材料力学(金忠谋)第六版问题详解第05章

合集下载

材料力学(金忠谋)第六版课后习题及答案

材料力学(金忠谋)第六版课后习题及答案


(1) ∆l1
=
1 3
Ρxl1
Ε 1Α1
∆l1 = ∆l2 x = 0.6m
∆l 2
=
1 3
Ρ (3 − x)l2
Ε 2Α2
(2) Ρ ≤ 3Ε1Α1 = 3× 200 × 2 ×10−1 = 200ΚΝ
xl1
0.6× 2
2-11 铰接的正方形结构如图所示,各杆材料皆为铸铁,许用拉应力[σ +]=400kg/cm2, 许用压应力[σ − ]=600kg/cm2,各杆的截面积均等于25cm2。试求结构的许用载荷P。
习题
2-1 一木柱受力如图示,柱的横截面为边长20cm的正方形,材料服从虎克定律,其
弹性模量 E = 0.10 ×105 MPa.如不计柱自重,试求:
(1) (2) (3) (4)
作轴力图; 各段柱横截面上的应力; 各段柱的纵向线应变; 柱的总变形.
解:
(1) 轴力图
(2) AC 段应力
σ
=
−100 ×103 0.2 2
= −2.5×106 Ρa = −2.5ΜΡa
CB 段应力
σ
=
− 260 ×103 0.2 2
= −6.5×106 Ρa = −6.5ΜΡa
(3) AC 段线应变
ε = σ = −2.5 = −2.5×10−4 Ε 0.1×105 CB 段线应变
ε
=σ Ε
=
−6.5 0.1×10 5
解:
AC、CB、BD、DA 杆受拉力,大小为 Τ1 =
Ρ 2
DC 杆受压力,大小为 Τ2 = Ρ

+
]≥
Τ1 Α
得 Ρ1 ≤ 2 × 400 × 25 = 14142kg

材料力学(金忠谋)第六版答案第06章.doc

材料力学(金忠谋)第六版答案第06章.doc

弯曲应力6-1 求图示各梁在m-m截面上A点的正应力和危险截面上最大正应力。

题6-1图解:(a)mKNMmm⋅=-5.2mKNM⋅=75.3max48844108.49064101064mdJx--⨯=⨯⨯==ππMPaA37.20108.490104105.2823=⨯⨯⨯⨯=--σ(压)MPa2.38108.4901051075.3823max=⨯⨯⨯⨯=--σ(b )m KN M m m ⋅=-60 m KN M ⋅=5.67max488331058321210181212m bh J x --⨯=⨯⨯== MPa A 73.611058321061060823=⨯⨯⨯⨯=--σ (压) MPa 2.104105832109105.67823max =⨯⨯⨯⨯=--σ (c )m KN M m m ⋅=-1 m KN M ⋅=1max48106.25m J x -⨯=36108.7m W x -⨯=cm y A 99.053.052.1=-=MPa A 67.38106.251099.0101823=⨯⨯⨯⨯=--σ (压) MPa 2.128106.2510183max =⨯⨯=-σ 6-2 图示为直径D =6 cm 的圆轴,其外伸段为空心,内径d =4cm ,求轴内最大正应力。

解:)1(32431απ-=D W x⎪⎭⎫ ⎝⎛-⨯⨯⨯=-463)64(110326π 361002.17m -⨯=3463321021.213210632m D W x --⨯=⨯⨯==ππMPa 88.521002.17109.0631=⨯⨯=-σ MPa 26.551021.2110172.1631=⨯⨯=-σ MPa 26.55max =σ6-3 T 字形截面铸铁梁的尺寸与所受载荷如图示。

试求梁内最大拉应力与最大压应力。

已知I z =10170cm 4,h 1=9.65cm ,h 2=15.35cm 。

材料力学(金忠谋)第六版完整版问题详解

材料力学(金忠谋)第六版完整版问题详解

第一章 绪论1-1 求图示杆在各截面(I )、(II )、(III )上的力,并说明它的性质.解:(a )I-I 截面: N = 20KN (拉)II-II 截面: N = -10KN (压)III-III 截面: N = -50KN (压)(b )I-I 截面: N = 40KN (拉)II-II 截面: N = 10KN (拉)III-III 截面: N = 20KN (拉)1-2 已知P 、M 0、l 、a ,分别求山下列图示各杆指定截面(I )、(II)上的力解:(a ):(I )截面:力为零。

