初二上册数学算术平方根知识点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二上册数学算术平方根知识点总结

关于初二上册数学算术平方根知识点总结

算术平方根的双重非负性

1.√a中a≧0

2.√a≧0

算术平方根产生根号(即算术平方根)的产生源于正方形的对角线长度“根号二”,这个“根号二”的发现一度引起了毕达哥拉斯学

派的恐慌。因为按当时的权威解释(也就是毕达哥拉斯学派的学说),世界的一切事物都可以用有理数代表。

对于这个无理数“根号二”,最终人们选取了用根号来表示

算术平方根举例

9的平方根为±3;9的`算术平方根为3,正数的平方根都是前面

加±,算术平方根全部都是正数。

算术平方根辨析

一、两者区别

1、定义不同:⑴一般地,如果一个正数x的平方等于a,即

x2=a,那么这个正数x叫做a的算术平方根(arithmeticsquareroot)。⑵一般地,如果一个数的平方等于a,

那么这个数叫做a的平方根或二次方根(squareroot)。这就是说,

如果x2=a,那么x叫做a的平方根。

2、表示方法不同:⑴a的算术平方根记为√a,读作“根号a”,a叫做被开方数(radicand)。⑵a的平方根记为±√a,读作“正负

根号a”,其中a叫做被开方数。

3、个数不同:从形式上看,二者的符号主体相似,但是一个数的平方根要在其算术平方根的前面写上“±”。这也正好说明了一个正数和零的算术平方根有且只有一个,而一个正数却有两个互为相反数的平方根。零只有一个平方根

二、两者联系

1、前提条件相同:算术平方根和平方根存在的前提条件都是“只有非负数才有算术平方根和平方根”。

2、存在包容关系:平方根包含了算术平方根,因为一个正数的算术平方根只是其两个平方根中的一个。

3、0的算术平方根和平方根相同,都是0。

相关文档
最新文档