。
在实数的运算中,我们需要遵循交换律、结合律和分配律;在实数的比较中,我们可以根据它们的大小关系来进行排列;实数的绝对值是一个非负数,表示距离原点的距离。
接下来,本章通过解析经典题型,帮助学生更好地理解实数的知识要点。
例如,在整数和有理数的运算题目中,我们需要熟练掌握加法、减法、乘法和除法的运算规则;在无理数的求解题目中,我们需要运用一些特殊方法,如平方根、立方根等;在实数的比较和排序题目中,我们需要灵活运用实数的性质来进行比较。
最后,实数在我们的生活中有着广泛的应用。
例如,在购物时,我们需要计算价格;在科学研究中,实数在物理、化学等领域发挥着重要作用;在艺术领域,实数与音乐、绘画等也有着密切的联系。
新人教版初中数学七年级数学下册第二单元《实数》测试题(含答案解析)(4)
一、选择题1.对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( )A .﹣40B .﹣32C .18D .102.64的算术平方根是( ) A .8 B .±8 C .22D .22± 3.下列说法中,正确的是( )A .无理数包括正无理数、零和负无理数B .无限小数都是无理数C .无理数都是无限不循环小数D .无理数加上无理数一定还是无理数4.下列命题中,①81的平方根是9;②16的平方根是±2;③−0.003没有立方根;④−64的立方根为±4;⑤5,其中正确的个数有( )A .1B .2C .3D .45.如图,数轴上表示实数5的点可能是( )A .点PB .点QC .点RD .点S6.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .4077.实数a 、b 在数轴上的位置如图所示,且||||b a >,则化简233||()a a b b -++-的结果是( )A .2aB .2bC .22a b +D .08.已知:m 、n 为两个连续的整数,且5m n <<,以下判断正确的是( ) A 545 B .3m =C 50.236D .9m n += 9.下列有关叙述错误的是( )A 2B 2是2的平方根C .122<<D .22是分数 10.若1a >,则a ,a -,1a的大小关系正确的是( )A .1a a a >->B .1a a a >->C .1a a a >>-D .1a a a ->> 11.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n12.估计511-的值在( )A .5~6之间B .6~7之间C .7~8之间D .8~9之间二、填空题13.已知1,25x a y a =-=-.(1)已知x 的算术平方根为3,求a 的值;(2)如果x y ,都是同一个数的平方根,求这个数.14.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小.15.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +4d +求23c d -的平方根.16.求下列各式中x 的值:(1)()214x -=;(2)3381x =-.17.计算题.(1)12(7)6(22)-+----(2)2312272⨯ (3316(2)(4)-⨯-(4)13248243⎛⎫-⨯-+- ⎪⎝⎭ 18.把下列各数填在相应的集合里:4,3.5,0,3π,5-4,10%,2-3,2016,﹣2.030030003…(每两个3之间依次多一个0)正分数集合{ …}负有理数集合{ …}非负整数集合{ …}无理数集合{ …}.19.若|2|30a b --=,则a b +=_________.20.-8的立方根是__________;∣12-∣=__________. 三、解答题21.求下列各式中的x :(1)2940x -=;(2)3(1)8x -=22.已知一个正数的平方根是3a +和215a -.(1)求这个正数.(212a +的平方根和立方根.23.已知1,25x a y a =-=-.(1)已知x 的算术平方根为3,求a 的值;(2)如果x y ,都是同一个数的平方根,求这个数.24.3189124-25.若()220b -+=,求()2020a b +的值.26.设2+x 、y ,试求x 、y 的值与1x -的立方根.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】直接利用题中的新定义给出的运算公式计算得出答案.【详解】解:(-5)※4=(﹣5)2﹣42+1=10.故选:D .【点睛】本题主要考查了实数运算,以及定义新运算,正确运用新定义给出的运算公式是解题关键.2.C解析:C【分析】【详解】,8的算术平方根是,.故选择:C .【点睛】本题考查一个数的算术平方根的算术平方根,掌握求算式的平方根,一定要把算式化简得到结果后再求是解题关键.3.C解析:C【分析】根据实数的概念和分类即可判断.【详解】A 、无理数包括正无理数和负无理数,则此项错误;B 、无限循环小数是有理数,无限不循环小数是无理数,则此项错误;C 、无理数都是无限不循环小数,则此项正确;D (0=,则此项错误;故选:C .【点睛】本题考查了实数的概念和分类,熟练掌握实数的概念是解题关键. 4.A解析:A【分析】根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断.【详解】解:81的平方根是±9,所以①错误;±2,所以②正确;-0.003有立方根,所以③错误;−64的立方根为-4,所以④错误;⑤正错误.故选:A .【点睛】本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.5.B解析:B【分析】【详解】 ∵23<<,∴Q .故选:B .【点睛】6.D解析:D【分析】分别算出某数各个数位上数字的立方和,看其是否等于某数本身,若等于即为“水仙花数”,若不等于,即不是“水仙花数” .【详解】解:∵333135153135++=≠,∴A 不是“水仙花数”;∵332216220+=≠,∴B 不是“水仙花数”;∵333345216345++=≠,∴C 不是“水仙花数”;∵3347407+=,∴D 是“水仙花数”;故选D .【点睛】本题考查新定义下的实数运算,正确理解题目所给概念并熟练应用实数运算法则去完成有关计算是解题关键.7.A解析:A【分析】根据数轴可得a>0,b<0,然后根据加法法则可得a +b <0,然后根据平方根的性质和绝对值的性质及立方根化简即可.【详解】解:由数轴可得:a>0,b<0,∵|a |<|b |,∴a +b <0,∴||a b +=()a a b b ++-=2a故选A .【点睛】此题考查的是平方根的化简和绝对值的化简及开立方根,掌握利用数轴判断各字母的符号、加法法则、平方根的性质和绝对值的性质是解题关键.8.A解析:A【分析】根据无理数的估算、实数的运算即可得.【详解】459<<,<<23<<,22,则选项C 错误;∴)224-=A 正确;又m 、n 为两个连续的整数,且m n <<,2,3m n ==∴,则选项B 错误;235m n∴+=+=,则选项D错误;故选:A.【点睛】本题考查了无理数的估算、实数的运算,熟练掌握无理数的估算方法是解题关键.9.D解析:D【分析】根据正数、平方根、无理数的估算与定义逐项判断即可得.【详解】AB是2的平方根,此项叙述正确;C、12<<,此项叙述正确;D故选:D.【点睛】本题考查了正数、平方根、无理数的估算与定义,熟练掌握各定义是解题关键.10.C解析:C【分析】可以用取特殊值的方法,因为a>1,所以可设a=2,然后分别计算|a|,-a,1a,再比较即可求得它们的关系.【详解】解:设a=2,则|a|=2,-a=-2,112a=,∵2>12>-2,∴|a|>1a>-a;故选:C.【点睛】此类问题运用取特殊值的方法做比较简单.11.B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n和p互为相反数,∴原点在线段PN的中点处,∴绝对值最大的一个是Q点对应的q.故选B.【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.12.B解析:B【分析】的取值即可得到答案.【详解】<<,由题意得78∴<<,6171介于6~7之间.故选B.【点睛】二、填空题13.(1)a=-8;(2)1或9【分析】(1)根据平方运算可得(1-a)的值求解可得答案;(2)根据题意可知相等或互为相反数列式求解可得a的值根据平方运算可得答案【详解】解:(1)∵x的算术平方根是3∴解析:(1)a=-8;(2)1或9.【分析】(1)根据平方运算,可得(1-a)的值,求解可得答案;,相等或互为相反数,列式求解可得a的值,根据平方运算,可得(2)根据题意可知x y答案.【详解】解:(1)∵x的算术平方根是3,∴1-a=9,∴a=-8;(2)x,y都是同一个数的平方根,∴1-a=2a-5或1-a+(2a-5)=0,解得a=2,或a=4,当a=2时,(1-a )=(1-2)2=1,当a=4时,(1-a )=(1-4)2=9,答:这个数是1或9.【点睛】本题考查了平方根和算术平方根,注意第(2)问符合条件的答案有两个,小心漏解. 14.(1);(2)①见解析;②见解析【分析】(1)设正方形边长为a 根据正方形面积公式结合平方根的运算求出a 值则知结果;(2)①根据面积相等利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正 解析:(1)2,2-;(2)①见解析;②见解析, 350.5-+<-【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a ,∵a 2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b ,∴b 2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.15.(1);(2);(3)【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知再利用绝对值的性质化简绝对值号继而求得答案;(3)根据非负数的性质求出的值再代入进而求其平方根【详解】解:(1)∵解析:(1);(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示∴点B 表示∴m =.(2)∵m = ∴12130m +=+=>,12110m -=-=< ∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +∴20c d +=∴2040c d d +=⎧⎨+=⎩ ∴24c d =⎧⎨=-⎩∴()23223416c d -=⨯-⨯-= ∴4==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.16.(1)x=3或x=-1;(2)x=-3【分析】(1)利用直接开平方法求解即可;(2)利用立方根的定义求解即可【详解】(1)直接开平方得:解得:(2)两边同时除以3得:开立方得:【点睛】本题考查了平方解析:(1)x=3或x=-1;(2)x=-3.【分析】(1)利用直接开平方法求解即可;(2)利用立方根的定义求解即可.【详解】(1)()214x -=直接开平方得:12x -=±,解得:13x =,21x =-(2)3381x =-两边同时除以3得:327x =-,开立方得:3x =-.【点睛】本题考查了平方根和立方根的性质,解题的关键是利用平方根和立方根的性质求解方程. 17.(1)-3(2)-1(3)2(4)-20【分析】(1)先去括号在进行加减运算(2)先进行平方和开方在进行乘法和减法的运算(3)先进行开方和平方在由左至右进行除法和乘法的运算(4)首先去括号内的绝对值解析:(1)-3(2)-1(3)2(4)-20【分析】(1)先去括号在进行加减运算.(2)先进行平方和开方,在进行乘法和减法的运算.(3)先进行开方和平方,在由左至右进行除法和乘法的运算.(4)首先去括号内的绝对值,在进行括号内的分式加减,最后相乘.【详解】(1)12(7)6(22)-+----=127622---+=3-(2)2122⨯ 1=432⨯- =1-(33(2)(4)-⨯-=4(8)(4)÷-⨯-1=(-)(4)2⨯- =2(4)13248()243-⨯-+- 1248()43=-⨯-+ 54812=-⨯ 20=-【点睛】考察有理数的混合运算,掌握运算法则的顺序是解答本题的关键.18.510;;402016;﹣2030030003…(每两个3之间依次多一个0)【分析】根据实数的分类即可求出答案【详解】解析:5,10%;52,43--;4,0,2016;3π,﹣2.030030003…(每两个3之间依次多一个0)【分析】根据实数的分类即可求出答案.【详解】 19.5【分析】根据非负数的性质列式求出ab 的值然后相加即可【详解】解:根据题意得解得∴故答案为:5【点睛】本题考查了非负数的性质:有限个非负数的和为零那么每一个加数也必为零解析:5【分析】根据非负数的性质列式求出a 、b 的值,然后相加即可.【详解】解:根据题意得,20a -=,30b -=,解得2a =,3b =,∴235a b +=+=.故答案为:5.【点睛】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零. 20.【分析】根据立方根的定义无理数的估算绝对值运算即可得【详解】的立方根是;故答案为:【点睛】本题考查了立方根无理数的估算绝对值运算熟练掌握立方根的定义和无理数的估算方法是解题关键解析:2-1【分析】根据立方根的定义、无理数的估算、绝对值运算即可得.【详解】()328-=-,8∴-的立方根是2-;21>,1>,10∴-<,11∴=,故答案为:2-1.【点睛】本题考查了立方根、无理数的估算、绝对值运算,熟练掌握立方根的定义和无理数的估算方法是解题关键.三、解答题21.1)23x =±;(2)3 【分析】(1)先将原方程移项、系数化为1后,再利用平方根的定义求解即可;(2)先利用立方根的定义求得12x -=,解此方程即可.【详解】解:(1)2940x -= 294x =249x = 23x =±; (2)3(1)8x -=12x -=3x =.【点睛】此题考查了利用平方根、立方根解方程,解答此题的关键是掌握平方根与立方根的定义并能准确理解题意.22.(1)441或49;(2)2±【分析】(1)分情况讨论,这两个平方根相等或互为相反数,求出a 的值,在算出这个正数;(2)由(1)的结果分情况讨论,根据平方根和立方根的定义算出结果.【详解】解:(1)若这两个平方根相等,则3215a a +=-,解得18a =,这个正数是:()2218321441+==;若这两个平方根互为相反数,则32150a a ++-=,解得4a =,这个正数是:()2243749+==;(2)若18a ==若4a =4==,4的平方根是2±.【点睛】本题考查平方根和立方根,解题的关键是掌握平方根和立方根的定义以及计算方法. 23.(1)a=-8;(2)1或9.【分析】(1)根据平方运算,可得(1-a )的值,求解可得答案;(2)根据题意可知x y ,相等或互为相反数,列式求解可得a 的值,根据平方运算,可得答案.【详解】解:(1)∵x 的算术平方根是3,∴1-a=9,∴a=-8;(2)x ,y 都是同一个数的平方根,∴1-a=2a-5或1-a+(2a-5)=0,解得a=2,或a=4,当a=2时,(1-a )=(1-2)2=1,当a=4时,(1-a )=(1-4)2=9,答:这个数是1或9.【点睛】本题考查了平方根和算术平方根,注意第(2)问符合条件的答案有两个,小心漏解.24.1+【分析】先根据开方的意义,绝对值的意义进行化简,最后计算即可求解.【详解】解:原式123122=-+++⨯1=+ 【点睛】本题考查了实数的混合运算,理解开方的意义,能正确去绝对值是解题关键.25.1【分析】根据平方的非负性、开平方的非负性求出a 、b 的值,代入计算即可.【详解】解:∵()220b -+=,∴20b -+=,210a b +-=,解得:2b =,3a =-,∴()()20202020321a b +=-+=. 【点睛】此题考查平方的非负性、开平方的非负性,有理数的混合运算,正确理解平方的非负性、开平方的非负性是解题的关键.26.4x =,2y =,1x -. 【分析】根据无理数的估算、立方根的定义即可得.【详解】因为469<<,所以23<<,所以22223+<++,即425<+,所以24,小数部分是242+=,即4x =,2y =,== 【点睛】本题考查了无理数的估算、立方根,熟练掌握无理数的估算方法是解题关键.。
新人教版七年级数学下册第六章实数易错题
