上海沪教版教材高中数学知识点总结

合集下载

沪教版高一高二数学知识点

沪教版高一高二数学知识点

沪教版高一高二数学知识点数学作为一门重要的学科,是高中阶段学生必修的科目之一。

沪教版高一高二数学课程内容丰富多样,包括了广义相似性、三点共线、数列与数学归纳法、三角函数与两角定理等知识点。

下文将为你详细介绍这些知识点。

1. 广义相似性:广义相似性是高中数学中的重要概念之一,它是指两个图形在形状、大小和方向上都相似。

在广义相似性中,我们可以通过比较两个图形的比例关系,来推导出它们之间的相似性质。

例如,当两个三角形的对应边成比例时,可以得出它们相似;而当两个矩形的相邻边成比例时,可以得出它们相似。

广义相似性的理解和运用,有助于我们在几何问题中做出合理的推理和判断。

2. 三点共线:三点共线是高中数学中的基础概念之一,它是指三个点在同一条直线上。

在数学中,我们可以通过计算三点之间的斜率关系来确定它们是否共线。

当三个点的斜率相等时,它们即共线。

三点共线的概念在解决几何问题和直线方程的推导中经常被使用,是我们理解和应用直线相关知识的基础。

3. 数列与数学归纳法:数列是数学中常见的序列,它是由一系列按照一定规律排列的数字组成。

在高一和高二数学中,我们学习了等差数列和等比数列等常见的数列类型。

数学归纳法是证明数列性质的一种重要方法。

通过对数列的首项、公差(等差数列)或公比(等比数列)进行假设,再通过归纳证明的方法来推导出数列的通项公式和求和公式等。

数列与数学归纳法的学习可以帮助我们更好地理解和运用数学中的序列知识。

4. 三角函数与两角定理:三角函数是高中数学中的重要分支,它研究了角的度量与弧度的关系,以及角的三角比(正弦、余弦、正切)与角度之间的函数关系。

在高一和高二数学课程中,我们学习了三角函数的基本概念、性质和图像变换等内容。

两角定理是三角函数中的重要定理之一,包括了正弦定理、余弦定理和正切定理。

通过运用两角定理,我们可以在不直接测量边长的情况下,求解三角形中各个角度和边长的关系,实现几何问题的解决。

通过对沪教版高一高二数学课程内容的学习,我们不仅能够掌握数学的基础知识,还可以培养我们的逻辑思维能力和问题解决能力。

(完整版)上海教材高中数学知识点总结(最全),推荐文档

(完整版)上海教材高中数学知识点总结(最全),推荐文档

目录一、集合与常用逻辑 二、不等式 三、函数概念与性质 四、基本初等函数 五、函数图像与方程 六、三角函数 七、数 列 八、平面向量九、复数与推理证明 十、直线与圆 十一、曲线方程十二、矩阵、行列式、算法初步 十三、立体几何 十四、计数原理 十五、概率与统计一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且I 并集:}{B x A x x B A ∈∈=⋃或补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=Y I注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定∀∈M, p(x )否定为: ∃∈M, )(X p ⌝ ∃∈M, p(x )否定为: ∀∈M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βαY注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2) 或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增”③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T)4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+kf(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f(x)min a b ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a nnaa 1=- m nmn a a = 2.对数式 b N a =log N a b=⇔(a>0,a ≠1)N M MN a a a log log log +=N M NM a a a log log log -=M n M a n a log log =a b b m m a log log log =ablg lg =n a a b b n log log =ab log 1=注:性质01log =a 1log =a a N aNa =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数)4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:α>101<<αα<0五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换平移:“左加右减,上正下负”)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分, 并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断)注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy=αtan 其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 6.特殊角的三角函数值α6π 4π 3π 2π π23π sin α 0 21 22 231 0 1-cos α 1 23 2221 01-tg α33 13/ 0 / 7.基本公式同角1cos sin 22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos μ=± ()βαβαβαtan tan 1tan tan tan μ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质 单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增注:Z k ∈y=sinxy=cosxy=tanx图象sinx cosx tanx 值域 [-1,1] [-1,1] 无 奇偶 奇函数 偶函数 奇函数 周期 2π2ππ对称轴 2/ππ+=k xπk x =无中心()0,πk()0,2/ππk + ()0,2/πk9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sinCB A =+ 正弦定理:A a sin =B b sin =CcsinA R a sin 2= CB A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边) cos A =bcac b 2222-+(求角)面积公式:S △=21ab sin C注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π七、数 列1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+= 求和:2)(1n n a a n S += d n n na )1(211-+= 中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则qp n m a a a a +=+2、等比数列 定义:)0(1≠=+q q a a nn通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=共始点中点公式:⇔=+AD AC AB 2D 是BC 中点 2. 向量数量积 ⋅=θcos ⋅⋅=2121y y x x +注:①b a ,夹角:00≤θ≤1800②b a ,同向:=⋅3.基本定理 2211e e a ρρρλλ+=(21,e e ρρ不共线--基底) 平行:⇔//b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥02121=+⇔y y x x 模:a ρ=22y x +Λ=+=+2)(夹角:=θcos ||||b a ba 注:①0ρ∥a ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③c a b a ⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -=模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=? 除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=n i rr k i i=+4 3.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论 分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k ∈N* ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+bya x一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件) 平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+- 点到直线距离:d =5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭半径2r =6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外7、直线截圆所得弦长AB =十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0) 顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a ≤x ≤a,-b ≤y ≤b双曲线|x| ≥ a ,y ∈R 焦距:椭圆2c (c=22b a -)双曲线2c (c=22b a +) 2a 、2b :椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn 抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴) 开口(向右) 范围x ≥0 离心率e=1焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量 2输出语句:PRINT “提示内容”;表达式 3赋值语句:变量=表达式 4条件语句“IF —THEN —ELSE ”语句 “IF —THEN ”语句IF 条件 THEN IF 条件 THEN 语句1 语句 ELSE END IF 语句2 END IF 5循环语句当型循环语句 直到型循环语句 WHILE 条件 DO 循环体 循环体 WEND LOOP UNTIL 条件 当型“先判断后循环” 直到型“先循环后判断”三.算法案例1、求两个数的最大公约数 辗转相除法:到达余数为0 更相减损术:到达减数和差相等2、多项式f(x)= a n x n +a n-1x n-1+….+a 1x+a 0的求值秦九韶算法: v 1=a n x+a n -1 v 2=v 1x+a n -2v 3=v 2x+a n -3 v n =v n -1x+a 0注:递推公式v 0=a n v k =v k -1X +a n -k (k=1,2,…n)求f(x)值,乘法、加法均最多n 次 3、进位制间的转换k 进制数转换为十进制数:111011.........)(.....a k a ka k a k a a a a n n nn n n +⨯++⨯+⨯=---十进制数转换成k 进制数:“除k 取余法”例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27 v 0=2 48=1×27+21 v 1=2×5-5=5 27=1×21+6 v 2=5×5-4=21 21=3×6+3 v 3=21×5+3=1086=2×3+0 v 4=108×5-6=534v 5=534×5+7=2677十三、立体几何1.三视图 正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件:①不共线的三点 ②一条直线和这直线外一点③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

(完整word版)高中数学(沪教版)知识点归纳

(完整word版)高中数学(沪教版)知识点归纳

高中数学知识点归纳高一(上)数学知识点归纳第一章 集合与命题1.主要内容:集合的基本概念、空集、子集和真子集、集合的相等;集合的交、 并、补运算。

四种命题形式、等价命题;充分条件与必要条件.2.基本要求:理解集合、空集的意义,会用列举法和描述法表示集合;理解子集、真子集、集合相等等概念,能判断两个集合之间的包含关系或相等关系;理解交集、并集,掌握集合的交并运算,知道有关的基本运算性质,理解全集的意义,能求出已知集合的补集.理解四种命题的形式及其相互关系,能写出一个简单命题的逆命题、否命题与逆否命题;理解充分条件、必要条件与充要条件的意义,能在简单问题的情景中判断条件的充分性、必要性或充分必要性。

3.重难点:重点是集合的概念及其运算,充分条件、必要条件、充要条件。

难点是对集合有关的理解,命题的证明,充分条件、必要条件、充要条件的判别。

4.集合之间的关系:(1)子集:如果A 中任何一个元素都属于B ,那么A 是B 的子集,记作A ⊆B.(2)相等的集合:如果A ⊆B,且B ⊆A,那么A=B 。

(3).真子集:A ⊆B 且B 中至少有一个元素不属于A,记作A ⊆B 。

5.集合的运算:(1)交集:}.{B x A x x B A ∈∈=且(2)并集:}.{B x A x x B A ∈∈=或 (3)补集:}.{A x U x x A C U ∉∈=且6。