(II )截面:M = Pa (弯矩)Q = -P (剪力)(b ):(I )截面:θsin 31P Q =θsin 61PL M = (II )截面:θsin 32P Q = θsin 92PL M =(c ):(I )截面:L M Q 0-= 021M M = (II )截面:L M Q 0-= 031M M =1-3 图示AB 梁之左端固定在墙,试求(1)支座反力,(2)1-1、2-2、3-3各横截面上的力(1-1,2-2是无限接近集中力偶作用点.)解:10110=⨯=A Y (KN )1055.110-=+⨯-=A M (KN-M )(1-1) 截面:10110=⨯=Q (KN )521110-=⨯⨯-=M (KN-M ) (2-2)截面:10=Q (KN )055=-=M (KN-M )(2-3)截面:10=Q (KN )551110-=+⨯⨯-=M (KN-M )1-4 求图示挂钩AB 在截面 1-1、2-2上的力.解:(1-1)截面:P N 32=a P M ⋅=43 (2-2)截面:P Q 32=a P M ⋅=321-5 水平横梁AB 在A 端为固定铰支座,B 端用拉杆约束住,求拉杆的力和在梁1-1截面上的力.解:(1)拉杆力T :1230sin 0⨯=⨯⋅=∑P T M A ο 10030sin 2100=⨯=οT (KN )(拉) (2)(1-1)截面力:Q 、N 、M :5030sin -=-=οT Q (KN )6.8630cos -=-=οT N (KN )(压)()2550.030sin =⨯=οT M (KN-M )1-6 一重物 P =10 kN 由均质杆 AB 及绳索 CD 支持如图示,杆的自重不计。

材料力学(金忠谋)第六版答案解析第07章

材料力学(金忠谋)第六版答案解析第07章

习 题7-1 用积分法求图示各悬臂梁自由端的挠度和转角,梁的抗弯刚度EI 为常量。

7-1(a ) 0M()M x = ''0EJ M y ∴='0EJ M y x C =+ 201EJ M 2y x Cx D =++ 边界条件: 0x =时 0y = ;'0y = 代入上面方程可求得:C=D=0201M 2EJ y x ∴='01=M EJ y x θ= 01=M EJ B l θ 201=M 2EJ B y l(b )222()1M()222q l x qx x ql qlx -==-+- 2''21EJ 22qx y ql qlx ∴=-+-3'2211EJ 226qx y ql x qlx C =-+-+422311EJ 4624qx y ql x qlx Cx D =-+-++边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C=D=04223111()EJ 4624qx y ql x qlx ∴=-+-'2231111=(-)EJ 226y ql x qlx qx θ=+-3-1=6EJ B ql θ 4-1=8EJB y ql(c )()()()()()0303''04'050()1()()286EJ 6EJ 24EJ 120l xq x q lq l x M x q x l x l x l q y l x l q y l x Cl q y l x Cx Dl-=-⎛⎫=--=-- ⎪⎝⎭∴=-=--+=-++边界条件:0x = 时 0y = ;'0y = 代入上面方程可求得:4024q l C l -= 50120q l D l=()455000232230120EJ 24EJ 120EJ(10105)120EJq q l q l y l x x l l l q x l l lx x l ∴=---+-=-+- 3024EJ B q l θ=- 4030EJB q l y =-(d)'''223()EJ 1EJ 211EJ 26M x Pa Pxy Pa Pxy Pax Px C y Pax Px Cx D=-=-=-+=-++ 边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C=D=023'232321112611253262B C C B y Pax Px EJy Pax Px EJ Pa Pa Pay y a a EJ EJ EJPa EJθθθ⎛⎫∴=- ⎪⎝⎭⎛⎫==-⎪⎝⎭=+=+==(e)()()()21222''1'211231113()02()2223EJ 231EJ ()2231EJ ()46a M x q qax x a q M x a x a x a a y q qaxa y qa x x C a y qa x x C x D =-+≤≤=--≤≤=-+=-++=--+++ 边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C=D=0()()()22118492024EJ 12EJ qax qax y a x a x x a ∴=--=--≤≤''2223'222242232221EJ ((2)4)21EJ (42)2312EJ (2)2312y q a ax x x y q a x ax C x y q a x ax C x D =--+=--++=---+++边界条件:x a = 时 12y y = ;12θθ=代入上面方程可求得:2296a C = 4224qa D =-()()43223421612838464162384q y x ax a x a a a x a EJ-=-+-+≤≤43412476B B qa y EJqa EJθ=-=-(f)()()221222''212'231122341115()20225()2225251EJ 22251EJ 26511EJ 4324qa qx M x qax x a qa qa a M x qax x a x a a y q ax x a y q x ax x C a y q x ax x C x D =-+-≤≤⎛⎫=-+--≤≤ ⎪⎝⎭⎛⎫=--+ ⎪⎝⎭⎛⎫=--++ ⎪⎝⎭⎛⎫=--+++ ⎪⎝⎭边界条件:0x = 时 0y = ;'0y =代入上面方程可求得:C 1=D 1=0''22'2222223222EJ (2)1EJ (2)21EJ ()6y q a ax y q a x ax C y q a x ax C x D =--=--+=---++ 边界条件:x a = 时 12y y = ; ''''12y y =3296a C =- 4224a D =-437124136B B qa y EJqa EJθ=-=-7-2 用积分法求图示各梁的挠曲线方程,端截面转角θA 和θB ,跨度中点的挠度和最大挠度,梁的抗弯刚度EI 为常量。