七年级数学《实数》测试卷一、选择题(每小题3分, 共21分)A.1.的立方根是( )B.21± B.41±C.41D.21 2.数8.032032032是( )A.有限小数B.有理数C.无理数D.不能确定3..在下列各数: 0.51525354…, , 0.2, , , , , 中, 无理数的个数是( )A.2个B.3个C.4个D.5个4. 下列说法正确的是( )A. 0.25是0.5 的一个平方根B ..正数有两个平方根, 且这两个平方根之和等于0C. 7 2 的平方根是7D. 负数有一个平方根5、已知 =1.147, =2.472, =0.532 5, 则的值是( )6.满足-<<的整数是( )A.-2, -1, 0, 1, 2, 3B.-1, 0, 1, 2, 3C.-2, -1, 0, 1, 2,D.-1, 0, 1, 27、.若, 则的关系是 ( )A....B.互为相反..C.相..D.不能确定二、填空题(每小题3分, 共33分)1、的平方根是_______, -343的立方根是 。
2.如果的平方根是, 则= ; 。
3.一正方形的边长变为原来的倍, 则面积变为原来的 倍;一个立方体的体积变为原来的倍, 则棱长变为原来的 倍.4、实、在数轴上的位置如图所示, 则化简= .5、当 时, 有意义。
6.不超过的最大整数是 .7、已知一个正数的两个平方根是和, 则= , = .8、当时, 化简的结果是 。
9、 若, 则中, 最小的数是 。
10、一个圆它的面积是半径为3cm 的圆的面积的25倍, 则这个圆的半径为_______.11.若的整数部分为a, 小数部分为b, 则a =________, b =_______。
三、计算题(每题4分, 共20分)(1)()()27575+⨯-; (2)8145032-- (3)33332734312512581---+-- (4)()9-242=x ; (5)()25122=-x ;四、(第24题6分, 第25题10, 共10分)24.已知m 是的整数部分, n 是的小数部分, 求m -n 的值25.(8分)阅读下列解题过程: ,, 请回答下列回题:(1)观察上面的解答过程, 请写出 = ;(2)利用上面的解法, 请化简:26.(5分)已知: 字母、满足. 求()()()()()()2001201112211111++++++++++b a b a b a ab 的值.。
七下实数经典题型
七下实数经典题型一、实数的概念相关题型1. 若一个数的平方等于9,这个数是多少呢?这就涉及到平方根的概念啦。
我们知道正数有两个平方根,它们互为相反数。
所以这个数是±3哦。
这里考查的就是对平方根定义的理解,3的平方是9, -3的平方也是9呢。
这类型的题在考试中经常出现,就像是一个小陷阱,你得清楚平方根的性质才能答对。
2. 那什么是算术平方根呢?比如说4的算术平方根是2。
算术平方根就是一个非负数的正的平方根。
那要是问你根号16的算术平方根是多少呢?可别直接答4哦,根号16等于4,4的算术平方根是2呢。
这种题型就是要你对概念理解得很透彻,不能模棱两可。
3. 无理数也是实数里很重要的部分。
像圆周率π就是一个典型的无理数。
那怎么判断一个数是不是无理数呢?如果一个数是无限不循环小数,那它就是无理数。
比如说根号2,它是开方开不尽的数,是无限不循环小数,所以是无理数。
考试的时候经常会给你几个数,让你判断哪些是无理数,哪些是有理数,这时候就要看清楚每个数的特征啦。
二、实数的运算题型1. 计算根号8 + 根号18。
这就需要先把根号下的数化简。
根号8可以化简成2倍根号2,根号18可以化简成3倍根号2,然后再相加,结果就是5倍根号2。
做这类题的时候,一定要熟练掌握根式的化简方法,不然就很容易出错。
2. 还有就是实数的混合运算,像 2 + 3×根号 2 - 5。
按照先乘除后加减的顺序计算,这里先算乘法3×根号2,然后再依次进行加减运算。
这就要求我们对运算顺序和实数的运算规则都牢记于心。
3. 比较实数的大小也是常考的题型。
比如比较根号3和 1.73的大小。
我们可以把根号3的值估算一下,根号3约等于1.732,这样就可以得出根号3大于1.73。
这种题要学会估算无理数的大致范围,才能准确比较大小。
三、实数在数轴上的表示题型1. 如何在数轴上表示根号2呢?我们可以利用勾股定理,画一个直角边为1的等腰直角三角形,它的斜边就是根号2。
人教版初中七年级数学下册第六单元《实数》经典练习题(含答案解析)
一、选择题1.下列各数中比( )A .2-B .1-C .12-D .0A 解析:A【分析】根据实数比较大小的方法分析得出答案即可.【详解】A .|2|2-=,|= ∴2>2∴-<B .|1|1-=,|= ∴1<,1∴->C .1122-=,|=, 1∴->2D .0>故选:A .【点睛】此题主要考查了实数的大小比较,正确掌握比较方法是解题的关键.2.在 1.4144-,,227,3π,2,0.3•,2.121112*********...中,无理数的个数( )A .1B .2C .3D .4D 解析:D【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】 1.4144-,有限小数,是有理数,不是无理数;227,分数,是有理数,不是无理数; 0.3•,无限循环小数,是有理数,不是无理数;2-, 3π,23-, 2.121112*********...是无理数,共4个, 故选:D . 【点睛】本题主要考查了无理数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.估算481的值( )A .在7和8之间B .在6和7之间C .在5和6之间D .在4和5之间C解析:C【分析】利用36<48<49得到6<48<7,从而可对48−1进行估算.【详解】 解:∵36<48<49,∴6<48<7,∴5<48-1<6.故选:C .【点睛】本题考查了估算无理数的大小:估算无理数大小要用逼近法.4.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 13解析:B【分析】首先确定A ,B 对应的数,再分别估算四个选项的数值进行判断即可.【详解】解:由数轴得,A 点对应的数是1,B 点对应的数是3,A.-2<3<-1,不符合题意;B.27<3,符合题意;C 、3114,不符合题意;D. 3134,不符合题意;故选:B【点睛】本题主要考查了对无理数的估算.5.85-的整数部分是( ) A .4 B .5 C .6 D .7B 解析:B【分析】直接利用估算无理数的大小的方法得出253<<,进而得出答案. 【详解】解:459<<,459∴<<,即253<<,838582∴-<-<-,5856∴<-<,85∴-的整数部分是5.故选:B .【点睛】本题主要考查了估算无理数的大小,正确得出5的取值范围是解题关键.6.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n A 解析:A【分析】根据题意可判断0在线段NQ 的中点处,再根据绝对值的意义即可进行判断.【详解】解:因为0n q +=,所以n 、q 互为相反数,0在线段NQ 的中点处,所以点P 距离原点的距离最远,即m ,n ,p ,q 四个实数中,绝对值最大的一个是p . 故选:A .【点睛】本题考查了实数与数轴以及线段的中点,正确理解题意、确定数轴上原点的位置是解题关键.7.下列实数中,属于无理数的是( )A .3.14B .227C 4D .πD解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A 、3.14是小数,是有理数,故A 选项错误;B 、227是有限小数,是有理数,故B 选项错误;C =2是整数,是有理数,故C 选项错误.D 、π是无理数,故D 选项正确故选:D .【点睛】本题考查了无理数的定义,无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.一个正方体的体积为16,那么它的棱长在( )之间A .1和2B .2和3C .3和4D .4和5B解析:B【分析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.【详解】设正方体的棱长为x ,由题意可知316x =,解得x =,∵332163<<, ∴23<,那么它的棱长在2和3之间.故选:B .【点睛】的范围.9.在0,3π227, 6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有( ). A .1个B .2个C .3个D .4个C解析:C【分析】先计算算术平方根,再根据无理数的定义即可得.【详解】 22 3.1428577=小数点后142857是无限循环的,则227是有理数,3=-,则因此,题中的无理数有3π 6.1010010001(相邻两个1之间0的个数在递增),故选:C .【点睛】本题考查了无理数、算术平方根,熟记无理数的定义是解题关键.10.1的值在( )A .5~6之间B .6~7之间C .7~8之间D .8~9之间B解析:B【分析】的取值即可得到答案.【详解】由题意得78<<,617∴<<,1介于6~7之间.故选B .【点睛】二、填空题11.计算:(1321(2)(10)4---⨯-(2)225(24)-⨯--÷1)-12(2)-12【分析】(1)(2)两小题都属于实数的混合运算先计算乘方和开方再计算乘除最后再算加减即可得出结果【详解】解:(1)(2)【点睛】本题考查了实数的混合运算根据算式确定运算顺序并解析:(1)-12,(2)-12.【分析】(1)、(2)两小题都属于实数的混合运算,先计算乘方和开方,再计算乘除,最后再算加减即可得出结果.【详解】解:(1321(2)(10)4---⨯- 1100458=⨯+- 1325=-12=-,(2)225(24)-⨯--÷45(24)3=-⨯--÷208=-+12=-.【点睛】本题考查了实数的混合运算,根据算式确定运算顺序并运用相应的运算法则正确计算是解题的关键.12.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.(1);(2);(3)【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知再利用绝对值的性质化简绝对值号继而求得答案;(3)根据非负数的性质求出的值再代入进而求其平方根【详解】解:(1)∵解析:(1)2+2;(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-∴点B 表示2+2∴2+2m =-.(2)∵2+2m =-∴1221230m +=-+=->,1221210m -=--=-<∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +4d +∴20c d +=∴2040c d d +=⎧⎨+=⎩∴24c d =⎧⎨=-⎩∴()23223416c d -=⨯-⨯-= ∴4==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.13.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a +数.ab ;-6【分析】原式去括号合并得到最简结果利用相反数及非负数的性质求出a 与b 的值代入计算即可求出值【详解】解:原式=2a2-2ab-(2a2-3ab )=2a2-2ab-2a2+3ab=ab ∵与互为解析:ab ;-6.【分析】原式去括号合并得到最简结果,利用相反数及非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:原式=2a 2-2ab-(2a 2-3ab )=2a 2-2ab-2a 2+3ab= ab , ∵2a +∴,∴a+2=0,30b -=,解得:a=-2,3b =,当a=-2,b=3时,原式=-6.【点睛】此题考查了整式的加减-化简求值,以及算术平方根的非负性,熟练掌握运算法则是解本题的关键.14.求出x 的值:()23227x +=x =1或x =﹣5【分析】依据平方根的性质可得到x+2的值然后解关于x 的一元一次方程即可【详解】解:∵3(x+2)2=27∴(x+2)2=9∴x+2=±3解得:x =1或x =﹣5【点睛】本题主要考查的是 解析:x =1或x =﹣5【分析】依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可.【详解】解:∵3(x +2)2=27,∴(x +2)2=9,∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.15.计算:3011(2)(200422-+---【分析】根据运算法则和运算顺序准确计算即可【详解】解:【点睛】本题考查了实数得混合运算掌握运算法则和顺序是解题的关键解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(200422-+-- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.16.计算:(1(2)0(0)|2|π--(3)解方程:4x 2﹣9=0.(1)-8;(2)1﹣;(3)x =±【分析】(1)利用算数平方根立方根及二次根式性质计算即可;(2)利用零指数幂立方根及绝对值的代数意义进行化简即可;(3)方程变形后利用开方运算即可求解【详解】解:解析:(1)-8;(2)13)x =±32. 【分析】(1)利用算数平方根、立方根及二次根式性质计算即可;(2)利用零指数幂、立方根及绝对值的代数意义进行化简即可;(3)方程变形后,利用开方运算即可求解.【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-=(3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键.17.已知a 的整数部分,b 的小数部分,求代数式(1b a -的平方根.【分析】根据可得即可得到的整数部分是3小数部分是即可求解【详解】解:∵∴∴的整数部分是3则的小数部分是则∴∴9的平方根为【点睛】本题考查实数的估算实数的运算平方根的定义掌握实数估算的方法是解题的关键 解析:3±.【分析】根据223104<<可得34<<的整数部分是3,小数部分是3,即可求解.【详解】解:∵223104<<, ∴34<<, ∴3,则3a =3,则3b =,∴(()1312339a b ---=-=-=, ∴9的平方根为3±.【点睛】本题考查实数的估算、实数的运算、平方根的定义,掌握实数估算的方法是解题的关键. 18.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.(1);(2)【分析】(1)方程整理后利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)解得:或;(2)解得:【点睛】本题主要考查解方程涉及到立方根平方根解解析:(1)132x =,272x =-;(2)6x = 【分析】(1)方程整理后,利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)21(1)64x +-= 225(1)4x += 512x +=± 解得:32x =或72x =-; (2)3(1)125x -=15x -=解得:6x =.【点睛】本题主要考查解方程,涉及到立方根、平方根,解题的关键是熟练掌握开平方、开立方根的方法.19.已知5的整数部分为a ,5-b ,则2ab b +=_________.【分析】求出的大小推出7<<8求出a 同理求出求出b 代入求出即可【详解】解:∵∴∴∴∴故答案为:【点睛】此题考查了无理数的大小的应用关键是确定和的范围解析:37-【分析】的大小,推出7<5<8,求出a ,同理求出253<-<,求出b ,代入求出即可.【详解】解:∵479<<, ∴23<<,32-<<- ∴758<+<,253<-<,∴7a =,523b =--=-,∴()(237337ab b b a b +=+=+=-.故答案为:37-【点睛】此题考查了无理数的大小的应用,关键是确定5和5-20.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.)3cm 【分析】设球的半径为r 求出下降的水的体积即圆柱形小水桶中下降的水的体积最后根据球的体积公式列式求解即可【详解】解:设球的半径为r 小水桶的直径为水面下降了小水桶的半径为6cm 下降的水的体积是π×解析:3cm .【分析】设球的半径为r ,求出下降的水的体积,即圆柱形小水桶中下降的水的体积,最后根据球的体积公式列式求解即可.【详解】解:设球的半径为r ,小水桶的直径为12cm ,水面下降了1cm ,∴小水桶的半径为6cm ,∴下降的水的体积是π×62×1=36π(cm 3), 即34363r ππ=,解得:327r =,3r =,答:铅球的半径是3cm .【点睛】本题考查了立方根的应用,涉及圆柱的体积求解,解此题的关键是得出关于r 的方程. 三、解答题21.2-.解析:4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.【详解】解:原式282=-+-4=【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.22.计算:(1)⎛- ⎝;(2|1--解析:(1;(2)12-【分析】(1)先去括号,再利用二次根式加减运算法则进行计算;(2)直接利用绝对值的性质和立方根的性质、二次根式的性质分别化简后再相加减即可;【详解】(1)⎛- ⎝=;(2|1--=914++-=12-【点睛】考查了实数的运算,解题关键是掌握运算法则和运算顺序.23.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10+10a b <则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数.解析:(1)33;(2)21;21a -;(3)23;(47.【分析】(1)先找到91316<<,可找到34<< (2)根据因为2122a <<,即可找出a 的整数部分与小数部分(3)找到12<<在哪两个整数之间,再加10即可.(4)先确定56<<,找到233<<,由01y <<,x 是整数,即可确定x=2,5,再求7x y -=,即可求出【详解】(1)91316<< ∴34<<33故答案为:33;(2)因为2122a <<,故则a 的整数部分是21,a 的小数部分可以表示为21a -. 故答案为:21;21a -;(3)因为12<<, ∴10110102+<+<+,即111012<+<,所以=11a ,=12b ,故23a b +=,故答案为:23;(4)5306<<,23033<<,∵01y <<,x 是整数,∴x=2, ∴325-=,∴)257x y -=-=,∴x y -7.【点睛】本题考查的是无理数的整数部分与小数部分,掌握估值法确定无理数的范围,即无限不循环小数知识的拓展延伸,理解题意,按照题目所给的表示方法去解答是关键.24.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。
