初一实数练习题
初一数学实数试题及答案
初一数学实数试题及答案一、选择题(共10题,每题3分,共30分)1. 下列各数中,是实数的是()A. √2B. πC. √(-1)D. 0.33333...答案:A、B、D2. 下列各数中,是无理数的是()A. 3.14B. √2C. 0.33333...D. 1/2答案:B3. 一个数的相反数是它本身,这个数是()A. 0B. 1C. -1D. 2答案:A4. 一个数的倒数是它本身,这个数是()A. 0B. 1C. -1D. 2答案:B、C5. 绝对值等于它本身的数是()A. 正数C. 0D. 以上都是答案:A、C6. 下列各数中,是实数的是()A. √(-4)B. √9C. √(1/2)D. √(-1)答案:B、C7. 下列各数中,是无理数的是()A. 0.5B. √2C. 0.33333...答案:B8. 一个数的相反数是-3,这个数是()A. 3B. -3C. 0D. 6答案:A9. 一个数的倒数是1/3,这个数是()A. 3B. 1/3C. -3D. -1/3答案:A10. 绝对值等于3的数是()A. 3B. -3C. 0D. 以上都是答案:A、B二、填空题(共5题,每题4分,共20分)11. √9的值是______。
答案:312. -√4的值是______。
答案:-213. 0的相反数是______。
14. 2的倒数是______。
答案:1/215. |-5|的值是______。
答案:5三、解答题(共3题,每题10分,共30分)16. 计算下列各式的值:(1)√16(2)-√(-9)(3)|-7|答案:(1)4(2)无意义(因为负数没有实数平方根)17. 已知a和b互为相反数,c和d互为倒数,求下列各式的值:(1)a+b(2)cd答案:(1)0(因为相反数相加得0)(2)1(因为倒数相乘得1)18. 已知|x|=5,求x的值。
答案:x=5或x=-5(因为绝对值等于5的数可以是5或-5)四、综合题(共2题,每题20分,共40分)19. 已知a、b、c是实数,且a+b+c=0,a^2+b^2+c^2=2,求ab+bc+ca的值。
(必考题)初中七年级数学下册第六单元《实数》经典练习题(答案解析)
一、选择题1.给出下列各数①0.32,②227,③π,⑤0.2060060006(每两个6之间依次多个0), ) A .②④⑤B .①③⑥C .④⑤⑥D .③④⑤D解析:D【分析】无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001…,等有这样规律的数.由此逐一判断即可得答案.【详解】①0.32是有限小数,是有理数, ②227是分数,是有理数, ③π是无限循环小数,是无理数,⑤0.2060060006(每两个6之间依次多个0)是无限循环小数,是无理数,,是整数,是有理数,综上所述:无理数是③④⑤,故选:D .【点睛】此题主要考查了无理数的定义,初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数;熟练掌握定义是解题关键.2 )A .8B .±8C .D . C解析:C【分析】【详解】,8的算术平方根是,.故选择:C .【点睛】本题考查一个数的算术平方根的算术平方根,掌握求算式的平方根,一定要把算式化简得到结果后再求是解题关键.3.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是()A.2 B.4 C.6 D.8D解析:D【分析】根据规律可得底数为8的幂的个位数字依次为8,4,2,6,以4个为周期,个位数字相加为0. 2017除以4余数是1,故得到和的个位数字是8.【详解】解:2017÷4=504…1,循环了504次,还有1个个位数字为8,所以81+82+83+84+…+82017的和的个位数字是504×0+8=8.故选:D.【点睛】本题主要考查了数字的变化类,尾数的特征,得到底数为8的幂的个位数字的循环规律是解决本题的突破点.4.下列实数220.0100100017;; (相邻两个1之依次多一个0);2,其中无理数有( )A.2个B.3个C.4个D.5个B解析:B【分析】根据无理数、有理数的定义即可判定选择项.【详解】4=-,是有理数;3.14是有限小数,是有理数;227是分数,是有理数;,0.010010001(相邻两个1之依次多一个0)2,是无理数,共3个,故选:B.【点睛】本题考查了无理数的定义,注意无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.5.1的值()A.在7和8之间B.在6和7之间C.在5和6之间D.在4和5之间C解析:C【分析】利用36<48<49得到6<7−1进行估算.【详解】解:∵36<48<49,∴6<7,∴5-1<6.故选:C .【点睛】本题考查了估算无理数的大小:估算无理数大小要用逼近法.6.,则571.34的平方根约为( )A .239.03B .±75.587C .23.903D .±23.903D 解析:D【分析】根据被开方数小数点向右移动两位,其算术平方根向右移动一位及平方根的定义求解即可.【详解】解:∵,∴,故选:D .【点睛】本题主要考查算术平方根与平方根,解题的关键是掌握被开方数小数点向右移动两位,其算术平方根向右移动一位和平方根的定义.7.下列说法中,错误的有( )①符号相反的数与为相反数;②当0a ≠时,0a >;③如果a b >,那么22a b >;④数轴上表示两个有理数的点,较大的数表示的点离原点较远;⑤数轴上的点不都表示有理数.A .0个B .1个C .2个D .3个D解析:D【分析】根据相反数、绝对值、数轴表示数以及有理数的乘法运算等知识综合进行判断即可.【详解】解:符号相反,但绝对值不等的两个数就不是相反数,例如5和-3,因此①不正确; a≠0,即a >0或a <0,也就是a 是正数或负数,因此|a|>0,所以②正确;例如-1>-3,而(-1)2<(-3)2,因此③不正确;例如-5表示的点到原点的距离比1表示的点到原点的距离远,但-5<1,因此④不正确; 数轴上的点与实数一一对应,而实数包括有理数和无理数,因此⑤正确;综上所述,错误的结论有:①③④,故选:D .【点睛】本题考查相反数、绝对值、数轴表示数,对每个选项进行判断是得出正确答案的前提. 8.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( )A .3B .3-C .3±D .解析:C【分析】将两个多项式相加,根据相加后不含x 的二次和一次项,求得m 、n 的值,再进行计算.【详解】 32711159x mx x --++22257x nx --=()()32722111552x m x n x +--++ 由题意知,2211=0m -, 155=0n +,∴=2m ,=3n -,∴()()=323=9mn n -+--⨯-,9的平方根是3±,∴()mn n -+平方根为3±,故选:C .【点睛】此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键,同时考查了平方根的定义,熟练掌握正数有两个平方根,0的平方根是0,负数没有平方根.9.估计50的立方根在哪两个整数之间( )A .2与3B .3与4C .4与5D .5与6B 解析:B【分析】,可得答案.【详解】,得34,所以,50的立方根在3与4之间故选:B .【点睛】本题考查了估算无理数的大小,利用了正数的被开方数越大立方根越大的关系. 10.下列各数中是无理数的是( )A .227B .1.2012001C .2πD 解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227分数,是有理数,选项不符合题意; B 、1.2012001是有理数,选项不符合题意; C 、2π是无理数,选项符合题意;D ,9是整数是有理数,,选项不符合题意.故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题11.