《相似三角形性质》教学设计
三角形相似的判定教学设计(优秀4篇)
三角形相似的判定教学设计(优秀4篇)《相似三角形》数学教案篇一一、教材内容分析《探索三角形相似的条件》是北师大版试验教科书八年级下册第四章第九节的内容,1课时,它是在学生学习了相似三角形的概念基础上,进一步研究三角形相似的条件,是今后进一步研究其他图形的基础。
二、教学目标(知识,技能,情感态度、价值观)1、知识目标:(1)使使学生能通过三角形全等的判定来发现三角形相似的判定。
(2)学生掌握相似三角形判定定理1,并了解它的证明。
(3)使学生初步掌握相似三角形的判定定理1的应用。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、类比、归纳;(2)通过知识的纵横迁移感受数学的系统特征。
三、教学重难点:重点:掌握相似三角形判定定理1及其应用。
难点:定理1的证明方法。
四、教学环境及资源准备1、投影片2、观看相关视频五、教学过程教学过程教师活动学生活动设计意图及资源准备(一)、导入新课1、多媒体展示问题,什么叫相似三角形?相似三角形与全等三角形有何联系?2、到目前为止判定三角形相似的方法有几个?3、什么叫相似三角形?相似三角形与全等三角形有何联系?学生回答证明三角形的两种方法通过提问既起到复习旧知识又起到引出新问题的作用(二)、探究新知1新课讲解(1)、做一做,做出两个三角形来试验是否相似。
(2)、师生共同总结:两角对应相等的两个三角形相似。
2应用新知教学例1:已知:△ABC和△DEF中A=40,B=80,E=80,F=60求证:△ABC∽△DEF例2:直角三角形被斜边上的高分成的两个直三角形的与原三角形相似3、例题小结1、学生亲手实践2、学生理解3、边听讲边思考让学生通过亲手实践来体验知识的准确性,理解,消化主要知识例1,例2的练习加强学生,以达对定理的更深一步的理解与掌握。
(三)、随堂练习学生完成教师订正练习应用巩固知识(四)、课时小结通过这节课的学习,你能获得哪些收获?分小组交流后个别回答知识系统化(五)、课后作业习题4.9第1题、第2题。
初中数学初三数学上册《相似三角形的性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解相似三角形的定义及性质,掌握相似三角形的判定方法。
2.能够运用相似三角形的性质解决实际问题,如求线段长度、角度大小等。
3.学会使用相似三角形的相关定理进行证明,提高逻辑推理能力。
4.掌握相似变换的概念,了解其在现实生活中的应用。
(二)过程与方法
1.通过观察、实践、探索,引导学生发现相似三角形的性质,培养他们的观察能力和动手操作能力。
2.通过小组合作、讨论交流,培养学生的团队合作意识和解决问题的能力。
3.运用类比、归纳等数学思想,帮助学生建立知识体系,提高他们的逻辑思维能力。
4.设计丰富的例题和练习,巩固所学知识,提高学生的解题技巧。
1.重点:相似三角形的定义、性质及判定方法,相似变换的应用。
2.难点:相似三角形性质的证明过程,以及将相似三角形性质应用于解决实际问题。
(二)教学设想
1.创设情境,导入新课
-通过展示生活中常见的相似图形,如地图、照片等,引发学生对相似三角形的兴趣。
-提问方式引导学生回顾已学的全等三角形知识,为新课的学习做好铺垫。
作业要求:
1.学生应在规定时间内独立完成作业,注重作业质量,提高解题效率。
2.作业完成后,认真检查,确保答案正确、书写规范。
3.积极参与课堂讨论,与同学分享解题思路和心得。
4.遇到问题及时向老师请教,不断提高自己的数学素养。
在教学过程中,教师应关注学生的个体差异,因材施教,充分调动学生的积极性,引导他们主动参与课堂活动。同时,注重培养学生的数学思维和解决问题的能力,为他们的终身学习奠定基础。
二、学情分析
本章节的学习对象为初三学生,经过前两年的数学学习,他们已经掌握了平面几何的基本知识和技能,具备了一定的逻辑推理和问题解决能力。在此基础上,学生对相似三角形的性质这一章节内容的学习将面临以下挑战:
九年级数学下册《相似三角形的性质》教案、教学设计
-学生回顾全等三角形的性质,为新课的学习打下基础。
(二)讲授新知
1.教师引导学生从相似三角形的定义入手,探讨相似三角形的性质。
-解释相似三角形的定义,强调比例关系。
-引导学生观察相似三角形的边长和角度,发现性质。
2.教师运用几何画板动态展示相似三角形的性质,帮助学生形象理解。
-学生能够运用相似三角形的性质,进行严密的几何证明,掌握证明过程中的逻辑关系。
-学生能够灵活运用相似三角形的性质,解决复合几何问题,提高解题技巧。
3.学会运用相似三角形的性质解决实际问题,增强数学应用能力。
-学生能够运用相似三角形的性质,解决生活中的实际问题,如测量高度、距离等。
-学生能够将相似三角形的性质与其他数学知识相结合,解决综合性的数学问题。