材料力学(金忠谋)第六版完整编辑版规范标准答案

材料力学(金忠谋)第六版完整编辑版规范标准答案
1-2已知P、M0、l、a,分别求山下列图示各杆指定截面(I)、(II)上的内力
解:(a):(I)截面:内力为零。
(II)截面:M = Pa(弯矩)
Q = -P(剪力)
(b):(I)截面:
(II)截面:
(c):(I)截面:
(II)截面:
1-3图示AB梁之左端固定在墙内,试求(1)支座反力,(2)1-1、2-2、3-3各横截面上的内力(1-1,2-2是无限接近集中力偶作用点.)
解:
(1)
(2)

解得
各杆的长度为
2-37图示三杆结构中,杆(1)是铸铁的,E1=120Gpa, =80MPa;杆(2)是铜的,EA=100GPa, =60Gpa;杆(3)是钢的,EA=200GPa, =120Mpa。载荷P=160kN,设A1:A2:A3=2:2:1,试确定各杆的截面积。
解:
各杆的应力关系为

(1)
(2)
2-11铰接的正方形结构如图所示,各杆材料皆为铸铁,许用拉应力[ +]=400kg/cm2,许用压应力[ ]=600kg/cm2,各杆的截面积均等于25cm2。试求结构的许用载荷P。
解:
AC、CB、BD、DA杆受拉力,大小为
DC杆受压力,大小为



2-12图示拉杆沿斜截面m-n由两部分胶合而成,设在胶合面上许用拉应力[ ]=100MPa,许用剪应力 =50MPa,胶合面的强度控制杆件的拉力,试求:为使杆件承受最大拉力P, 角的值应为多少?若横截面面积为4cm2,并规定 ,试确定许可载荷P。
解:
只计P时,有
只计2P时,有
且有
联立,解得
(方向水平向左) (方向水平向右)
(b)

材料力学习题册答案-第5章 弯曲应力5页word文档

材料力学习题册答案-第5章 弯曲应力5页word文档

第 五 章 弯 曲 应 力一、是非判断题1、设某段梁承受正弯矩的作用,则靠近顶面和靠近底面的纵向纤维分别是伸长的和缩短的。

(×)2、中性轴是梁的横截面与中性层的交线。

梁发生平面弯曲时,其横截面绕中性轴旋转。

(√)3、 在非均质材料的等截面梁中,最大正应力maxσ不一定出现在maxM的截面上。

( × )4、等截面梁产生纯弯曲时,变形前后横截面保持为平面,且其形状、大小均保持不变。

5、梁产生纯弯曲时,过梁内任一点的任一截面上的剪应力都等于零。

( × )6、控制梁弯曲强度的主要因素是最大弯矩值。

( × )7、横力弯曲时,横截面上的最大切应力不一定发生在截面的中性轴上。

( √ )二、填空题1、应用公式y I Mz=σ时,必须满足的两个条件是 满足平面假设 和 线弹性 。

2、跨度较短的工字形截面梁,在横力弯曲条件下,危险点可能发生在 翼缘外边缘 、 翼缘腹板交接处 和 腹板中心 处。

3、 如图所示的矩形截面悬臂梁,其高为h 、宽为b 、长为l ,则在其中性层的水平剪力4、梁的三种截面形状和尺寸如图所示,则其抗弯截面系数分别为226161bH BH -、 H Bh BH 66132- 和 Hbh BH 66132- 。

)2、 如图所示的两铸铁梁,材料相同,承受相同的载荷F 。

则当F 增大时,破坏的情况是 ( C )。

A 同时破坏 ;B (a )梁先坏 ;C (b )梁先坏3、为了提高混凝土梁的抗拉强度,可在梁中配置钢筋。

若矩形截面梁的弯矩图如图所示,则梁内钢筋(图中虚线所示)配置最合理的是( D )x四、计算题1、长为l 的矩形截面梁,在自由端作用一集中力F ,已知m h 18.0=,m b 12.0=,m y 06.0=,m a 2=,kN F 1=,求C 截面上K 点的正应力。

解:MPa I y M Z C K1.21218.012.006.0210133=⨯⨯⨯⨯==σ2、⊥形截面铸铁悬臂梁,尺寸及载荷如图所示。

材料力学考研题解_第五章弯曲内力

材料力学考研题解_第五章弯曲内力

5-15 .....................................................................................................................................................14
5-10 .......................................................................................................................................................9
5-8 .........................................................................................................................................................4
(也可用左侧题号书签直接查找题目与解)
5-3 试证明,在集中力 F 作用处(图 a),梁微段的内力满足下列关系:
FS右-FS左 = F , M 右 = M 左 而在矩为 Me 的集中力偶作用处(图 b),则恒有
FS右 = FS左 , M 右 − M 左 = M e
证明:根据题图 a,由
题 5-3 图
解:根据题图中所给的 FS 图和 M 图,并依据三个微分关系和两个突变关系,可画梁的
外力图,示如图 5-5a 和 b。
2
图 5-5
5-7 图示外伸梁,承受均布载荷 q 作用。试问当 a 为何值时梁的最大弯矩值(即| M |