求满足条件的x 值:(1)()23112x -=(2)235x -=(1);(2)【分析】(1)方程两边同除以3再运用直接开平方法求解即可;(2)方程移项后再运用直接开平方法求解即可【详解】解:(1)解得;(2)∴∴【点睛】本题考查了平方根的应用解决本题的关键是熟记解析:(1)13x =,21x =-;(2)1x =2x =-【分析】(1)方程两边同除以3,再运用直接开平方法求解即可;(2)方程移项后,再运用直接开平方法求解即可.【详解】解:(1)()23112x -= ()214x -=12x -=±解得,13x =,21x =-;(2)235x -=28x = ∴x =±∴1x =2x =-【点睛】本题考查了平方根的应用,解决本题的关键是熟记平方根的定义.12.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值.1【分析】根据新运算的运算法则计算即可【详解】解:【点睛】本题考查新定义下的有理数运算通过阅读材料掌握新运算的运算法则是解题关键 解析:1【分析】根据新运算的运算法则计算即可.【详解】解:()()()2322231-⊕=⨯---⨯-()4614611=----=-+-=.【点睛】本题考查新定义下的有理数运算,通过阅读材料掌握新运算的运算法则是解题关键. 13.计算.(1)3218433⎛⎫-⨯-+- ⎪⎝⎭(2)178(4)4(5)-÷-+⨯-(3163⎫-⎪⎪⎭(4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(1);(2)-1;(3);(4)9【分析】(1)运用乘法分配律去括号再进行乘法运算最后进行加减运算即可得到答案;(2)原式首先计算乘除法选辑减去息怒可;(3)原式首先化简算术平方根和立方根再进行加解析:(1)354;(2)-1;(3)1-;(4)9. 【分析】(1)运用乘法分配律去括号,再进行乘法运算,最后进行加减运算即可得到答案; (2)原式首先计算乘除法选辑减去息怒可;(3)原式首先化简算术平方根和立方根,再进行加减运算即可得到答案;(4)首先计算乘方运算,再计算括号内,最后算乘法即可得到答案.【详解】解:(1)3218433⎛⎫-⨯-+- ⎪⎝⎭ =33231(8)()()()44343-⨯-+-⨯+-⨯-=11624-+ =354; (2)178(4)4(5)-÷-+⨯-=17+2-20=-1;(3163⎫-⎪⎪⎭=115+()633-+-=5+0-6=-1;(4)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ =34(92)29-⨯-⨯- =3(42)2-⨯-- =3(6)2-⨯-=9. 【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.14.规定一种新的定义:a ★b -a 2,若a =3,b =49,则(a ★b )★b =_________.【分析】根据题中给到的新运算先计算a ★b 然后直接代入数据计算(a ★b)★b 即可【详解】因为a ★b =-a2=所以(a ★b)★b==7-4=3故答案为:3【点睛】本题考查定义新运算解题关键在于熟练掌握运解析:3【分析】根据题中给到的新运算,先计算a ★b 然后直接代入数据计算(a ★b )★b 即可.【详解】因为a ★b -a 2,=23792=-=-所以 (a ★b )★b=2(2)- =7-4=3故答案为:3.【点睛】本题考查定义新运算,解题关键在于熟练掌握运算法则.15. ________0.5.(填“>”“<”或“=”)<【分析】将05变形为将两数作差后借助<2即可得出﹣05<0进而即可得出<05【详解】解:∵05=∴﹣05=∵()2=322=43<4∴<2∴<0∴﹣05<0即<05故答案为:<【点睛】本题考查了实解析:<【分析】将0.5变形为12<2﹣0.5<0,进而即可得出<0.5. 【详解】解:∵0.5=12,∴﹣0.5 ∵2=3,22=4,3<4, ∴2,∴22<0,∴﹣0.5<0,<0.5. 故答案为:<.【点睛】﹣0.5<0是解题的关键.16.<x 的所有整数x 的和是_____.2【分析】首先通过对和大小的估算可得满足﹣<x <的所有整数进而对其求和可得答案【详解】解:∵﹣2<﹣<﹣12<<3∴满足﹣<x <的所有整数有﹣1012∴﹣1+0+1+2=2故答案为:2【点睛】本题主解析:2【分析】x 的所有整数,进而对其求和可得答案.【详解】解:∵﹣21,2 <3,∴<x 的所有整数有﹣1,0,1,2,∴﹣1+0+1+2=2,故答案为:2.【点睛】本题主要考查无理数大小的估算,比较简单,正确理解是解题的关键.17.比较大小:12π-________1【分析】利用估值比较法再利用不等式的性质3不等式两边都乘以-1不等式方向改变最后利用不等式性质1不等式两边都加1不等号方向不变即可确定大小【详解】∵∴∴∴故答案为:【点睛】本题考查无理数的比较大小问解析:<【分析】利用估值比较法322π>>,再利用不等式的性质3,不等式两边都乘以-1,不等式方向改变2π-<,最后利用不等式性质1,不等式两边都加1,不等号方向不变即可确定大小. 【详解】∵322π>32<,∴2π>,∴2π-<, ∴12π-<1. 故答案为:<.【点睛】本题考查无理数的比较大小问题,掌握不等式的性质,会用不等式的性质比较大小,用估值法比较大小是解题关键.18的相反数是________的数是________【分析】直接利用相反数的定义以及绝对值的性质分析得出答案【详解】的相反数是;绝对值等于的数是故答案为:;【点睛】本题主要考查了绝对值以及相反数正确掌握相关定义是解题关键【分析】直接利用相反数的定义以及绝对值的性质分析得出答案.【详解】;【点睛】本题主要考查了绝对值以及相反数,正确掌握相关定义是解题关键.19.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10+10a b <则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数.(1)3;;(2)21;;(3)23;(4)【分析】(1)先找到可找到即可找出的整数部分与小数部分(2)根据因为即可找出的整数部分与小数部分(3)找到在哪两个整数之间再加10即可(4)先确定找到由是解析:(1)33;(2)21;21a -;(3)23;(47.【分析】(1)先找到91316<<,可找到34<< (2)根据因为2122a <<,即可找出a 的整数部分与小数部分(3)找到12<<在哪两个整数之间,再加10即可.(4)先确定56<<,找到233<<,由01y <<,x 是整数,即可确定x=2,5,再求7x y -=,即可求出【详解】(1)91316<<∴34<<33故答案为:33;(2)因为2122a <<,故则a 的整数部分是21,a 的小数部分可以表示为21a -. 故答案为:21;21a -;(3)因为12<<, ∴10110102+<+<+,即111012<+<,所以=11a ,=12b ,故23a b +=,故答案为:23;(4)5306<<,23033<<,∵01y <<,x 是整数,∴x=2, ∴325-=,∴)257x y -=-=,∴x y -7.【点睛】本题考查的是无理数的整数部分与小数部分,掌握估值法确定无理数的范围,即无限不循环小数知识的拓展延伸,理解题意,按照题目所给的表示方法去解答是关键.20_____;16的平方根为_____;()34-的立方根是_____.【分析】分别根据算术平方根相反数平方根和立方根的概念直接计算即可求解【详解】解:=所以的相反数是;16的平方根为;的立方根是故答案为:;±4;-4【点睛】本题考查了算术平方根平方根和立方根的概念进行解析:- 4± 4-【分析】分别根据算术平方根、相反数、平方根和立方根的概念直接计算即可求解.【详解】-;16的平方根为4±;()34-的立方根是4-.