3.培养学生的创新精神和实践能力,激发学生探索未知世界的热情。
-教师鼓励学生提出问题、解决问题,培养学生的创新思维。
-学生通过解决实际问题,感受数学与现实生活的联系,激发探索未知世界的热情。
4.培养学生的严谨学生严谨对待数学问题,养成良好的学习习惯。
(二)教学难点
1.相似三角形性质的推理和证明过程。
2.学生在解决实际问题中,对相似三角形性质的应用。
3.帮助学生建立几何直观,理解相似三角形的空间变化。
教学设想:
1.采用情境导入法,引发学生兴趣
-通过展示生活中与相似三角形相关的实例,如建筑物的立面设计、摄影中的构图等,激发学生的学习兴趣,引导学生认识到相似三角形在实际中的应用。
九年级数学下册《相似三角形的性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解相似三角形的定义及其判定条件,掌握相似三角形的性质和比例关系。
《相似三角形的性质》教学设计案例
相似三角形的性质一、课堂目标•掌握相似三角形的定义和性质•能够通过相似三角形的性质求解实际问题•培养学生观察、归纳和推理的能力,提高数学思维素养二、课堂准备•板书工具、黑板粉笔•课件、投影仪•课本及练习册•相关教学素材和示例三、教学过程1. 导入环节(5分钟)教师在黑板上先画出两个相似三角形,引导学生通过观察和描述,找出两个三角形之间的相似性质,并引出相似三角形的定义。
2. 新知探究(20分钟)教师向学生介绍相似三角形的性质,重点讲解以下三个性质:1.对应角相等性质:两个三角形对应的角相等,则这两个三角形相似。
2.对应边成比例性质:两个相似三角形的对应边成比例。
3.每个角的对边成比例性质:在两个相似三角形中,每个角的对边成比例。
通过教师的演示和讲解,引导学生逐步理解相似三角形的定义和性质,掌握相似三角形性质的关键内容。
3. 拓展应用(30分钟)教师给学生讲解实际生活中用到相似三角形的问题,例如:有一根高度为5米的杆子,从杆子顶端向地面投掷石子,石子落地点离杆子底部水平距离为3米。
如果再往杆子前方走20米再投掷,石子落地点距离杆子底部水平距离为多少米?引导学生围绕这个问题进行思考和推理,列出相关的三角形比例关系式,并运用相似三角形的性质和比例关系式求解实际问题。
4. 锻炼巩固(15分钟)提供一些与相似三角形相关的练习题,要求学生在课堂上独立完成并加以讲解。
例如:•两个三角形的对应角分别是60°和30°,则这两个三角形是否相似?•在三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E,则这两个三角形是否相似?•两个相似三角形的对应边分别为3和4和6和8,这两个三角形的周长之比是多少?5. 课堂总结(10分钟)教师对相似三角形的性质进行总结,强调相似三角形的应用领域和实际意义,并提出练习的建议和展望,鼓励学生深入思考和探究。
四、作业布置1.完成课本中与相似三角形相关章节的练习题。
2.独立解决一道应用题,并在课堂上汇报。
九年级数学上册《相似三角形的性质》优秀教学案例
(四)反思与评价
在教学过程中,我将重视学生的反思与评价。在每个环节结束后,引导学生对自己的学习过程进行反思,总结自己在知识掌握、方法运用、合作交流等方面的优点和不足。同时,鼓励学生积极参与课堂评价,对同伴的表现给予肯定和建议,培养他们客观、公正、真诚的评价态度。
此外,我还将结合学生的反思与评价,对课堂教学进行总结,针对学生的共性问题进行讲解和指导,以提高教学效果。通过反思与评价,使学生认识到自己的进步与不足,激发他们的学习动力,培养他们自主、持续发展的能力。
四、教学内容与过程
(一)导入新课
在导入新课环节,我将首先展示一些生活中的图片,如建筑物的立面图、摄影作品中的构图等,让学生观察并发现其中的相似三角形。通过这一环节,让学生感受到相似三角形在现实生活中的广泛应用,激发他们的学习兴趣。接着,提出问题:“这些图形之间有什么共同特征?它们之间有什么关系?”引导学生思考,为新课的学习做好铺垫。
(二)讲授新知
1.相似三角形的定义:通过引导学生回顾已学的全等三角形概念,自然而然地引出相似三角形的定义。强调相似三角形的对应角相等、对应边成比例的特点,并用实例进行解释。
2.相似三角形的判定:介绍AA、SSS、SAS三种判定方法,结合具体图形进行讲解。通过讲解和举例,让学生掌握这些判定方法,并能够运用到实际问题中。
3.设计丰富的教学活动,如实物演示、动手操作、数学游戏等,让学生在实际操作中体验数学知识的形成过程,培养学生的实践操作能力。
九年级数学上册《相似三角形的性质》教案、教学设计
在学生小组讨论环节,我会将学生分成若干小组,每组4-6人。给出以下讨论题目:
1.请列举出相似三角形的性质,并尝试用简洁的语言解释每个性质。
2.请举例说明相似三角形在实际问题中的应用。
3.你认为相似三角形的性质与全等三角形的性质有哪些联系和区别?