充分条件、必要条件、充要条件如果P Q ⇒,那么P 是Q 的充分条件,Q 是P 的必要条件。

如果P Q ⇔,那么P 是Q 的充要条件。

也就是说,命题P 与命题Q 是等价命题。

有关概念:1。

我们把能够确切指定的一些对象组成的整体叫做集合。

2.数集有:自然数集N ,整数集Z ,有理数集Q ,实数集R .3。

集合的表示方法有列举法、描述法和图示法.4。

用平面区域来表示集合之间关系的方法叫做集合的图示法,所用图叫做文氏图。

5.真子集,交集,并集,全集,补集。

6.命题,逆命题,否命题,逆否命题,等价命题。

上海沪教版教材高中数学知识点总结

上海沪教版教材高中数学知识点总结

目录一、集合与常用逻辑二、不等式三、函数概念与性质四、基本初等函数五、函数图像与方程六、三角函数七、数列八、平面向量九、复数与推理证明十、直线与圆十一、曲线方程十二、矩阵、行列式、算法初步十三、立体几何十四、计数原理十五、概率与统计一、集合与常用逻辑1.集合概念元素:互异性、无序性2.集合运算全集U :如U=R交集:}{B x A x x B A 且并集:}{B xA xx BA或补集:}{A xU xx A C U 且3.集合关系空集A 子集B A :任意Bx AxBABBABAAB A 注:数形结合---文氏图、数轴4.四种命题原命题:若p 则q 逆命题:若q 则p否命题:若p 则q逆否命题:若q 则p原命题逆否命题否命题逆命题5.充分必要条件p 是q 的充分条件:q P p 是q 的必要条件:qPp 是q 的充要条件:p?q 6.复合命题的真值①q 真(假)?“q ”假(真)②p 、q 同真?“p ∧q ”真③p 、q 都假?“p ∨q ”假7.全称命题、存在性命题的否定M, p(x )否定为: M, )(X p M, p(x )否定为:M,)(X p二、不等式1.一元二次不等式解法若0a,02cbx ax有两实根,)(,则02c bx ax 解集),(02cbxax解集),(),(注:若0a ,转化为0a情况2.其它不等式解法—转化ax aa x 22axaxa x或ax22ax)()(x g x f 0)()(x g x f )()(x g x f aa)()(x g x f (a 1))(log )(log x g x f a a f x f x g x ()()()0(01a )3.基本不等式①ab b a222②若R ba,,则ab ba 2注:用均值不等式ab b a2、2)2(b a ab求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数()()f x f x f(x)图象关于y 轴对称f(x)奇函数()()f x f x f(x)图象关于原点对称注:①f(x)有奇偶性定义域关于原点对称②f(x)奇函数,在x=0有定义f(0)=0③“奇+奇=奇”(公共定义域内)2.单调性f(x)增函数:x 1<x 2f(x 1)<f(x 2) 或x 1>x 2f(x 1) >f(x 2)或)()(2121x x x f x f f(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增”③奇函数在对称区间上单调性相同偶函数在对称区间上单调性相反3.周期性T 是()f x 周期()()f x T f x 恒成立(常数0T )4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+kf(x)=a(x-x1)(x-x2)对称轴:a b x2顶点:)44,2(2abacab 单调性:a>0,]2,(ab递减,),2[ab 递增当abx2,f(x)minabac442奇偶性:f(x)=ax 2+bx+c 是偶函数b=0闭区间上最值:配方法、图象法、讨论法---注意对称轴与区间的位置关系注:一次函数f(x)=ax+b奇函数b=0四、基本初等函数1.指数式)0(10aannaa 1mnmnaa2.对数式bN a log N ab(a>0,a ≠1)NM MN a a a log log log NM N M a a alog log log Mn M a na log log ab bm m a log log log ab lg lg naa b bnl o g l o g a b l o g 1注:性质1log a 1log aa NaNa log 常用对数N N 10log lg ,15lg 2lg 自然对数N N e log ln ,1ln e 3.指数与对数函数y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数)4.幂函数12132,,,xyx yx yx y x y在第一象限图象如下:1010五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调)取特殊点如零点、最值点等2.图象变换平移:“左加右减,上正下负”)()(h x f y x f y伸缩:)1()(x f y x f y 倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f yx f y x f y x f y x f y x f y y x 原点轴轴注:)(x f yax直线)2(x af y翻折:)(x f y |()|y f x 保留x 轴上方部分,并将下方部分沿x 轴翻折到上方y=f(x)cbaoyxy=|f(x)|cb aoyx)(x f y (||)y f x 保留y 轴右边部分,并将右边部分沿y 轴翻折到左边y=f(x)cb aoyxy=f(|x|)cb aoyx3.零点定理若0)()(b f a f ,则)(x f y 在),(b a 内有零点(条件:)(x f 在],[b a 上图象连续不间断)注:①)(x f 零点:0)(x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(b f a f 则)(x f 在),(b a 上有且仅有一个零点③二分法判断函数零点---0)()(b f a f ?六、三角函数1.概念第二象限角)2,22(kk(Z k )2.弧长r l 扇形面积lrS213.定义ry sinrx cosx y tan其中),(y x P 是终边上一点,rPO4.符号“一正全、二正弦、三正切、四余弦”5.诱导公式:“奇变偶不变,符号看象限”如sin)2(Sin ,sin)2/cos(6.特殊角的三角函数值643223sin 0212223 11cos 1 23222101tg33 13/ 0 /7.基本公式同角1cossin 22tancossin 和差sincos cossin sinsinsincos cos cos tantan1tan tan tan倍角cos sin 22sin 2222sin211cos2sincos2cos 2tan1tan 22tan 降幂cos 2α=22cos 1 sin2α=22cos 1叠加)4sin(2cossin )6sin(2cossin3)sin(cos sin 22b ab a )(tanba 8.三角函数的图象性质单调性:)2,2(增),0(减)2,2(增注:Zk y=sinxy=cosxy=tanx图象sinxcosx tanx 值域[-1,1] [-1,1] 无奇偶奇函数偶函数奇函数周期2π2ππ对称轴2/kx kx 无中心,k0,2/k 0,2/k9.解三角形基本关系:sin(A+B)=sinCcos(A+B)=-cosCtan(A+B)=-tanC2cos2sinC BA 正弦定理:Aa sin =Bb sin =Ccsin AR a sin 2CB A cb a s i n :s i n :s i n ::余弦定理:a 2=b 2+c 2-2bccosA (求边)cosA=bcac b 2222(求角)面积公式:S △=21absinC注:ABC 中,A+B+C=?BABAsin sin a 2>b 2+c 2∠A >2七、数列1、等差数列定义:d a a n n 1通项:dn a a n )1(1求和:2)(1n na a n S dn n na )1(211中项:2ca b (c b a ,,成等差)性质:若q p n m ,则qp n ma a a a 2、等比数列定义:)0(1q q a a nn 通项:11n n qa a 求和:)1(1)1()1(11qqq a qna S nn中项:ac b 2(c b a ,,成等比)性质:若qpnm则qp nm a a a a 3、数列通项与前n 项和的关系)2()1(111ns s n a s a nnn4、数列求和常用方法公式法、裂项法、错位相减法、倒序相加法八、平面向量1.向量加减三角形法则,平行四边形法则BCABAC首尾相接,OC OB =CB 共始点中点公式:AD ACAB 2D 是BC 中点2.向量数量积b a =cosba=2121y y x x 注:①b a ,夹角:00≤θ≤180②b a,同向:ba ba 3.基本定理2211e ea(21,e e 不共线--基底)平行:b a //ba 1221y x y x (0b )垂直:0b a ba 02121y y x x 模:a =22yx 22)(b a b a 夹角:cos||||b a b a 注:①0∥a②c b a cb a(结合律)不成立③ca ba c b(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z (a,b )R ,实部a 、虚部 b分类:实数(0b),虚数(0b ),复数集 C 注:z 是纯虚数0a ,0b 相等:实、虚部分别相等共轭:bia z模:22baz 2zz z 复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)=?乘法:(a+bi )(c+di )=?除法:di c bi a =))(())((di cdi cdi c bi a ==…乘方:12i ,ni rrk i i 43.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论)4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论反证法:反设—推理—矛盾—结论分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……,这只要证C 为真,而已知C 为真,故A 必为真注:常用分析法探索证明途径,综合法写证明过程5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(kN* ,k 1)时命题成立,证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角范围0,斜率2121tany y k x x 注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90时,斜率不存在2、直线方程点斜式)(00x x k y y ,斜截式b kx y 两点式121121x x x x y y y y ,截距式1by ax 一般式0CByAx注意适用范围:①不含直线0xx ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线3、位置关系(注意条件)平行12k k 且21b b 垂直121k k 垂直1212A AB B 4、距离公式两点间距离:|AB|=221221)()(y y x x 点到直线距离:0022Ax By CdAB5、圆标准方程:222)()(rb y a x圆心),(b a ,半径r圆一般方程:022FEy Dx yx(条件是?)圆心,22D E 半径2242DE Fr6、直线与圆位置关系注:点与圆位置关系222)()(rb y a x 点00,P x y 在圆外7、直线截圆所得弦长222AB rd十一、圆锥曲线一、定义椭圆: |PF1|+|PF 2|=2a(2a>|F1F 2|)双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹二、标准方程与几何性质(如焦点在x 轴)位置关系相切相交相离几何特征d rd rd r代数特征△0△0△椭圆12222by ax ( a>b>0)双曲线12222by ax (a>0,b>0)中心原点对称轴?焦点F 1(c,0)、F 2(-c,0)顶点:椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a x a,-by b双曲线|x|a ,y R焦距:椭圆2c (c=22b a)双曲线2c (c=22b a )2a 、2b:椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222b y ax 渐近线x a b y 方程122ny mx 表示椭圆nmnm.0,0方程122nymx表示双曲线mn 抛物线y 2=2px(p>0)顶点(原点)对称轴(x 轴)开口(向右)范围x 0 离心率e=1焦点)0,2(p F 准线2p x十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量2输出语句:PRINT “提示内容”;表达式3赋值语句:变量=表达式4条件语句“IF —THEN —ELSE ”语句“IF —THEN ”语句程序框名称功能起止框起始和结束输入、输出框输入和输出的信息处理框赋值、计算判断框判断某一条件是否成立循环框重复操作以及运算IF 条件 THEN IF条件 THEN 语句1 语句ELSE END IF语句2 END IF 5循环语句当型循环语句直到型循环语句WHILE 条件 DO 循环体循环体WEND LOOP UNTIL 条件当型“先判断后循环”直到型“先循环后判断”三.算法案例1、求两个数的最大公约数辗转相除法:到达余数为更相减损术:到达减数和差相等2、多项式f(x)= a n x n+a n-1xn-1+….+a 1x+a 0的求值秦九韶算法:v 1=a n x+a n -1v 2=v 1x+a n -2 v 3=v 2x+a n -3v n =v n -1x+a 0注:递推公式v 0=a n v k =v k -1X +a n -k (k=1,2,…n)求f(x)值,乘法、加法均最多n 次3、进位制间的转换k 进制数转换为十进制数:111011.........)(.....a ka ka ka k a a a a n nnnn n 十进制数转换成k 进制数:“除k 取余法”例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27 v 0=248=1×27+21 v 1=2×5-5=527=1×21+6 v 2=5×5-4=2121=3×6+3 v3=21×5+3=108 6=2×3+0 v4=108×5-6=534v 5=534×5+7=2677十三、立体几何1.三视图正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY =45平行X 轴的线段,保平行和长度平行Y 轴的线段,保平行,长度变原来一半3.体积与侧面积V 柱=S 底h V锥 =31S 底h V球=34πR3S 圆锥侧=rlS圆台侧=lr R )( S球表=24R4.公理与推论确定一个平面的条件:①不共线的三点②一条直线和这直线外一点③两相交直线④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

上海教材高中数学知识点总结(最全)

上海教材高中数学知识点总结(最全)

目录一、集合与常用逻辑 二、不等式 三、函数概念与性质 四、根本初等函数 五、函数图像与方程 六、三角函数 七、数 列 八、平面向量九、复数与推理证明 十、直线与圆 十一、曲线方程十二、矩阵、行列式、算法初步 十三、立体几何 十四、计数原理 十五、概率与统计一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或补集:}{A x U x x A C U ∉∈=且3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈ 注:数形结合---文氏图、数轴 4.四种命题原命题:假设p 则q 逆命题:假设q 则p 否命题:假设p ⌝则q ⌝ 逆否命题:假设q ⌝则p ⌝原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真〔假〕⇔“q ⌝〞假〔真〕 ②p 、q 同真⇔“p ∧q 〞真 ③p 、q 都假⇔“p ∨q 〞假 7.全称命题、存在性命题的否认 ∀∈M, p(x 〕否认为: ∃∈M, )(X p ⌝ ∃∈M, p(x 〕否认为: ∀∈M, )(X p ⌝二、不等式1.一元二次不等式解法假设0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα注:假设0<a ,转化为0>a 情况 2.其它不等式解法—转化⇔>a x a x >或a x -<⇔22a x > ⇔>)()(x g x f a a )()(x g x f >〔a >1〕⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0〔01<<a 〕3.根本不等式 ①ab b a 222≥+ ②假设+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤求最值条件是“一正二定三相等〞三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0 ③“奇+奇=奇〞〔公共定义域内〕 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2) 或0)()(2121>--x x x f x ff(x)减函数:?注:①推断单调性必须考虑定义域②f(x)单调性推断定义法、图象法、性质法“增+增=增〞 ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立〔常数0≠T〕4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f(x)min a b ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0闭区间上最值:配方法、图象法、商量法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、根本初等函数1.指数式 )0(10≠=a a n na a 1=- m nm na a =2.对数式 b N a =log N a b=⇔〔a>0,a ≠1〕注:性质01log =a 1log =a a N aNa =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称〔互为反函数〕 4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:五、函数图像与方程1.描点法函数化简→定义域→商量性质〔奇偶、单调〕 取特别点如零点、最值点等 2.图象变换平移:“左加右减,上正下负〞伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变〞注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保存x 轴上方局部,并将下方局部沿x 轴翻折到上方→=)(x f y (||)y f x =保存y 轴右边局部,并将右边局部沿y 轴翻折到左边3.零点定理假设0)()(<b f a f ,则)(x f y =在),(b a 内有零点 〔条件:)(x f 在],[b a 上图象连续不间断〕注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点③二分法推断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=α>1 01<<αα<03.定义 r y =αsin r x =αcos xy =αtan 其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦〞 5.诱导公式:“奇变偶不变,符号看象限〞如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 6.特别角的三角函数值α6π4π 3π 2π π23πsin α 0 21 22 231 0 1-cos α 1 23 2221 01-tg α33 13/ 0 / 7.根本公式同角1cos sin 22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=± 倍角 αααcos sin 22sin = 降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+8.三角函数的图象性质单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增 注: 9.解三角形根本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sinCB A =+ 正弦定理:A a sin =B b sin =Ccsiny=sinxy=cosxy=tanx图象sinx cosx tanx 值域 [-1,1] [-1,1] 无 奇偶 奇函数 偶函数 奇函数 周期 2π2ππ对称轴 2/ππ+=k xπk x =无中心()0,πk()0,2/ππk + ()0,2/πk余弦定理:a 2=b 2+c 2-2bc cos A 〔求边〕cos A =bca cb 2222-+〔求角〕面积公式:S △=21ab sin C 注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π 七、数 列1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+= 求和:2)(1n n a a n S += d n n na )1(211-+= 中项:2ca b +=〔c b a ,,成等差〕 性质:假设q p n m +=+,则q p n m a a a a +=+2、等比数列 定义:)0(1≠=+q q a a nn通项:11-=n n qa a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2〔c b a ,,成等比〕性质:假设q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系 4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=CB 共始点中点公式:⇔=+AD AC AB 2D 是BC 中点 2. 向量数量积 b a ⋅=θcos ⋅⋅=2121y y x x +注:①b a ,夹角:00≤θ≤1800②b a ,同向:b a =⋅3.根本定理 2211e e a λλ+=〔21,e e不共线--基底〕 平行:⇔b a //b a λ=⇔1221y x y x =〔0≠b 〕垂直:0=⋅⇔⊥b a b a 02121=+⇔y y x x 模:a=22y x +=+=+2)(b a夹角:=θcos ||||b a ba注:①0∥a ②()()c b a c b a ⋅⋅≠⋅⋅〔结合律〕不成立③c a b a ⋅=⋅c b =⇒〔消去律〕不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数〔0=b 〕,虚数〔0≠b 〕,复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚局部别相等 共轭:bi a z -= 模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:〔a+bi 〕±(c+di)=? 乘法:〔a+bi 〕〔c+di 〕=? 除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=n i rr k i i=+4 3.合情推理类比:特别推出特别归纳:特别推出一般演绎:一般导出特别〔大前题→小前题→结论〕 4.直接与间接证明综合法:由因导果比较法:作差—变形—推断—结论反证法:反设—推理—矛盾—结论 分析法:执果索因 分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而C 为真,故A 必为真注:常用分析法探究证明途径,综合法写证明过程5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k ∈N* ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对全部正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+bya x一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系〔注意条件〕 平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+- 点到直线距离:d =5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x 〔条件是?〕圆心,22D E ⎛⎫-- ⎪⎝⎭半径2r =6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外7、直线截圆所得弦长十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹二、标准方程与几何性质〔如焦点在x 轴〕椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0) 顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0)范围: 椭圆-a ≤x ≤a,-b ≤y ≤b双曲线|x| ≥ a ,y ∈R焦距:椭圆2c 〔c=22b a -〕双曲线2c 〔c=22b a +〕 2a 、2b :椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn 抛物线y 2=2px(p>0)顶点〔原点〕 对称轴〔x 轴〕 开口〔向右〕 范围x ≥0 离心率e=1 焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.根本算法语句及格式1输入语句:INPUT “提示内容〞;变量 2输出语句:PRINT “提示内容〞;表达式 3赋值语句:变量=表达式4条件语句“IF —THEN —ELSE 〞语句 “IF —THEN 〞语句 IF 条件 THEN IF 条件 THEN 语句1 语句 ELSE END IF 语句2 END IF 5循环语句当型循环语句 直到型循环语句 WHILE 条件 DO 循环体 循环体 WEND LOOP UNTIL 条件 当型“先推断后循环〞 直到型“先循环后推断〞 三.算法案例1、求两个数的最大公约数 辗转相除法:到达余数为0 更相减损术:到达减数和差相等2、多项式f(x)= a n x n +a n-1x n-1+….+a 1x+a 0的求值秦九韶算法: v 1=a n x+a n -1 v 2=v 1x+a n -2v 3=v 2x+a n -3 v n =v n -1x+a 0注:递推公式v 0=a n v k =v k -1X +a n -k (k=1,2,…n)求f(x)值,乘法、加法均最多n 次 3、进位制间的转换k 进制数转换为十进制数:十进制数转换成k 进制数:“除k 取余法〞例1辗转相除法求得123和48最大公约数为3 例2f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27 v 0=2 48=1×27+21 v 1=2×5-5=5 27=1×21+6 v 2=5×5-4=21 21=3×6+3 v 3=21×5+3=1086=2×3+0 v 4=108×5-6=534v 5=534×5+7=2677十三、立体几何1.三视图 正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件: ①不共线的三点 ②一条直线和这直线外一点 ③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