故答案为:—±4;-4【点睛】本题考查了算术平方根、平方根和立方根的概念进行求解即可.注意一个正数有两个平方根,它们互为相反数,正的平方根即为它的算术平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.三、解答题21.计算:2(3)2--解析:1【分析】先计算乘方、算术平方根,然后计算乘法和减法,即可得到答案.【详解】解:2(3)2--924=-⨯98=-1=.【点睛】本题考查了算术平方根、乘方、有理数的加减乘除混合运算,解题的关键是掌握运算法则进行计算.22.求下列各式中的x :(1)29(1)25x -=(2)3548x +=解析:(1)x=83或x=-23;(2)x =32-. 【分析】 (1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可.【详解】解:(1)∵9(x-1)2=25∴x-1=±53, 即x-1=53或x-1=-53, 解得x=83或x=-23; (2)3548x += 3548x =- 3278x =-x =32-.【点睛】本题主要考查了求一个数的平方根与立方根,熟记定义是解答本题的关键.23.对数运算是高中常用的一种重要运算,它的定义为:如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作:x=log a N,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N可记为lgN.当a>0,且a≠1,M>0,N>0时,log a (M•N)=log a M+log a N.(1)解方程:log x4=2;(2)求值:log48;(3)计算:(lg2)2+lg2•1g5+1g5﹣2018解析:(1)x=2;(2)32;(3)-2017【分析】(I)根据对数的定义,得出x2=4,求解即可;(Ⅱ)根据对数的定义求解即可;(Ⅲ)根据log a(M•N)=log a M+log a N求解即可.【详解】解:(I)解:∵log x4=2,∴x2=4,∴x=2或x=-2(舍去)(II)解法一:log48=log4(4×2)=log44+log42=1+12=32;解法二:设log48=x,则4x=8,∴22x=32,∴2x=3,x=32,即log48=32;(Ⅲ)解:(lg2)2+lg2•1g5+1g5﹣2018= lg2•( lg2+1g5) +1g5﹣2018= lg2 +1g5﹣2018=1-2018=-2017故答案为-2017.【点睛】本题主要考查同底数幂的乘法,有理数的乘方,是一道关于新定义运算的题目,解答本题的关键是理解给出的对数的定义和运算法则.24.(1)小明解方程2x1x a332-+=-去分母时,方程右边的−3忘记乘6,因而求出的解为x=2,则原方程正确的解为多少?(2)设x ,y 是有理数,且x ,y 满足等式2x 2y 17++=-x-y 的值. 解析:(1)x =−13;(2)(2)x-y 的值为9或-1.【分析】(1)将错就错把x =2代入计算求出a 的值,即可确定出正确的解;(2)根据题意可以求得x 、y 的值,从而可以求得x−y 的值.【详解】(1)把x =2代入2(2x−1)=3(x +a )−3中得:6=6+3a−3,解得:a =1, 代入方程得:2x 1x 1332-+=-, 去分母得:4x−2=3x +3−18,解得:x =−13;(2)∵x 、y 是有理数,且 x ,y 满足等式2x 2y 17++=-∴22174x y y ⎧+=⎨=-⎩, 解得,54x y =⎧⎨=-⎩或54x y =-⎧⎨=-⎩, ∴当x =5,y =−4时,x−y =5−(−4)=9,当x =−5,y =−4时,原式=−5−(−4)=−1.故x-y 的值为9或-1.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.也考查了实数. 25.计算:(12(2)22(2)8x -=解析:(1)1;(2)124,0x x ==【分析】(1)实数的混合运算,利用算术平方根和立方根的概念逐个进行化简计算;(2)直接用平方根的概念求解.【详解】解:(12=4(2)23----=4+223--=1(2)22(2)8x -=2(2)4x -=22x -=±22x =±∴124,0x x ==.【点睛】本题考查实数的混合运算及利用平方根解方程,掌握相关概念和性质正确计算是解题关键.26.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 解析:10102021【分析】利用裂项法计算即可.【详解】 原式1111111233520192021⎛⎫=⨯-+-+⋯+- ⎪⎝⎭ 11122021⎛⎫=⨯- ⎪⎝⎭ 1202022021=⨯ 10102021=. 【点睛】 本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键.27.把下列各数的序号填入相应的括号内①-3,②π,,④-3.14,,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”). 整数集合{ …},负分数集合{ …},正有理数集合{ …},无理数集合{ …}.解析:见解析.【分析】先求出立方根,再根据整数、负分数、正有理数、无理数的定义即可得.【详解】3=-,28.计算:(1)2019(1)|2|-(2)[(x ﹣2y )2+(x ﹣2y )(x +2y )﹣2x (2x ﹣y )]÷2x解析:(1)1--2)y x --【分析】(1)先根据正整数指数幂、立方根、平方根、去绝对值化简各项,再进行加减运算即可; (2)先去括号,根据完全平方公式和平方差公式计算后合并同类项,再计算除法即可求解.【详解】(1)原式= 1242-+-+1=-(2)原式=22222444422x xy y x y x xy x ⎡⎤-++-⎣⎦÷-+ ()2222xy x x =-÷-y x =--.【点睛】本题主要考查整式的混合运算,解题的关键是掌握立方根、平方根、绝对值及多项式与单项式的除法法则.。
初一实数测试题及答案
初一实数测试题及答案一、选择题(每题3分,共30分)1. 下列各数中,是实数的是()。
A. √2B. πC. 0.1010010001…D. i答案:A2. 比较两个实数的大小,以下说法正确的是()。
A. 2 > √2B. √2 > 2C. 2 = √2D. √2 < 2答案:D3. 下列各数中,是无理数的是()。
A. 0.5B. √4C. 0.333…D. 3.14答案:C4. 计算√16的值,正确的是()。
A. 4B. -4C. ±4D. 4或-4答案:A5. 计算√(-4)²的值,正确的是()。
A. 4B. -4C. 2D. -2答案:A6. 下列各数中,是实数的是()。
A. √(-1)B. √0C. √1D. √(-2)答案:C7. 计算√9的值,正确的是()。
A. 3B. -3C. ±3D. 3或-3答案:C8. 比较两个实数的大小,以下说法正确的是()。
A. √3 < 1.7B. √3 > 1.7C. √3 = 1.7D. √3 < 1.7答案:B9. 计算√(1/4)的值,正确的是()。
A. 1/2B. -1/2C. ±1/2D. 1/2或-1/2答案:A10. 下列各数中,是无理数的是()。
A. √9B. 0.5C. 0.333…D. 3.14答案:C二、填空题(每题3分,共30分)11. √25的值是________。
12. √(-3)²的值是________。
答案:313. √(2/3)的值是________。
答案:√6/314. √(-4)²的值是________。
答案:415. √(1/2)的值是________。
答案:√2/216. √(-1)²的值是________。
答案:117. √(-2)²的值是________。
18. √(1/3)的值是________。