七年级数学(下)第六章《实数——实数》练习题含答案
七年级数学(下)第六章《实数——实数》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,是有理数的是A.0.9B.–3C.πD.1 3【答案】D【解析】A、0.9=910=31010,是无理数,故此选项错误;B、–3是无理数,故此选项错误;C、π是无理数,故此选项错误;D、13是有理数,故此选项正确.故选D.2.下列说法中错误的是A.数轴上的点与实数一一对应B.实数中没有最小的数C.a、b为实数,若a<b,则a<bD.a、b为实数,若a<b,则3a<3b【答案】C3.实数a、b在数轴上的位置如图所示,则下列各式表示正确的是A.b–a<0 B.1–a>0C.b–1>0 D.–1–b<0【答案】A【解析】由题意,可得b<–1<1<a,则b–a<0,1–a<0,b–1<0,–1–b>0.故选A.4.如图,数轴上点P表示的数可能是A2B5C10D15【答案】B24591015 251015B.5.在实数0,–2,15A.0 B.–2C.1 D5【答案】B【解析】∵0,–2,15–5–2;故选B.6.若m14n,且m、n为连续正整数,则n2–m2的值为A.5 B.7C.9 D.11【答案】B【解析】∵m14n,且m、n为连续正整数,∴m=3,n=4,则原式=7,故选B.+的值为7.|63||26A.5 B.526-C.1 D.61【答案】C【解析】原式=3–6+6–2=1.故选C.8.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1,现对72进行如下操作:72[72]=8[8]=2[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行3次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是A.82 B.182C.255 D.282【答案】C二、填空题:请将答案填在题中横线上.95__________16__________.【答案】5 25516,4的平方根是±2162.故答案为:5;±2.10.已知:n24n n的最小值为__________.【答案】624n6n,则6n是完全平方数,∴正整数n的最小值是6,故答案为:6.11.比较大小–2__________–3>”、“<”或“=”填空).【答案】<【解析】–2=50–348,5048,∴–2<–3,故答案为:<.12.用“※”定义新运算:对于任意实数a 、b ,都有a ※b =2a 2+B .例如3※4=2×32+4=22※2=__________. 【答案】8※2=2×3+2=6+2=8.故答案为:8.13.计算:|+.【解析】|+14.计算:|2.【答案】3【解析】|2–2+5. 故答案为:3.三、解答题:解答应写出文字说明、证明过程或演算步骤.15.计算:(1)–14–2|(2)4(x +1)2=25【解析】(1)原式=–1–2–3+2=–4 (2)方程整理得:(x +1)2=254, 开方得:x +1=±52, 解得:x =1.5或x =–3.5.16.把下列各数填在相应的大括号内:20%,0,3π,3.14,–23,–0.55,8,–2,–0.5252252225…(每两个5之间依次增加1个2). (1)正数集合:{__________…}; (2)非负整数集合:{__________…}; (3)无理数集合:{__________…}; (4)负分数集合:{__________…}. 【解析】(1)正数集合:{20%,3π,3.14,8…};(2)非负整数集合:{8,0…};(3)无理数集合:{3π,–0.525225……}; (4)负分数集合:{–23,–0.55…}.故答案为:(1)20%,3π,3.14,8;(2)8,0;(3)3π,–0.525225…;(4)–23,–0.55.17.如图:观察实数a 、b 在数轴上的位置,(1)a __________0,b __________0,a –b __________0(请选择<,>,=填写). (2)化简:2a –2b –2()a b -.18.(1)计算并化简(结果保留根号)①|1–2|=__________; ②23|=__________; ③34|=__________; ④45(2)计算(结果保留根号):233445……20172018|.【解析】(1)①|12|=2–1;②2332;③3443④4554; 21324354.(2)原式324354+……2018201720182.。
人教版七年级数学下册第六章 实数练习题
人教版七年级数学下册第六章实数练习题第六章实数一、单选题1.计算36的相反数是()A。
-6 B。
6 C。
-36 D。
0答案:A解析:36的相反数是-36,但是选项中没有-36,所以选择最接近的-6.2.9的平方根是()A。
-3 B。
3 C。
±3 D。
0答案:B解析:9的平方根是3.3.下列各式中正确的是()A。
16=±4 B。
38=2 C。
-9=-3 D。
±493=974答案:B解析:只有选项B是正确的等式。
4.若a^2=9,3b=-2,则a+b=()A。
-5 B。
-11 C。
-5或-11 D。
±5或±11答案:C解析:a=±3,b=-2/3,所以a+b=±3-2/3=±8/3,选项C是正确的。
5.在1,4,0.…,22π,39这6个数中,无理数有()A。
1个 B。
2个 C。
3个 D。
4个答案:D解析:1是有理数,4是有理数,0.…是无理数,22π是无理数,39是有理数,所以无理数有4个。
6.实数6的相反数是()A。
-6 B。
6 C。
-1/6 D。
0答案:A解析:6的相反数是-6.7.在如图所示的数轴上,AB=AC,A,B两点对应的实数分别是3和-1,则点C所对应的实数是()A。
1+3 B。
2+3 C。
2/3 D。
2-3答案:D解析:由AB=AC可知BC=-4,所以点C所对应的实数是-1+(-4)=-5.8.在实数-√3,-2,| -2 |中,最小的是()A。
-3/2 B。
-√3 C。
-2 D。
2答案:B解析:-√3<-2<| -2 |,所以最小的是-√3.9.设n为正整数,且n<4,1<n+1<5,则n的值为()A。
2 B。
3 C。
4 D。
无法确定答案:B解析:由1<n+1<5可知2<n<4,所以n的值为3.10.用“☆”定义一种新运算:对于任意有理数x和y,x☆y=a^2x+ay+1(a为常数),如:2☆3=a^2×2+a×3+1=2a^2+3a+1.若1☆2=3,则4☆8的值为()A。
七年级数学下册第六章实数6.3实数练习卷含解析新版新人教版
6.3 实数一.选择题(共20小题)1.比较两个实数与的大小,下列正确的是()A.>B.<C.=D.不确定2.若a=﹣,b=﹣|﹣|,c=﹣,则a、b、c的大小关系为()A.a>b>c B.c>a>b C.b>a>c D.c>b>a3.若n<+1<n+1,则整数n为()A.2 B.3 C.4 D.54.估算7﹣的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.设边长为a的正方形的面积为5.下列关于a的三种说法:①a是无理数;②a可以用数轴上的一个点来表示;⑧0<a<2.其中,所有正确的序号是()A.①②B.①③C.②③D.①②③6.已知m,n是连续的两个整数,且,则mn的值为()A.6 B.12 C.20 D..307.下列说法正确的是()A.的平方根是3B.(﹣1)2010是最小的自然数C.两个无理数的和一定是无理数D.实数与数轴上的点一一对应8.有下列说法:(1)有理数和数轴上的点一一对应;(2)不带根号的数一定是有理数;(3)负数没有立方根;(4)是17的平方根.(5)两个无理数的和一定是无理数.其中正确的说法有()A.0个B.1个C.2个D.3个9.下列说法中,不正确的个数有()①实数与数轴上的点一一对应;②|a|一定是正数;③近似数8.96×104精确到百分位;④(﹣2)8没有平方根;⑤绝对值等于本身的数是正数;⑥带根号的一定是无理数;⑦在1和3之间的无理数有且只有,,,这4个,⑧2﹣的相反数是﹣2.A.4个B.5个C.6个D.7个10.下列各式计算正确的是()A.B.C.D.2+11.阅读理解:我们知道,引进了无理数后,有理数集就扩展到实数集:同样,如果引进“虚数”实数集就扩展到“复数集”现在我们定义:“虚数单位”,其运算规则是:i l=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,则i2019=()A.1 B.﹣1 C.i D.﹣i12.已知实数a=2+,则与实数a互为倒数的是()A.B.C.D.13.在下列实数,3.14159,,0,,,0.131131113…,中,无理数有()个.A.3 B.4 C.5 D.614.下列数据:﹣,021212121,,,|﹣2|,,﹣π,2003003003…(相邻两个3之间有2个0),60.12345..(小数部分由相继的正整数组成),属于无理数的个数为()A.6个B.5个C.3个D.4个15.在实数,3.1415926,0.123123123…,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有()A.2个B.3个C.4个D.5个16.一个数的立方根正好与本身相等,这个数是()A.0 B.0或1 C.0或±1 D.非负数17.下列说法正确的个数()(1)无理数就是开方不尽的数(2)无理数包括正无理数、零、负无理数(3)一个数的平方根等于它本身的是0和1(4)和互为相反数A.1个B.2个C.3个D.4个18.下列说法不正确的是()A.实数包括正实数、零、负实数B.正整数和负整数统称为整数C.无理数一定是无限小数D.2是4的平方根19.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A 点表示的数是()A.﹣2π﹣1 B.﹣1+πC.﹣1+2πD.﹣π20.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.﹣B.2﹣C.D.二.填空题(共9小题)21.写出一个满足<a<的整数a的值为.22.已知的小数部分是a,的整数部分是b,则a+b=.23.的小数部分是.24.=.25.化简﹣﹣得.26.计算﹣﹣||﹣=27.若和互为相反数,求的为.28.如图,正方形的边长是1个单位长度,则图中B点所表示的数是;若点C是数轴上一点,且点C到A点的距离与点C到原点的距离相等,则点C所表示的数是.29.已知数轴上A、B两点的距离是,点A在数轴上对应的数是2,那么点B在数轴上对应的数是.三.解答题(共1小题)30.计算:﹣.人教新版七年级下学期《6.3 实数》2020年同步练习卷参考答案与试题解析一.选择题(共20小题)1.比较两个实数与的大小,下列正确的是()A.>B.<C.=D.不确定【分析】先估算出的范围,再进行变形即可.【解答】解:∵2<<3,∴1<﹣1<2,∴<<1,即,故选:A.【点评】本题考查了实数的大小比较和估算无理数的大小,能估算出的范围是解此题的关键.2.若a=﹣,b=﹣|﹣|,c=﹣,则a、b、c的大小关系为()A.a>b>c B.c>a>b C.b>a>c D.c>b>a【分析】根据正数大于0,0大于负数,可得答案.【解答】解:∵,,∴,故选:D.【点评】本题考查了实数比较大小,正数大于0,0大于负数是解题关键.3.若n<+1<n+1,则整数n为()A.2 B.3 C.4 D.5【分析】先估算出的大小,再估算出+1的大小,从而得出整数n的值.【解答】解:∵2<<3,∴3<+1<4,∴整数n为3;故选:B.【点评】此题考查了估算无理数的大小,解题的关键是估算出的大小.4.估算7﹣的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】先估算出的范围,再估算出7﹣的范围即可.【解答】解:∵4<<5,∴7﹣的值在2和3之间;故选:A.【点评】此题主要考查了估计无理数,得出的取值范围是解题关键.5.设边长为a的正方形的面积为5.下列关于a的三种说法:①a是无理数;②a可以用数轴上的一个点来表示;⑧0<a<2.其中,所有正确的序号是()A.①②B.①③C.②③D.①②③【分析】利用正方形的面积公式得到a=,则可对①②进行判断,利用4<5<9可对③进行判断.【解答】解:∵边长为a的正方形的面积为5,∴a=,所以a为无理数,a可以用数轴上的一个点来表示;2<a<3.故选:A.【点评】本题考查了估算无理数的大小:用有理数逼近无理数,求无理数的近似值.6.已知m,n是连续的两个整数,且,则mn的值为()A.6 B.12 C.20 D..30【分析】先估算出的取值范围,得出m、n的值,进而可得出结论.【解答】解:∵9<10<16,∴3<<4,∴m=4,n=5,∴mn=4×5=20;故选:C.【点评】本题考查的是估算无理数的大小,先根据题意算出的取值范围是解答此题的关键.7.下列说法正确的是()A.的平方根是3B.(﹣1)2010是最小的自然数C.两个无理数的和一定是无理数D.实数与数轴上的点一一对应【分析】利用算术平方根定义,乘方的意义,以及实数、无理数的性质判断即可.【解答】解:A、=9,9的平方根为±3,不符合题意;B、(﹣1)2010=1,不是最小的自然数,不符合题意;C、两个无理数的和不一定是无理数,例如﹣+=0,不符合题意;D、实数与数轴上的点一一对应,符合题意,故选:D.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.8.有下列说法:(1)有理数和数轴上的点一一对应;(2)不带根号的数一定是有理数;(3)负数没有立方根;(4)是17的平方根.(5)两个无理数的和一定是无理数.其中正确的说法有()A.0个B.1个C.2个D.3个【分析】利用实数的性质及平方根定义判断即可.【解答】解:(1)实数和数轴上的点一一对应,不符合题意;(2)不带根号的数不一定是有理数,不符合题意;(3)负数有立方根,不符合题意;(4)﹣是17的平方根,符合题意;(5)两个无理数的和不一定是无理数,不符合题意,则正确的说法有1个,故选:B.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.9.下列说法中,不正确的个数有()①实数与数轴上的点一一对应;②|a|一定是正数;③近似数8.96×104精确到百分位;④(﹣2)8没有平方根;⑤绝对值等于本身的数是正数;⑥带根号的一定是无理数;⑦在1和3之间的无理数有且只有,,,这4个,⑧2﹣的相反数是﹣2.A.4个B.5个C.6个D.7个【分析】直接利用实数的性质结合无理数的定义以及相反数的定义分别分析得出答案.【解答】解:①实数与数轴上的点一一对应,正确,故此选项不合题意;②|a|一定是正数或0,错误,故此选项符合题意;③近似数8.96×104精确到百位,错误,故此选项符合题意;④(﹣2)8有平方根,错误,故此选项符合题意;⑤绝对值等于本身的数是正数或0,错误,故此选项符合题意;⑥带根号的一定是无理数,错误,例如,故此选项符合题意;⑦在1和3之间的无理数有,,,,1.4…等无数个,错误,故此选项符合题意,⑧2﹣的相反数是﹣2,正确,故此选项不合题意.