要求学生在小组内进行充分讨论,分享各自的观点和想法。在此过程中,我会巡回指导,关注学生的讨论进度,适时给予提示和引导。
2.培养学生运用几何图形描述和分析问题的能力,提高他们的逻辑思维和推理能力。
3.引导学生将相似三角形的性质应用于实际生活,培养他们的应用意识和创新能力。
(二)教学难点
1.相似三角形性质的推导和证明,尤其是其中的比例关系和角度关系。
2.学生在解决实际问题时,如何将相似三角形的性质灵活运用。
3.培养学生合作交流能力,提高他们在团队中的参与度和贡献度。
2.相似三角形的性质:详细讲解相似三角形的性质,如对应角相等、对应边成比例等,并结合实际例子进行解释。
3.相似三角形的判定方法:介绍判定相似三角形的方法,如AA、SSS、SAS等,并通过典型例题进行讲解。
4.相似三角形的应用:展示相似三角形在实际问题中的应用,如测量、设计等,让学生体会几何知识在实际生活中的价值。
(五)总结归纳,500字
在总结归纳环节,我会从以下几个方面进行:
1.知识点回顾:引导学生回顾本节课所学的相似三角形的定义、性质、判定方法及应用。
2.学习方法总结:让学生总结自己在学习相似三角形过程中的心得体会,分享有效的学习方法。
3.情感态度与价值观:强调几何知识在实际生活中的重要性,激发学生学习几何的兴趣和热情。
1.学生对相似三角形定义的理解程度,以及对相似性质的认识和运用能力。
相似三角形的性质教案
相似三角形的性质教案一、教学目标:1.知识目标:了解相似三角形的概念和相似三角形的性质。
2.能力目标:能够判断给定的两个三角形是否相似,并应用相似三角形的性质解决实际问题。
3.情感目标:培养学生的逻辑思维能力和解决问题的能力,并培养学生对数学知识的兴趣。
二、教学重难点:1.教学重点:相似三角形的性质。
2.教学难点:判断相似三角形和应用相似三角形的性质解决问题。
三、教学过程:1.激发兴趣:通过一个关于相似三角形的有趣例题,引导学生思考分析相似三角形的性质。
例题:如图,已知ΔABC ∼ΔDEF,且 AB = 3cm,BC = 4cm,AC = 5cm,DE = 6cm,寻找 x,使得 DF = x cm,EF = 8cm。
(图略)让学生思考一下,如何求得x的值?2.呈现知识:引入相似三角形的概念和性质。
(1)引入相似三角形的概念:如果两个三角形的对应角相等,那么这两个三角形是相似的。
记作ΔABC∼ΔDEF。
(2)相似三角形的性质:相似三角形的对应边成比例。
即有如下比例关系:AB/DE=BC/EF=AC/DF。
3.教学拓展:通过几个例题,帮助学生理解和应用相似三角形的性质。
例题1:如图,已知ΔABC ∼ ΔDEF,且 AB = 6cm,BC = 8cm,AC= 10cm,DE = 9cm,求 DF。
(图略)解:根据相似三角形的性质,可得AB/DE=BC/EF=AC/DF。
代入已知条件,得6/9=8/EF=10/DF。
由此可得EF = (9×8)/6 = 12cm,DF = (10×9)/6 = 15cm。
例题2:如图,已知ΔABC ∼ ΔDEF,且 AB = 4cm,AC = 8cm,DE= 10cm,以 DF 为底边,求ΔDFG 的高 GH。
(图略)解:根据相似三角形的性质,可得AB/DE=AC/DF。
代入已知条件,得 4/10 = 8/DF,解得 DF = 20/4 = 5cm。
相似三角形的性质教学设计北师大版九年级数学上册
相似三角形的性质一、教学目标1.经历探索相似三角形周长的比等于相似比,面积比等于相似比的平方的过程,体会转化的数学思想.2.能用相似三角形的周长比、面积比等于相似比解决实际问题.3.经历探索相似多边形的性质的过程,培养探索能力,加强合作意识.二、教学重难点重点:“相似三角形周长的比等于相似比,面积比等于相似比的平方”的探索及应用. 难点:相似三角形的性质的灵活应用.三、教学方法在本节内容的学习过程中,从估算距离和面积这一身边的例子出发,学生一方面通过交流、归纳,总结相似多边形的周长比、面积比与相似比的关系,体会知识迁移、温故知新的好处;另一方面运用相似多边形的周长比、面积比解决实际问题,增强对知识的应用意识.四、教学设计(一)复习回顾相似三角形的性质有哪些?1.相似三角形的对应角相等,对应边成比例.2.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.一般地,我们有:相似三角形对应线段的比等于相似比.设计意图:由旧知导入要探究的问题,激发学生的探究欲望,而回顾相似三角形的性质是为下一步探究新新性质在知识上作铺垫.(二)问题探究问题1:如果△ABC ∽△A'B'C',相似比为2,那么△ABC 与△A'B'C'的周长比是多少?面积比呢?师生活动:教师出示问题,学生思考、讨论,教师启发、引导,师生共同完成解题过程. 解:如图,(1)由已知,得2AB BC AC A'B'B'C'A'C'===.∴2AB BC AC AB A'B'+B'C'A'C'A'B'++==+.