初一数学实数计算题专题训练(含答案)
专题一计算题训练一.计算题1.计算题:|﹣2|﹣(1+)0+.2.计算题:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)3.4 . ||﹣.5.计算题:.6.计算题:(1);7 .8.(精确到0.01).9.计算题:.10.(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2);11.| ﹣|+﹣12. ﹣12+×﹣213. .14. 求x的值:9x2=121.15. 已知,求xy的值.16. 比较大小:﹣2,﹣(要求写过程说明)17.求x的值:(x+10)2=1618. .19. 已知m<n,求+的值;20.已知a<0,求+的值.专题一计算题训练参考答案与试题解析一.解答题(共13小题)1.计算题:|﹣2|﹣(1+)0+.解答:解:原式=2﹣1+2,=3.2.计算题:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)解答:解:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2),=﹣1+4×9+3,=38.3.4. ||﹣.原式=14﹣11+2=5;(2)原式==﹣1.点评:此题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.5.计算题:.考点:有理数的混合运算。
801377分析:首先进行乘方运算、然后根据乘法分配原则进行乘法运算、同时进行除法运算,最后进行加减法运算即可.解答:解:原式=﹣4+8÷(﹣8)﹣(﹣1)=﹣4﹣1﹣(﹣)=﹣5+=﹣.点评:本题主要考查有理数的混合运算,乘方运算,关键在于正确的去括号,认真的进行计算即可.6.;7..考点:实数的运算;立方根;零指数幂;二次根式的性质与化简。
801377分析:(1)注意:|﹣|=﹣;(2)注意:(π﹣2)0=1.解答:解:(1)(==;(2)=1﹣0.5+2=2.5.点评:保证一个数的绝对值是非负数,任何不等于0的数的0次幂是1,注意区分是求二次方根还是三次方根.8.(精确到0.01).考点:实数的运算。
(完整版)七年级数学实数练习题
测试1 平方根一、填空题1.25的算术平方根是______;______是9的平方根;16的平方根是______. 2.计算:(1)=121______;(2)=-256______;(3)=±212______;(4)=43______;(5)=-2)3(______;(6)=-412______. 3.25111的平方根是______;0.0001算术平方根是______:0的平方根是______. 4.2)4(-的算术平方根是______:81的算术平方根的相反数是______. 5.一个数的平方根是±2,则这个数的平方是______. 6.3表示3的______;3±表示3的______.7.如果-x 2有平方根,那么x 的值为______.8.如果一个数的负平方根是-2,则这个数的算术平方根是______,这个数的平方是_____. 9.若a 有意义,则a 满足______;若a --有意义,则a 满足______. 10.若3x 2-27=0,则x =______. 二、选择题1.下列各数中没有平方根的是( ) A .(-3)2B .0C .81 D .-632.下列说法正确的是( ) A .169的平方根是13 B .1.69的平方根是±1.3 C .(-13)2的平方根是-13 D .-(-13)没有平方根 3.下列语句不正确的是( )A .0的平方根是0B .正数的两个平方根互为相反数C .-22的平方根是±2D .a 是a 2的一个平方根 4.一个数的算术平方根是a ,则比这个数大8数是( )A .a +8B .a -4C .a 2-8D .a 2+8 三、判断正误1.3是9的算术平方根.( ) 2.3是9的一个平方根.( ) 3.9的平方根是-3.( ) 4.(-4)2没有平方根.( ) 5.-42的平方根是2和-2.( ) 四、解答题1.求下列等式中的x :(1)若x 2=1.21,则x =______; (2)x 2=169,则x =______;(3)若,492=x ,则x =______; (4)若x 2=(-2)2,则x =______. 2.要切一块面积为16cm 2的正方形钢板,它的边长是多少? 3.求下列各式的值: (1)325 (2)3681+(3)25.004.0-(4)121436.0⋅4.要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?测试2 立方根一、填空题1.一般的,=-3a ______.2.125的立方根是______;81-的立方根是______.3.计算:(1)=-3008.0______;(2)=364611______; (3)=--312719______. 4.体积是64m 3的立方体,它的棱长是______m . 5.64的立方根是______;364的平方根是______. 6.=3064.0______;=3216______;=-33)2(______;=-33511)(______;=-38______;=-38______;=-33)a (______.7.(-1)2的立方根是______;一个数的立方根是101,则这个数是______. 8.若x 的立方根是4,则x 的平方根是______.9.3311-+-x x 中的x 的取值范围是______,11-+-x x 中的x 的取值范围是______.10.-27的立方根与81的平方根的和是______. 11.若,033=+y x 则x 与y 的关系是______. 12.如果,443=+a 那么(a -67)3的值是______. 13.若,141233+=-x x 则x =______. 14.若m <0,则=-33m m ______. 二、选择题1.下列结论正确的是( )A .6427的立方根是43±B .1251-没有立方根 C .有理数一定有立方根 D .(-1)6的立方根是-1 2.下列结论正确的是( )A .64的立方根是±4B .21-是61-的立方根 C .立方根等于本身的数只有0和1D .332727-=-3.下列说法正确的是( )A .一个数的立方根有两个B .一个非零数与它的立方根同号C .若一个数有立方根,则它就有平方根D .一个数的立方根是非负数 4.如果-b 是a 的立方根,则下列结论正确的是( )A .-b 3=aB .-b =a 3C .b =a 3D .b 3=a 三、判断正误1.负数没有平方根,但负数有立方根.( )2.94的平方根是278,32±的立方根是⋅±32( ) 3.如果x 2=(-2)3,那么x =-2.( ) 4.算术平方根等于立方根的数只有1.( ) 四、解答题 1.比较大小:(1);11______1033(2);2______23(3).27______93 2.求出下列各式中的a :(1)若a 3=0.343,则a =______;(2)若a 3-3=213,则a =______; (3)若a 3+125=0,则a =______;(4)若(a -1)3=8,则a =______. 3.若382-x 是2x -8的立方根,则x 的取值范围是______.4.求下列各式的值:(1)327102-- (2)3235411+⨯(3)336418-⋅ (4)3231)3(27---+-(5)10033)1(412)2(-+÷--5.已知5x +19的立方根是4,求2x +7的平方根.测试3 实数一、填空题1.把下列各数填入相应的集合:-1、3、π、-3.14、9、26-、22-、7.0 . (1)有理数集合{ }; (2)无理数集合{ }; (3)正实数集合{ }; (4)负实数集合{ }. 2.2的相反数是________;21-的倒数是________;35-的绝对值是________. 