上海沪教版教材高中数学知识点总结

上海沪教版教材高中数学知识点总结

目录一、集合与常用逻辑 二、不等式 三、函数概念与性质 四、基本初等函数 五、函数图像与方程 六、三角函数 七、数 列 八、平面向量九、复数与推理证明 十、直线与圆 十一、曲线方程 十二、矩阵、行列式、算法初步 十三、立体几何 十四、计数原理 十五、概率与统计 补集: C U A {xx U 且x A}3.集合关系空集A子集 A B : 任意x A x B注:数形结合 --- 文氏图、数轴4.四种命题原命题:若 p 则q否命题:若 p 则 q原命题 逆否命题5.充分必要条件p 是 q 的充分条件: P q p是 q 的必要条件: P q p 是 q的充要条件: p? q 6.复合命题的真值① q 真(假) ? “ q ”假(真) ② p 、q 同真 ? “ p ∧ q ”真③ p 、q 都假 ? “ p ∨ q ”假7. 全称命题、存在性命题的否定M, p(x )否定为 : M, p(X) M, p(x )否定为 : M, p(X)并集: A B {x x A 或 x B}一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算全集 U :如 U=R交集: A B {x x A 且x B}逆命题:若 q 则p逆否命题:若 q 则 p 否命题 逆命题二、不等式1.一元二次不等式解法若a 0,ax2 bx c 0有两实根, ( ) ,则ax2 bx c0 解集( , ) ax2 bx c 0 解集( , ) ( , ) 注:若a 0,转化为a 0 情况2.其它不等式解法—转化x a a x a x2 a2x a x a 或x a x2 a2f(x)0 f (x)g(x) 0g(x)a f(x)ag(x)f (x) g(x)( a 1)f (x) 0log a f(x) log a g(x) (0 a 1)a a f (x) g(x)3.基本不等式①a2 b 2 2ab②若a,b R ,则 a b ab2注:用均值不等式a b 2 ab 、ab (a b)22 求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x) 偶函数 f ( x) f (x) f(x) 图象关于y 轴对称f(x) 奇函数 f ( x) f(x) f(x) 图象关于原点对称注:① f(x) 有奇偶性定义域关于原点对称② f(x) 奇函数, 在x=0 有定义f(0)=0③“奇+奇=奇”(公共定义域内)2.单调性f(x) 增函数:x1<x2 f(x 1) <f(x 2)或x1> x2 f(x 1) > f(x 2)或f (x1) f (x2)x1 x2f(x) 减函数:?注:①判断单调性必须考虑定义域② f(x) 单调性判断定义法、图象法、性质法“增+增=增”③奇函数在对称区间上单调性相同偶函数在对称区间上单调性相反3.周期性T是f(x)周期f(x T) f (x)恒成立(常数T 0) 4.二次函数解析式:f(x)=ax 2+bx+c,f(x)=a(x-h) 2+kf(x)=a(x-x 1)(x-x 2)对称轴:b x2a顶点:b 4 ac b 2 (2a, )4a单调性:a>0, (2b a] 递减, [ 2ba ,) 递增4ac b 2b当 x, f(x) min2a4 af(x)=ax 2+bx+c 是偶函数 b=0闭区间上最值: l og a b log nb n 1a alog b a注:性质 log a 1 0 log a a 1 a loga N N 常用对数 lg N log 10 N , lg2 lg 5 1 自然对数 ln N log e N , lne 13.指数与对数函数y=a x 与 y=log a xlog aN奇偶性:配方法、图象法、讨论法 -- 注意对称轴与区间的位置关系 注:一次函数f(x)=ax+b 奇函数 b=0 四、基本初等函数 1.指数式 2.对数式 n n 1m m n1 (a 0) a n a ma a log a Nb a b N ( a>0,a ≠1)log a MN log a M log a N M log a log a M log a N N log aM nnlog a M log m b lgb log a b log m a lga a 0定义域、值域、过定点、单调性?注: y=a x与 y=log a x 图象关于 y=x 对称(互为反函数)14.幂函数y x 2,y x 3, y x 2, y x 1y x 在第一象限图象如下:五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等2.图象变换平移:“左加右减,上正下负”y f (x) y f (x h)伸缩:y f (x)每一点的横坐标变为原来的倍y f (1x)对称:“对称谁,谁不变,对称原点都要变”y f(x) x轴y f(x)y f(x) y 轴y f( x)y f(x) 原点y f( x)直线x a注:y f (x) y f (2a x)翻折:y f (x) y | f (x)|保留x轴上方部分,并将下方部分沿x 轴翻折到上方y f (x) y f (| x |)保留y 轴右边部分,并将右边部分沿y 轴翻折到左边yy=f(x)yy=f(|x|)ao b c x a o bc 3.零点定理若f(a)f (b) 0,则y f(x)在(a,b)内有零点(条件:f (x) 在[a,b]上图象连续不间断)注:① f (x) 零点:f(x) 0 的实根②在[a, b]上连续的单调函数 f(x)f (a)f(b)0 则f(x) 在(a,b) 上有且仅有一③二分法判断函数零点--- f(a) f (b) 0?六、三角函数1.概念第二象限角(2k ,2k ) ( k Z )2.弧长l r扇形面积S1lr23.定义sin y xcos tan yr r x其中P(x,y)是终边上一点,PO r4.符号“一正全、二正弦、三正切、四余弦”5.诱导公式:“奇变偶不变,符号看象限”如Sin(2 ) sin ,cos( /2 ) sin6.特殊角的三角函数值6 4 3 23 2sin 01 2 2 2 3 2 11 cos1 32 2 21 2 010 tg 0 3 313//2 2aasin bcos a 2 b 2sin() (tan )b7.基本公式 sin tan cos 和差 sin sin cos cos sin同角 sin 2 cos 21cos cos cos sin sintan tantan1 tan tan 倍角 sin2 2sin cos2 2 2 2cos2 cos sin 2cos 1 1 2sintan22tan21 tan 2降幂2 1 cos2cos α =2si n21 cos2α=sinxcosx tanx值域 [-1 , 1][-1 , 1]无 奇偶 奇函数偶函数奇函数周期 2π 2π π对称轴x k / 2xk无中心k ,0/ 2 k ,0k /2,0叠加 sin cos 2sin( )注: k Z3sin cos 2sin( )9.解三角形2、等比数列A B Ctan(A+B)=-tanC sin cos221面积公式:S△=absinC2七、数列1、等差数列定义:a n 1 a n d通项:a n a1(n 1)d求和:Sn n(a1 a n)na11n(n 1)d22ac中项:b ( a,b,c成等差)2性质:若m n p q ,则a m a n a p a q基本关系sin(A+B)=sinC cos(A+B)=-cosC定义:an 1q(q 0) a n注:ABC 中,A+B+C=?A B sinA sinBa2>b2+c2? ∠A >24、数列求和常用方法公式法、裂项法、错位相减法、倒序相加法通项:a n a1q n 1正弦定理sin A sin B sinC求和:S na 2RsinA a:b:c sinA:sinB:sinC余弦定理:a2=b2+c2-2bccosA(求边)cosA=2222中项:na1 (q 1)a1(11q qn)(q 1)1qac( a,b,c 成等比)则a m a n a p a qb2若m n p q2bc求角)3、数列通项与前 n 项和的关系s1a1(n 1) s ns n 1(n 2)a n9.解三角形2、等比数列八、平面向量1.向量加减三角形法则,平行四边形法则AB BC AC 首尾相接,OB OC =CB 共始点中点公式:AB AC 2AD D 是BC中点a b cos2.向量数量积a b= =x1x2 y1 y2注:① a ,b 夹角:00≤ θ ≤ 1800② a,b同向:a b a b3.基本定理a 1e1 2e2(e1,e2不共线-- 基底)模:z a2 b2z z z复平面:复数z 对应的点(a,b)2.复数运算平行:a//b a b x1y2 x2y1( b 0 )垂直:a b a b 0 x1x2 y1y2 0夹角:cos a b|a||b|注:① 0∥ a ② a b c a b c (结合律)不成立③ a b a c b c (消去律)不成立加减:(a+bi )± (c+di)= ?乘法:(a+bi )(c+di )=?a bi=(a bi)(c di)c di (c di)(c di)乘方:i21,i n i4k r i r3.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论)4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论反证法:反设—推理—矛盾—结论分析法:执果索因九、复数与推理证明1.复数概念复数:z a bi (a,b R),实部a、虚部b 分类:实数(b 0 ),虚数(b 0),复数集C注:z 是纯虚数a 0 ,b 0相等:实、虚部分别相等共轭:z a bi分析法书写格式:要证A 为真,只要证B为真,即证⋯⋯,这只要证C为真,而已知C为真,故A 必为真注:常用分析法探索证明途径,综合法写证明过程5.数学归纳法:(1)验证当n=1 时命题成立,(2)假设当n=k(k N* ,k 1)时命题成2(a b) 2除法:由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用模:立证明当n=k+1 时命题也成立十、直线与圆1、倾斜角范围0,斜率k tan y2 y1x2 x1注:直线向上方向与x轴正方向所成的最小正角倾斜角为90 时,斜率不存在2、直线方程点斜式y y0 k(x x0),斜截式y kx b两点式y y1 x x1 ,截距式x y 1y2 y1 x2 x1 a b一般式Ax By C 0 注意适用范围:①不含直线x x0②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线3、位置关系 (注意条件) 平行k1 k2 且b1 b2垂直k1k2 1 垂直A1A2 B1B2 04、距离公式两点间距离:|AB|= (x1x2)2(y1y2)2点到直线距离: d AxByCA2B25、圆标准方程:(x a)2 (y b)2 r2圆心( a , b ) ,半径r圆一般方程:x2 y2 Dx Ey F 0(条件是?)6、直线与圆位置关系注:点与圆位置关系(x0 a)2 (y0 b)2 r2点P x0,y0在圆外7、直线截圆所得弦长AB 2 r 2d2一、圆锥曲线、定义椭圆:|PF 1|+|PF 2|=2a(2a>|F 1F2|)双曲线:|PF 1|-|PF 2|= ± 2a(0<2a<|F1F2|) 抛物线:与定点和定直线距离相等的点轨迹、标准方程与几何性质 (如焦点在x轴)圆心D2 E 半径r D2 E2 4F2222椭圆x2y2 1( a>b>0)a 2b2 22双曲线x2y2 1(a>0,b>0)a 2b2中心原点对称轴?焦点F1(c,0) 、F2(-c,0) 顶点: 椭圆( ± a,0),(0, ±b) ,双曲线(±a,0) 范围: 椭圆-a x a,-b y b双曲线|x| a ,y R焦距:椭圆2c (c= a2b2)双曲线2c( c= a2b2)2a、2b: 椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1, 双曲线e>1x 2y2注:双曲线x2y2 1 渐近线y b xa 2b2a十二、矩阵、行列式、算法初步十、算法初步22方程mx ny 1表示椭圆m 0,n 0.m n22方程mx2 ny2 1 表示双曲线mn 0 抛物线y2=2px(p>0)顶点(原点) 对称轴( x 轴)开口(向右) 范围x 0 离心率e=1焦点F( p,0)2 准线x p2.程序框.基本算法语句及格式1输入语句:INPUT “提示内容” ;变量2输出语句:PRINT“提示内容” ;表达式3赋值语句:变量=表达式4条件语句IF —THEN—ELSE”语句“IF —THEN”语句IF 条件 THEN 语句 1IF条件 THEN 语句ELSEEND IF语句 2END IF5 循环语句当型循环语句直到型循环语句WHILE 条件DO循环体循环体WENDLOOP UNTIL 条件当型“先判断后循环” 直到型“先循环后判断” 例 1 辗转相除法求得 123 和 48 最大公约数为 3例 2 已知 f(x)=2x 5-5x 4- 4x 3+3x 2-6x+7,秦九韶算法求 f(5)123=2×48+ 27 v 0=248=1×27+ 21 v 1=2× 5- 5=527 = 1× 21+ 6v2=5× 5- 4=2121=3× 6+3 v 3=21× 5+3=1086= 2×3+0v4=108×5-6=534v 5=534×5+7=2677三.算法案例1、求两个数的最大公约数 辗转相除法:到达余数为0 更相减损术:到达减数和差相等2、多项式 f(x)= a n x n+a n-1x n-1+⋯.+a 1x+a 0 的求值十三、立体几何2S 圆锥侧 = rl S 圆台侧 = (R r)l S 球表 =4 R 24. 公理与推论 确定一个平面的条件 :①不共线的三点 ②一条直线和这直线外一点十进制数转换成 k 进制数:“除 k 取余法秦九韶算法 :v 1=a n x+a n -1 v 2=v 1x+an -2v 3=v 2x+a n v n =v n -1x+a 0注:递推公式 v 0=an vk=v k -1X +a n -k (k=1,2, ⋯ n) 求 f(x) 值,乘法、加法均最多n 次3、进位制间的转换k 进制数转换为十进制数:a n a n 1 ... a 1a 0(k) a n k n a n 1 k n 1 ..... a 1 k a 02.直观图 :斜二测 画法 X 'OY ' '=450 平行 X轴的线段,保平行和长度平行 轴 的线段,保平长度变原来一半3.体积与侧面积1V 柱 =S 底 h V 锥 = S 底 h3V43 球= π R 31. 三视图 正视图、侧视图、俯视图若两个平面垂直,则一个平面内垂直于交公理 :平行于同一条直线的两条直线平行定理 :如果两个角的两条边分别对应平行,那么这两个角相等或互补。