分别作△ABC 和△A'B'C'的高CD ,C'D'.∵△ABC ∽△A'B'C', ∴2CD AB C'D'A'B'==(相似三角形对应高的比等于相似比). ∴2122412ABCA'B'C'AB CD S AB CD S A'B'C'D'A'B'C'D'====△△. 问题2:如果△ABC ∽△A'B'C',相似比为k ,那么你能求△ABC 与△A'B'C'的周长比和面积比吗? 师生活动:教师出示问题,学生思考、讨论,教师启发、引导,师生共同完成解题过程.(2)由已知,得AB BC AC k A'B'B'C'A'C'===.∴AB BC AC AB k A'B'+B'C'A'C'A'B'++==+. 分别作△ABC 和△A'B'C'的高CD ,C'D'.∵△ABC ∽△A'B'C',∴CD AB k C'D'A'B'==(相似三角形对应高的比等于相似比). ∴21212ABCA'B'C'AB CD S AB CD k S A'B'C'D'A'B'C'D'===△△. 归纳定理:相似三角形的周长比等于相似比,面积比等于相似比的平方.问题3:两个相似四边形的周长比等于相似比吗?面积比等于相似比的平方吗?两个相似五边形的周长比及面积比怎样呢?两个相似的n 边形呢?师生活动:教师出示问题,学生思考、讨论,最后师生共同得出答案.答:两个相似四边形的周长比等于相似比,面积比等于相似比的平方;两个相似五边形的周长比等于相似比,面积比等于相似比的平方;两个相似n 边形的周长比等于相似比,面积比等于相似比的平方.结论:两个相似多边形的周长比等于相似比,面积比等于相似比的平方.设计意图:由特殊结论出发探究一般性结论的过程,有利于培养学生的发散思维,增强学生学习的兴趣.(三)典例解析例1:如图,将△ABC 沿BC 方向平移得到△DEF ,△ABC 与△DEF 重叠部分(图中阴影部分)的面积是△ABC 的面积的一半.已知BC =2,求△ABC 平移的距离.师生活动;教师出示例题,学生思考、讨论,教师分析、引导,师生共同完成解题过程.解:根据题意,可知EG∥AB.∴∠GEC=∠B,∠EGC=∠A.∴△GEC∽△ABC(两角分别相等的两个三角形相似).∴222GECABCS EC ECS BC BC⎛⎫==⎪⎝⎭△△(相似三角形的面积比等于相似比的平方),即22122EC=.∴EC2=2.∴EC.∴BE=BCEC,即△ABC平移的距离为.设计意图:让学生运用所学知识,解决一些问题.(四)课堂演练1. 判断:(1) 一个三角形的各边长扩大为原来的5 倍,这个三角形的周长也扩大为原来的5 倍( )(2) 一个四边形的各边长扩大为原来的9 倍,这个四边形的面积也扩大为原来的9 倍( )2.若△ABC∽△DEF,它们的面积比为9︰4,则△ABC与△DEF的相似比为().A.9︰4 B.3︰2 C.4︰9 D.2︰33.两个相似三角形面积的比是9︰16,其中小三角形的周长为36 cm,则大三角形的周长为().A.48 cm B.54 cm C.56 cm D.64 cm△ABC∽△DEF,面积比为9∶1,则下列说法正确的是()A.相似比为9∶1 B.周长比为9∶1C.对应中线的比为9∶1 D.对应角的比为1∶15.如图,在△ABC中,两条中线BE,CD相交于点O,则S△DOE∶S△COB为()A.1∶∶3 C.1∶∶2设计意图:进一步巩固所学知识,加深对所学知识的理解.(五)课堂小结1.相似三角形的性质.2.实际应用题的解决方法.师生活动:学生总结,教师补充:1.相似三角形的性质:(1)相似三角形的对应角相等,对应边成比例.(2)相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.一般地,我们有:相似三角形对应线段的比等于相似比.(3)相似三角形周长的比等于相似比.(4)相似三角形面积的比等于相似比的平方.2.两个相似多边形的周长比等于相似比,面积比等于相似比的平方.3.运用类比、由特殊到一般的数学思想方法解决问题.设计意图:学生畅所欲言自己切身的感受和实际收获,会利用相似三角形的性质解决实际问题,使学生充分感受:我们周围无处没有数学,数学就在我们身边.(六)布置作业教材第110页习题4.12.五、板书设计4.7.2 相似三角形的性质1.相似三角形周长的比等于相似比;2.相似三角形面积的比等于相似比的平方;3.例题;4.小结.六、教学反思经历相似三角形的性质的探索过程,培养学生的探索能力.通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体验化归思想.运用相似多边形的周长比,面积比解决实际问题,训练学生的运用能力,增强学生对知识的应用意识.。
《27.2.2 相似三角形的性质》教学设计教学反思-2023-2024学年初中数学人教版12九年级下
《相似三角形的性质》教学设计方案(第一课时)一、教学目标:1. 理解相似三角形的定义,掌握相似三角形的性质。
2. 能够运用相似三角形的性质解决实际问题。