3.如果一个数的平方是64,那么它的倒数是________.4.比较大小:(1);233--________(2).36________1253-- 5.38的平方根是______;-12的立方根是______. 6.若,2||=x 则x =______.7.|3.14-π|=______;=-|2332|______. 8.若,5||=x 则x =______;若;12||+=x 则x =______. 9.当a ______时,|a -2 |=a -2.10.若实数a 、b 互为相反数,c 、d 互为负倒数,则式子3cd b a ++-=______. 11.在数轴上与1距离是的点2,表示的实数为______.12.22-的相反数是____________;32-的绝对值是______. 13.大于17-的所有负整数是______.14.一个数的绝对值和算术平方根都等于它本身,那么这个数是______. 15.如果|a |=-a ,那么实数a 的取值范围是______. 16.已知|a |=3,,2=b 且ab >0,则a -b 的值为______. 17.已知b <a <c ,化简|a -b |+|b -c |+|c -a |=______. 二、判断正误1.实数是由正实数和负实数组成.( ) 2.0属于正实数.( )3.数轴上的点和实数是一一对应的.( )4.如果一个数的立方等于它本身,那么这个数是0或1.( ) 5.若,2||=x 则2=x ( )三、选择题1.下列说法错误的是( )A .实数都可以表示在数轴上B .数轴上的点不全是有理数C .坐标系中的点的坐标都是实数对D .2是近似值,无法在数轴上表示准确2.下列说法正确的是( )A .无理数都是无限不循环小数B .无限小数都是无理数C .有理数都是有限小数D .带根号的数都是无理数 3.如果一个数的立方根等于它本身,那么这个数是( )A .±1B .0和1C .0和-1D .0和±1 4.估计76的大小应在( )A .7~8之间B .8.0~8.5之间C .8.5~9.0之间D .9~10之间5.-27的立方根与81的算术平方根的和是( )A .0B .6C .6或-12D .0或66.实数76.2、和22的大小关系是( )A .7226.2<<B .226.27<<C .2276.2<<D .76.222<<7.一个正方体水晶砖,体积为100cm 3,它的棱长大约在( )A .4~5cm 之间B .5~6cm 之间C .6~7cm 之间D .7~8cm 之间 8.如图,在数轴上表示实数15的点可能是( )A .P 点B .Q 点C .M 点D .N 点9.下列说法正确的是( ) A .正实数和负实数统称实数 B .正数、零和负数统称为有理数 C .带根号的数和分数统称实数 D .无理数和有理数统称为实数 10.下列计算错误的是( ) A .2)2(33-=-B .3)3(2=-C .2)2(33-=--D .39=11.下列说法正确的是( )A .数轴上任一点表示唯一的有理数B .数轴上任一点表示唯一的无理数C .两个无理数之和一定是无理数D .数轴上任意两点之间都有无数个点12.已知a 、b 是实数,下列命题结论正确的是( )A .若a >b ,则a 2>b 2B .若a >|b |,则a 2>b 2C .若|a |>b ,则a 2>b 2D .若a 3>b 3,则a 2>b 2 四、计算题1.32716949+- 2.2336)48(1÷---3.233)32(1000216-++4.23)451(12726-+-5.32)131)(951()31(--+6.已知,0|133|22=--+-y x x 求x +y 的值.7.已知nm m n A -+-=3是n -m +3的算术平方根,322n m B n m +=+-是m +2n 的立方根,求B -A 的平方根.五、解答题1.写出符合条件的数.(1)小于102的所有正整数;(2)绝对值小于32的所有整数.2.一个底为正方形的水池的容积是486m 3,池深1.5m ,求这个水底的底边长.。
七年级数学-实数习题精选(含答案)
实数单元练习题1填空题:(本题共10小题,每小题2分,共20分)1、()26-的算术平方根是__________。
2、ππ-+-43= _____________。
3、2的平方根是__________.4、实数a,b,c 在数轴上的对应点如图所示 化简c b c b a a ---++2=________________。
5、若m 、n 互为相反数,则n m +-5=_________。
6、若2)2(1-+-n m =0,则m =________,n =_________。
7、若 a a -=2,则a______0.8、12-的相反数是_________。
9、 38-=________,38-=_________。
10、绝对值小于π的整数有__________________________。
选择题:(本题共10小题,每小题3分,共30分)11、代数式12+x ,x ,y ,2)1(-m ,33x 中一定是正数的有( )。
A 、1个B 、2个C 、3个D 、4个12、若73-x 有意义,则x 的取值范围是( )。
A 、x >37-B 、x ≥ 37- C 、x >37 D 、x ≥37 13、若x ,y 都是实数,且42112=+-+-y x x ,则xy 的值( )。
A 、0B 、21 C 、2 D 、不能确定 14、下列说法中,错误的是( ). A 、4的算术平方根是2 B 、81的平方根是±3C 、8的立方根是±2 D、立方根等于-1的实数是-115、64的立方根是( )。
A 、±4B 、4C 、-4D 、1616、已知04)3(2=-+-b a ,则ba 3的值是( )。
A 、 41 B 、- 41 C 、433 D 、43 17、计算33841627-+-+的值是( )。
A 、1B 、±1C 、2D 、718、有一个数的相反数、平方根、立方根都等于它本身,这个数是( )。
七年级数学实数计算题练习(含答案)
七年级数学实数计算题练习(含答案)1.求下列各式中x的值.(1)4x2﹣9=0;(2)64(x﹣2)3﹣1=0.2.求下列各式中的x.(1)(x﹣1)2﹣8=1.(2)27+(1﹣2x)3=0.3.计算:(1);(2).4.(1);(2).5.(1)计算:;(2)已知8(x﹣1)2=16,求x的值.6.已知=x,,z是﹣8的立方根,求2x+y﹣z的平方根.7.求下列式子中x的值.(1);(2)3x3=﹣81.8.求等式中x的值:3(x+1)2=12.9.计算:.10.(1)若(x﹣1)3=8求x的值;(3)计算.11.计算:﹣12+﹣.12.计算:(1).(2)﹣|﹣2|+(﹣).13.计算:(1);(3).14.已知:实数a、b、c在数轴上的位置如图:且|a|=|b|,化简:|a|﹣|a+b|﹣|c﹣a|+|c+b|﹣|﹣b|.15.计算:(1)(﹣1)2021+﹣+|﹣2|;(2)﹣﹣++.16.计算题:(1);(2).17.计算:(1);(2).答案:1.求下列各式中x的值.(1)4x2﹣9=0;(2)64(x﹣2)3﹣1=0.【解答】解:(1)4x2﹣9=0,移项得:4x2=9,系数化为1得:,∴;(2)64(x﹣2)3﹣1=0,移项得:64(x﹣2)3=1,系数化为1得:,∴,∴.2.求下列各式中的x.(1)(x﹣1)2﹣8=1.(2)27+(1﹣2x)3=0.【解答】解:(1)(x﹣1)2﹣8=1,(x﹣1)2=9,x﹣1=3或x﹣1=﹣3,x=4或x=﹣2;(2)27+(1﹣2x)3=0,(1﹣2x)3=﹣27,1﹣2x=﹣3,x=2.3.计算:(1);(2).【解答】解:(1)===;(2)===9+5=14.4.(1);(2).【解答】解:(1)=﹣27+2﹣﹣3+4=﹣24;(2)=2﹣﹣=.5.(1)计算:;(2)已知8(x﹣1)2=16,求x的值.