上海教材高中数学知识点总结(最全)

上海教材高中数学知识点总结(最全)

目录一、集合与常用逻辑 二、不等式 三、函数概念与性质 四、基本初等函数 五、函数图像与方程 六、三角函数 七、数 列 八、平面向量九、复数与推理证明 十、直线与圆 十一、曲线方程十二、矩阵、行列式、算法初步 十三、立体几何 十四、计数原理 十五、概率与统计一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定∀∈M, p(x )否定为: ∃∈M, )(X p ⌝ ∃∈M, p(x )否定为: ∀∈M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a ) 3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤ 求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2) 或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增”③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T )4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+kf(x)=a(x-x 1)(x-x 2)对称轴:a bx 2-= 顶点:)44,2(2ab ac a b --单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当a b x 2-=,f(x)min ab ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a nnaa1=- m nmn a a = 2.对数式 b N a=log N a b =⇔(a>0,a ≠1)N M MN a a a log log log +=N M NM a a a log log log -=M n M a n a log log =a b b m m a log log log =ablg lg =naa b b n l o g l o g =a bl o g 1= 注:性质01log =a 1log =a aN a N a =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数)4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换平移:“左加右减,上正下负”)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分, 并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断)注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy=αtan 其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+6.特殊角的三角函数值7.基本公式同角1cos sin 22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =±()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质 单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增注:9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosCtan(A+B)=-tanC 2cos 2sin CB A =+ 正弦定理:A a sin =B b sin =CcsinA R a sin 2= CB A c b a s i n :s i n :s i n ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边) cos A =bcac b 2222-+(求角)面积公式:S △=21ab sin C注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π七、数 列1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+= 求和:2)(1n n a a n S += d n n na )1(211-+=中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则qp n m a a a a +=+2、等比数列 定义:)0(1≠=+q q a a nn通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn 4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=CB 共始点中点公式:⇔=+AD AC AB 2D 是BC 中点 2. 向量数量积 b a ⋅=θcos ⋅⋅=2121yy x x + 注:①b a ,夹角:00≤θ≤1800②b a ,同向:=⋅3.基本定理 2211e e a λλ+=(21,e e不共线--基底) 平行:⇔//b a λ=⇔1221y x y x =(≠) 垂直:0=⋅⇔⊥02121=+⇔y y x x 模:a=22y x +=+=2)(夹角:=θcos ||||b a ba 注:①0∥a ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③⋅=⋅=⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -=模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=? 除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=n i rr k i i=+4 3.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论 分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k ∈N* ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+b ya x 一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件) 平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+- 点到直线距离:d =5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭半径r =6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外 7、直线截圆所得弦长AB =十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0) 顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a ≤x ≤a,-b ≤y ≤b双曲线|x| ≥ a ,y ∈R 焦距:椭圆2c (c=22b a -)双曲线2c (c=22b a +) 2a 、2b :椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0方程122=+ny mx 表示双曲线0<⇔mn抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴) 开口(向右) 范围x ≥0 离心率e=1焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量 2输出语句:PRINT “提示内容”;表达式 3赋值语句:变量=表达式 4条件语句“IF —THEN —ELSE ”语句 “IF —THEN ”语句IF 条件 THEN IF 条件 THEN 语句1 语句 ELSE END IF 语句2 END IF 5循环语句当型循环语句 直到型循环语句 WHILE 条件 DO 循环体 循环体 WEND LOOP UNTIL 条件 当型“先判断后循环” 直到型“先循环后判断”三.算法案例1、求两个数的最大公约数 辗转相除法:到达余数为0 更相减损术:到达减数和差相等2、多项式f(x)= a n x n+a n-1x n-1+….+a 1x+a 0的求值秦九韶算法: v 1=a n x+a n -1 v 2=v 1x+a n -2v 3=v 2x+a n -3 v n =v n -1x+a 0 注:递推公式v 0=a n v k =v k -1X +a n -k (k=1,2,…n) 求f(x)值,乘法、加法均最多n 次3、进位制间的转换k 进制数转换为十进制数:0111011.........)(.....a k a ka k a k a a a a n n nn n n +⨯++⨯+⨯=---十进制数转换成k 进制数:“除k 取余法”例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27 v 0=2 48=1×27+21 v 1=2×5-5=5 27=1×21+6 v 2=5×5-4=21 21=3×6+3 v 3=21×5+3=1086=2×3+0 v 4=108×5-6=534v 5=534×5+7=2677十三、立体几何1.三视图 正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件:①不共线的三点 ②一条直线和这直线外一点③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

沪教版高一数学知识点归纳整理

沪教版高一数学知识点归纳整理

沪教版高一数学知识点归纳整理数学作为一门学科,是我们日常生活中无处不在的。

它不仅在工作和学习中发挥着重要的作用,还在我们解决问题和做决策时提供了有效的工具和思维方式。

而在高一阶段,学生们将进一步深入学习数学的各个领域,为后续的学习打下坚实的基础。

在沪教版的数学教材中,有一些重要的知识点需要我们掌握和理解。

本文将对这些知识点进行归纳整理。

一、函数与方程函数与方程是数学中的两个基本概念,也是高一数学的重点内容之一。

在函数的学习中,我们不仅需要了解函数的定义和性质,还需要学会用函数来解决实际问题。

方程则是用来表示两个量之间的关系的等式,通过解方程可以求得未知数的值。

在高一数学中,我们将学习到一元一次方程和一元二次方程的解法,以及一些特殊方程的解法。

二、平面向量平面向量是数学中的一种重要工具,它可以表示空间中的运动和力的大小和方向。

在高一数学中,我们将学习如何表示和运算平面向量,并且掌握向量空间和向量的线性相关性质。

此外,我们还将学习到平面向量的数量积和向量积,以及它们在几何问题中的应用。

三、三角函数三角函数是数学中的一门重要分支,它研究的是角度和三角形之间的关系。

在高一数学中,我们将学习到正弦函数、余弦函数和正切函数的定义和性质。

此外,我们还要学习如何利用三角函数解决实际问题,比如三角恒等式和解三角形等。

四、立体几何立体几何是数学中的一门重要分支,它研究的是空间中的点、直线和面的关系。

在高一数学中,我们将学习到立体几何的基本概念,比如点、直线、平面和空间等。

此外,我们还要学习到立体几何的性质和定理,如平面与平面的位置关系、直线与平面的位置关系等。

通过学习立体几何,我们可以更好地理解和解决与空间有关的问题。

五、数列与数学归纳法数列是数学中的一种重要概念,它是按照一定规律排列的一系列数的集合。

在高一数学中,我们将学习到数列的定义、性质和特殊数列的求和公式。

数学归纳法则是数学中证明问题的一种有效方法,通过归纳法可以证明一般性的结论。

上海教材高中数学知识点总结(最全)

上海教材高中数学知识点总结(最全)

目录一、集合与常用逻辑 二、不等式 三、函数概念与性质 四、基本初等函数 五、函数图像与方程 六、三角函数 七、数 列 八、平面向量九、复数与推理证明 十、直线与圆 十一、曲线方程十二、矩阵、行列式、算法初步 十三、立体几何 十四、计数原理 十五、概率与统计一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定∀∈M, p(x )否定为: ∃∈M, )(X p ⌝ ∃∈M, p(x )否定为: ∀∈M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a ) 3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤ 求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2) 或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增”③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T )4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+kf(x)=a(x-x 1)(x-x 2)对称轴:a bx 2-= 顶点:)44,2(2ab ac a b --单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当a b x 2-=,f(x)min ab ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a nnaa1=- m nmn a a = 2.对数式 b N a=log N a b =⇔(a>0,a ≠1)N M MN a a a log log log +=N M NM a a a log log log -=M n M a n a log log =a b b m m a log log log =ablg lg =naa b b n l o g l o g =a bl o g 1= 注:性质01log =a 1log =a aN a N a =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数)4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换平移:“左加右减,上正下负”)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分, 并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断)注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy=αtan 其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+6.特殊角的三角函数值7.基本公式同角1cos sin 22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =±()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质 单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增注:9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosCtan(A+B)=-tanC 2cos 2sin CB A =+ 正弦定理:A a sin =B b sin =CcsinA R a sin 2= CB A c b a s i n :s i n :s i n ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边) cos A =bcac b 2222-+(求角)面积公式:S △=21ab sin C注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π七、数 列1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+= 求和:2)(1n n a a n S += d n n na )1(211-+=中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则qp n m a a a a +=+2、等比数列 定义:)0(1≠=+q q a a nn通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn 4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=CB 共始点中点公式:⇔=+AD AC AB 2D 是BC 中点 2. 向量数量积 b a ⋅=θcos ⋅⋅=2121yy x x + 注:①b a ,夹角:00≤θ≤1800②b a ,同向:=⋅3.基本定理 2211e e a λλ+=(21,e e不共线--基底) 平行:⇔//b a λ=⇔1221y x y x =(≠) 垂直:0=⋅⇔⊥02121=+⇔y y x x 模:a=22y x +=+=2)(夹角:=θcos ||||b a ba 注:①0∥a ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③⋅=⋅=⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -=模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=? 除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=n i rr k i i=+4 3.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论 分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k ∈N* ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+b ya x 一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件) 平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+- 点到直线距离:d =5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭半径r =6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外 7、直线截圆所得弦长AB =十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0) 顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a ≤x ≤a,-b ≤y ≤b双曲线|x| ≥ a ,y ∈R 焦距:椭圆2c (c=22b a -)双曲线2c (c=22b a +) 2a 、2b :椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0方程122=+ny mx 表示双曲线0<⇔mn抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴) 开口(向右) 范围x ≥0 离心率e=1焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量 2输出语句:PRINT “提示内容”;表达式 3赋值语句:变量=表达式 4条件语句“IF —THEN —ELSE ”语句 “IF —THEN ”语句IF 条件 THEN IF 条件 THEN 语句1 语句 ELSE END IF 语句2 END IF 5循环语句当型循环语句 直到型循环语句 WHILE 条件 DO 循环体 循环体 WEND LOOP UNTIL 条件 当型“先判断后循环” 直到型“先循环后判断”三.算法案例1、求两个数的最大公约数 辗转相除法:到达余数为0 更相减损术:到达减数和差相等2、多项式f(x)= a n x n+a n-1x n-1+….+a 1x+a 0的求值秦九韶算法: v 1=a n x+a n -1 v 2=v 1x+a n -2v 3=v 2x+a n -3 v n =v n -1x+a 0 注:递推公式v 0=a n v k =v k -1X +a n -k (k=1,2,…n) 求f(x)值,乘法、加法均最多n 次3、进位制间的转换k 进制数转换为十进制数:0111011.........)(.....a k a ka k a k a a a a n n nn n n +⨯++⨯+⨯=---十进制数转换成k 进制数:“除k 取余法”例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27 v 0=2 48=1×27+21 v 1=2×5-5=5 27=1×21+6 v 2=5×5-4=21 21=3×6+3 v 3=21×5+3=1086=2×3+0 v 4=108×5-6=534v 5=534×5+7=2677十三、立体几何1.三视图 正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件:①不共线的三点 ②一条直线和这直线外一点③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