3. 培养观察、分析和解决问题的能力。
二、教学重难点:教学重点:相似三角形的定义及性质的应用。
教学难点:理解相似三角形的对应比值相等以及灵活运用性质解决实际问题。
三、教学准备:1. 准备教学用具:黑板、白板、图片、尺子等。
2. 制作PPT,设计相关问题引导学生思考。
3. 搜集一些相似三角形的实际应用案例,以便于学生了解性质的重要性。
4. 安排一次实践活动,让学生动手制作相似三角形,加深理解。
四、教学过程:本节课的教学对象是八年级的学生,他们已经具备一定的认知能力和动手操作能力。
本节课的重点是相似三角形的性质的探究和应用,难点是相似三角形性质的灵活运用。
1. 引入:首先通过一些生活中的相似三角形实例,让学生感受到相似三角形的存在和其在实际生活中的应用,从而激发学生的学习兴趣。
2. 探究:引导学生通过观察、测量、比较等方法,探究相似三角形的性质。
可以利用直尺、剪刀、纸张等工具,进行实际操作和实验。
在探究过程中,鼓励学生发现问题、提出问题、解决问题。
3. 讲解:在学生探究的基础上,教师进行适当的讲解和说明,帮助学生理解相似三角形的性质及其证明过程。
4. 练习:设计一些与相似三角形性质相关的练习题,让学生进行练习。
这些练习题应该包括基础题和提高题,以适应不同学生的学习需求。
5. 总结:在课程结束前,让学生总结本节课的主要内容,包括相似三角形的性质及其应用,并鼓励学生提出自己的问题和观点。
6. 作业:布置一些与相似三角形性质相关的作业,包括基础题和提高题,以帮助学生巩固和拓展所学知识。
在教学方法上,可以采用探究式学习和合作学习的方法,鼓励学生积极参与、动手实践、交流合作,以培养学生的自主学习能力和合作精神。
同时,可以利用多媒体教学技术,如PPT、视频等,来辅助教学,提高教学效果。
4.7.1《相似三角形的性质》教案
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似三角形的基本概念、判定方法及其在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对相似三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-应用相似三角形性质解决实际问题,如证明几何问题、计算长度等。
-重点举例:
a.证明两个三角形相似,并运用相似性质计算未知长度。
b.利用相似三角形性质解释生活中的实际问题,如建筑设计、摄影等。
2.教学难点
-理解相似三角形的性质及其证明过程Байду номын сангаас尤其是对应高的比相等和对应中线的比相等。
-掌握相似三角形的判定方法,能够正确区分和应用AA、SAS、SSS相似定理。
在学生小组讨论环节,我发现有些小组在分享成果时表达不够清晰,可能是因为他们在讨论过程中没有充分交流。为了提高讨论效果,我打算在下次教学中增加一些互动环节,引导学生更好地进行思想碰撞,提高他们的沟通能力和逻辑思维能力。
最后,我希望通过这次教学反思,能够让自己在今后的教学中更加得心应手,让学生的学习效果更上一层楼。
苏科版数学九年级下册《6.5 相似三角形的性质》教学设计
苏科版数学九年级下册《6.5 相似三角形的性质》教学设计一. 教材分析《苏科版数学九年级下册》第六章第五节“相似三角形的性质”是学生在学习了相似三角形的判定和性质之后的内容。
本节课主要让学生掌握相似三角形的性质,并能运用性质解决一些几何问题。
教材通过丰富的例题和习题,帮助学生理解和掌握相似三角形的性质,为后续学习几何问题打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的判定和一些基本的性质。
但是,对于相似三角形的性质的理解和运用还存在一定的困难。
因此,在教学过程中,需要注重引导学生理解和运用相似三角形的性质,提高他们的几何解决问题的能力。
三. 教学目标1.理解相似三角形的性质,并能熟练运用。
2.能够运用相似三角形的性质解决一些几何问题。
3.提高学生分析问题、解决问题的能力。
四. 教学重难点1.相似三角形的性质的理解和运用。
2.解决几何问题时,如何运用相似三角形的性质。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生探究相似三角形的性质;通过案例分析,让学生理解和掌握相似三角形的性质;通过小组合作学习,培养学生的合作精神和团队意识。
六. 教学准备1.准备相关的教学PPT和教学案例。
2.准备一些几何问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考相似三角形的性质,激发学生的学习兴趣。
2.呈现(15分钟)呈现相关的性质,并通过PPT和案例进行讲解,让学生理解和掌握相似三角形的性质。
3.操练(15分钟)让学生通过一些练习题,运用相似三角形的性质解决问题,巩固所学知识。
4.巩固(10分钟)通过一些几何问题,让学生运用相似三角形的性质解决问题,巩固所学知识。