材料力学(金忠谋)第六版答案-附录

材料力学(金忠谋)第六版答案-附录

材料力学(金忠谋)第六版答案- 附录2]附录I 截面图形的几何性质I-1求下列截面图形对 z 轴的静矩与形心的位—置。

(b )解:(a )S zbt(h 2)htt(b(h 2)号)y ct(b(h2) h)t(bb(h2)b h3D 2{2[(〒D 2 (7)](2邑 (3 (3D)2字金卫D 3/D 、2〃 192(7)S zyc ~AH D 3________ 192 D D 3D 2 2( ) — [( )2 4 4 2 40.1367D(c)+h+S z(b t) t2 htht[(b t) 2s z _ (b-t)t + h27 - 2(/? + /,-/)1-2试求(1)图示工字形截面对形心轴y及的惯性矩厶与厶。

(2)图示卩字形截面对形心轴的惯矩与厶。

_hh3 (h-t)(h-2t)3胡3_(—2川一12 一\22tb3 (h - 2t)(t)y t(2b3 +(h-2t)t2)F --- =-------------- 12 12 12252 X5+52X(15-5)2(15x5 + 20x5)(b) =9.643c/??2]41-33 315 53 2 5 203 2J z(9.643 2.5) 15 5 (25 10 9.643) 20 512 123 320 5 5 15 4--------- ------------ 1615cm10186cmJ y12 12求图示椭圆截面对长轴的惯矩、惯性半径与对形心的极惯矩。

解:y b sin , z cosdy bcos d J zb y2dAb:y2 2zdyJ zb2 22b sin a cos bcos db2ab32sin2cos2 d4ab3i zab34abJ p J z J y(ab3a3b) ab(a2b2)4 4角A 点一对主轴 u 及v 的方位,并求i u及i v1-4 试求图示的£的圆面积(半径a )对于z,4 2 az )dz8I-5图示矩形截面h : b = 3 : 2。

材料力学第六版答案第06章

材料力学第六版答案第06章

材料力学(金忠谋)第六版答案第06章(总27页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2弯曲应力6-1 求图示各梁在m -m 截面上A 点的正应力和危险截面上最大正应力。

题 6-1图解:(a )m KN M m m ⋅=-5.2 m KN M ⋅=75.3max 48844108.49064101064m d J x --⨯=⨯⨯==ππMPa A 37.20108.490104105.2823=⨯⨯⨯⨯=--σ (压)3 MPa 2.38108.4901051075.3823max =⨯⨯⨯⨯=--σ (b )m KN M m m ⋅=-60 m KN M ⋅=5.67max488331058321210181212m bh J x --⨯=⨯⨯== MPa A 73.611058321061060823=⨯⨯⨯⨯=--σ (压) MPa 2.104105832109105.67823max =⨯⨯⨯⨯=--σ (c )m KN M m m ⋅=-1 m KN M ⋅=1max48106.25m J x -⨯=36108.7m W x -⨯=cm y A 99.053.052.1=-=MPa A 67.38106.251099.0101823=⨯⨯⨯⨯=--σ (压) MPa 2.128106.2510183max =⨯⨯=-σ 6-2 图示为直径D =6 cm 的圆轴,其外伸段为空心,内径d =4cm ,求轴内最大正应力。

4解:)1(32431απ-=D W x⎪⎭⎫ ⎝⎛-⨯⨯⨯=-463)64(110326π 361002.17m -⨯=3463321021.213210632m D W x --⨯=⨯⨯==ππMPa 88.521002.17109.0631=⨯⨯=-σ MPa 26.551021.2110172.1631=⨯⨯=-σ MPa 26.55max =σ6-3 T 字形截面铸铁梁的尺寸与所受载荷如图示。

材料力学(金忠谋)第六版答案第01章

材料力学(金忠谋)第六版答案第01章

第一章 绪论1-1 求图示杆在各截面(I )、(II )、(III )上的内力,并说明它的性质.解:(a )I-I 截面: N = 20KN (拉)II-II 截面: N = -10KN (压)III-III 截面: N = -50KN (压)(b )I-I 截面: N = 40KN (拉)II-II 截面: N = 10KN (拉)III-III 截面: N = 20KN (拉)1-2 已知P 、M 0、l 、a ,分别求山下列图示各杆指定截面(I )、(II)上的内力 解:(a ):(I )截面:内力为零。