沪版高一数学知识点

沪版高一数学知识点

沪版高一数学知识点导语:高一是学生们迈入高中阶段的重要一年,也是他们进入数学学习的一个新起点。

高中数学知识的系统性和抽象性都较之初中有所提升,在这一年里,学生们需要打好数学基础,掌握一些重要的数学知识点,为后续的学习打下坚实的基础。

本文将介绍一些沪版高一数学的重要知识点。

1. 数集与函数在高一数学中,数集与函数是非常重要的基础概念。

数集是多个数的汇集,按照特定属性可以划分为有限数集和无限数集。

在数集的基础上,学生们将进一步学习函数的概念,函数是一种特殊的关系,将一个数集的每个元素映射到另一个数集的元素上。

学生们需要掌握函数的概念、表示法、性质以及函数的运算等相关知识。

2. 一元二次方程与二次函数一元二次方程和二次函数是高中数学学习中的重要内容。

学生们早在初中就开始接触到一元二次方程的解法,高中会进一步深入学习二次方程的性质,掌握解一元二次方程的各种方法。

同时,学生们还需要学习二次函数的概念与性质,了解二次函数的图像和特征,学会利用二次函数进行问题求解等。

3. 平面向量与几何向量平面向量是高中数学中的重点内容之一。

学生们需要掌握向量的定义、表示方法及运算法则,了解向量的模、方向和共线关系等概念。

此外,学生们还需要学习向量的线性运算、数量积与向量积等概念与应用。

4. 三角函数与解三角形三角函数是数学中的重要分支,高中数学中的三角函数包括正弦、余弦、正切等六个基本函数。

学生们需要掌握这些函数的定义、性质以及应用。

同时,学生们还需要学习解三角形的方法,包括正弦定理、余弦定理和正弦余弦定理等,掌握如何利用这些方法解决实际问题。

5. 空间几何与立体几何空间几何是学生们进入高中后较为新颖的内容之一。

学生们需要学习空间几何中的点、直线、平面等概念,了解点、直线、平面的性质以及它们之间的关系。

此外,学生们还需要学习立体几何中的体积、表面积等概念,了解各种几何体的特征与计算方法。

6. 概率与统计概率与统计是高中数学学习的重要内容之一。

沪教版数学高一知识点

沪教版数学高一知识点

沪教版数学高一知识点数学是一门理性的学科,它的学习不仅可以培养我们的逻辑思维能力,还可以提高我们的问题解决能力。

在高一的数学学习中,我们将接触到一系列的新知识点,下面就让我们来一探究竟吧。

一、函数与方程函数和方程是数学中的基础概念,也是高中数学学习的重点内容之一。

在高一数学中,我们将学习到一元二次函数、指数函数、对数函数等各种类型的函数,并学会如何解方程。

二、数列与数学归纳法数列是高中数学中的重要概念之一,它由一系列按照一定规律排列的数组成。

在高一中,我们将学习到等差数列、等比数列以及求和公式等相关内容。

同时,我们还将学会运用数学归纳法来证明数学命题。

三、平面向量与解析几何平面向量是高中数学中的一大亮点,它不仅具有严谨的数学定义,更有着广泛的应用。

在高一数学中,我们将学习到向量的定义与运算规则,同时还会接触到平面直角坐标系以及相关的几何性质。

四、三角函数及其应用三角函数是数学中的基础概念之一,在高中数学中,我们将学习到正弦函数、余弦函数和正切函数等各种类型的三角函数,同时还会学会如何解三角方程和求三角函数的值,这些知识在实际生活中有着广泛的应用。

五、数与数量关系数与数量关系是数学的核心内容之一,它涉及到数的性质、数的运算和数的应用等方面。

在高一数学中,我们将学习到实数及其性质、复数及其运算规则、代数式与多项式等相关内容,这些知识将为我们打下坚实的数学基础。

六、导数与微分导数与微分是高中数学中的一大难点,但它却是数学的重要内容之一。

在高一数学中,我们将学习到导函数的概念及其计算方法,还将初步接触到微分的基本概念和基本性质,这些知识对于我们理解数学和自然科学中的变化过程至关重要。

七、概率与统计概率与统计是高中数学中的实用概念之一,它们在我们的日常生活中有着广泛的应用。

在高一数学中,我们将学习到随机事件的概念与性质,以及概率计算和统计分析的方法,这些知识对我们的科学研究和决策具有重要意义。

总结起来,沪教版数学高一知识点涵盖了函数与方程、数列与数学归纳法、平面向量与解析几何、三角函数及其应用、数与数量关系、导数与微分以及概率与统计等多个方面的内容。

上海教材高中数学知识点总结(最全)

上海教材高中数学知识点总结(最全)

目录一、集合与常用逻辑二、不等式三、函数概念与性质四、基本初等函数五、函数图像与方程六、三角函数七、数列八、平面向量九、复数与推理证明十、直线与圆十一、曲线方程十二、矩阵、行列式、算法初步十三、立体几何十四、计数原理十五、概率与统计一、集合与常用逻辑1.集合概念元素:互异性、无序性2.集合运算全集U:如U=R交集:}{BxAxxBA∈∈=且并集:}{BxAxxBA∈∈=⋃或补集:}{AxUxxACU∉∈=且3.集合关系空集A⊆φ子集BA⊆:任意BxAx∈⇒∈BABBABAABA⊆⇔=⊆⇔=注:数形结合---文氏图、数轴4.四种命题页脚内容页脚内容原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真)②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定M, p(x )否定为: M, )(X p ⌝ M, p(x )否定为: M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+页脚内容②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤ 求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0 ③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2)或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T)4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+kf(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b --页脚内容单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f(x)mina b ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a n naa1=- m n m na a = 2.对数式b N a =log N a b=⇔(a>0,a ≠1)N M MN a a a log log log +=N M NM a a a log log log -=M n M a n a log log =a b b m m a log log log =ablg lg =na ab b n log log =ab log 1=注:性质01log =a 1log =a a N aNa =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x与y=log ax定义域、值域、过定点、单调性?注:y=a x与y=log ax 图象关于y=x 对称(互为反函数)4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:页脚内容五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换平移:“左加右减,上正下负”)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分, 并将下方部分沿x 轴翻折到上方y=f(x)cb aoyxy=|f(x)|cb aoyx→=)(x f y (||)y f x =保留y 轴右边部分,并将右边部分沿y 轴翻折到左边y=f(x)cb aoyxy=f(|x|)cb aoyx3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点(条件:)(x f 在],[b a 上图象连续不间断)α>1 01<<αα<0页脚内容注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点 ③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy=αtan其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 6.特殊角的三角函数值α 06π4π 3π 2π π23πsin α 0 21 22 231 0 1-cos α 1 23 2221 01-tg α33 13/ 0 /7.基本公式 同角1cos sin22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =±y=sinxy=cosxy=tanx图象页脚内容()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增 注:Z k ∈9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sinCB A =+ 正弦定理:A a sin =B b sin =Ccsin A R a sin 2= C B A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bccosA (求边)cosA=bca cb 2222-+(求角)面积公式:S △=21absinC 注:ABC ∆中,A+B+C=?B A B A sin sin <⇔<页脚内容a 2>b 2+c 2⇔ ∠A >2π七、数 列1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+= 求和:2)(1n n a a n S +=d n n na )1(211-+= 中项:2ca b +=(c b a ,,成等差)性质:若q p n m +=+,则q p n m a a a a +=+2、等比数列 定义:)0(1≠=+q q a a nn通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=CB 共始点中点公式:⇔=+AD AC AB 2D 是BC 中点 2. 向量数量积 ⋅=θcos ⋅⋅=2121yy x x + 注:①,夹角:00≤θ≤1800②b a ,同向:=⋅3.基本定理 2211e e a λλ+=(21,e e不共线--基底)页脚内容平行:⇔//b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥02121=+⇔y y x x模:a =22y x +=+=+2)(夹角:=θcos ||||b a 注:①0∥a ②()()⋅⋅≠⋅⋅(结合律)不成立③⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -=模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=? 除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=n i r rk i i =+43.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论 分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而已知C 为真,故A 必为真页脚内容注:常用分析法探索证明途径,综合法写证明过程 5.数学归纳法:(1)验证当n=1时命题成立, (2)假设当n=k(kN* ,k1)时命题成立,证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y +=两点式121121x x x x y y y y --=--, 截距式1=+bya x一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件) 平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+-点到直线距离:0022Ax By Cd A B++=+位置关系 相切 相交 相离几何特征d r =d r <d r >代数特征 0=△0>△0<△页脚内容5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭ 半径224D E Fr +-=6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外7、直线截圆所得弦长222AB r d =-十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|)双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|)抛物线:与定点和定直线距离相等的点轨迹二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0)顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a x a,-b y b双曲线|x| a ,y R程序框 名称 功能起止框 起始和结束输入、输出框输入和输出的信息处理框赋值、计算 判断框判断某一条件是否成立循环框 重复操作以及运算页脚内容焦距:椭圆2c (c=22b a -)双曲线2c (c=22b a +) 2a 、2b :椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn 抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴) 开口(向右) 范围x 0 离心率e=1焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量 2输出语句:PRINT “提示内容”;表达式 3赋值语句:变量=表达式 4条件语句“IF —THEN —ELSE ”语句 “IF —THEN ”语句 IF 条件 THEN IF 条件 THEN 语句1 语句 ELSE END IF语句2END IF 5循环语句页脚内容当型循环语句 直到型循环语句 WHILE 条件 DO 循环体 循环体WEND LOOP UNTIL 条件 当型“先判断后循环” 直到型“先循环后判断”三.算法案例1、求两个数的最大公约数 辗转相除法:到达余数为0 更相减损术:到达减数和差相等2、多项式f(x)= a n x n+a n-1x n-1+….+a 1x+a 0的求值秦九韶算法: v 1=a nx+a n-1v 2=v 1x+a n-2v 3=v 2x+a n-3v n=v n-1x+a 0注:递推公式v 0=a nv k=v k-1X+a n-k(k=1,2,…n)求f(x)值,乘法、加法均最多n 次 3、进位制间的转换k 进制数转换为十进制数:111011.........)(.....a k a k a k a k a a a a n n n n n n +⨯++⨯+⨯=---十进制数转换成k 进制数:“除k 取余法” 例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27 v 0=248=1×27+21 v 1=2×5-5=527=1×21+6 v 2=5×5-4=2121=3×6+3 v 3=21×5+3=1086=2×3+0 v 4=108×5-6=534v 5=534×5+7=2677十三、立体几何1.三视图 正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积页脚内容V 柱=S 底h V 锥=31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件: ①不共线的三点 ②一条直线和这直线外一点③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

沪教版高二数学知识点

沪教版高二数学知识点

沪教版高二数学知识点数学是一门理论科学,也是一门实践科学。

在高中数学的学习中,掌握重要的数学知识点是非常关键的。

下面将介绍一些沪教版高二数学的知识点。

1. 二次函数与一次函数二次函数是高中数学中的重点内容之一。

它的一般形式为:y=ax^2+bx+c。

其中,a、b和c是常数,且a不等于0。

通过对二次函数的图像、性质和求解问题的应用,可以深入理解函数的概念和性质。

一次函数是二次函数的特殊情况,其图像是一条直线,表达形式为:y=kx+b。

其中,k和b也是常数。

2. 函数的导数与导数的应用函数的导数是研究函数变化率的重要工具。

对于函数y=f(x),它的导数可以表示为dy/dx或f'(x)。

导数的计算方法包括基本导数公式、常用导数公式和导数的四则运算法则等。

导数的应用非常广泛,如求函数的极值、导数与函数图像的关系、速度与加速度的衡量等。

3. 不等式与不等式组在高中数学中,不等式是一个重要的研究对象。

通过不等式的性质和解法,可以解决实际问题中的大小关系和范围限制。

不等式组是由若干个不等式组成的方程组,它的解是满足所有不等式的解的交集。

通过不等式组的解法,可以对多个变量之间的大小关系进行讨论和求解。

4. 三角函数与三角方程三角函数是一个以角度作为自变量的函数。

常见的三角函数包括正弦函数、余弦函数和正切函数等。

它们在几何、物理和工程等领域中有广泛的应用。

三角方程是含有三角函数的方程,通过解三角方程可以求解实际问题中的角度或长度等。

5. 空间几何与向量空间几何是研究三维空间中点、直线和平面等几何要素的学科。

通过对空间几何的学习,可以发展空间思维和几何直观。

向量是空间几何中的重要工具,它可以表示有大小和方向的物理量。

通过对向量的运算和性质的学习,可以解决空间几何中的问题。

以上只是沪教版高二数学知识点的一个简要介绍。

在实际学习中,同学们需要根据教材的内容来学习和掌握这些知识点。

同时,要注重数学的实际应用,将数学知识与实际问题相结合,培养数学思维和解决问题的能力。

沪教版高一数学上册知识点

沪教版高一数学上册知识点

沪教版高一数学上册知识点数学作为一门理科学科,对于高中学生来说尤为重要。

高一数学上册内容涵盖广泛,包括了各种各样的知识点和概念。

在本文中,我们将介绍一些沪教版高一数学上册的主要知识点。

1. 整式与分式在高一数学上册中,我们首先学习了整式与分式。

整式指的是只含有有理数乘幂的代数式,分式是指含有有理数乘幂且有分母的代数式。

我们学习了整式的四则运算和分式的化简与运算等内容。

2. 一次函数与一元二次函数一次函数和一元二次函数是高中数学中的基础内容。

我们学习了一次函数的概念、性质和图像,以及一元二次函数的顶点、轴、对称轴和判别式等。

这些概念和知识点对于我们理解函数的性质和图像形状有着重要的作用。

3. 相交线与平行线在高一数学上册中,我们学习了相交线和平行线的性质和判定方法。

通过学习这些知识,我们可以判断两条线是否相交以及是否平行,并且能够推导出相应的结果和性质。

这对于解题和证明过程中起着重要的作用。

4. 三角形与三角比三角形是几何中最基本的图形之一,而三角比又是三角学的重要内容。

在高一数学上册中,我们学习了三角形的定义、分类和性质,以及正弦、余弦和正切等三角比的概念和计算方法。

5. 平面向量平面向量是解决几何问题的有力工具之一。

在高一数学上册中,我们学习了平面向量的定义、性质和运算法则。

通过学习平面向量,我们可以方便地表示和计算平面上的物理量,简化解题过程。

6. 概率论与统计概率论和统计学是高中数学中的重要部分。

在高一数学上册中,我们学习了概率的基本概念、概率的计算方法和事件的独立性等内容。

同时,我们还学习了统计的基本知识,包括数据的收集、整理和表达方式,以及样本的选取和数据的分析等。

通过学习上述知识点,我们能够掌握数学的基本概念和方法,为高中数学的深入学习奠定坚实的基础。

这些知识点不仅对于高中阶段的学习有重要作用,也能在日后的学习和职业生涯中起到积极的推动作用。

希望同学们能够认真学习数学,努力提高自己的数学水平。

上海教材高中数学知识点总结(最全)