故选:C.【点评】此题主要考查了实数的性质、无理数的定义以及相反数的定义,正确把握相关定义是解题关键.10.下列各式计算正确的是()A.B.C.D.2+【分析】根据同类二次根式的概念与合并法则及二次根式的性质和化简逐一计算可得.【解答】解:A.=2≠﹣2,此选项错误;B.与不能合并,即,此选项错误;C.=2,此选项正确;D.2与2不是同类二次根式,不能合并,此选项错误;故选:C.【点评】本题主要考查二次根式的化简和加减运算,解题的关键是掌握二次根式的运算性质和运算法则.11.阅读理解:我们知道,引进了无理数后,有理数集就扩展到实数集:同样,如果引进“虚数”实数集就扩展到“复数集”现在我们定义:“虚数单位”,其运算规则是:i l=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,则i2019=()A.1 B.﹣1 C.i D.﹣i【分析】根据已知得出变化规律进而求出答案.【解答】解:∵i l=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,∴每4个数据一循环,∵2019÷4=504…3,∴i2019=i3=﹣i.故选:D.【点评】此题主要考查了新定义,正确理解题意是解题关键.12.已知实数a=2+,则与实数a互为倒数的是()A.B.C.D.【分析】根据倒数的定义作答.【解答】解:实数a的倒数是==2﹣.故选:B.【点评】考查了实数的性质,乘积为1的两个实数互为倒数,即若a与b互为倒数,则ab =1;反之,若ab=1,则a与b互为倒数,这里应特别注意的是0没有倒数.13.在下列实数,3.14159,,0,,,0.131131113…,中,无理数有()个.A.3 B.4 C.5 D.6【分析】根据无理数的三种形式求解.【解答】解:=2,=8,无理数有:,,0.131131113…,,共4个.故选:B.【点评】本题考查了无理数.解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.14.下列数据:﹣,021212121,,,|﹣2|,,﹣π,2003003003…(相邻两个3之间有2个0),60.12345..(小数部分由相继的正整数组成),属于无理数的个数为()A.6个B.5个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是分数,属于有理数;021212121,,是有限小数,属于有理数;|﹣2|=2,,是整数,属于有理数;2003003003…(相邻两个3之间有2个0)是循环小数,属于有理数.无理数有:,﹣π,60.12345..(小数部分由相继的正整数组成)共3个.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.在实数,3.1415926,0.123123123…,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有()A.2个B.3个C.4个D.5个【分析】根据立方根、算术平方根进行计算,根据无理数的概念判断.【解答】解:,0.1010010001…(相邻两个1中间一次多1个0)是无理数,故选:A.【点评】本题考查的是无理数的概念、立方根、算术平方根,掌握无限不循环小数叫做无理数是解题的关键.16.一个数的立方根正好与本身相等,这个数是()A.0 B.0或1 C.0或±1 D.非负数【分析】根据立方根的定义即可求出答案.【解答】解:一个数的立方根正好与本身相等,这个数是0,±1,故选:C.【点评】本题考查立方根,解题的关键是熟练运用立方根的定义,本题属于基础题型.17.下列说法正确的个数()(1)无理数就是开方不尽的数(2)无理数包括正无理数、零、负无理数(3)一个数的平方根等于它本身的是0和1(4)和互为相反数A.1个B.2个C.3个D.4个【分析】根据无理数的定义,相反数的定义,平方根的定义,分析(1)(2)(3)(4),选出说法正确的即可.【解答】解:(1)无理数是无限不循环小数,π也属于无理数,即(1)不合题意, (2)零不属于无理数,即(2)不合题意,(3)1的平方根为±1,即(3)不合题意,(4)与相加得零,即(4)符合题意,说法正确的个数是1个,故选:A.【点评】本题考查了实数和相反数,正确掌握无理数的定义,相反数的定义,平方根的定义是解题的关键.18.下列说法不正确的是()A.实数包括正实数、零、负实数B.正整数和负整数统称为整数C.无理数一定是无限小数D.2是4的平方根【分析】根据实数的概念解答即可.【解答】解:A、实数包括正实数、零、负实数,正确;B、正整数、0和负整数统称为整数,错误;C、无理数一定是无限小数,正确;D、2是4的平方根,正确;故选:B.【点评】此题考查实数的问题,关键是根据实数的概念解答.19.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A 点表示的数是()A.﹣2π﹣1 B.﹣1+πC.﹣1+2πD.﹣π【分析】先求出圆的周长π,即得到OA的长,然后根据数轴上的点与实数一一对应的关系即可得到点A表示的数.【解答】解:∵直径为单位1的圆的周长=2π•=π,∴OA=π,∴点A表示的数为﹣π.故选:D.【点评】本题考查了实数与数轴:数轴上的点与实数一一对应.也考查了实数的估算.20.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.﹣B.2﹣C.D.【分析】由于数轴上两点间的距离应让较大的数减去较小的数,所以根据数轴上两点间距离的公式便可解答.【解答】解:由勾股定理得:正方形的对角线为,设点A表示的数为x,则2﹣x=,解得x=2﹣.故选B.【点评】此题主要考查了实数与数轴之间的对应关系,解题时求数轴上两点间的距离应让较大的数减去较小的数即可.二.填空题(共9小题)21.写出一个满足<a<的整数a的值为答案不唯一,如:2 .【分析】根据算术平方根的概念得到1<<2,4<<5,根据题意解答.【解答】解:∵1<<2,4<<5,a为整数,∴2≤a<5,∴满足<a<的整数a的值可以为2,故答案为:2(答案不唯一).【点评】本题考查的是估算无理数的大小,掌握算术平方根的概念是解题的关键.22.已知的小数部分是a,的整数部分是b,则a+b=.【分析】先分别求出和的范围,得到a、b的值,再代入a+b计算即可.【解答】解:∵2<<3,2<<3,∴a=﹣2,b=2,a+b=﹣2+2=,故答案为.【点评】本题考查了估算无理数的大小,利用夹值法估算出和的范围是解此题的关键.23.的小数部分是﹣4 .【分析】先估算出的范围,即可得出答案.【解答】解:∵4<<5,∴的小数部分是﹣4,故答案为:﹣4.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.24.=﹣4 .【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=﹣3﹣﹣﹣1+=﹣4.故答案为:﹣4.【点评】此题主要考查了实数运算,正确化简各数是解题关键.25.化简﹣﹣得8 .【分析】直接利用立方根的性质以及二次根式的性质分别化简得出答案.【解答】解:原式=10﹣﹣0.5=8.故答案为:8.【点评】此题主要考查了实数运算,正确化简各数是解题关键.26.计算﹣﹣||﹣=﹣+【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简得出答案.【解答】解:原式=3﹣3﹣(2﹣)﹣=3﹣3﹣2+﹣=﹣+故答案为:﹣ +.【点评】此题主要考查了实数运算,正确化简各数是解题关键.27.若和互为相反数,求的为.【分析】由立方根的性质可知,两个立方根互为相反数则被开方数互为相反数.【解答】解:∵和互为相反数,∴2a与b互为相反数,∴2a=﹣b,∴=﹣,故答案为﹣.【点评】本题考查立方根的性质和实数的性质;能够将立方根互为相反数转化为被开方数互为相反数是解题的关键.28.如图,正方形的边长是1个单位长度,则图中B点所表示的数是;若点C是数轴上一点,且点C到A点的距离与点C到原点的距离相等,则点C所表示的数是.【分析】根据勾股定理求出正方形的对角线的长,再根据旋转的性质求出A点的数,进而得出B点所表示的数;根据中点的定义可得点C所表示的数.【解答】解:对角线的长:,根据旋转前后线段的长分别相等,则A点表示的数=对角线的长=,B点所表示的数是,∵点C到A点的距离与点C到原点的距离相等,∴,即点C所表示的数是.故答案为:;.【点评】本题考查了实数与数轴,勾股定理和旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改,要求学生了解常见的数学思想、方法.29.已知数轴上A、B两点的距离是,点A在数轴上对应的数是2,那么点B在数轴上对应的数是.【分析】根据数轴求出点A表示的数,再分别分两种情况讨论求解点B所对应的数即可.【解答】解:∵数轴上A、B两点的距离是,点A在数轴上对应的数是2,∴点B在数轴上对应的数是.故答案为:【点评】本题考查了数轴,主要利用了数轴上数的表示,难点在于分情况讨论.三.解答题(共1小题)30.计算:﹣.【分析】本题涉及立方根、二次根式化简2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:﹣=2﹣=1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握立方根、二次根式等考点的运算.。
人教版七年级下册数学第六章实数-测试题含答案
人教版数学七年级下册第六章《实数》测试卷一、单选题1.下列说法错误的是()A .5是25的算术平方根B .1是1的一个平方根C .(-4)2的平方根是-4D .0的平方根与算术平方根都是02)A .9B .±9C .±3D .33.14的算术平方根是()A .12±B .12-C .12D .1164的值约为()A .3.049B .3.050C .3.051D .3.0525.若a 是(﹣3)2()A .﹣3BC 或﹣D .3或﹣36.在22π72-,六个数中,无理数的个数为()A .4B .3C .2D .17.正方形ABCD 在数轴上的位置如图所示,点D、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A .点CB .点DC .点AD .点B8.已知﹣2,估计m 的值所在的范围是()A .0<m<1B .1<m<2C .2<m<3D .3<m<49.的相反数是()A .2-B .22C .D .10.判断下列说法错误的是()A .2是8的立方根B .±4是64的立方根C .-13是-127的立方根D .(-4)3的立方根是-4二、填空题11.若a 2=(-3)2,则a=________。
12________.13=-7,则a =______.14______15.在实数220,-π13,0.1010010001…(相邻两个1之间依次多一个0)中,有理数的个数为B ,无理数的个数为A ,则A -B =_____.16.若两个连续整数a、b 满足a b <<,则a b +的值为________三、解答题17.若|a|=4,b =34,求a -b +c 的值18.如果一个正数m 的两个平方根分别是2a -3和a -9,求2m -2的值.19.(1)(3x+2)2=16(2)12(2x﹣1)3=﹣4.20.求下列各式的值:;21.阅读材料.点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N之间的距离,即MN=|m﹣n|.如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.(1)OA=,BD=;(2)|1﹣(﹣4)|表示哪两点的距离?(3)点P为数轴上一点,其表示的数为x,用含有x的式子表示BP=,当BP=4时,x=;当|x﹣3|+|x+2|的值最小时,x的取值范围是.22.将一个体积为0.216m3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.参考答案1.C【解析】一个正数的平方根有两个,是成对出现的.【详解】(-4)22.D【解析】根据算术平方根的定义求解.【详解】,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.3.故选:D .【点睛】考核知识点:算术平方根.理解定义是关键.3.C【解析】分析:根据算术平方根的概念即可求出答案.本题解析:∵211()24=,∴14的算术平方根为12+,故选C.4.B【解析】首先根据数的开方的运算方法,然后根据四舍五入法,把结果精确到0.001即可,求出≈3.050.故选B .5.C【解析】分析:由于a 是(﹣3)2的平方根,则根据平方根的定义即可求得a 的值,进而求得代数式的值.详解:∵a 是(﹣3)2的平方根,∴a =±3,.故选C .点睛:本题主要考查了平方根的定义,容易出现的错误是误认为平方根是﹣3.6.B【解析】【分析】根据无理数的概念解答即可.【详解】π2,是无理数.故选B .【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.B【解析】【分析】由题意可知转一周后,A 、B 、C 、D 分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A ,2所对应的点是B ,3对应的点是C ,4对应的点是D ,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D ,故答案选B .【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.8.B【解析】分析:根据被开方数越大算术平方根越大,不等式的性质,可得答案.,得:3<4,3﹣2﹣2<4﹣2,即1<m <2.故选B .点睛:本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<<4是解题的关键.9.D【解析】【分析】根据相反数的定义,即可解答.【详解】,故选D.【点睛】本题考查了实数的性质,解决本题的关键是熟记实数的性质.10.B【解析】根据立方根的意义,由23=8,可知2是8的立方根,故正确;根据43=64,可知64的立方根为4,故不正确;根据(﹣13)3=﹣127,可知﹣13是﹣127的立方根,故正确;根据立方根的意义,可知(﹣4)3的立方根是﹣4,故正确.故选:B.点睛:此题主要考查了立方根,解题关键是明确一个数的立方等于a,那么这个数就是a的立方根,由此判断即可.11.±3【解析】【分析】利用a2=(-3)2求得a2的值,再求a的平方根即可.【详解】a2=(-3)2=9,a=±3,故答案为:±3【点睛】本题考查了平方根的概念.关键是两边平方,根据平方根的意义求解.12【解析】【分析】,再求出3的算术平方根即可.【详解】,3.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.13.-343【解析】解:∵3(7)343-=-,∴a =-343.故答案为-343.14.0【解析】【分析】原式各项利用立方根定义计算后,利用有理数减法法则计算即可得到结果.【详解】原式=0.3﹣0.2﹣0.1=0.故答案为0.【点睛】本题考查了立方根,熟练掌握立方根的定义是解答本题的关键.15.-1【解析】【分析】根据无理数、有理数的定义即可得出A 、B 的值,进而得出结论.2,﹣π,0.1010010001…(相邻两个1之间多一个0)是无理数,故A =3.013,是有理数,故B =4,∴A -B =3-4=-1.故答案为:-1.【点睛】本题考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.16.5【解析】【分析】,求出a 、b 的值,即可求出答案.【详解】∵23,∴a =2,b =3,∴a +b =5.故答案为5.【点睛】本题考查了估算无理数的大小的应用,.17.17或9.【解析】【分析】根据绝对值的性质,可得a ,根据实数的运算,可得答案.【详解】a 4=,得a 4=或a 4=-,4c 16==,,当a 4=时a b c 431617-+=-+=,当a 4=-时a b c 43169-+=--+=.故a b c -+的值为17或9.本题考查了实数的性质,利用绝对值的性质得出a 的值是解题关键.18.48【解析】【分析】根据一个正数的两个平方根互为相反数求出a 的值,利用平方根和平方的关系求出m,再求出2m-2的值.【详解】解:∵一个正数的两个平方根分别是2a-3和a-9,∴(2a-3)+(a-9)=0,解得a=4,∴这个正数为(2a-3)2=52=25,∴2m-2=2×25-2=48;故答案为48.【点睛】本题考查平方根.19.(1)x 1=23,x 2=﹣2;(2)x=﹣12.【解析】【分析】运用开平方、开立方的方法解方程即可.【详解】(1)(3x +2)2=16;开平方得:3x +2=±4,移项得:3x =﹣2±4,解得:x 123=,x 2=﹣2.(2)312142x -=-().两边乘2得:(2x ﹣1)3=﹣8,开立方得:2x ﹣1=﹣2,移项得:2x =﹣1,解得:x 12=-.【点睛】本题考查了立方根和平方根,解题的关键是根据开方的方法求解.20.(1)-10;(2)4;(3)-1.【解析】【分析】利用立方根定义计算即可得到结果.【详解】(1)原式=﹣10;(2)原式=﹣(﹣4)=4;(3)原式=﹣9+8=-1.【点睛】本题考查了立方根,熟练掌握立方根的定义是解答本题的关键.21.(1)4,5;(2)点A与点C间的距离;(3)|x+2|;2或﹣6;﹣2≤x≤3.【解析】【分析】(1)根据两点间的距离公式解答;(2)根据两点间的距离的几何意义解答;(3)根据两点间的距离公式填空.【详解】(1)BD=|﹣2﹣3|=5;(2)数轴上表示数x和数﹣3两点之间的距离可表示为|x+3|;(3)当x<﹣1时,有﹣x+3﹣x﹣1=6,解得:x=﹣2;当﹣1≤x≤3时,有﹣x+3+x+1=4≠6,舍去;当x>3时,有x﹣3+x+1=6,解得:x=4.(4)当x=1时,|x+1|+|x﹣1|+|x﹣3|有最小值,此最小值是4.故答案为5,|x+3|,﹣2或4.4,1.【点睛】本题考查了绝对值,实数与数轴,解题的关键是了解两点间的距离公式和两点间距离的几何意义.22.每个小立方体铝块的表面积为0.54m2.【解析】试题分析:设小立方体的棱长是xm,得出方程8x3=0.216,求出x的值即可.试题解析:解:设小立方体的棱长是xcm,根据题意得:8x3=0.216,解得:x=0.3则每个小立方体铝块的表面积是6×(0.3)2=0.54(m2),答:每个小立方体铝块的表面积是0.54m2.点睛:本题考查了立方根的应用,关键是能根据题意得出方程.。