(II )截面:M = Pa (弯矩) Q = -P (剪力)(b ):(I )截面:θsin 31P Q =θs i n 61PL M =(II )截面:θsin 32P Q =θs i n 92PL M =(c ):(I )截面:LM Q 0-=021M M =(II )截面:LM Q 0-=031M M =1-3 图示AB 梁之左端固定在墙内,试求(1)支座反力,(2)1-1、2-2、3-3各横截面上的内力(1-1,2-2是无限接近集中力偶作用点.) 解:10110=⨯=A Y (KN )1055.110-=+⨯-=AM(KN-M )(1-1) 截面:10110=⨯=Q (KN )521110-=⨯⨯-=M(KN-M )(2-2)截面:10=Q (KN )055=-=M(KN-M )(2-3)截面:10=Q (KN )551110-=+⨯⨯-=M (KN-M )1-4 求图示挂钩AB 在截面 1-1、2-2上的内力. 解:(1-1)截面:P N 32=a P M ⋅=43(2-2)截面:P Q 32=a P M ⋅=321-5 水平横梁AB 在A 端为固定铰支座,B 端用拉杆约束住,求拉杆的内力和在梁1-1截面上的内力.解:(1)拉杆内力T :1230sin 0⨯=⨯⋅=∑P T MA10030sin 2100=⨯=T (KN )(拉)(2)(1-1)截面内力:Q 、N 、M :5030sin -=-=T Q (KN )6.8630cos -=-=T N (KN )(压)()2550.030sin =⨯=T M (KN-M )1-6 一重物 P =10 kN 由均质杆 AB 及绳索 CD 支持如图示,杆的自重不计。

《材料力学》第五章课后习题参考答案

《材料力学》第五章课后习题参考答案

错误原因及避免方法
错误原因
1. 对材料力学的基本原理理解不深入,导致选择错误的公式或方法进行 计算。
2. 计算过程中出现数值错误或单位不统一等问题,导致结果偏差较大。
错误原因及避免方法
• 对计算结果缺乏分析和讨论,无法判断其 合理性和准确性。
错误原因及避免方法
01
避免方法
02
03
04
1. 加强对材料力学基本原理 的学习和理解,掌握各种公式 和方法的适用范围和条件。
题目一
分析并比较不同材料在拉伸过程中的力学行为差异。
题目二
讨论材料疲劳破坏的机理及影响因素。
要求
掌握材料在拉伸过程中的应力-应变曲线,理解弹性模量 、屈服强度、抗拉强度等概念,能够运用所学知识分析不 同材料的力学行为。
要求
了解材料疲劳破坏的基本概念,掌握疲劳破坏的机理和影 响因素,能够运用所学知识分析实际工程中的疲劳破坏问 题。
知识点综合运用
弹性力学基础
运用弹性力学的基本原理,分析 材料在弹性阶段的力学行为,计
算弹性模量等参数。
塑性力学基础
运用塑性力学的基本原理,分析材 料在塑性阶段的力学行为,理解屈 服强度、抗拉强度等概念。
疲劳破坏理论
运用疲劳破坏的基本理论,分析材 料在交变应力作用下的力学行为, 讨论疲劳破坏的机理和影响因素。
加强实践应用
除了理论学习外,我还计划通过 实践应用来加深对材料力学的理 解。例如,可以尝试利用所学知 识解决实际工程问题,或者参加 相关的实验和课程设计等。
拓展相关学科领域
材料力学是一门基础学科,与其他学 科领域有着密切的联系。因此,我计 划拓展相关学科领域的学习,如结构 力学、弹性力学等,以便更全面地了 解材料的力学性能和工程应用。

新版材料力学(金忠谋)第六版答案第05章-新版.pdf

新版材料力学(金忠谋)第六版答案第05章-新版.pdf

32 qa
4
( i) M 图
3 qa
2
3
1
1
ql
ql
P
8
2
4
0.5a
qa (j)Q 图
1 qa
2
3
5
a
ql
8
8
( k)Q 图
3 P
4
( l) Q 图
12 qa
2
1
2
ql
128
1 Pa
4
2
qa (j)M 图
1 ql 2 8
( k)M 图
( l) M 图
1 Pa
2
5-3 利用 q、 FS 、M 的微分关系作出下列各梁的剪力图和弯矩图,
Rx
2
P 2l a
l
8
a x
M1
M1
(M 图 ) P。试分析小车处于什么位
P
P
L
5-9 作图示梁 ABC 的剪力图和弯矩图。
解:
D
B
C
E
P
P
A
D
B
C
P
(Q 图) 5-10 用叠加法作下列各梁的弯矩图
D
B
C
E
Pa
A
D
B
C
Pa
( M 图)
1 Pa
2
( a)
5
2
Pl
Pl
9
3
1 Pl
3
( d)
12 ql
4
解:
8m 10 KN 10 KN
20 KN ( a)Q 图
20 KN
15 KN
4m 15 KN
( b)Q 图
1 q0l