上海教材高中数学知识点总结(最全)

目录一、集合与常用逻辑 二、不等式 三、函数概念与性质 四、基本初等函数 五、函数图像与方程 六、三角函数 七、数 列 八、平面向量九、复数与推理证明 十、直线与圆 十一、曲线方程十二、矩阵、行列式、算法初步 十三、立体几何 十四、计数原理 十五、概率与统计一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=注:数形结合—--文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7。

全称命题、存在性命题的否定∀∈M, p(x)否定为: ∃∈M, )(X p ⌝ ∃∈M , p (x )否定为: ∀∈M , )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a ) 3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤ 求最值条件是“一正二定三相等"三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f (x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f (x )图象关于原点对称 注:①f(x )有奇偶性⇒定义域关于原点对称②f(x )奇函数,在x=0有定义⇒f(0)=0③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f (x 2) 或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增”③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T )4.二次函数解析式: f (x)=ax 2+bx+c ,f (x )=a(x-h)2+kf (x)=a(x-x 1)(x-x 2)对称轴:a bx 2-= 顶点:)44,2(2ab ac a b --单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当a b x 2-=,f (x)min ab ac 442-=奇偶性:f(x )=ax 2+bx+c 是偶函数⇔b=0闭区间上最值:配方法、图象法、讨论法—-- 注意对称轴与区间的位置关系注:一次函数f (x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a nnaa1=- m nmn a a = 2.对数式 b N a=log N a b =⇔(a 〉0,a ≠1)N M MN a a a log log log +=N M NM a a a log log log -=M n M a n a log log =a b b m m a log log log =ablg lg =n a a b b n log log =ab log 1=注:性质01log =a 1log =a aN a N a =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数)4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:α>101<<αα<0五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换平移:“左加右减,上正下负”)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分, 并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断)注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点③二分法判断函数零点——-0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy=αtan 其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦" 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+6.特殊角的三角函数值α6π 4π 3π 2π π23πsin α 0 21 22 231 0 1-cos α 1 23 2221 01-tg α33 13/ 0 / 7.基本公式同角1cos sin 22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =±()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质 单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增注:y=sinxy=cosxy=tanx图象sinx cosx tanx 值域 [-1,1] [-1,1] 无 奇偶 奇函数 偶函数 奇函数 周期 2π2ππ对称轴 2/ππ+=k xπk x =无中心()0,πk()0,2/ππk + ()0,2/πk9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=—cosCtan(A+B )=—tanC 2cos 2sin CB A =+ 正弦定理:A a sin =B b sin =CcsinA R a sin 2= CB A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边) cos A =bcac b 2222-+(求角)面积公式:S △=21ab sin C注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π七、数 列1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+= 求和:2)(1n n a a n S += d n n na )1(211-+=中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则qp n m a a a a +=+2、等比数列 定义:)0(1≠=+q q a a nn通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn 4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=CB 共始点中点公式:⇔=+AD AC AB 2D 是BC 中点 2. 向量数量积 b a ⋅=θcos ⋅⋅=2121yy x x + 注:①b a ,夹角:00≤θ≤1800②b a ,同向:b a =⋅3.基本定理 2211e e a λλ+=(21,e e不共线——基底) 平行:⇔b a //b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥b a b a 02121=+⇔y y x x 模:a=22y x +=+=2)(b a夹角:=θcos ||||b a ba 注:①0∥a ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③c a b a ⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -=模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi)±(c+di)=? 乘法:(a+bi )(c+di)=? 除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=ni rrk i i=+4 3.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理-矛盾—结论 分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……,这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k ∈N* ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+b ya x 一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件) 平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB |=221221)()(y y x x -+- 点到直线距离:d =5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭半径r =6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外 7、直线截圆所得弦长AB =十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a (2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a (0〈2a 〈|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b 〉0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(—c,0) 顶点: 椭圆(±a ,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a ≤x ≤a ,—b ≤y ≤b双曲线|x| ≥ a ,y ∈R 焦距:椭圆2c (c=22b a -)双曲线2c (c=22b a +) 2a 、2b :椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0〈e<1,双曲线e 〉1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0方程122=+ny mx 表示双曲线0<⇔mn抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴)开口(向右) 范围x ≥0 离心率e=1焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容";变量 2输出语句:PRINT “提示内容”;表达式 3赋值语句:变量=表达式 4条件语句“IF-THEN —ELSE ”语句 “IF —THEN"语句IF 条件 THEN IF 条件 THEN 语句1 语句 ELSE END IF 语句2 END IF 5循环语句当型循环语句 直到型循环语句 WHILE 条件 DO 循环体 循环体 WEND LOOP UNTIL 条件 当型“先判断后循环” 直到型“先循环后判断”三.算法案例1、求两个数的最大公约数 辗转相除法:到达余数为0 更相减损术:到达减数和差相等2、多项式f(x )= a n x n +a n-1x n-1+…。

沪教版高一数学知识点归纳

沪教版高一数学知识点归纳

沪教版高一数学知识点归纳高一数学知识点归纳一、集合论与逻辑在高一数学中,集合论与逻辑是基础且重要的知识点。

集合论主要涉及集合的概念、运算和性质,逻辑则涉及命题、条件、充分必要条件等概念。

1. 集合的基本概念集合是由具有某种特定性质的事物组成的整体。

常用的表示方法包括枚举法、描述法和集合图示法。

2. 集合的运算集合的运算包括交集、并集、差集和补集等。

交集表示两个集合公共元素的集合,用符号∩表示;并集表示两个集合所有元素的集合,用符号∪表示;差集表示从一个集合中减去另一个集合的元素,用A-B表示;补集表示与给定集合互补的元素的集合,用符号A'表示。

3. 集合的性质集合的性质包括包含性、相等性、交换律、结合律、分配律等。

这些性质在集合的运算中起到重要作用,能够帮助我们简化运算过程。

4. 命题与逻辑运算命题是陈述句,可以判断真假;逻辑运算包括否定、合取、析取、条件和双条件等。

这些逻辑运算可以帮助我们进行论证和推理,提高解题的能力。

二、函数与方程函数与方程是高一数学中的核心内容,是数学建模与解决实际问题的重要工具。

1. 函数的基本概念函数是两个集合之间的对应关系,一般用f(x)表示。

函数的定义域、值域和像集等概念需要了解;同时,常用的函数类型还有一次函数、二次函数、指数函数、对数函数等。

2. 函数的性质和运算函数的常用性质有奇偶性、周期性、单调性、有界性等。

而函数的运算则包括加减乘除、复合、求反函数等。

3. 方程和不等式方程是含有未知数的等式,通常需要求解其根;而不等式则涉及大小关系,常用的不等式有一元一次不等式和一元二次不等式等。

解方程和不等式的方法有代入法、分离变量法、因式分解法、二次根式法等。

三、数列与数学归纳法数列是高一数学中重要的概念,数列的研究有助于我们了解数的规律与性质,掌握数学归纳法的应用。

1. 数列的定义与分类数列是按照一定规律排列的一组数,常见的数列有等差数列、等比数列、斐波那契数列等。

上海教材高中数学知识点总结(最全)

上海教材高中数学知识点总结(最全)

目录一、集合与常用逻辑 二、不等式 三、函数概念与性质 四、基本初等函数 五、函数图像与方程 六、三角函数 七、数 列 八、平面向量九、复数与推理证明 十、直线与圆 十一、曲线方程十二、矩阵、行列式、算法初步 十三、立体几何 十四、计数原理 十五、概率与统计一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U:如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=注:数形结合-——文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定∀∈M, p (x)否定为: ∃∈M, )(X p ⌝ ∃∈M, p(x)否定为: ∀∈M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f (x )偶函数⇔()()f x f x -=⇔f (x )图象关于y 轴对称 f (x)奇函数⇔()()f x f x -=-⇔f(x )图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f (x)奇函数,在x=0有定义⇒f (0)=0③“奇+奇=奇”(公共定义域内) 2.单调性f (x )增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2) 或0)()(2121>--x x x f x ff (x )减函数:?注:①判断单调性必须考虑定义域②f (x)单调性判断定义法、图象法、性质法“增+增=增”③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T)4.二次函数解析式: f(x)=ax 2+bx+c ,f (x)=a (x-h)2+kf (x)=a(x —x 1)(x —x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f (x )min a b ac 442-=奇偶性:f (x)=ax 2+bx+c 是偶函数⇔b=0闭区间上最值:配方法、图象法、讨论法—-- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a nnaa 1=- m nmn a a = 2.对数式 b N a =log N a b=⇔(a>0,a ≠1)N M MN a a a log log log +=N M NM a a a log log log -=M n M a n a log log =a b b m m a log log log =ablg lg =n a a b b n log log =ab log 1=注:性质01log =a 1log =a a N aNa =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数)4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:α>101<<αα<0五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换平移:“左加右减,上正下负”)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分, 并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断)注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点③二分法判断函数零点——-0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy=αtan 其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 6.特殊角的三角函数值α6π 4π 3π 2π π23πsin α 0 21 22 231 0 1-cos α 1 23 2221 01-tg α33 13/ 0 / 7.基本公式同角1cos sin 22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =± ()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质 单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增注:Z k ∈y=sinxy=cosxy=tanx图象sinx cosx tanx 值域 [-1,1] [—1,1] 无 奇偶 奇函数 偶函数 奇函数 周期 2π2ππ对称轴 2/ππ+=k xπk x =无中心()0,πk()0,2/ππk + ()0,2/πk9.解三角形基本关系:sin (A+B)=sinC cos(A+B )=—cosC tan (A+B)=-tanC 2cos 2sinCB A =+ 正弦定理:A a sin =B b sin =CcsinA R a sin 2= CB A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边) cos A =bcac b 2222-+(求角)面积公式:S △=21ab sin C注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π七、数 列1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+= 求和:2)(1n n a a n S += d n n na )1(211-+= 中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则qp n m a a a a +=+2、等比数列 定义:)0(1≠=+q q a a nn通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=CB 共始点中点公式:⇔=+AD AC AB 2D 是BC 中点 2. 向量数量积 b a ⋅=θcos ⋅⋅=2121y y x x +注:①b a ,夹角:00≤θ≤1800②b a ,同向:b a =⋅3.基本定理 2211e e a λλ+=(21,e e不共线--基底) 平行:⇔b a //b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥b a b a 02121=+⇔y y x x 模:a=22y x +=+=+2)(b a夹角:=θcos ||||b a ba 注:①0∥a ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③c a b a ⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a ,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -=模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi)(c+di)=? 除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=n i rr k i i=+4 3.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论 分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k (k ∈N * ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+bya x一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件) 平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+- 点到直线距离:d =5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭半径2r =6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外7、直线截圆所得弦长AB =十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b 〉0)双曲线12222=-by a x (a>0,b 〉0)中心原点 对称轴? 焦点F 1(c ,0)、F 2(—c,0) 顶点: 椭圆(±a ,0),(0, ±b),双曲线(±a ,0) 范围: 椭圆—a ≤x ≤a,—b ≤y ≤b双曲线|x| ≥ a ,y ∈R 焦距:椭圆2c(c=22b a -)双曲线2c (c=22b a +) 2a 、2b :椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e 〈1,双曲线e 〉1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn 抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴) 开口(向右) 范围x ≥0 离心率e=1焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容";变量2输出语句:PRINT “提示内容”;表达式 3赋值语句:变量=表达式 4条件语句“IF —THEN —ELSE"语句 “IF —THEN ”语句IF 条件 THEN IF 条件 THEN 语句1 语句 ELSE END IF 语句2 END IF 5循环语句当型循环语句 直到型循环语句 WHILE 条件 DO 循环体 循环体 WEND LOOP UNTIL 条件 当型“先判断后循环” 直到型“先循环后判断”三.算法案例1、求两个数的最大公约数 辗转相除法:到达余数为0 更相减损术:到达减数和差相等2、多项式f (x )= a n x n +a n —1x n-1+….+a 1x+a 0的求值秦九韶算法: v 1=a n x+a n -1 v 2=v 1x+a n -2v 3=v 2x+a n -3 v n =v n -1x+a 0注:递推公式v 0=a n v k =v k -1X +a n -k (k=1,2,…n )求f (x)值,乘法、加法均最多n 次 3、进位制间的转换k 进制数转换为十进制数:111011.........)(.....a k a k a k a k a a a a n n nn n n +⨯++⨯+⨯=---十进制数转换成k 进制数:“除k 取余法"例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f (5)123=2×48+27 v 0=2 48=1×27+21 v 1=2×5-5=5 27=1×21+6 v 2=5×5-4=21 21=3×6+3 v 3=21×5+3=1086=2×3+0 v 4=108×5-6=534v 5=534×5+7=2677十三、立体几何1.三视图 正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件:①不共线的三点 ②一条直线和这直线外一点③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