(完整版)人教版初一数学下册实数试题(带答案) 解析
一、选择题1.已知: []x 表示不超过x 的最大整数,例: ][3.93, 1.82⎡⎤=-=-⎣⎦,令关于k 的函数()][1k 44k k f +⎡⎤=-⎢⎥⎣⎦ (k 是正整数),例:()][313344f +⎡⎤=-⎢⎥⎣⎦=1,则下列结论错误..的是( ) A .()10f = B .()()4f k f k += C .()()1f k f k +≥D .()0f k =或12.设记号*表示求a 、b 算术平均数的运算,即*2a ba b +=,则下列等式中对于任意实数a ,b ,c 都成立的是( ).①(*)()*()a b c a b a c +=++;②*()()*a b c a b c +=+; ③*()(*)(*)a b c a b a c +=+;④()()**22aa b c b c +=+. A .①②③B .①②④C .①③④D .②④3.对一组数(),x y 的一次操作变换记为()1,P x y ,定义其变换法则如下:()()1,,P x y x y x y =+-,且规定()()()11,,n n Px y P P x y -=(n 为大于1的整数), 如,()()11,23,1P =-,()()()()()21111,21,23,12,4P P P P ==-=,()()()()()31211,21,22,46,2P P P P ===-,则()20171,1P -=( ). A .()10080,2B .()10080,2- C .()10090,2- D .()10090,24.一列数1a , 2a , 3a ,…… n a ,其中1a =﹣1, 2a =111a -, 3a =211a -,……, n a =111n a --,则1a ×2a ×3a ×…×2017a =( ) A .1 B .-1 C .2017 D .-20175.已知A ,B ,C 是数轴上三点,点B 是线段AC 的中点,点A ,B 对应的实数分别为1-C 对应的实数是( ) A1B2+C.1D.16.下列命题是真命题的有( )个 ①两个无理数的和可能是无理数;②两条直线被第三条直线所截,同位角相等;③同一平面内,垂直于同一条直线的两条直线互相平行; ④过一点有且只有一条直线与已知直线平行; ⑤无理数都是无限小数. A .2B .3C .4D .57.若实数p ,q ,m ,n 在数轴上的对应点的位置如图所示,且满足0p q m n +++=,则绝对值最小的数是( )A .pB .qC .mD .n8.设实数a ,b ,c ,满足()<0a b c ac >>,且c b a <<,则x a x b x c -+++-的最小值为( ) A .3a b c ++B .bC .+a bD .c a --9.如图,A 、B 、C 、D 是数轴上的四个点,其中最适合表示10的点是( )A .点AB .点BC .点CD .点D10.有下列说法:①在1和2之间的无理数有且只有2,3这两个;②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .②二、填空题11.对于正数x 规定1()1f x x=+,例如:11115(3),()11345615f f ====++,则f (2020)+f(2019)+……+f (2)+f (1)+1111()()()()2320192020f f f f ++⋯++=___________ 12.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.13.对于有理数a ,b ,规定一种新运算:a ※b=ab+b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上). 14.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b +的结果是_____.15.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.16.如图所示,数轴上点A 表示的数是-1,0是原点以AO 为边作正方形AOBC ,以A 为圆心、AB 线段长为半径画半圆交数轴于12P P 、两点,则点1P 表示的数是___________,点2P 表示的数是___________.17.已知M 是满足不等式27a -<N 52M N +的平方根为__________.18.若[)x 表示大于x 的最小整数,如[)56=,[)1.81-=-,则下列结论中正确的有______(填写所有正确结论的序号).①[)01=;②33055⎡⎫-=⎪⎢⎣⎭;③[)0x x -<;④[)1x x x <≤+;⑤存在有理数x 使[)0.2x x -=成立.19.定义运算“@”的运算法则为:xy 4+2@6 =____.20.对任意两个实数a ,b 定义新运算:a ⊕b=()()a a b b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是先52)⊕3=___.三、解答题21.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B 类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C 类,例如3,6,9等.(1)2020属于 类(填A ,B 或C );(2)①从A 类数中任取两个数,则它们的和属于 类(填A ,B 或C ); ②从A 、B 类数中任取一数,则它们的和属于 类(填A ,B 或C );③从A 类数中任意取出8个数,从B 类数中任意取出9个数,从C 类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A ,B 或C );(3)从A 类数中任意取出m 个数,从B 类数中任意取出n 个数,把它们都加起来,若最后的结果属于C 类,则下列关于m ,n 的叙述中正确的是 (填序号). ①2m n +属于C 类;②m n -属于A 类;③m ,n 属于同一类. 22.观察下来等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26,……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”. (1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”: 52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a ,十位数字为b ,且2≤a +b≤9,则用含a ,b 的式子表示这类“数字对称等式”的规律是_______.23.对于实数a ,我们规定:用符号为a 的根整数,例如:3=,=3.(1)仿照以上方法计算:=______;=_____.(2)若1=,写出满足题意的x 的整数值______.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次3=→=1,这时候结果为1.(3)对100连续求根整数,____次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____. 24.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N . (I )解方程:log x 4=2; (Ⅱ)log 28=(Ⅲ)计算:(lg 2)2+lg 2•1g 5+1g 5﹣2018= (直接写答案) 25.请观察下列等式,找出规律并回答以下问题. 111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯,…… (1)按照这个规律写下去,第5个等式是:______;第n 个等式是:______. (2)①计算:11111223344950⨯⨯⨯⨯++++.②若a 0=,求: ()()()()()()()()111111122339797ab a b a b a b a b +++++++++++++.26.我们知道,任意一个正整数x 都可以进行这样的分解:x m n =⨯(m ,n 是正整数,且m n ≤),在x 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m n ⨯是x 的最佳分解,并规定:()=nf x m.例如:18可分解成118⨯,29⨯或36⨯,因为1819263->->-,所以36⨯是18的最佳分解,所以()311862f == (1)填空:()6f = ;()16=f ;(2)一个两位正整数t (10t a b =+,19a b ≤≤≤,a ,b 为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求()f t 的最大值; (3)填空:①()22357f ⨯⨯⨯= ;②()42357f ⨯⨯⨯= ;27.阅读理解:一个多位数,如果根据它的位数,可以从左到右分成左、中、右三个数位相同的整数,其中a 代表这个整数分出来的左边数,b 代表的这个整数分出来的中间数,c 代表这个整数分出来的右边数,其中a ,b ,c 数位相同,若b ﹣a =c ﹣b ,我们称这个多位数为等差数. 例如:357分成了三个数3,5,7,并且满足:5﹣3=7﹣5; 413223分成三个数41,32,23,并且满足:32﹣41=23﹣32; 所以:357和413223都是等差数.(1)判断:148 等差数,514335 等差数;(用“是”或“不是”填空) (2)若一个三位数是等差数,试说明它一定能被3整除; (3)若一个三位数T 是等差数,且T 是24的倍数,求该等差数T . 28.阅读下面文字:对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭可以如下计算:原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦ 1014⎛⎫=+- ⎪⎝⎭114=-上面这种方法叫拆项法,你看懂了吗? 仿照上面的方法,计算: (1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭(2)235120192018201720163462⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭29.阅读材料:求1+2+22+23+24+…+22017的值. 解:设S=1+2+22+23+24+…+22017, 将等式两边同时乘以2得: 2S=2+22+23+24+…+22017+22018将下式减去上式得2S-S=22018-1即S=22018-1 即1+2+22+23+24+…+22017=22018-1请你仿照此法计算: (1)1+2+22+23+…+29=_____;(2)1+5+52+53+54+…+5n (其中n 为正整数); (3)1+2×2+3×22+4×23+…+9×28+10×29.30.我们知道,任意一个正整数x 都可以进行这样的分解:x m n =⨯(m ,n 是正整数,且m n ≤),在x 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m n ⨯是x 的最佳分解,并规定:()=nf x m.例如:18可分解成118⨯,29⨯或36⨯,因为1819263->->-,所以36⨯是18的最佳分解,所以()311862f == (1)填空:()6f = ;()16=f ;(2)一个两位正整数t (10t a b =+,19a b ≤≤≤,a ,b 为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求()f t 的最大值; (3)填空:①()22357f ⨯⨯⨯= ;②()42357f ⨯⨯⨯= ;【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据新定义的运算逐项进行计算即可做出判断. 【详解】A. ()f 1=][11144+⎡⎤-⎢⎥⎣⎦=0-0=0,故A 选项正确,不符合题意; B. ()f k 4+=][k 41k 444+++⎡⎤-⎢⎥⎣⎦=][k 1k 1144+⎡⎤+-+⎢⎥⎣⎦=][k 1k 44+⎡⎤-⎢⎥⎣⎦,()f k =][k 1k 44+⎡⎤-⎢⎥⎣⎦, 所以()()f k 4f k +=,故B 选项正确,不符合题意;C. ()f k 1+=k 11k 1k 2k 14444+++++⎡⎤⎡⎤⎡⎤⎡⎤-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,()f k = ][k 1k 44+⎡⎤-⎢⎥⎣⎦, 当k=3时,()f 31+=323144++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=0,()f 3= ][31344+⎡⎤-⎢⎥⎣⎦=1, 此时()()f k 1f k +<,故C 选项错误,符合题意; D.设n 为正整数,当k=4n 时,()f k =4n 14n 44+⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+1时,()f k =4n 24n 144++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+2时,()f k =4n 34n 244++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n-n=0, 当k=4n+3时,()f k =4n 44n 344++⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=n+1-n=1, 所以()f k 0=或1,故D 选项正确,不符合题意, 故选C. 【点睛】本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.2.B解析:B 【详解】 ①中(*)2b c a b c a ++=+,()*()22a b a c b ca b a c a ++++++==+,所以①成立;②中*()2a b c a b c +++=,()*2a b c a b c +++=,所以②成立; ③中()()*(*)*222a b a c b ca b a c a a b c ++++=+=+=+,所以③不成立; ④中(*)2a b a b c c ++=+,22(*2)22222a abc a b c a b b c c +++++=+==+,所以④成立. 