5.拓展(10分钟)让学生通过小组合作学习,解决一些综合性问题,提高他们的分析问题和解决问题的能力。
6.小结(5分钟)对本节课的内容进行总结,让学生掌握相似三角形的性质,并能够运用到实际问题中。
《相似三角形的性质》 教学设计
《相似三角形的性质》教学设计一、教学目标1、知识与技能目标(1)理解相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比。
(2)掌握相似三角形周长的比等于相似比,面积的比等于相似比的平方。
(3)能运用相似三角形的性质解决简单的实际问题。
2、过程与方法目标(1)通过观察、测量、推理等活动,经历相似三角形性质的探究过程,培养学生的动手操作能力和逻辑推理能力。
(2)在探究相似三角形性质的过程中,体会从特殊到一般、转化、类比等数学思想方法。
3、情感态度与价值观目标(1)通过小组合作探究,培养学生的合作意识和团队精神。
(2)让学生在探索相似三角形性质的过程中,体验成功的喜悦,增强学习数学的自信心。
二、教学重难点1、教学重点(1)相似三角形对应高的比、对应中线的比、对应角平分线的比、周长的比与相似比的关系。
(2)相似三角形面积的比与相似比的关系。
2、教学难点相似三角形性质的证明及应用。
三、教学方法讲授法、探究法、讨论法、练习法四、教学过程1、导入新课(1)回顾相似三角形的定义及相似比的概念。
(2)展示两个相似三角形的图片,提问:相似三角形除了对应角相等、对应边成比例外,还有哪些性质呢?2、探究相似三角形对应高的比与相似比的关系(1)画出两个相似三角形 ABC 和 A'B'C',对应边的比为 k,AD和 A'D'分别是 BC 和 B'C'边上的高。
(2)让学生通过测量、计算,得出 AD 和 A'D'的长度,进而发现AD : A'D' = k。
(3)引导学生进行推理证明:因为三角形 ABC 相似于三角形 A'B'C',所以角 B =角 B'。
又因为角 ADB =角 A'D'B' = 90°,所以三角形 ABD 相似于三角形A'B'D'。
2022年华师大版《相似三角形的性质》公开课教案精选全文完整版
可编辑修改精选全文完整版【知识与技能】会说出相似三角形的性质:对应角相等,对应边成比例,对应中线、角平分线、高的比等于相似比,周长比等于相似比,面积比等于相似比的平方.【过程与方法】培养学生演绎推理的能力.【情感态度】感受数学来源于生活,来源于实践.【教学重点】1.相似三角形中的对应线段比值的推导;2.相似多边形的周长比、面积比与相似比关系的推导;3.运用相似三角形的性质解决实际问题.【教学难点】相似三角形性质的灵活运用,相似三角形周长比、面积比与相似比关系的推导及运用.一、情境导入,初步认识复习:1.判定两个三角形相似的简便方法有哪些?△ABC 与△A ′B ′C ′中,AB=10cm,AC=6cm,BC=8cm,A ′B ′=5cm,A ′C ′=3cm,B ′C ′=4cm ,这两个三角形相似吗?说明理由.如果相似,它们的相似比是多少?二、思考探究,获取新知上述两个三角形是相似的,它们对应边的比就是相似比,△ABC ∽△A ′B ′C ′,相似比为C A AC ''=2. 相似的两个三角形,它们的对应角相等,对应边会成比例,除此之外,还会得出什么结果呢?一个三角形内有三条主要线段——高线、中线、角平分线,如果两个三角形相似,那么这些对应的线段有什么关系呢?我们先探索一下它们的对应高之间的关系.同学画出上述的两个三角形,作对应边BC 和B ′C ′边上的高,用刻度尺量一量AD 与A ′D ′的长,D A AD ''等于多少呢?与它们的相似比相等吗?得出结论:相似三角形对应高的比等于相似比.我们能否用说理的方法来说明这个结论呢?△ABD 和△A ′B ′D ′都是直角三角形,且∠B=∠B ′.∴△ABD ∽△A ′B ′D ′,∴B A AB D A AD ''=''=k 思考:相似三角形面积的比与相似比有什么关系?【教学说明】引导学生通过演绎推理来证明.归纳:相似三角形面积的比等于相似比的平方.同学们用上面类似的方法得出:相似三角形对应边上的中线的比等于相似比;相似三角形对应角平分线的比等于相似比;相似三角形的周长之比等于相似比.例1 如梯形ABCD 的对角线交于点O ,32=AB DC ,S △DOC =4,求S △AOB 、 S △AOD .【分析】∵DC ∥AB,∴△DOC ∽△BOA ,由相似三角形的性质可求出S △AOB 、S△AOD.解:∵DC∥AB,∴△DOC∽△BOA,三、运用新知,深化理解,桌面距离地面为1m,假设灯泡距离地面3m,那么地面上阴影局部的面积为 .【教学说明】运用相似三角形对应高的比等于相似比是解决此题的关键.2.如图,△ABC中,BC=24cm,高AD=12cm,矩形EFGH的两个顶点E、F在BC 上,另两个顶点G、H分别在AC、AB上,且EF∶EH=4∶3,求EF、EH的长.πm22.HG=;EH=【教学说明】充分运用矩形边长的比来建立方程,可使问题得到解决.