【解答】解:(1)=+3;(2)8(x﹣1)2=16,(x﹣1)2=2,x﹣1=±,x﹣1=或x﹣1=﹣,x=1+或x=1﹣.6.已知=x,,z是﹣8的立方根,求2x+y﹣z的平方根.【解答】解:∵=x,,z是﹣8的立方根,∴x=5,y=4,z=﹣2,∴2x+y﹣z=10+4+2=16,∴2x+y﹣z的平方根是±4.7.求下列式子中x的值.(1);(2)3x3=﹣81.【解答】解:(1)∵,∴,解得:,;(2)∵3x3=﹣81,∴x3=﹣27,解得:x=﹣3.8.求等式中x的值:3(x+1)2=12.【解答】解:∵3(x+1)2=12,∴(x+1)2=4,∴x+4=±2,∴x+4=2或x+4=﹣2,解得:x=﹣3或x=1.9.计算:.【解答】解:=1+×4﹣(﹣4)=1+2+4=7.10.(1)若(x﹣1)3=8求x的值;(2)计算.【解答】解:(1)∵(x﹣1)3=8,∴x﹣1=2,∴x=3.(2)原式=4﹣(﹣3)+6﹣(4﹣)=4+3+6﹣4+=9+.11.计算:﹣12+﹣.【解答】解:原式=﹣1+3﹣2=0.12.计算:(1).(2)﹣|﹣2|+(﹣).【解答】解:(1)=﹣1+2+8×=﹣1+2+4=5;(2)﹣|﹣2|+(﹣)=4+﹣2+3﹣1=4+.13.计算:(1);(2).【解答】解:(1)原式=1+﹣1+3=3+;(2)原式=3﹣2+=1+.14.已知:实数a、b、c在数轴上的位置如图:且|a|=|b|,化简:|a|﹣|a+b|﹣|c﹣a|+|c+b|﹣|﹣b|.【解答】解:根据图示,可得:a<c<0<b,且|c|<|b|,∴c﹣a>0,c+b>0,﹣b<0,∵a<0<b,且|a|=|b|,∴a+b=0,∴|a|﹣|a+b|﹣|c﹣a|+|c+b|﹣|﹣b|=﹣a﹣0﹣(c﹣a)+(c+b)﹣b=﹣a﹣0﹣c+a+c+b﹣b=0.15.计算:(1)(﹣1)2021+﹣+|﹣2|;(2)﹣﹣++.【解答】解:(1)(﹣1)2021+﹣+|﹣2|=﹣1+2﹣4+2﹣=﹣1﹣;(2)﹣﹣++=3﹣0﹣++=3.16.计算题:(1);(2).【解答】解:(1)=﹣1+4﹣3=0;(2)=﹣1+3+2﹣2=3.17.计算:(1);(2).【解答】解:(1)原式=5+1=6;(2)原式=5+﹣=5.。
七年级数学实数经典例题及习题
经典例题类型一.有关概念的识别1.下面几个数:0.23,1.010010001…,,3π,,,其中,无理数的个数有()A、1B、2C、3D、4解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,是无理数故选C举一反三:【变式1】下列说法中正确的是()A、的平方根是±3B、1的立方根是±1C、=±1D、是5的平方根的相反数【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A、1B、1.4C、D、【变式3】类型二.计算类型题2.设,则下列结论正确的是()A. B.C. D.解析:(估算)因为,所以选B举一反三:【变式1】1)1.25的算术平方根是__________;平方根是__________.2)-27立方根是__________. 3)___________,___________,___________.【变式2】求下列各式中的(1)(2)(3)类型三.数形结合3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______解析:在数轴上找到A、B两点,举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C 表示的数是().A.-1 B.1-C.2-D.-2[变式2]已知实数、、在数轴上的位置如图所示:化简类型四.实数绝对值的应用4.化简下列各式:(1) |-1.4|(2) |π-3.142|(3) |-| 分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。
说明:这里对|2x-3|的结果采取了分类讨论的方法,我们对这个绝对值的基本概念要有清楚的认识,并能灵活运用。
举一反三:【变式1】化简:类型五.实数非负性的应用5.已知:=0,求实数a, b的值。
人教版七年级《实数》训练题(2)
人教版七年级《实数》训练题(2)一.选择题(共10小题)1.(2021秋•济宁期末)对于实数a、b,定义min{a,b}的含义为:当a<b时,min{a,b}=a;当a>b时,min{a,b}=b,例如:min{1,﹣2}=﹣2.已知min{,a}=a,min{,b}=,且a和b为两个连续正整数,则2a﹣b的值为()A.1B.2C.3D.42.(2021春•建华区期末)实数m在数轴上的对应点的位置如图所示,若实数n满足﹣m<n<m,则n的值不可能是()A.﹣B.﹣2C.﹣D.﹣33.(2021春•安陆市期末)把无理数,,,﹣表示在数轴上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是()A.B.C.D.﹣4.(2021春•鼓楼区校级期中)一个正方形的面积是11,它的边长为a,则下列判断正确的是()A.2<a<3B.3<a<4C.4<a<5D.5<a<6 5.(2021春•荣昌区校级月考)对于实数a、b,定义min{a,b}的含义为:当a<b时,min{a,b}=a,当b<a时,min{a,b}=b,例如:min{1,﹣2}=﹣2.已知min{,a}=a,min{,b}=,且a和b为两个连续正整数,则a﹣b的立方根为()A.﹣1B.1C.﹣2D.26.(2021春•红谷滩区校级期中)下列说法正确的是()A.实数可分为有理数和无理数B.无限小数都是无理数C.只有0的立方根是它本身D.1的任何次方根都是17.(2021秋•诸暨市期中)若9﹣的整数部分为a,小数部分为b,则2a+b等于()A.12﹣B.13﹣C.14﹣D.15﹣8.(2020秋•婺城区校级期末)规定:一个数的平方等于﹣1,记作i2=﹣1,于是可知i3=i2×i=(﹣1)×i,i4=(i2)2=(﹣1)2=1……,按照这样的规律,i2019等于()A.1B.﹣1C.i D.﹣i9.如图,数轴上点P表示的实数可能是()A.B.C.﹣D.﹣10.(2021秋•连南县期中)实数a,b在数轴上对应的点的位置如图所示,那么化简的结果()A.2a+b B.b C.2a﹣b D.3b二.填空题(共10小题)11.(2021秋•原阳县期末)计算:+=.12.(2021秋•沂源县期末)已知5+的整数部分为a,5﹣的小数部分为b,则a+b 的值为.13.(2021秋•济宁期末)已知a是的整数部分,b是它的小数部分,则(﹣a)3+(b+3)2=.14.(2021春•饶平县校级月考)比较大小:.15.(2020秋•偃师市期末)+()2=.16.(2020秋•射阳县期末)点A表示﹣,一只蚂蚁从点A沿数轴向右爬一个单位到达点B,则B表示的数为.17.(2021春•饶平县校级月考)在①﹣3.14 ②③0.222…④0 ⑤﹣⑥1.212211221112…中,有理数是,无理数是;(填序号)18.(2020秋•会同县期末)的算术平方根的相反数是.19.(2021秋•三元区期中)对于任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72[]=8[]=2[]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是.20.(2021春•江都区校级期末)设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,下列4个结论:①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是1;④存在实数x,使[x)﹣x=0.5成立.其中正确的是.(填序号)三.解答题(共5小题)21.(2021春•巴南区校级月考)计算:(1);(2).22.(2021春•西乡塘区校级月考)计算:(1)3+2;(2)(+2);(3)﹣12+++|﹣1|.23.(2021春•西城区校级期中)计算:(1);(2)+.24.(2021春•越秀区期末)(1)计算:;(2)计算:2()﹣|﹣2|﹣.25.(2021春•田家庵区校级月考)计算:(1)+﹣.(2)﹣12020+﹣+|﹣2|.。