故选B.3.D解析:D 【详解】因为()()11,10,2P -=,()()()()()21111,11,10,2=2,2P P P P -=-=-,()()()()()31211,11,22,20,4P P P P -=-=-=,()()41,14,4P -=-,()()51,10,8P -= ()()61,18,8P -=-,所以()()211,10,2n n P --=,()()21,12,2n n n P -=-,所以 ()()100920171,10,2P -=,故选D.4.B解析:B 【详解】因为1a =﹣1,所以2a =11111112a ==---(),3 a =21121112a ==--,4 a =3111112a ==---,通过观察可得:1a ,2a ,3a ,4a ……的值按照﹣1,12, 2三个数值为一周期循环,将2017除以3可得672余1,所以2017a 的值是第673个周期中第一个数值﹣1,因为每个周期三个数值的乘积为: 11212-⨯⨯=-,所以1a ×2a ×3a ×…×2017a =()()672111,-⨯-=-故选B.5.D解析:D 【分析】由B 为AC 中点,得到AB BC =,求出AB 的长,即为BC 的长,从而确定出C 对应的实数即可. 【详解】 解:如图:根据题意得:21AB BC ==, 则点C 2(12)221=, 故选:D . 【点睛】此题考查了实数与数轴,弄清数轴上两点间的距离表示方法是解本题的关键.6.B解析:B 【分析】分别根据无理数的定义、同位角的定义、平行线的判定逐个判断即可. 【详解】解:①两个无理数的和可能是无理数,比如:π+π=2π,故①是真命题; ②两条直线被第三条直线所截,同位角不一定相等,故②是假命题; ③同一平面内,垂直于同一条直线的两条直线互相平行,故③是真命题; ④在同一平面内,过一点有且只有一条直线与已知直线平行,故④是假命题; ⑤无理数是无限不循环小数,都是无限小数,故⑤是真命题. 故选:B 【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质及判定、无理数的定义,难度不大.7.C解析:C 【分析】根据0p q m n +++=,并结合数轴可知原点在q 和m 之间,且离m 点最近,即可求解.解:∵0p q m n +++= 结合数轴可得:()-=p q m n ++, 即原点在q 和m 之间,且离m 点最近, ∴绝对值最小的数是m , 故选:C . 【点睛】本题考查实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.8.C解析:C 【分析】根据ac <0可知,a ,c 异号,再根据a >b >c ,以及c b a <<,即可确定a ,−b ,c 在数轴上的位置,而|x −a |+|x +b |+|x −c |表示x 到a ,−b ,c 三点的距离的和,根据数轴即可确定. 【详解】 解:∵ac <0, ∴a ,c 异号, ∵a >b >c , ∴a >0,c <0, 又∵c b a <<, ∴b >0, ∴ a >b >0>c >-b又∵|x −a |+|x +b |+|x −c |表示x 到a ,−b ,c 三点的距离的和, 当x 在c 时,|x −a |+|x +b |+|x −c |最小, 最小值是a 与−b 之间的距离,即a +b 故选:C . 【点睛】本题考查了绝对值函数的最值问题,解决的关键是根据条件确定a ,−b ,c 之间的大小关系,把求式子的最值的问题转化为距离的问题,有一定难度.9.D解析:D 【分析】根据<4即可得到答案. 【详解】 ∵9<10<16, ∴<4,∴的点是点D ,故选:D .此题考查利用数轴表示实数,实数的大小比较,正确比较实数是解题的关键.10.D解析:D 【分析】根据无理数的定义与运算、实数与数轴逐个判断即可得. 【详解】①在1和2之间的无理数有无限个,此说法错误; ②实数与数轴上的点一一对应,此说法正确;③两个无理数的积不一定是无理数,如2=-,此说法错误; ④2π是无理数,不是分数,此说法错误; 综上,说法正确的为②, 故选:D . 【点睛】本题考查了无理数的定义与运算、实数与数轴,熟练掌握运算法则和定义是解题关键.二、填空题 11.5 【分析】由已知可求,则可求. 【详解】 解:, , , ,故答案为:2019.5 【点睛】本题考查代数值求值,根据所给条件,探索出是解题的关键.解析:5 【分析】由已知可求1()()1f x f x+=,则可求111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=.【详解】 解:1()1f x x=+,111()1111x f x x x x x∴===+++,11()()111x f x f x x x∴+=+=++, ∴111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=, 1111(2020)(2019)(2)(1)()()()(1)201920192019.523202011++⋯+++++⋯+=+=+=+f f f f f f f f 故答案为:2019.5【点睛】 本题考查代数值求值,根据所给条件,探索出1()()1f x f x+=是解题的关键. 12.20﹣.【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为等式右边的解析:20﹣208000=401401. 【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为1,2,3,,第二个数的规律为:分子为1,2,3,,分母为222112,215,3110,+=+=+=等式右边的规律为:分子为3331,2,3,,分母为222112,215,3110,+=+=+= 归纳类推得:第n 个等式为32211n n n n n -=++(n 为正整数) 当20n =时,这个等式为322202020201201-=++,即20800020401401-= 故答案为:20800020401401-=. 【点睛】 本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键. 13.①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若 a=b ,两式相等,若解析:①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若 a=b ,两式相等,若a≠b,则两式不相等,所以②错误;方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;左边=(a※b) ※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c右边=a※(b※c)=a※(b×c+c)=a(b×c+c) +(b×c+c)=abc+ac+bc+c2两式不相等,所以④错误.综上所述,正确的说法有①③.故答案为①③.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.14.﹣2b【详解】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣b|+=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对解析:﹣2b【详解】由题意得:b<a<0,然后可知a-b>0,a+b<0,因此可得|a﹣=a﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.15.131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.16.. .【分析】首先利用勾股定理计算出的长,再根据题意可得,然后根据数轴上个点的位置计算出表示的数即可.【详解】解:点表示的数是,是原点,,,以为圆心、长为半径画弧,,解析:1-1-【分析】首先利用勾股定理计算出AB 的长,再根据题意可得12AP AB AP ==上个点的位置计算出表示的数即可.【详解】 解:点A 表示的数是1-,O 是原点,1,1AO BO ∴==,AB ∴=以A 为圆心、AB 长为半径画弧,12AP AB AP ∴==∴点1P 表示的数是1(1-+=-点2P 表示的数是1-故答案为:1-1-【点睛】本题考查了数轴的性质,以及应用数形结合的方法来解决问题.【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵,∴,∵,∴,∵,∴,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2,∵,∴,N=7解析:±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵< ∴221, ∵∴23<,∵a <∴23a -<<,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2, ∵∴78<,N=7,M+N=9,9的平方根是±3;故答案为:±3.【点睛】本题考查了算术平方根的估算,用“夹逼法”估算算术平方根是解题关键.18.①④⑤根据题意表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①,根据表示大于x 的最小整数,故正确;②,应该等于,故错误;③,当x=0.5时,,故错误;④,根据解析:①④⑤【分析】根据题意[)x 表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①[)01=,根据[)x 表示大于x 的最小整数,故正确; ②33055⎡⎫-=⎪⎢⎣⎭,应该等于333215555⎡⎫-=-=⎪⎢⎣⎭,故错误; ③[)0x x -<,当x=0.5时,[)10.5=0.50x x -=->,故错误;④[)1x x x <≤+,根据定义可知[)x x <,但[)x 不会超过x+1,所以[)1x x x <≤+成立,故正确;⑤当x=0.8时,[)1-0.8=0.2x x -=,故正确.故答案为:①④⑤.【点睛】本题主要考查了对题意的理解,准确的理解题意是解决本题的关键.19.4【分析】把x=2,y=6代入x@y=中计算即可.【详解】解:∵x@y=,∴2@6==4,故答案为4.【点睛】本题考查了有理数的运算能力,注意能由代数式转化成有理数计算的式子. 解析:4【分析】把x=2,y=6代入【详解】解:∵∴,故答案为4.【点睛】本题考查了有理数的运算能力,注意能由代数式转化成有理数计算的式子.20.【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】(⊕2)⊕3=⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关解析:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】2)⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.三、解答题21.(1)A;(2)①B;②C;③B;(3)①③.【分析】÷,结合计算结果即可进行判断;(1)计算20203(2)①从A类数中任取两个数进行计算,即可求解;②从A、B两类数中任取两个数进行计算,即可求解;③根据题意,从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,再除以3,即可得到答案;(3)根据m,n的余数之和,举例,观察即可判断.【详解】解:(1)根据题意,÷=,∵202036731∴2020被3除余数为1,属于A类;故答案为:A.(2)①从A类数中任取两个数,如:(1+4)÷3=1…2,(4+7)÷3=3…2,……∴两个A类数的和被3除余数为2,则它们的和属于B类;②从A、B类数中任取一数,与①同理,如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,……∴从A、B类数中任取一数,则它们的和属于C类;③从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,则⨯+⨯+=,8192026÷=,∴26382∴余数为2,属于B类;故答案为:①B;②C;③B.(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m×1+n×2=m+2n,∵最后的结果属于C类,∴m+2n能被3整除,即m+2n属于C类,①正确;②若m=1,n=1,则|m-n|=0,不属于B类,②错误;③观察可发现若m+2n属于C类,m,n必须是同一类,③正确;综上,①③正确.故答案为:①③.【点睛】本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答.22.(1)275,572;(2)(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【分析】(1)观察等式,发现规律,等式的左边:两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;等式的右边:三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行写出即可.【详解】解:(1)∵5+2=7,∴左边的三位数是275,右边的三位数是572,∴52×275=572×25,(2)左边的两位数是10b+a,三位数是100a+10(a+b)+b;右边的两位数是10a+b,三位数是100b+10(a+b)+a;“数字对称等式”为:(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].故答案为275,572;(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【点睛】本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键.23.(1)2;5;(2)1,2,3;(3)3;(4)255【分析】(1(2)根据定义可知x<4,可得满足题意的x的整数值;(3)根据定义对120进行连续求根整数,可得3次之后结果为1;(4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:(1)∵22=4, 62=36,52=25,∴56,∴,,故答案为2,5;(2)∵12=1,22=4,且=1,∴x=1,2,3,故答案为1,2,3;(3)第一次:,第二次:,第三次:,故答案为3;(4)最大的正整数是255,理由是:∵,,,∴对255只需进行3次操作后变为1,∵,,,,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.【点睛】本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力.24.(I) x=2;(Ⅱ) 3; (Ⅲ) -2017.【分析】(I)根据对数的定义,得出x2=4,求解即可;(Ⅱ)根据对数的定义求解即;;(Ⅲ)根据log a(M•N)=log a M+log a N求解即可.【详解】(I)解:∵log x4=2,∴x2=4,∴x=2或x=-2(舍去)(Ⅱ)解:∵8=23,∴log 28=3,故答案为3;(Ⅲ)解:(lg 2)2+lg 2•1g 5+1g 5﹣2018= lg 2•( lg 2+1g 5) +1g 5﹣2018= lg 2 +1g 5﹣2018=1-2018=-2017故答案为-2017.【点睛】本题主要考查同底数幂的乘法,有理数的乘方,是一道关于新定义运算的题目,解答本题的关键是理解给出的对数的定义.25.(1)1115656=-⨯,()11111n n n n =-⨯++;(2)①4950;②1465119800 【分析】(1)根据规律可得第5个算式;根据规律可得第n 个算式;(2)①根据运算规律可得结果.②利用非负数的性质求出a 与b 的值,代入原式后拆项变形,抵消即可得到结果.【详解】(1)根据规律得:第5个等式是1115656=-⨯,第n 个等式是()11111n n n n =-⨯++; (2)①11111223344950⨯⨯⨯⨯++++, 111111111223344950=-+-+-++-, 1150=-, 4950=;②a 0=,1a ,3b =,原式111111324354698100=+++++⨯⨯⨯⨯⨯, 11111111111111(1)()()+()()23224235246298100=⨯-+⨯-+⨯-⨯-++⨯-, 1111111111(1)2324354698100=⨯-+-+-+-++-, 1111(1)2299100=⨯+--, 1465119800=.【点睛】本题主要考查了数字的变化规律,发现规律,运用规律是解答此题的关键.26.(1)23,1;(2)两位正整数为39,28,17,()f t 的最大值为47;(3)①2021;②2021【分析】(1)仿照样例进行计算即可;(2)由题设可以看出交换前原数的十位上数字为a ,个位上数字为b ,则原数可以表示为10a+b ,交换后十位上数字为b ,个位上数字为a ,则交换后数字可以表示为10b+a ,根据“交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54”确定出a 与b 的关系式,进而求出所有的两位数,然后求解确定出()f t 的最大值即可;(3)根据样例分解计算即可.