上海教材高中数学知识点总结(最全)

上海教材高中数学知识点总结(最全)

目录一、集合与常用逻辑二、不等式三、函数概念与性质四、基本初等函数五、函数图像与方程六、三角函数七、数列八、平面向量九、复数与推理证明十、直线与圆十一、曲线方程十二、矩阵、行列式、算法初步十三、立体几何十四、计数原理十五、概率与统计一、集合与常用逻辑1.集合概念元素:互异性、无序性2.集合运算全集U:如U=R交集:}{BxAxxBA∈∈=且并集:}{BxAxxBA∈∈=⋃或补集:}{AxUxxACU∉∈=且3.集合关系空集A⊆φ子集BA⊆:任意BxAx∈⇒∈BABBABAABA⊆⇔=⊆⇔=注:数形结合---文氏图、数轴4.四种命题页脚内容页脚内容原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真)②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定M, p(x )否定为: M, )(X p ⌝ M, p(x )否定为: M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+页脚内容②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤ 求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0 ③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2)或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T)4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b --页脚内容单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f(x)min a b ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a n naa1=- m n m na a = 2.对数式b N a =log N a b=⇔(a>0,a ≠1)N M MN a a a log log log +=N M NM a a a log log log -=M n M a n a log log =a b b m m a log log log =ablg lg =na ab b n log log =ab log 1=注:性质01log =a 1log =a a N aNa =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x 与y=log a x定义域、值域、过定点、单调性?注:y=a x 与y=log a x 图象关于y=x 对称(互为反函数) 4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:页脚内容五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换平移:“左加右减,上正下负”)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分, 并将下方部分沿x 轴翻折到上方y=f(x)cb aoyxy=|f(x)|cb aoyx→=)(x f y (||)y f x =保留y 轴右边部分,并将右边部分沿y 轴翻折到左边y=f(x)cb aoyxy=f(|x|)cb aoyx3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点(条件:)(x f 在],[b a 上图象连续不间断)α>1 01<<αα<0页脚内容注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点 ③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy=αtan其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 6.特殊角的三角函数值α6π4π 3π 2π π23πsin α21 22 231 0 1-cos α 1 23 2221 01-tg α33 13/ 0 /7.基本公式 同角1cos sin22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =±y=sinxy=cosxy=tanx图象页脚内容()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增 注:Z k ∈9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sinCB A =+ 正弦定理:A a sin =B b sin =Ccsin A R a sin 2= C B A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边)cos A =bca cb 2222-+(求角)面积公式:S △=21ab sin C 注:ABC ∆中,A+B+C=?B A B A sin sin <⇔<页脚内容a 2>b 2+c 2 ⇔ ∠A >2π七、数 列1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+= 求和:2)(1n n a a n S +=d n n na )1(211-+= 中项:2ca b +=(c b a ,,成等差)性质:若q p n m +=+,则q p n m a a a a +=+2、等比数列 定义:)0(1≠=+q q a a nn通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=共始点中点公式:⇔=+AD AC AB 2D 是BC 中点 2. 向量数量积 b a ⋅θcos ⋅⋅=2121y y x x +注:①,夹角:00≤θ≤1800②b a ,同向:=⋅3.基本定理 2211e e a λλ+=(21,e e不共线--基底)页脚内容平行:⇔//b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥02121=+⇔y y x x模:a =22y x +=+=+2)(夹角:=θcos ||||b a 注:①0∥a ②()()⋅⋅≠⋅⋅(结合律)不成立③⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -=模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=? 除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=n i r rk i i =+43.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论 分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而已知C 为真,故A 必为真页脚内容注:常用分析法探索证明途径,综合法写证明过程 5.数学归纳法:(1)验证当n=1时命题成立, (2)假设当n=k(kN* ,k1)时命题成立,证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y +=两点式121121x x x x y y y y --=--, 截距式1=+bya x一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件) 平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+- 点到直线距离:0022Ax By Cd A B++=+5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r位置关系 相切相交 相离几何特征d r =d r <d r >代数特征0=△0>△0<△页脚内容圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭ 半径2242D E Fr +-=6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外7、直线截圆所得弦长222AB r d =-十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0) 顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-ax a,-b y b双曲线|x| a ,y R 焦距:椭圆2c (c=22b a -)程序框 名称 功能起止框 起始和结束输入、输出框输入和输出的信息处理框赋值、计算判断框判断某一条件是否成立循环框 重复操作以及运算页脚内容双曲线2c (c=22b a +) 2a 、2b :椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn 抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴)开口(向右) 范围x 0 离心率e=1焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量 2输出语句:PRINT “提示内容”;表达式 3赋值语句:变量=表达式 4条件语句“IF —THEN —ELSE ”语句 “IF —THEN ”语句 IF 条件 THEN IF 条件 THEN 语句1 语句 ELSE END IF语句2END IF 5循环语句当型循环语句 直到型循环语句 WHILE 条件 DO页脚内容循环体 循环体WEND LOOP UNTIL 条件 当型“先判断后循环” 直到型“先循环后判断”三.算法案例1、求两个数的最大公约数 辗转相除法:到达余数为0 更相减损术:到达减数和差相等2、多项式f(x)= a n x n +a n-1x n-1+….+a 1x+a 0的求值秦九韶算法: v 1=a n x+a n -1 v 2=v 1x+a n -2v 3=v 2x+a n -3 v n =v n -1x+a 0注:递推公式v 0=a n v k =v k -1X +a n -k (k=1,2,…n)求f(x)值,乘法、加法均最多n 次 3、进位制间的转换k 进制数转换为十进制数:111011.........)(.....a k a k a k a k a a a a n n n n n n +⨯++⨯+⨯=---十进制数转换成k 进制数:“除k 取余法” 例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27 v 0=248=1×27+21 v 1=2×5-5=5 27=1×21+6 v 2=5×5-4=21 21=3×6+3 v 3=21×5+3=1086=2×3+0 v 4=108×5-6=534v 5=534×5+7=2677十三、立体几何1.三视图 正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3 S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π页脚内容4.公理与推论 确定一个平面的条件: ①不共线的三点 ②一条直线和这直线外一点 ③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

上海教材高中数学知识点总结(最全)

上海教材高中数学知识点总结(最全)

学习资料分享目录一、集合与常用逻辑 二、不等式 三、函数概念与性质 四、基本初等函数 五、函数图像与方程 六、三角函数 七、数 列 八、平面向量九、复数与推理证明 十、直线与圆 十一、曲线方程十二、矩阵、行列式、算法初步 十三、立体几何 十四、计数原理 十五、概率与统计一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定∀∈M, p(x )否定为: ∃∈M, )(X p ⌝ ∃∈M, p(x )否定为: ∀∈M, )(X p ⌝学习资料分享二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2) 或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T)4.二次函数学习资料分享解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f(x)min a bac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0 闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a n na a 1=- m nm na a =2.对数式 b N a =log N a b=⇔(a>0,a ≠1)N M MN a a a log log log +=N M NM a a a log log log -=M n M a n a log log =a b b m m a log log log =ablg lg =na ab b n log log =ab log 1=注:性质01log =a 1log =a a N aNa =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数)4.幂函数 12132,,,-====x y x y x y x yx y =在第一象限图象如下:α>101<<αα<0学习资料分享五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换平移:“左加右减,上正下负”)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分,并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断)注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy=αtan 其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+学习资料分享6.特殊角的三角函数值α6π 4π 3π 2π π23π sin α 0 21 22 231 0 1-cos α 1 23 2221 01-tg α33 13/ 0 / 7.基本公式同角1cos sin 22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =± ()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增y=sinxy=cosxy=tanx图象sinx cosx tanx 值域 [-1,1] [-1,1] 无 奇偶 奇函数偶函数 奇函数 周期 2π2ππ对称轴 2/ππ+=k xπk x =无中心()0,πk()0,2/ππk + ()0,2/πk学习资料分享注:Z k ∈9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sinCB A =+ 正弦定理:A a sin =B b sin =Ccsin A R a sin 2= C B A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边) cos A =bcac b 2222-+(求角)面积公式:S △=21ab sin C注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π七、数 列1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+=求和:2)(1n n a a n S += d n n na )1(211-+= 中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则q p n m a a a a +=+2、等比数列定义:)0(1≠=+q q a a nn通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=CB 共始点学习资料分享中点公式:⇔=+AD AC AB 2D 是BC 中点 2. 向量数量积 b a ⋅θcos ⋅=2121y y x x +注:①b a ,夹角:00≤θ≤1800②b a ,同向:b a =⋅3.基本定理 2211e e a λλ+=(21,e e不共线--基底) 平行:⇔b a //b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥b a b a 02121=+⇔y y x x模:a =22y x +=+=+2)(b a夹角:=θcos ||||b a ba 注:①0∥a ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③c a b a ⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -= 模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=? 除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=n i rr k i i=+4 3.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论 分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程5.数学归纳法:(1)验证当n=1时命题成立,学习资料分享(2)假设当n=k(k ∈N* ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+bya x一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件) 平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+- 点到直线距离:d =5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭半径2r =6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外7、直线截圆所得弦长AB =十一、圆锥曲线学习资料分享一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0) 顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a ≤x ≤a,-b ≤y ≤b双曲线|x| ≥ a ,y ∈R 焦距:椭圆2c (c=22b a -)双曲线2c (c=22b a +) 2a 、2b :椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴) 开口(向右) 范围x ≥0 离心率e=1 焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量2输出语句:PRINT“提示内容”;表达式3赋值语句:变量=表达式4条件语句“IF—THEN—ELSE”语句“IF—THEN”语句IF 条件 THEN IF 条件 THEN 语句1 语句ELSE END IF语句2END IF5循环语句当型循环语句直到型循环语句WHILE 条件 DO循环体循环体WEND LOOP UNTIL 条件当型“先判断后循环”直到型“先循环后判断”三.算法案例1、求两个数的最大公约数辗转相除法:到达余数为0更相减损术:到达减数和差相等2、多项式f(x)= a n x n+a n-1x n-1+….+a1x+a0的求值秦九韶算法:v1=a n x+a n-1v2=v1x+a n-2v3=v2x+a n-3v n=v n-1x+a0注:递推公式v0=a n v k=v k-1X+a n-k(k=1,2,…n)求f(x)值,乘法、加法均最多n次3、进位制间的转换k进制数转换为十进制数:11111.........)(.....akakakakaaaa nnnnnn+⨯++⨯+⨯=---十进制数转换成k进制数:“除k取余法”例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x5-5x4-4x3+3x2-6x+7,秦九韶算法求f(5) 123=2×48+27 v0=248=1×27+21 v1=2×5-5=527=1×21+6 v2=5×5-4=2121=3×6+3 v3=21×5+3=1086=2×3+0 v4=108×5-6=534v5=534×5+7=2677十三、立体几何1.三视图正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY∠=450平行X轴的线段,保平行和长度平行Y轴的线段,保平行,长度变原来一半3.体积与侧面积学习资料分享学习资料分享V 柱=S 底h V 锥 =31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件: ①不共线的三点 ②一条直线和这直线外一点 ③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

上海教材高中数学知识点总结(最全)

上海教材高中数学知识点总结(最全)