材料力学习题解答[第五章]

材料力学习题解答[第五章]

5-1构件受力如图5-26所示。

试:(1)确定危险点的位置;(2)用单元体表示危险点的应力状态(即用纵横截面截取危险点的单元体,并画出应力)。

题5-1图解:a) 1) 危险点的位置:每点受力情况相同,均为危险点;2)用单元体表示的危险点的应力状态见下图。

b) 1) 危险点的位置:外力扭矩3T与2T作用面之间的轴段上表面各点;2)应力状态见下图。

c) 1) 危险点:A点,即杆件最左端截面上最上面或最下面的点;2)应力状态见下图。

d) 1)危险点:杆件表面上各点;2)应力状态见下图。

5-2试写出图5-27所示单元体主应力σ1、σ2和σ3的值,并指出属于哪一种应力状态(应力单位为MPa)。

10题5-2图AAT(a)(c)(d)364dFlπτ=a) b) c) d)a) b) c)解: a) 1σ=50 MPa, 2σ=3σ=0,属于单向应力状态b) 1σ=40 MPa, 2σ=0, 3σ=-30 MPa ,属于二向应力状态 c) 1σ=20 MPa, 2σ=10 MPa, 3σ=-30 MPa ,属于三向应力状态5-3已知一点的应力状态如图5-28所示(应力单位为MPa )。

试用解析法求指定斜截面上的正应力和切应力。

题5-3图解:a) 取水平轴为x 轴,则根据正负号规定可知: x σ=50MPa , y σ=30MPa , x τ=0, α=-30 带入式(5-3),(5-4)得 ατασσσσσα2sin 2cos 22x yx yx --++==45MPaατασστα2cos 2sin 2x yx +-== -8.66MPab) 取水平轴为x 轴,根据正负号规定:x σ= -40MPa , y σ=0 , x τ=20 MPa , α=120带入公式,得:240sin 20240cos 20402040---++-=ασ=7.32MPa x τ= 240cos 20240sin 2040+--=7.32MPac) 取水平轴为x 轴,则x σ= -10MPa , y σ=40MPa , x τ= -30MPa,α=30代入公式得:60sin )30(60cos 2401024010----++-=ασ=28.48MPa x τ= 60cos 3060sin 24010---=-36.65MPaa)b)c)5-4已知一点的应力状态如图5-29所示(应力状态为MPa )。

材料力学第五章习题选及其解答.pdf

材料力学第五章习题选及其解答.pdf

5-1. 矩形截面悬臂梁如图所示,已知l =4m ,h/b=2/3,q=10kN/m ,[σ]=10MPa ,试确定此梁横截面的尺寸。

解:(1)画梁的弯矩图由弯矩图知:22maxql M =(2)计算抗弯截面模量96326332h hbh W ===(3)强度计算mmb mm ql h h ql h ql W M 277416][29][12992323232max max≥=≥∴≤⋅===σσσ5-2. 20a 工字钢梁的支承和受力情况如图所示,若[σ]=160MPa ,试求许可载荷。

解:(1)画梁的弯矩图qNo20aql 2x由弯矩图知:32maxP M =(2)查表得抗弯截面模量3610237m W −⨯=(3)强度计算kNW P P WW PW M 88.562][3][3232m ax m ax =≤∴≤⋅===σσσ 取许可载荷kN P 57][=5-3. 图示圆轴的外伸部分系空心轴。

试作轴弯矩图,并求轴内最大正应力。

解:(1)画梁的弯矩图由弯矩图知:可能危险截面是C 和B 截面 (2)计算危险截面上的最大正应力值x1.34kNmxC 截面:MPa d M W M CCC C C 2.63323m ax ===πσ B 截面:MPa D d D M W M BB BB B B B 1.62)1(32443m ax=−==πσ (3)轴内的最大正应力值MPa C 2.63max max ==σσ5-8. 压板的尺寸和载荷如图所示。

材料为45钢,σs =380MPa ,取安全系数n=1.5。

试校核压板的强度。

解:(1)画梁的弯矩图由弯矩图知:危险截面是A 截面,截面弯矩是Nm M A 308=(2)计算抗弯截面模量3633210568.1)1(6m Hh bH W −⨯=−=(3)强度计算许用应力A-AxMPa nS253][==σσ强度校核][196max σσ MPa WM A==压板强度足够。

材料力学第五章习题参考答案(上)

材料力学第五章习题参考答案(上)

材料力学第五章习题参考答案(上)
5-3 一受转矩m 作用的圆轴,半径为R ,从其中切出一长为a 的半圆柱体,在AFED 面上取坐标系O 2xyz ,验证作用于半圆柱体上的力系满足对y 轴的力矩平衡。