【详解】解:(1)61623=⨯=⨯,∵6132->-,∴()263f =; 161162844=⨯=⨯=⨯∵1618244->->-,∴()161f =, 故答案为:23;1; (2)由题意可得:交换后的数减去交换前的数的差为:10109()54b a a b b a +--=-=,∴6b a -=,∵19a b ≤≤≤,∴93b a ==,或82b a ==,或71b a ==,,∴t 为39,28,17;∵39=1×39=3×13,∴()33913f =; 28=1×28=2×14=4×7,∴()28f =47; 17=1×17,∴()11717f =; ∴()f t 的最大值47. (3)①∵223572021⨯⨯⨯=⨯∴()220235721f ⨯⨯⨯=; ②423574042⨯⨯⨯=⨯∴()4402023574221f ⨯⨯⨯==; 故答案为:2021;2021 【点睛】本题主要考查了有理数的运算,理解最佳分解的定义,并将其转化为有理数的运算是解题的关键.27.(1)不是,是;(2)见解析;(3)432或456或840或864或888【分析】(1)根据等差数的定义判定即可;(2)设这个三位数是M ,10010M a b c =++,根据等差数的定义可知2a cb +=,进而得出()3352M a c =+即可. (3)根据等差数的定义以及24的倍数的数的特征可先求出a 的值,再根据是8的倍数可确定c 的值,又因为2a cb +=,所以可确定a 、c 为偶数时b 才可取整数有意义,排除不符合条件的a 、c 值,再将符合条件的a 、c 代入2a cb +=求出b 的值,即可求解. 【详解】解:(1)∵4184-≠- ,∴148不是等差数,∵435135438-=-=- ,∴514335是等差数;(2)设这个三位数是M ,10010M a b c =++,∵b a c b -=- , ∴2a c b += , ∵()10010105633522a c M a c a c a c +=+⨯+=+=+ , ∴这个等差数是3的倍数;(3)由(2)知()3352,2a c T a cb +=+=, ∵T 是24的倍数,∴352a c + 是8的倍数,∵2c 是偶数,∴只有当35a 也是偶数时352a c +才有可能是8的倍数,∴2a =或4或6或8,当2a =时,3570a = ,此时若1c =,则35272a c += ,若5c = ,则35+280a c = ,若9c = ,则35+288a c =,大于70又是8的倍数的最小数是72,之后是80,88当35+296a c =时10c > 不符合题意;当4a =时,35140a =,此时若2c =,则352144a c +=,若6c =,则352152a c +=,(144、152是8的倍数),当6a =时,35210a =,此时若3c =,则352216a c +=,若7c =,则352224a c +=, (216、244是8的倍数),当8a =时,35280a =,此时若0c ,则352280a c +=,若4c =,则352288a c +=, 若8c =,则352296a c +=,(280,288,296是8的倍数), ∵2a cb +=, ∴若a 是偶数,则c 也是偶数时b 才有意义,∴2a =和6a =是c 是奇数均不符合题意,当4,2a c ==时,423,4322b T +=== , 当4,6a c ==时,465,4562b T +===, 当8,0a c ==时,804,8402b T +===, 当8,4a c ==时,846,8642b T +===, 当8,8a c ==时,888,8882b T +===, 综上,T 为432或456或840或864或888.【点睛】本题考查新定义下的实数运算、有理数混合运算,整式的加减运算,能够结合倍数的特点及熟练掌握整数的奇偶性是解题关键.28.(1)14-(2)124- 【分析】(1)根据例子将每项的整数部分相加,分数部分相加即可解答;(2)根据例子将每项的整数部分相加,分数部分相加即可解答.【详解】(1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭()115112744362⎛⎫=--+-+--+- ⎪⎝⎭ 104⎛⎫=+- ⎪⎝⎭ 14=-(2)原式()235120192018201720163462⎛⎫=-+-++-+-+ ⎪⎝⎭ 124⎛⎫=-+- ⎪⎝⎭ 124=- 【点睛】此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算.29.(1)210-1;(2)n 1514+-;(3)9×210+1. 【分析】(1)根据题目中材料可以得到用类比的方法得到1+2+22+23+…+29的值;(2)根据题目中材料可以得到用类比的方法得到1+5+52+53+54+…+5n 的值.(3)根据题目中的信息,运用类比的数学思想可以解答本题.【详解】解:(1)设S=1+2+22+23+ (29)将等式两边同时乘以2得:2S=2+22+23+24+…+29+210,将下式减去上式得2S-S=210-1,即S=210-1,即1+2+22+23+…+29=210-1.故答案为210-1;(2)设S=1+5+52+53+54+…+5n ,将等式两边同时乘以5得:5S=5+52+53+54+55+…+5n +5n+1,将下式减去上式得5S-S=5n+1-1,即S=n 1514+-, 即1+5+52+53+54+…+5n =n 1514+-; (3)设S=1+2×2+3×22+4×23+…+9×28+10×29,将等式两边同时乘以2得:2S=2+2×22+3×23+4×24+…+9×29+10×210,将上式减去下式得-S=1+2+22+23+…+29+10×210,-S=210-1-10×210,S=9×210+1,即1+2×2+3×22+4×23+…+9×28+10×29=9×210+1.【点睛】本题考查有理数的混合运算、数字的变化类,解题的关键是明确题意,发现数字的变化规律.30.(1)23,1;(2)两位正整数为39,28,17,()f t 的最大值为47;(3)①2021;②2021【分析】(1)仿照样例进行计算即可;(2)由题设可以看出交换前原数的十位上数字为a ,个位上数字为b ,则原数可以表示为10a+b ,交换后十位上数字为b ,个位上数字为a ,则交换后数字可以表示为10b+a ,根据“交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54”确定出a 与b 的关系式,进而求出所有的两位数,然后求解确定出()f t 的最大值即可;(3)根据样例分解计算即可.【详解】解:(1)61623=⨯=⨯,∵6132->-,∴()263f =; 161162844=⨯=⨯=⨯∵1618244->->-,∴()161f =, 故答案为:23;1; (2)由题意可得:交换后的数减去交换前的数的差为:10109()54b a a b b a +--=-=,∴6b a -=,∵19a b ≤≤≤,∴93b a ==,或82b a ==,或71b a ==,,∴t 为39,28,17;∵39=1×39=3×13,∴()33913f =; 28=1×28=2×14=4×7,∴()28f =47; 17=1×17,∴()11717f =; ∴()f t 的最大值47. (3)①∵223572021⨯⨯⨯=⨯∴()220235721f ⨯⨯⨯=; ②423574042⨯⨯⨯=⨯∴()4402023574221f⨯⨯⨯==;故答案为:2021;2021【点睛】本题主要考查了有理数的运算,理解最佳分解的定义,并将其转化为有理数的运算是解题的关键.。
人教版初中数学七年级数学下册第二单元《实数》测试题(包含答案解析)
一、选择题1.在实数,-3.14,0,π中,无理数有( )A .1个B .2个C .3个D .4个2.下列说法中错误的有( )①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±7=±.A .0个B .1个C .2个D .3个3.下列说法中,正确的是( )A .无理数包括正无理数、零和负无理数B .无限小数都是无理数C .无理数都是无限不循环小数D .无理数加上无理数一定还是无理数4.0215中,是无理数的是( )A B .0 C D .2155.下列说法中,正确的是( )A .正数的算术平方根一定是正数B .如果a 表示一个实数,那么-a 一定是负数C .和数轴上的点一一对应的数是有理数D .1的平方根是16 )A .3B .﹣3C .±3D .67.已知n 是正整数,并且n -1<3+<n ,则n 的值为( )A .7B .8C .9D .108.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★a bb ;若a b <,则a ★b b a.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b +<★ A .① B .② C .①② D .①②③9.在下列各数中是无理数的有( )0.111-43π,3.1415926,2.010101(相邻两个0之间有1个1),76.0102030405060732 A .3个 B .4个 C .5个 D .6个10.我们定义新运算如下:当m n ≥时,m 22n m n =-;当m n <时,m 3n m n =-.若5x =,则(3-)(6x -)x 的值为( ) A .-27B .-47C .-58D .-68 11.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- 12.511的值在( )A .5~6之间B .6~7之间C .7~8之间D .8~9之间二、填空题13.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值.14.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 15.已知103x ,小数部分是y ,求x ﹣y 的相反数_____.16.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________.17.﹣816_____.18.请你写出一个比3大且比4小的无理数,该无理数可以是:____.19.3331.5115.10.1510.5325===31510的值是______________________.20.已知实数,x y 满足()2380x y -+=,求xy -的平方根.三、解答题21.已知21a -的平方根是1731a b +-的算术平方根是6,求4a b +的平方根. 22.213a -=,31a b -+的平方根是4±,c 433a b c ++的平方根.23.求满足条件的x 值:(1)()23112x -=(2)235x -=24.求x 的值:(1)2(3)40x +-=(2)33(21)240x ++=25.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 26.观察下列各式:112⨯=1-12,123⨯=12-13,134⨯=13-14. (1)请根据以上式子填空: ①189⨯= ,②1(1)n n ⨯+= (n 是正整数) (2)由以上几个式子及你找到的规律计算:112⨯+123⨯+134⨯+............+120152016⨯【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,进行判断即可.【详解】=4,所给数据中无理数有:π,共2个.故选:B .【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式.2.D解析:D【分析】利用实数和数轴的关系,算术平方根,立方根及平方根定义判断即可.【详解】①实数和数轴上的点是一一对应的,正确;②负数有立方根,错误;③算术平方根和立方根均等于其本身的数有0和1,错误;④49的平方根是7±7=,错误.综上,错误的个数有3个.故选:D .【点睛】本题考查了实数和数轴,平方根,算术平方根及立方根,熟练掌握各自的定义是解本题的关键.3.C解析:C【分析】根据实数的概念和分类即可判断.【详解】A 、无理数包括正无理数和负无理数,则此项错误;B 、无限循环小数是有理数,无限不循环小数是无理数,则此项错误;C 、无理数都是无限不循环小数,则此项正确;D (0=,则此项错误; 故选:C .【点睛】本题考查了实数的概念和分类,熟练掌握实数的概念是解题关键. 4.A解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】,0215, 故选:A .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 5.A解析:A【分析】根据算术平方根、实数与数轴上的点是一一对应关系、实数、平方根,即可解答.【详解】A 、正数的算术平方根一定是正数,故选项正确;B 、如果a 表示一个实数,那么-a 不一定是负数,例如a=0,故选项错误;C 、和数轴上的点一一对应的数是实数,故选项错误;D 、1的平方根是±1,故选项错误;故选:A .【点睛】本题主要考查了实数,实数与数轴,解决本题的关键是熟记实数的有关性质. 6.A解析:A【分析】9,再利用算术平方根的定义求出答案.【详解】 ∵9,∴3,故选:A .【点睛】. 7.C解析:C【分析】根据实数的大小关系比较,得到5<6,从而得到n 的值.【详解】解:∵<5<6,∴8<<9,∴n =9.故选:C .【点睛】8.A解析:A【分析】①根据新运算a b ★的运算方法,分类讨论:a b ≥,a b <,判断出a b ★是否等于b a ★即可;②由①,推得=a b b a ★★,所以()()1a b b a =★★不一定成立;③应用放缩法,判断出1a b a b+★★与2的关系即可. 【详解】解:①a b ≥时,a a bb ★, b a a b ★,∴=a b b a ★★;a b <时,a b ba ★,b b a a★, ∴=a b b a ★★;∴①符合题意.②由①,可得:=a b b a ★★,当a b ≥时,∴()()()()22a b b a a b a a a bb b ba b ====★★★★, ∴()()a b b a ★★不一定等于1, 当a b <时, ∴()()()()22a b b a a b b b b aa a aa b ====★★★★, ∴()()a b b a ★★不一定等于1,∴()()1a b b a =★★不一定成立,∴②不符合题意. ③当a b ≥时,0a >,0b>, ∴1ab≥,∴(12a b a b a b b a ab ab ++===+=≥≥★★,当a b <时,∴(12a b a b a b a b ab ab ++===+=≥≥★★,∴12a b a b+<★★不成立, ∴③不符合题意,∴说法中正确的有1个:①.故选:A .【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.9.B解析:B【分析】根据无理数是无限不循小数,可得答案.【详解】 解:5,3π,76.01020304050607,32是无理数, 故选:B .【点睛】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数. 10.C解析:C【分析】根据新定义法则判断35-<,65≥,根据新定义内容分别代入计算即可.【详解】当5x =时,∵35-<,∴3- 5=()33527532--=--=-, ∵65≥,∴625625361026=-⨯=-=,则(3-)(6x -)x =322658--=-.故选:C .【点睛】本题考查新定义运算,掌握新定义运算技巧,理解题意为解题关键.11.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227是有理数,故选项A 不符合题意;B 、3.1415926是有理数,故选项B 不符合题意;C 、2.010010001是有理数,故选项C 不符合题意;D 、π3-是无理数,故选项D 题意; 故选:D .【点睛】 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.B解析:B【分析】的取值即可得到答案.【详解】由题意得78<<,617∴<<,1介于6~7之间.故选B .【点睛】二、填空题13.1【分析】根据新运算的运算法则计算即可【详解】解:【点睛】本题考查新定义下的有理数运算通过阅读材料掌握新运算的运算法则是解题关键 解析:1【分析】根据新运算的运算法则计算即可.【详解】解:()()()2322231-⊕=⨯---⨯-()4614611=----=-+-=.【点睛】本题考查新定义下的有理数运算,通过阅读材料掌握新运算的运算法则是解题关键. 