目录一、集合与常用逻辑二、不等式三、函数概念与性质四、基本初等函数五、函数图像与方程六、三角函数七、数列八、平面向量九、复数与推理证明十、直线与圆十一、曲线方程十二、矩阵、行列式、算法初步十三、立体几何十四、计数原理十五、概率与统计一、集合与常用逻辑1.集合概念元素:互异性、无序性2.集合运算全集U:如U=R 交集:}{BxAxxBA∈∈=且并集:}{BxAxxBA∈∈=⋃或补集:}{AxUxxACU∉∈=且3.集合关系空集A⊆φ子集BA⊆:任意BxAx∈⇒∈BABBABAABA⊆⇔=⊆⇔=注:数形结合---文氏图、数轴4.四种命题原命题:若p则q 逆命题:若q则p否命题:若p⌝则q⌝逆否命题:若q⌝则p⌝原命题⇔逆否命题否命题⇔逆命题5.充分必要条件p是q的充分条件:qP⇒p是q的必要条件:qP⇐p是q的充要条件:p⇔q6.复合命题的真值①q真(假)⇔“q⌝”假(真)②p、q同真⇔“p∧q”真③p、q都假⇔“p∨q”假7.全称命题、存在性命题的否定∀∈M, p(x)否定为: ∃∈M, )(Xp⌝∃∈M, p(x)否定为: ∀∈M, )(Xp⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则 02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα 注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x < ⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab b a ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤ 求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0 ③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2)或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T )4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab --∞递减,),2[+∞-a b 递增当ab x 2-=,f(x)min a b ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0 闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a n naa 1=- m nmn a a=2.对数式 b N a =log N a b =⇔(a>0,a ≠1)N M MN a a a log log log +=N M NMa a alog log log -= Mn M a n a log log =a b b m m a log log log =ablg lg =n a a b b n log log =ab log 1=注:性质01log =a 1log =a a N a N a=log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e3.指数与对数函数 y=a x与y=log ax定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数)4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换平移:“左加右减,上正下负”)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分, 并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断) 注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点 ③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy =αtan其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦”5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 67.基本公式同角1cos sin 22=+αα αααtan cos sin =和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =±()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α-叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质单调性: )2,2(-增 ),0(π减 )2,2(-增注:Z k ∈9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sin C B A =+正弦定理:A asin =Bb sin =CcsinA R a sin 2= CB A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bccosA (求边)cosA=bca cb 2222-+(求角)面积公式:S △=21absinC注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2⇔ ∠A >2π七、数 列1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+=求和:2)(1n n a a n S +=d n n na )1(211-+= 中项:2c a b +=(c b a ,,成等差)性质:若q p n m +=+,则q p n m a a a a +=+ 2、等比数列 定义:)0(1≠=+q q a a n n通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn 4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=共始点中点公式:⇔=+AD AC AB 2D 是BC 中点2. 向量数量积 b a ⋅=θcos ⋅⋅=2121y y x x +注:①b a ,夹角:00≤θ≤1800②b a ,同向:b a =⋅3.基本定理 2211e e aλλ+=(21,e e 不共线--基底) 平行:⇔b a //b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥b a b a 02121=+⇔y y x x模:a =22y x +=+=+2)(夹角:=θcos ||||b a ba 注:①0∥a ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③c a b a ⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -=模:22b a z += 2z z z =⋅复平面:复数z 对应的点),(b a2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=? 除法: dic bi a ++=))(())((di c di c di c bi a -+-+==…乘方:12-=i ,=n i r r k i i =+4 3.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论 分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k ∈N* ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立 注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+by ax一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件)平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+-点到直线距离:d =5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭半径2r =6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外 7、直线截圆所得弦长AB =十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|)双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0)顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a ≤x ≤a,-b ≤y ≤b 双曲线|x| ≥ a ,y ∈R 焦距:椭圆2c (c=22b a -) 双曲线2c (c=22b a +) 2a 、2b:椭圆长轴、短轴长, 双曲线实轴、虚轴长 离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a b y ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴)开口(向右) 范围x ≥0 离心率e=1 焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量 2输出语句:PRINT “提示内容”;表达式3赋值语句:变量=表达式4条件语句“IF—THEN—ELSE”语句“IF—THEN”语句IF 条件 THEN IF 条件 THEN 语句1 语句ELSE END IF 语句2END IF5循环语句当型循环语句直到型循环语句WHILE 条件 DO循环体循环体WEND LOOP UNTIL 条件当型“先判断后循环”直到型“先循环后判断”三.算法案例1、求两个数的最大公约数辗转相除法:到达余数为0更相减损术:到达减数和差相等2、多项式f(x)= a n x n+a n-1x n-1+….+a1x+a0的求值秦九韶算法: v1=a n x+a n-1 v2=v1x+a n-2v3=v2x+a n-3 v n=v n-1x+a0注:递推公式v0=a n v k=v k-1X+a n-k(k=1,2,…n) 求f(x)值,乘法、加法均最多n次3、进位制间的转换k进制数转换为十进制数:11111.........)(.....akakakakaaaa nnnnnn+⨯++⨯+⨯=---十进制数转换成k进制数:“除k取余法”例1辗转相除法求得123和48最大公约数为3 例2已知f(x)=2x5-5x4-4x3+3x2-6x+7,秦九韶算法求f(5)123=2×48+27 v0=248=1×27+21 v1=2×5-5=527=1×21+6 v2=5×5-4=2121=3×6+3 v3=21×5+3=1086=2×3+0 v4=108×5-6=534v5=534×5+7=2677十三、立体几何1.三视图正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度 平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件:①不共线的三点 ②一条直线和这直线外一点③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录一、集合与常用逻辑 二、不等式 三、函数概念与性质 四、基本初等函数 五、函数图像与方程 六、三角函数 七、数 列 八、平面向量九、复数与推理证明 十、直线与圆 十一、曲线方程十二、矩阵、行列式、算法初步 十三、立体几何 十四、计数原理 十五、概率与统计一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定∀∈M, p(x )否定为: ∃∈M, )(X p ⌝ ∃∈M, p(x )否定为: ∀∈M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2) 或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增”③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T)4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+kf(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f(x)min a b ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a nnaa 1=- m nmn a a = 2.对数式 b N a =log N a b=⇔(a>0,a ≠1)N M MN a a a log log log +=N M NM a a a log log log -=M n M a n a log log =a b b m m a log log log =ablg lg =n a a b b n log log =ab log 1=注:性质01log =a 1log =a a N aNa =log常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x 图象关于y=x 对称(互为反函数)4.幂函数 12132,,,-====x y x y x y x yαx y =在第一象限图象如下:α>101<<αα<0五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换平移:“左加右减,上正下负”)()(h x f y x f y +=→=伸缩:)1()(x f y x f y ϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴注:)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分, 并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断)注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy=αtan 其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+ 6.特殊角的三角函数值α6π 4π 3π 2π π23πsin α 0 21 22 231 0 1-cos α 1 23 2221 01-tg α33 13/ 0 / 7.基本公式同角1cos sin 22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =± ()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质 单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增注:Z k ∈y=sinxy=cosxy=tanx图象sinx cosx tanx 值域 [-1,1] [-1,1] 无 奇偶 奇函数 偶函数 奇函数 周期 2π2ππ对称轴 2/ππ+=k xπk x =无中心()0,πk()0,2/ππk + ()0,2/πk9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sinCB A =+ 正弦定理:A a sin =B b sin =CcsinA R a sin 2= CB A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边) cos A =bcac b 2222-+(求角)面积公式:S △=21ab sin C注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π七、数 列1、等差数列定义:d a a n n =-+1 通项:d n a a n )1(1-+= 求和:2)(1n n a a n S += d n n na )1(211-+= 中项:2ca b +=(c b a ,,成等差) 性质:若q p n m +=+,则qp n m a a a a +=+2、等比数列 定义:)0(1≠=+q q a a nn通项:11-=n n q a a求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn中项:ac b =2(c b a ,,成等比)性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 3、数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn4、数列求和常用方法公式法、裂项法、 错位相减法、倒序相加法八、平面向量1.向量加减 三角形法则,平行四边形法则=+BC AB AC 首尾相接,OC OB -=CB 共始点中点公式:⇔=+AD AC AB 2D 是BC 中点 2. 向量数量积 b a ⋅=θcos ⋅⋅=2121y y x x +注:①b a ,夹角:00≤θ≤1800②b a ,同向:b a =⋅3.基本定理 2211e e a λλ+=(21,e e不共线--基底) 平行:⇔b a //b a λ=⇔1221y x y x =(0≠b ) 垂直:0=⋅⇔⊥b a b a 02121=+⇔y y x x 模:a=22y x +=+=+2)(b a夹角:=θcos ||||b a ba 注:①0∥a ②()()c b a c b a ⋅⋅≠⋅⋅(结合律)不成立③c a b a ⋅=⋅c b =⇒(消去律)不成立九、复数与推理证明1.复数概念复数:bi a z +=(a,b )R ∈,实部a 、虚部b 分类:实数(0=b ),虚数(0≠b ),复数集C注:z 是纯虚数0=⇔a ,0≠b相等:实、虚部分别相等 共轭:bi a z -=模:22b a z +=2z z z =⋅复平面:复数z 对应的点),(b a 2.复数运算加减:(a+bi )±(c+di)=? 乘法:(a+bi )(c+di )=? 除法:di c bi a ++=))(())((di c di c di c bi a -+-+==… 乘方:12-=i ,=n i rr k i i=+4 3.合情推理类比:特殊推出特殊归纳:特殊推出一般演绎:一般导出特殊(大前题→小前题→结论) 4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论 反证法:反设—推理—矛盾—结论 分析法:执果索因分析法书写格式:要证A 为真,只要证B 为真,即证……, 这只要证C 为真,而已知C 为真,故A 必为真 注:常用分析法探索证明途径,综合法写证明过程5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k ∈N* ,k ≥1)时命题成立, 证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n 都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角 范围[)0,π 斜率 2121tan y y k x x α-==-注:直线向上方向与x 轴正方向所成的最小正角倾斜角为90︒时,斜率不存在 2、直线方程点斜式)(00x x k y y -=-,斜截式b kx y += 两点式121121x x x x y y y y --=--, 截距式1=+bya x一般式0=++C By Ax注意适用范围:①不含直线0x x = ②不含垂直x 轴的直线③不含垂直坐标轴和过原点的直线 3、位置关系(注意条件) 平行⇔12k k = 且21b b ≠垂直⇔121k k =- 垂直⇔12120A A B B += 4、距离公式两点间距离:|AB|=221221)()(y y x x -+- 点到直线距离:d =5、圆标准方程:222)()(r b y a x =-+- 圆心),(b a ,半径r圆一般方程:022=++++F Ey Dx y x (条件是?)圆心,22D E ⎛⎫-- ⎪⎝⎭半径2r =6、直线与圆位置关系注:点与圆位置关系 ⇔>-+-22020)()(r b y a x 点()00,P x y 在圆外7、直线截圆所得弦长AB =十一、圆锥曲线一、定义椭圆: |PF 1|+|PF 2|=2a(2a>|F 1F 2|) 双曲线:|PF 1|-|PF 2|=±2a(0<2a<|F 1F 2|) 抛物线:与定点和定直线距离相等的点轨迹 二、标准方程与几何性质(如焦点在x 轴)椭圆12222=+b y a x ( a>b>0)双曲线12222=-by a x (a>0,b>0)中心原点 对称轴? 焦点F 1(c,0)、F 2(-c,0) 顶点: 椭圆(±a,0),(0, ±b),双曲线(±a,0) 范围: 椭圆-a ≤x ≤a,-b ≤y ≤b双曲线|x| ≥ a ,y ∈R 焦距:椭圆2c (c=22b a -)双曲线2c (c=22b a +) 2a 、2b :椭圆长轴、短轴长,双曲线实轴、虚轴长离心率:e=c/a 椭圆0<e<1,双曲线e>1注:双曲线12222=-by a x 渐近线x a by ±=方程122=+ny mx 表示椭圆n m n m ≠>>⇔.0,0 方程122=+ny mx 表示双曲线0<⇔mn 抛物线y 2=2px(p>0)顶点(原点) 对称轴(x 轴) 开口(向右) 范围x ≥0 离心率e=1焦点)0,2(p F准线2px -= 十二、矩阵、行列式、算法初步十、算法初步一.程序框图二.基本算法语句及格式1输入语句:INPUT “提示内容”;变量 2输出语句:PRINT “提示内容”;表达式 3赋值语句:变量=表达式 4条件语句“IF —THEN —ELSE ”语句 “IF —THEN ”语句IF 条件 THEN IF 条件 THEN 语句1 语句 ELSE END IF 语句2 END IF 5循环语句当型循环语句 直到型循环语句 WHILE 条件 DO 循环体 循环体 WEND LOOP UNTIL 条件 当型“先判断后循环” 直到型“先循环后判断”三.算法案例1、求两个数的最大公约数 辗转相除法:到达余数为0 更相减损术:到达减数和差相等2、多项式f(x)= a n x n +a n-1x n-1+….+a 1x+a 0的求值秦九韶算法: v 1=a n x+a n -1 v 2=v 1x+a n -2v 3=v 2x+a n -3 v n =v n -1x+a 0注:递推公式v 0=a n v k =v k -1X +a n -k (k=1,2,…n)求f(x)值,乘法、加法均最多n 次 3、进位制间的转换k 进制数转换为十进制数:111011.........)(.....a k a k a k a k a a a a n n nn n n +⨯++⨯+⨯=---十进制数转换成k 进制数:“除k 取余法”例1辗转相除法求得123和48最大公约数为3例2已知f(x)=2x 5-5x 4-4x 3+3x 2-6x+7,秦九韶算法求f(5)123=2×48+27 v 0=2 48=1×27+21 v 1=2×5-5=5 27=1×21+6 v 2=5×5-4=21 21=3×6+3 v 3=21×5+3=1086=2×3+0 v 4=108×5-6=534v 5=534×5+7=2677十三、立体几何1.三视图 正视图、侧视图、俯视图2.直观图:斜二测画法'''X OY ∠=450平行X 轴的线段,保平行和长度平行Y 轴的线段,保平行,长度变原来一半 3.体积与侧面积V 柱=S 底h V 锥 =31S 底h V 球=34πR 3S 圆锥侧=rl π S 圆台侧=l r R )(+π S 球表=24R π 4.公理与推论 确定一个平面的条件:①不共线的三点 ②一条直线和这直线外一点③两相交直线 ④两平行直线公理:平行于同一条直线的两条直线平行定理:如果两个角的两条边分别对应平行,那么这两个角相等或互补。

相关文档
最新文档