7下第12章实数练习(梳理+答案)
第十二章 实数 12.1实数的概念知识梳理1.实数可以这样分类: 正整数自然数 整数 ________ 有理数负整数实数 ___________________ 可化为有限小数或无线循环小数 负分数正无理数_________ 无限不循环小数_________2.面积为3的正方形的边长表示为_________,读作_________,它是一个_______小数3.请你写出一个你熟悉的无理数________.4.227_______无理数,3.14__________有理数。
(横线上填“是”或“不是”)5.任何一个有理数都可以化成qp (其中p,q 为正整数)的形式,一个分数可以化为______小数或者_______小数.巩固练习 A 组:1. 在5,0.1,-π,25,43,8,73八个实数中,无理数的个数是( )A. 5;B. 4;C. 3;D. 2. 2. 下列说法中正确的是( )A. 不循环小数都是无理数;B. 不带根号的数是有理数;C. 无理数都是无限小数;D. 无理数也分为正无理数、零和负无理数. 3. 无理数有 ( )A. 最小的数;B. 最大的数;C. 绝对值最小的数;D. 以上都不对.4. 在2和3之间的无理数的个数有( )A. 0个B. 1个C. 2个D. 无数个. 5. ______________叫做无理数;____________________统称为实数.6.6π________分数.(填“是”或“不是”) 7. 1323是__________.(填“有理数”或“无理数”) 8. 在实数31-,5-,3.14,0,2π,2-,722,218.0&&,0.3033033303333……(它的位数无限且相邻两个“0”之间“3”的个数依次加1个)中, 整数有 ;分数有 ; 有理数有 ;无理数有 ; 正实数有 ;非负数有 . 9.5的相反数是 ,21-的相反数是 .10. 判断:①无限小数都是无理数. ( ) ②无理数都是无限小数. ( ) ③有理数都是有限小数.( ) ④不带根号的数都是有理数.( )⑤实数有正实数与负实数两种.( ) ⑥在实数中,不是无理数,就是有理数. ( ) ⑦两个无理数的和一定是无理数.( ) ⑧一个无理数和一个有理数的差一定是无理数. ( ) ⑨一个无理数和一个有理数的积一定是无理数. ( ) ⑩两个无理数的商一定是无理数.( )B 组:11. 阅读:写出在2和3之间的一个无理数:(1)用带根号的数表示:因为22362<<,所以无理数6在2和3之间;(2)构造无限不循环小数表示:2.3033033303333……(它的位数无限且相邻两个“0”之间“3”的个数一次加1个) (3)用与π相关的无理数表示:例如π-1类比上述方法,用三种不同方法写出在5和6之间的无理数.12. 如图,图中每一个小正方形的面积是1,请利用图中的格点,画出一个面积是5的正方形,这个正方形的边长是______.13. 画一个边长为3cm的正方形,依次记它各边的中点为A、B、C、D,试解答下列问题:(1)四边形ABCD是什么图形?(2)用带根号的数表示四边形ABCD的边长.12.2平方根和开平方(1)知识梳理1.__________________,那么,这个数叫做a的平方根。
七年级初一数学第六章 实数练习题及答案
七年级初一数学第六章 实数练习题及答案一、选择题1.下列各数中,不是无理数的是( )A .30.8B .﹣3πC .14D .0.121 121 112…2.计算50﹣1的结果应该在下列哪两个自然数之间( )A .3,4B .4,5C .5,6D .6,73.有理数a ,b 在数轴上对应的位置如图所示,则下列结论成立的是( )A .a+b> 0B .a -b> 0C .ab>0D .0a b > 4.已知280x y -++=,则x y +的值为( ) A .10B .-10C .-6D .不能确定 5.若a 2=(-5)2 ,b 3=(-5)3 ,则a+b 的值是( )A .0或-10或10B .0或-10C .-10D .0 6.让我们轻松一下,做一个数字游戏.第一步:取一个自然数n 1=5,计算n 12+1得a 1;第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2;第三步:算出a 2的各位数字之和得n 3,计算n 32+1得a 3;……依此类推,则a 2018的值为( )A .26B .65C .122D .1237.下列各式中,正确的是( )A .()233-=-B .42=±C .164=D .393=8.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒9.若4a =2=3b ,且a +b <0,则a -b 的值是( )A .1或7B .﹣1或7C .1或﹣7D .﹣1或﹣710.下列运算中,正确的是( ) A 93=± B 382= C |4|2-=-D 2(8)8-=- 二、填空题11.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.12.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______13.按如图所示的程序计算:若开始输入的值为64,输出的值是_______.14.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___15.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.16.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.17.如果某数的一个平方根是﹣5,那么这个数是_____.18.23(2)0y x --=,则y x -的平方根_________.19.设a ,b 都是有理数,规定 3*=a b a b ()()48964***-⎡⎤⎣⎦=__________. 20.已知2(21)10a b ++-=,则22004a b +=________.三、解答题21.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N .(I )解方程:log x 4=2;(Ⅱ)log 28=(Ⅲ)计算:(lg 2)2+lg 2•1g 5+1g 5﹣2018= (直接写答案)22.对于实数a,我们规定用}{a}为 a 的根整数.如}=4.(1)计算?(2)若{m}=2,写出满足题意的m 的整数值;(3)现对a 进行连续求根整数,直到结果为2为止.例如对12进行连续求根整数,第一次}=4,再进行第二次求根整数}=2,表示对12连续求根整数2次可得结果为2.对100进行连续求根整数, 次后结果为2.23.是无理数,而无理是无限不循环小数,因1的小数部分,事的整数部分是1,将这个数减去其整数部的小数部分,又例如:∵23223<<,即23<<的整数部分为2,小数部分为)2。
七年级数学实数测试题及答案
七年级数学实数测试题及答案一、选择题(每题2分,共10分)1. 下列哪个数不是实数?A. -3B. √2C. πD. i(虚数单位)2. 实数a和b满足a < b,那么a + 1与b + 1的大小关系是:A. a + 1 < b + 1B. a + 1 > b + 1C. a + 1 = b + 1D. 不能确定3. 以下哪个表达式表示的是实数的乘方?A. √9B. 3^2C. 1/2^3D. -2^34. 实数x满足|x| < 1,那么x的取值范围是:A. x > 1B. x < -1C. -1 < x < 1D. x ≥ 1 或x ≤ -15. 两个实数相除,如果除数为负数,商的符号与:A. 被除数相同B. 被除数相反C. 除数相同D. 除数相反二、填空题(每题2分,共10分)6. 若a = -2,则a的相反数是______。