四、师生互动,课堂小结1.相似三角形对应角相等,对应边成比例.2.相似三角形对应中线、角平分线、高的比等于相似比,周长比等于相似比,面积比等于相似比的平方.1.布置作业:从教材相应练习和“习题”中选取.2.完成《创优作业》中本课时练习的“课时作业〞局部.本课时从复习已经学习过的相似三角形的性质入手,提出问题继续探究相似三角形的有关性质,通过动手测量,猜测出结论,并加以证明,加深对知识的理解,提高学生分析、归纳、表达、逻辑推理等能力,并通过对知识方法的总结,培养反思问题的习惯,形成理性思维.第1课时比赛积分和行程问题【知识与技能】1.了解列二元一次方程组与列一元一次方程组的异同.2.经历和体验方程组解决实际问题的过程,了解应用二元一次方程组解决实际问题的一般步骤.【过程与方法】经历二元一次方程组解决实际问题的过程,体会列二元一次方程组与列一元一次方程组的异同,知道列二元一次方程组解决实际问题的一般步骤.【情感态度】针对问题的探究,鼓励学生大胆尝试,通过交流、合作、讨论,享受学习的乐趣和成功感,培养学生大胆发言的习惯,敢于面对挑战.【教学重点】重点是会用列方程组解决比赛积分和行程问题.【教学难点】难点是在实际问题中找等量关系、列方程组.一、情境导入,初步认识【情境】实物投影,并呈现问题:甲、乙两人在一条长400米的环形跑道上跑步,假设同向跑,那么每隔103分钟相遇一次;假设反向跑,那么每隔40秒相遇一次.又知甲比乙跑得快,求甲、乙两人的速度.你能找出问题中所含的等量关系吗?你能列方程组解决问题吗?总结列方程组解应用题的一般步骤.【教学说明】情境中同向跑是追及问题,追及时甲比乙多跑一周;反向跑是相遇问题,相遇时两人所跑路程之和是环形跑道的长.解:设甲的速度为x米/秒,乙的速度为y米/秒.依题意,得4040400200200400x yx y+=⎧⎨-=⎩,.解得64.xy=⎧⎨=⎩,甲的速度6米/秒,乙的速度4米/秒.【教学说明】通过现实情景再现,让学生体会数学知识与实际生活的联系.学生通过前面的情景引入,在老师的引导下,通过自己的观察,归纳出结论,进而体验到成功的喜悦,同时,也激发了学生学习的兴趣.二、思考探究,获取新知列二元一次方程组解应用题的一般步骤问题列二元一次方程组解应用题的一般步骤是什么?【教学说明】学生通过类比一元一次方程应用的步骤,在经过观察、分析、类比后能得出结论.【归纳结论】列二元一次方程组解应用题的一般步骤:①设出题中的两个未知数;②找出题中的两个等量关系;③根据等量关系列出需要的代数式,进而列出两个方程,并组成方程组;④解这个方程组,求出未知数的值;⑤检验所得结果的正确性及合理性并写出答案.三、运用新知,深化理解1.小明去郊游,早上9时下车,先走平路,然后登山,到山顶后又沿原路返回到下车处,正好是下午2时,假设他走平路每小时走4 km,爬山时每小时走3 km,下山时每小时走6 km,那么小明从上午到下午一共走的路程是〔〕2.某校学生进行军训,以每小时5km的速度去执行任务,出发4小时12分钟后,学校军训指挥部派通讯员骑摩托车追赶学生队伍传达新任务,用了36分钟赶上了队伍,求摩托车的速度.【教学说明】通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好地稳固新知识.通过本环节的讲解与训练,让学生对列二元一次方程组解应用题有了更加明确的认识,同时也尽量让学生明白知识点不是孤立的,需要前后联系,才能更好地处理问题.x千米.根据题意,列方程得3660x=5×(41260+3660)解这个方程得x=40答:摩托车的速度为每小时40千米.四、师生互动,课堂小结1.列方程组解比赛积分和行程问题需要注意哪些问题?2.通过这节课的学习,你还有哪些疑惑,大家交流.【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回忆以加深学生的印象,同时使知识系统化.1.布置作业:从教材第109页“练习〞和教材第112页“〞中选取.2.完成同步练习册中本课时的练习.这节课充分利用学生身边的实际问题,尽可能增加教学过程的趣味性、实践性,强调学生的动脑思考和主动参与,通过集体讨论、小组活动,以合作学习促进学生的自主探究.在列方程组的建模过程中,强化了方程的模型思想,培养了学生列方程组解决实际问题的意识和能力,在实际问题的解决中,进一步提高学生解方程组的能力.同时,利用列表、画线段图等手段能帮助学生提高分析问题和解决问题的能力.。
相似三角形的性质公开课教案
利用相似三角形解决面积和体积问题
计算不规则图形的面积
将不规则图形划分为若干个相似三角形,通过测量相似三角形的对应边长,利 用相似比计算每个三角形的面积,进而求出不规则图形的总面积。
05
学生自主探究活动设计与 实践
探究活动一:寻找生活中的相似三角形实例
任务描述
学生分组在生活中寻找相似三角 形的实例,如建筑物、日常用品
等,并拍照记录。
活动目的
通过寻找实际生活中的相似三角形 ,增强学生对相似三角形概念的理 解,培养学生的观察能力和小组合 作能力。