证明:
半圆ABFO 2面上的剪应力的作用线通过y 轴,对y 轴不产生力矩。

考察AFED 面(y 轴垂直纸面向外):
剪应力对y 轴的力矩为逆时针方向,其大小为:
∫××=R P ad I m m 02ρρρ逆
考察半圆DCEO 1面,其上的力沿Z 方向的分量对y 其大小为:
逆顺
=m ad I m a d d I m m R P
P =××=××××∫∫∫
0R 002sin ρρρθρθρρπ
可见作用于半圆柱体上的力系满足对y 轴的力矩平衡。

证毕。

5-5 画图示轴的扭矩图并求最大剪应力。

注意(c)图的AB 段上承受的是均匀分布转矩t ,它表示的是沿圆轴长每单位长度上的扭矩值(Nm/m )。

(a)
33max 1616d m d m ππτ==
(b)
33max 4.38164.2d m d m ππτ==
(c)
对AB 段:33max 416)2(2d m d m ππτ== 对CD 段:33max 1616d
m d m ππτ== 所以3max 16d m πτ,发生在CD 段内。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 弯曲力5-1 试求下列各梁在指定1、2、3截面上的剪力和弯矩值.解:(a ) 01=Q a M Q 202=aM Q 203= 01M M -= 02M M -= 23M M -= (b ) ql Q =1 ql Q =2 ql Q =32123ql M -= 2223ql M -= 2323ql M -= (c ) qa Q -=1 qa Q -=2 qa Q 433=01=M 22qa M -= 23qa M -=(d ) l q Q 0161=l q Q 02241= l q Q 0331-=01=M 202161l q M =03=M (e ) KN Q 51= KN Q 51-= KN Q 51-= 01=M 02=M 03=M (f ) KN Q 101= KN Q 102= KN Q 103= m KN M ⋅=51 m KN M ⋅=52 m KN M ⋅-=1035-2 试写出下列各梁的剪力方程和弯矩方程,并作剪力图和弯矩图,确定|F max |和|M max |。

解:(a ) l M x Q 03)(=003(x)M x l M M -=lM Q 0max 3=0max2M M =(b ) 0)(1=x Q pa x M =)(1p x Q -=)(2 )()(2a x p pa x M --=p Q =max pa M=max(c ) p x Q -=)(1 px x M -=)(1p x Q 21)(2=)(23)(2a x p px x M ---= p Q =max pa M=max(a )Q 图 (b )Q 图 (c )Q 图02M0M P a(a )M 图 (b )M 图 (c )M 图qa ql4/qa (d )Q 图 (e )Q 图 (f )Q 图22ql22ql 22ql 22ql(d )M 图 (e )M 图 (f )M 图ql 3 qa 3 l q 041a 8 ql 4 l q 04(g )Q 图 (h )Q 图 (i )Q 图2921 21qa 20121l q2(g )M 图 (h )M 图 (i )M 图qa 3 ql 83 ql 1 P 4124(j )Q 图 (k )Q 图 (l )Q 图221qa 21281ql Pa 182(j )M 图 (k )M 图 (l )M 图5-3 利用q 、S F 、M 的微分关系作出下列各梁的剪力图和弯矩图,并求出|Smax F |和|M max |。

解:P 31 P 31PqaP 31P qa 2 (a )Q 图 (b )Q 图 (c )Q 图Pa3 2 221qa (a )M 图 (b )M 图 (c )M 图qa qa KN 0.1qa KN 0.1(d )Q 图 (e )Q 图 (f )Q 图23qa(d )M 图 (e )M 图 (f )M 图KN 5.12 ql 1 ql 11KNm 16KN 5.344(g )Q 图 (h )Q 图 (i )Q 图m KN ⋅77.9 m KN ⋅12321ql32m KN ⋅2(g )M 图 (h )M 图 (i )M 图ql 5ql 8KN 2 (j )Q 图 (k )Q 图 (l )Q 图 23249qa(j )M 图 (k )M 图 (l )M 图l q 01 l q 05 ql 813ql 8(m )Q 图 (n )Q 图 (o )Q 图23213ql2061l q 204l q 219ql 23ql(m )M 图 (n )M 图 (o )M 图5-4 木梁浮在水面上,承受载荷如图示,求作其剪力图和弯矩图。

解:KN 20 KN 15 l q 081 8m KN 10KN 10 4m 0.5aKN 20 KN 15 l q 08(a )Q 图 (b )Q 图 (c )Q 图m KN ⋅30 201211a q m KN ⋅15 m KN ⋅15201211a qm KN ⋅80 m KN ⋅80(a )M 图 (b )M 图 (c )M 图5-5 求作下列各饺接梁的剪力图和弯矩图。