7. 一个数的绝对值是5,这个数可以是______。
8. 一个数的平方根是3,那么这个数的立方根是______。
9. 一个数的立方是-8,这个数是______。
10. 若√x = 3,则x = ______。
三、解答题(每题10分,共40分)11. 计算下列各题,并简化结果:(1) √25(2) (-3)^2(3) √(-4)^212. 已知a = -1,b = 3,求下列表达式的值:(1) a + b(2) a - b(3) a * b13. 根据题目条件,求解以下不等式:(1) |x - 2| < 3(2) |x + 1| ≥ 414. 证明:如果a > 0,b < 0,且|a| > |b|,则a + b > 0。
四、应用题(每题15分,共30分)15. 一个数的平方根是4,求这个数,并计算它的立方根。
16. 某工厂在生产过程中,发现一个零件的长度在-2到2厘米之间波动。
如果这个零件的长度超过1.5厘米,就会影响机器的正常运转。
初一数学 实数经典例题及习题含答案
类型一.有关概念的识别1.下面几个数:0. 23 ,1.010010001…,,3π,,,其中,无理数的个数有()A、1B、2C、3D、4解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π ,是无理数故选C举一反三:【变式1】下列说法中正确的是()A、的平方根是±3B、1 的立方根是±1C、=±1D、是5 的平方根的相反数【答案】本题主要考察平方根、算术平方根、立方根的概念,∵=9,9 的平方根是±3,∴A 正确.∵1 的立方根是1,=1,是5 的平方根,∴B、C、D 都不正确.【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A 表示的数是()A、1B、1.4C、D、【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知|AO|= ,∴A 表示数为,故选C.【变式3】【答案】∵π = 3.1415…,∴9<3π <10因此3π -9>0,3π -10<0∴类型二.计算类型题2.设,则下列结论正确的是()A. B.C. D.解析:(估算)因为,所以选B举一反三:【变式1】1)1.25 的算术平方根是;平方根是.2)-27 立方根是. 3),,.【答案】1);.2)-3. 3),,【变式2】求下列各式中的(1)(2)(3)【答案】(1)(2)x=4 或x=-2(3)x=-4类型三.数形结合3. 点A 在数轴上表示的数为,点B 在数轴上表示的数为,则A,B 两点的距离为解析:在数轴上找到A、B 两点,举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B 关于点A 的对称点为C,则点C 表示的数是().A.-1 B.1- C.2- D.-2【答案】选C[变式2] 已知实数、、在数轴上的位置如图所示:化简【答案】:类型四.实数绝对值的应用-4.化简下列各式: (1) | -1.4 | (2) |π -3.142| (3) |-|(4) |x-|x-3|| (x ≤3)(5) |x 2+6x+10|分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 实数
知识点总结
一、平方根
定义:如果a x =2,那么x 叫做a 的平方根(或二次方根)。
记作a x ±=
性质:(1)平方根号里的数是非负数,即0≥a
(2)正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
(3)a a =2,
()a a =2
二、立方根
定义:如果a x =3,那么x 叫做a 的立方根(或三次方根)。
记作3a x = 性质:(1)立方根号里的数是任意实数
(2)任意实数的立方根只有一个,且符号相同
(3)a a =33,()a a =3
3 (4)33a a -=-
三、实数分类
⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧ 0无限不循环小数负无理数正无理数无理数无限不循环小数有限小数或负分数正分数分数负整数正整数整数有理数实数
说明:(1)实数与数轴上的点一一对应。
(2)相反数:a ,b 是实数且互为相反数b a b a -==+⇔,0
(3)绝对值:设a 表示一个实数,则
⎪⎩
⎪⎨⎧<-=>=时当时当时当0 0
00 a a a a a a
练习
一、选择题
1.下列语句中正确的是( )
A.49的算术平方根是7
B.49的平方根是-7
C.-49的平方根是7
D.49的算术平方根是7±
2.下列实数3
3,9,15.3,2,0,87,3--π中,无理数有( ) A.1个 B.2个 C.3个 D.4个
3.8-的立方根与4的算术平方根的和是 ( )
A.0
B.4
C.2±
D.4±
4.下列说法中:(1)无限小数都是无理数 (2)无理数都是无限小数;(3)无理数包括正无理数、零、负无理数;(4)无理数可以用数轴上的点来表示;(5)两个无理数的差还是无理数,共有( )个是正确的.
A.1
B.2
C.3
D.4
5.下列各组数中互为相反数的是( )
A. 2-与2)2(-
B. 2-与38-
C. 2-与2
1- D.2-与2 6.下列说法中:(1)任意一个数都有两个平方根;(2)
32是一个分数;(3)a 与a -互为相反数; (4)0.08的立方根是0.2;(5)32-的相反数是23-,其中正确的个数是( )
A.0
B.1
C.2
D.3
7.实数在数轴上的位置如图16--C ,那么化简2
a b a --的结果是( )
A.b a -2
B.b
C.b -
D.b a +-2
8.一个数的算术平方根是x ,则比这个数大2的数的算术平方根是( )
A.22+x B 、2+x C.22-x D.22+x
9.若033=+y x ,则y x 和的关系是 ( )
A.0==y x
B. y x 和互为相反数
C. y x 和相等
D. 不能确定
1、一个数的平方等于它本身,这个数是 ,一个数的平方根等于它本身,这个数是 , 一个数的立方等于它本身,这个数是 ,一个数的立方根等于它本身,这个数是 .
2、2)4(-的平方根是_______,36的算术平方根是______ ,125
8-的立方根是________ . 3、38-的相反数是____,2
π-的倒数是____;294-的绝对值是 ,13115-的相反数是 。
4、若一个数的算术平方根与它的立方根相等,那么这个数是 .
5
3±,则317-a = .
6、比较大小:
5;π 1415927.3;
315- 31 7、满足52<<-x 的整数x 是 .
8、131的整数部分是 ,小数部分是 .
9、小成编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→
2
1,则x 为______________ .
三、计算题 1、2)134(-- 2、()2
273⎪⎪⎭⎫ ⎝
⎛-- 3、222516⎪⎪⎭⎫ ⎝⎛-
4、2232+-
5、33323272)21()4()4()2(--⨯-+-⨯-
6、⎪⎭
⎫ ⎝⎛
-2122 7、4)12(2=-x 8、081)2(33=-+x
1、已知09222=-++b b a ,求b a +的值.
2、若9的平方根是a,b 的绝对值是4,求a+b 的值
3、例如∵,974<<即372<<,∴7的整数部分为2,小数部分为27-,如果2小数部分为a ,3的小数部分为b ,求2++b a 的值.
4、一个数的平方根是3a+1与a-9,求这个数.
5、已知2a-1的平方根是±3, 而4 是3a+b -1的平方根,求3a +0.5b 的平方根。