14.【分析】利用裂项法计算即可【详解】原式【点睛】本题考查了利用裂项法进行分数的加法计算熟练掌握裂项法是解题的关键 解析:10102021【分析】利用裂项法计算即可.【详解】 原式1111111233520192021⎛⎫=⨯-+-+⋯+- ⎪⎝⎭ 11122021⎛⎫=⨯- ⎪⎝⎭ 1202022021=⨯ 10102021=. 【点睛】 本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键. 15.【分析】先判断在那两个整数之间用小于的整数与10相加得出整数部分再用10+减去整数部分即可求出小数部分【详解】解:∵∴的整数部分是1∴10+的整数部分是10+1=11即x =11∴10+的小数部分是112【分析】10相加,得出整数部分,再用10+减去整数部分即可求出小数部分.【详解】解:∵12<, ∴1,∴1010+1=11,即x =11,∴101011﹣1,即y 1,∴x ﹣y =111)=111=12∴x ﹣y 的相反数为﹣(1212.12.【点睛】在1~2之间.16.10202550【分析】①由魔术数的定义分别对345三个数进行判断即可得到5为魔术数;②由题意根据魔术数的定义通过分析即可得到答案【详解】解:根据题意①把3写在1的右边得13由于13不能被3整除故3解析:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”;②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据题意,①把3写在1的右边,得13,由于13不能被3整除,故3不是魔术数;把4写在1的右边,得14,由于14不能被4整除,故4不是魔术数;把5写在1的右边,得15,写在2的右边得25,……由于个位上是5的数都能被5整除,故5是魔术数;故答案为:5;②根据题意,这个两位数的“魔术数”为x ,则1001001n x n x x+=+, ∴100n x为整数, ∵n 为整数, ∴100x为整数, ∴x 的可能值为:10、20、25、50; 故答案为:10、20、25、50.【点睛】本题考查了新定义的应用和整数的特点,解题的关键是熟练掌握新定义进行解题. 17.0或﹣4【分析】根据算术平方根和立方根的定义求解得到答案即可【详解】解:∵﹣8的立方根为﹣2的平方根为2或﹣2∴﹣8的立方根与的平方根之和是﹣2+2=0或﹣2﹣2=﹣4故答案为:0或﹣4【点睛】本题解析:0或﹣4【分析】根据算术平方根和立方根的定义求解,得到答案即可.【详解】解:∵﹣8的立方根为﹣22或﹣2,∴﹣82+2=0或﹣2﹣2=﹣4,故答案为:0或﹣4.【点睛】本题主要考查了实数的运算,熟练掌握运算法则是解本题的关键.18.答案不唯一如:【分析】无限不循环小数是无理数根据无理数的三种形式解答即可【详解】设该无理数是x 由题意得∴x=10或11或12或13或14或15该无理数可以是:答案不唯一如:故答案为:答案不唯一如:【解析:【分析】无限不循环小数是无理数,根据无理数的三种形式解答即可.【详解】设该无理数是x x <<∴x=10或11或12或13或14或15,【点睛】此题考查无理数的定义,熟记定义并掌握无理数的三种形式是解题的关键.19.【分析】根据立方根的性质即可求解【详解】已知故答案为:【点睛】此题主要考查立方根的求解解题的关键是熟知实数的性质变形求解解析:11.47【分析】根据立方根的性质即可求解.【详解】1.147=,1.1471011.47===⨯=故答案为: 11.47.【点睛】此题主要考查立方根的求解,解题的关键是熟知实数的性质变形求解.20.±【分析】根据当几个非负数之和为零则这几个非负数都为了0求得xy 的值再代入到所求代数式中求解即可【详解】解:∵且∴x ﹣3=0y+8=0解得:x=3y=﹣8∴﹣xy=﹣3×(﹣8)=24∴﹣xy 的平方解析:±【分析】根据当几个非负数之和为零,则这几个非负数都为了0求得x 、y 的值,再代入到所求代数式中求解即可.【详解】解:∵()230x -=,且()230x -≥≥, ∴x ﹣3=0,y+8=0,解得:x=3,y=﹣8,∴﹣xy=﹣3×(﹣8)=24,∴﹣xy 的平方根是±【点睛】本题考查了非负数的性质、解一元一次方程、代数式求值、有理数的乘法、平方根,理解非负数的性质,正确求出一个数的平方根是解答的关键.三、解答题21.7±【分析】根据算术平方根和平方根的定义列式求出a 、b 的值,然后代入代数式求出4a b +的值,再根据平方根的定义解答即可.【详解】解:根据题意,得2117a -=,2316a b +-=,解得9a =,10b =,所以,4941094049a b +=+⨯=+=,∵()2749±=, ∴4a b +的平方根是7±.【点睛】本题考查了算术平方根和平方根的定义,能够熟记概念并列式求出a 、b 的值是解题的关键.22.5±【分析】3=求出a 的值,根据3a +b -1的平方根是±4求出b 的值,根据c 数部分求出c 的值,把求得的值代入a +b +3c ,然后求出入a +b +3c 的平方根即可.【详解】 ∵3=,∴219a -=,解得:5a =,∵31a b +-的平方根是4±,∴15116b +-=,解得:2b =,∵c67<<∴6c =,∴3521825a b c ++=++=∴3a b c ++的平方根是5±【点睛】本题考查了算术平方根的意义,平方根的意义,无理数的估算,熟练掌握算术平方根的意义、平方根的意义、夹逼法估算无理数的值是解答本题的关键.23.(1)13x =,21x =-;(2)1x =2x =-【分析】(1)方程两边同除以3,再运用直接开平方法求解即可;(2)方程移项后,再运用直接开平方法求解即可.【详解】解:(1)()23112x -= ()214x -=12x -=±解得,13x =,21x =-;(2)235x -=28x = ∴x =±∴1x =2x =-【点睛】本题考查了平方根的应用,解决本题的关键是熟记平方根的定义.24.(1)1x =-或5x =-;(2)32x =-. 【分析】(1)整理后,利用平方根的定义得到32x +=±,然后解两个一元一次方程即可; (2)整理后,利用立方根的定义得到212x +=-,然后解一元一次方程即可.【详解】(1)2(3)40x +-=, 移项得:2(3)4x +=,∴32x +=±,∴1x =-或5x =-;(2)33(21)240x ++=, 整理得:3(21)8x +=-,∴212x +=-, ∴32x =-. 【点睛】 本题考查了立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.这就是说,如果x 3=a ,那么x 叫做a 的立方根.也考查了平方根.25.10102021【分析】利用裂项法计算即可.【详解】 原式1111111233520192021⎛⎫=⨯-+-+⋯+- ⎪⎝⎭11122021⎛⎫=⨯- ⎪⎝⎭ 1202022021=⨯ 10102021=. 【点睛】 本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键. 26.(1)①1189-,②111n n -+;(2)20152016【分析】 (1)仔细观察所给式子的结构,发现规律111=(1)1n n n n -⨯++,即可解答; (2)根据发现的规律变形原式,进行合并化简即可解答.【详解】(1)仔细观察,发现111=(1)1n n n n -⨯++,则1118989=-⨯, 故答案为:①1189-,②111n n -+; (2)根据111=(1)1n n n n -⨯++, 则112⨯+123⨯+134⨯+............+120152016⨯ =1111111(1)()()()2233420152016-+-+-++- =112016-=20152016. 【点睛】 本题考查数字规律的探索、有理数的混合运算,解答的关键是发现式子的变化规律,根据规律变形原式,从而使计算简单化.。
202X年新人教版七年级数学下册实数题型分类归纳
千里之行,始于足下。
202X年新人教版七年级数学下册实数题型分类归纳202X年新人教版七年级数学下册实数题型分类归纳如下:1. 实数的性质和运算:a. 实数的分类(有理数和无理数);b. 实数的比较大小;c. 实数的加法、减法、乘法和除法规则。
2. 实数的绝对值和相反数:a. 实数的绝对值的定义和性质;b. 实数的相反数的定义和性质。
3. 分数的性质和运算:a. 分数的定义和性质;b. 分数的四则运算;c. 分数的化简和约分;d. 分数和多项式的运算。
4. 小数的性质和运算:a. 小数的定义和性质;b. 小数的加法、减法、乘法和除法规则;c. 小数和分数的相互转化。
5. 百分数的性质和运算:a. 百分数的定义和性质;b. 百分数的加法、减法、乘法和除法规则;第1页/共2页锲而不舍,金石可镂。
c. 百分数和分数的相互转化。
6. 平方根的性质和运算:a. 平方根的定义和性质;b. 平方根的加法、减法、乘法和除法规则;c. 平方根的化简;d. 平方根和分数的相互转化。
7. 数轴上的实数:a. 实数在数轴上的表示;b. 实数间的距离计算。
8. 方程与不等式:a. 解一元一次方程;b. 解一元一次不等式。
9. 实际问题的数学建模与解决:a. 利用实数进行实际问题的建模;b. 分析和解决实际问题。
以上是对202X年新人教版七年级数学下册实数题型的一个大致分类归纳,具体题型可能会根据教材的具体内容有所调整或增加。
建议结合教材的具体内容来更详细地进行归纳。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版七年级数学下册《实数》题型分类归纳
班级: 姓名:
《实数》知识点比较:
算术平方根
平方根 立方根
定义
若正数x ,a 2
=x
,正数x 叫做a 的算术平方根,a =x。
若数x ,a 2=x ,
数x 叫做a 的平方
根,a ±=x
若数x ,a 3
=x ,
数
x
叫做
a
的立
方根,3x a =。
a 的范围
0≥a 0≥a a 是任意数
表示 a (根号a )
a ±(正负根号
a )
3
a (三次根号a )
正数有一个算术平方根,是正数 正数有两个平方根,它们互为相反数 正数有一个立方根,是正数 0的算术平方根是0
0的平方根是0
0的立方根是0 负数没有算术平方根 负数没有平方根
负数有一个立方根,是负数
性质 ⎩⎨
⎧≥≥0
0a a 双重非负性 33
-a a -=
a a =2
()
)0(2
≥=a a a
a a =3
3
()
a a =3
3
被开方数的小数点向右(左)每移动两位,算术平方根的小数点向右(左)移动一位。
被开方数小数点向
右(左)每移动三位,立方根的小数点向右(左)移动一位。
例1、求下列各数的算术平方根。
(1)100 (2)6449 (3)16
9
1 (4)0.0025 (5)0 (6)
2 (7)()26-
例2、求下列各数的平方根。
(1)100 (2)6449 (3)16
9
1 (4)0.0025 (5)0 (6)
2 (7)()26-
例3、求下列各数的立方根。
(1)1000 (2)278 (3)27
10
2 (4)0.001 (5)0 (6)2 (7)
()36-
类型二:化简求值
例1、 求下列各式的值。
(1)22= (2)256
169
-= (3)0196.0= (4)2224-25-= (5)327--= (6)33512729+= 例2、求下列各式的值
(1)222-4-25)(+ (2)22
42.06-100001.0⨯+⨯)(
类型三:算术平方根的双重非负性⎩
⎨⎧≥≥00
a a
一、 被开方数的非负性0≥a
例1、下列各式中,有意义的有哪些?
2
1
6- 6- 2)6(- 6- a 2a a
例2、若下列各式有意义,在后面横线上写出x 的取值范围。
(1)x _________ (2)x -5__________
例3、若x 、y 都是实数,且833+-+-=x x y ,求y 3x +的立方根。
二、 算术平方根的非负性
0≥a
例4、(1)21++a 的最小值是______,此时a 的取值是______。
(2)2-1+a 的最大值是______,此时a 的取值是______。
例5、若031x 2=+++y ,求2y x )(+的值。
例6、已知027y 33)2(222=-+-x ,求2
)(y x -的平方根。
类型四、
算术平方根:被开方数的小数点向右(左)每移动两位,算术平方根的小数点向右(左)移动一位。
立方根:被开方数的小数点向右(左)每移动三位,立方根的小数点向右(左)移动一位。
例1、 观察:已知84.227.521284.2217.5==, 填空: ______52170______05217.0== 例2、 令858.46.23536.136.2==,则
①________00236.0_______;236== ②若__________,04858x ==x ③若153610a 6=⨯,求a 的值。
例3、若b ==337,a 15,则
____37000____,15.03==。
类型五、平方根的性质:正数有两个平方根,它们互为相反数。
例1、 一个非负数的两个平方根是 12-a 和5-a ,这个非负数是多少?
例2、 已知一个数的两个平方根分别是13+a 和11+a ,求这个数的立方根
类型六、解方程。
例1、求下列各式中的x 的值:
(1)2x =196; (2)010x 52=-; (3)0253362
=--)(x 。
(4)643=x (5)012583=+x (6)027)3(3=-+x 类型七:的根指数是2,指数2常常省略不写。
3
的根指数是3,指数3不可省略。
例1、若3121-a 5和+b 都是5的平方根,则________,==b a 。
例2、已知n m n m A -++=3是3++n m 的算术平方根,222n m +-+=n m B 是n 2m +的立方根,求A B -的立方根。
类型八、估值。
例1、 已知n m ,为两个连续的整数,且n <<11m 则n +m =_______。
例2、 已知y x ,为两个连续的整数,且y <+<15x ,则y x +=_______。
例3、估计68的立方根的大小在( )
A 、2与3之间
B 、3与4之间
C 、4与5之间
D 、5与6之间 例4、若5的整数部分是a ,小数部分是b ,则)5(-b a 的值是多少?
例5、若139+与13-9的小数部分分别是a 与b ,试求b a 34+
类型九: a a =2
,
()
)0(2
≥=a a a ; a a =33
,
()
a a =3
3
例1、下列判断错误的是( )
A 、若b a =,则b a =
B 、若3
3b a =,则b a =
C 、若3333b a =,则b a =
D 、若22b a =,则b a =
例2、如图实数 a 、b 对应数轴上的点A 和点B ,化简:
2222)()(a b a b a b +---+
提示:|a |=
⎩⎪⎨⎪
⎧a (a >0),0(a =0),-a (a <0).
类型八、平方运算与开平方运算互为逆运算;
()
)0(2
≥=a a a
立方运算与开立方运算互为逆运算。
()
a a =3
3
例1、 若22=+x ,求52+x 的算术平方根。
例2、已知2-x 的平方根是±2,72++y x 的立方根是3,求22x y +的算术平方根。
类型九、
33
-a a -=(被开方数互为相反数,对应的立方根也互为相反数)
例1、若3x 2-1与32y 3-互为相反数,求y
x
21+的值。
A
B
无理数(定义):
无理数的特征: 1、圆周率π及含有π的数,例如:2π,7π;
2、带根号且开不尽方的,例如:,,,,6.433533--;
3、人造无理数(无限不循环小数)
,例如:3.56010010001…… 实数(定义): 【 与 是一一对应的】
实数:(分类)按定义: 按性质符号:
一、判断。
1.实数不是有理数就是无理数。
( )
2.无限小数都是无理数。
( )
3.无理数都是无限小数。
( )
4.带根号的数都是无理数。
( )
5.两个无理数之和一定是无理数。
( )
6.有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数( )
7.实数与数轴上的点是一一对应的。
( )
8.无理数都是无限不循环小数。
( )
类型一:实数的性质
在实数范围内,相反数、倒数和绝对值的意义和在有理数范围内的完全相同.
例1、分别求下列各数的相反数、倒数和绝对值:
(1)3
-64; (2)225; (3)11.
解:(1)∵3-64=-4,∴3
-64的相反数是4,倒数是-1
4,绝对值是4;
(2) (3)
类型二:实数的运算
【一】 利用运算法则进行计算
例2、 计算下列各式的值:
(1)23-55-(3-55); (2)|3-2|+|1-2|+|2-3
|.
【二】 利用实数的性质结合数轴进行化简
例3、实数在数轴上的对应点如图所示,化简:2a -|b -a |-(b +c )2.
提示:|a |=⎩⎪⎨⎪
⎧a (a >0),0(a =0),-a (a <0).。