解:qa 25qa 21a 1 qa 1 qa 1qa (a )Q 图 (b )Q 图 (c )Q 图21qa 2212123qa(a )M 图 (b )M 图 (c )M 图qa KN 521qa 22qa(d )Q 图 (e )Q 图 (f )Q 图2qa1m KN ⋅8 m KN ⋅6(d )M 图 (e )M 图 (f )M 图5-6 根据q 、S F 、M 的微分关系,检查并改正下列各梁的S F 图和M 图的错误。

解:qa 41qa4aqa qa qa 47(a )Q 图 (b )Q 图S F S FS F2324921422qa (a )M 图 (b )M 图qaqa 32 qa 133(c )Q 图 (d )Q 图22qa22181qa261qa 2131qa (c )M 图 (d )M 图5-7 起吊一根自重为q (N /m )的等截面钢筋混凝土梁,求吊装时的起吊位置应为多少才最合理(最不易使杆折断)? 解:令 21M M =2121qx M -= )(x lql l l q M -+⋅⋅-=22422l l l l x 207.0222=+±-=2Mx xL1M 1M (M 图)5-8 小车可在梁上移动,它的每个轮子对梁的作用力均为P 。

试分析小车处于什么位置时梁的弯矩最大(以x 表示梁上小车的位置)?解:[]la x l P R --=)(2[]ax x l x lPx R x M --=⋅=)(2)(0)(=dx x dM ()042=--a x l lP42al x -= ()822a l l P x R M mzx-=⋅= axP P L5-9 作图示梁的剪力图和弯矩图。

解:A DBC AD B CPa(Q 图) (M 图)5-10 用叠加法作下列各梁的弯矩图241ql Pa 2 22ql 267ql 27235ql(a ) (b ) (c )Pl 95 Pl 322167qlPl 31281ql 22qa 22qa(d ) (e ) (f )5-11 求作下列图示平面刚架的力图。

解:(a)PaPa P(M图) (Q图) (N图) (b)40KN⋅m40KN340KN⋅m40KN20KN3(M图) (Q图) (N图)(c )qa221qa 21qa221qa(M 图) (Q 图) (N 图)(d )2M M(M 图) (Q 图) (N 图)(e )qa 41(M 图) (Q 图) (N 图)(f )21221qaqa(M 图) (Q 图) (N 图)(g )Pl 1Pl 21Pl 21PPl 2P P (M 图) (Q 图) (N 图)(h )2Pa 4333(M 图) (Q 图) (N 图)5-12 简支梁上的分布载荷按抛物线规律变化,其方程为)1(4)(0lxl x q x q -=试作剪力图和弯矩图。

解:l q 031 20121l ql q 031(Q 图) (M 图)5-13 已知梁的剪力图,试求此梁的载荷及弯矩图(设梁上没有集中力偶作用)。

解:KN 20 (a ) m KN /2 (b ) m KN /30m KN ⋅54 m KN ⋅67.141 m KN ⋅48 m KN ⋅140m KN ⋅60(M 图) (M 图)5-14 已知梁的弯矩图,试求此梁的载荷及剪力图。

S FS FKN 5.37 KN 25 m KN ⋅40 KN 20 解:KN 20 KN 1667.29 KN 25KN 333.8(Q 图) (Q 图)5-15 图示梁上作用有集度为m =m (x )的分布力偶矩,试建立m 、S F 、M 之间的微分关系。

)(x m解:∑=0MdM M dx x m dx Q M +=+⋅+)( Q Q ∴ )(x m Q dxxdM+= dx dM5-16 悬臂梁上表面受切向分布力t 作用,t 为单位长度上的力N /m ,已知t 、h 、L 。

试分别作此梁的轴力、剪力和弯矩图。

解: htL 21tL(N 图) (Q 图) (M 图)5-17 某简支梁上作用有n 个间距相等的集中力,其总载荷为P ,所以每个载荷等于P /n ,梁的跨度为l ,载荷的间距为l /(n +1)。

(1)试导出梁中最大弯矩的一般公式; (2)将(1)的答案与承受均布载荷q 的简支梁的最大弯矩相比较,设P =ql 。

解:若n 为偶数,则m ax M 一侧有2n 个P 。

)122()122()12(22max +⨯---+--+--⨯=n l n l n p n l l n p n l l n p l p M ΛΛ )2321(1n n l n p +++++⨯=ΛΛ 2)12(2)1(+⨯+=n n n n pl )1(8)2(++=n n pl 若n 为奇数,则m ax M 一侧有21-n 个P 。

)1212()12(22max +⨯----+--⨯=n l n l n p n l l n p l p M ΛΛ )21321()1(4)1(4-+++++--=n n n pl n n pl pl ΛΛ 2)1121(21)1(444+-⨯-⨯+++-=n n n n pl n pl pl pl )1(8+=n npl 若p ql =pl ql M 81812max ==∞=n pl M 81max → 1=n pl M 41max = 2=n pl M 61max = 3=n pl M 61max = 4=n pl M 203max =。

相关文档
最新文档