预期成果
各组收集到的相似三角形实例照片 及简要说明。
02
构造相似三角形
同样根据已知条件和相似三角 形的判定定理,构造出相似三
角形。
03
应用相似性质
利用相似三角形的性质,即相 似三角形的对应角相等,来证
明所需的角相等关系。
04
给出结论
根据证明过程得出结论,并强 调相似三角形在证明角相等关
系中的重要作用。
综合运用相似三角形性质进行几何证明
复杂几何问题的分析
可以通过相似三角形的定义和判定方法来 证明该定理。
ห้องสมุดไป่ตู้
在解决一些几何问题时,可以通过寻找相 似三角形并利用该定理来求解未知角度。
相似三角形对应边成比例定理
01
定理内容:如果两个三角形相似,那么它们的对应边成比 例。
02
比例性质
03
对应边之间的比例是常数,称为相似比。
04
相似比具有传递性,即如果△ABC∽△DEF且△DEF∽△GHI ,那么△ABC∽△GHI,且它们的相似比相等。
相似三角形的判定数学教学教案(优秀6篇)
相似三角形的判定数学教学教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!相似三角形的判定数学教学教案(优秀6篇)学习可以这样来看,它是一个潜移默化、厚积薄发的过程。
相似三角形教学设计(共8篇)
相似三角形教学设计〔共8篇〕第1篇:《相似三角形》教学设计《相似三角形》教学设计一、教学目的〔一〕知识教学点1.使学生能利用公式解决简单的实际问题.2.使学生理解公式与代数式的关系.〔二〕才能训练点1.利用数学公式解决实际问题的才能.2.利用的公式推导新公式的才能.〔三〕德育浸透点数学来于消费理论,又反过来效劳于消费理论.〔四〕美育浸透点数学公式是用简洁的数学形式来说明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.二、学法引导1.数学方法:引导发现法,以复习提问小学里学过的公式为根底、打破难点2.学生学法:观察→分析^p →推导→计算三、重点、难点、疑点及解决方法1.重点:利用旧公式推导出新的图形的计算公式.2.难点:同重点.3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.四、课时安排1课时五、教具学具准备投影仪,自制胶片。
六、教学步骤〔一〕创设情景,复习引入师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开场就参与课堂教学,使学生在后面利用公式计算感到不陌生.在学生说出几个公式后,师提出本节课我们应在小学学习的根底上,研究如何运用公式解决实际问题.板书:公式师:小学里学过哪些面积公式?板书: S = ah附图〔出示投影1〕。
解释三角形,梯形面积公式【教法说明】让学生感知用割补法求图形的面积。
〔二〕探究求知,讲授新课师:下面利用面积公式进展有关计算〔出示投影2〕例1 如图是一个梯形,下底〔米〕,上底,高,利用梯形面积公式求这个梯形的面积S。
师生共同分析^p :1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些如今知道吗?2.题中“M”是什么意思?〔师补充说明厘米可写作cm,千米写作km,平方厘米写作等〕学生口述解题过程,老师予以指正并指出,强调解题的标准性.【教法说明】1.通过分析^p ,引导学生在一个实际问题中,必须明确哪些量是的,哪些量是未知的,要解决这个问题,必须哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.〔出示投影3〕例2 如图是一个环形,外圆半径,内圆半径求这个环形的面积学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.评讲时注意1.假如有学生作了简便计算,那么给予表扬和鼓励:假如没有学生这样计算,那么启发学生这样计算.2.此题实际上是由圆的面积公式推导出环形面积公式.3.进一步强调解题的标准性教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.测试反应,稳固练习〔出示投影4〕1.计算底,高的三角形面积2.长方形的长是宽的1.6倍,假如用a表示宽,那么这个长方形的周长是多少?当时,求t3.圆的半径,求圆的周长C和面积S4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。
华师大版九年级数学上23.3.3《相似三角形的性质》教学设计
(二)讲授新知
1.性质一:相似三角形的对应角相等,对应边成比例。
-通过几何画板动态展示相似三角形的性质一,让学生直观感知。
-设想一:设计具有启发性的问题,如“相似三角形的对应角有什么关系?”“对应边长是否成比例?”等,引导学生进行探究。
-设想二:组织学生分组讨论,鼓励他们提出自己的猜想,并运用已有知识进行验证。
3.创设互动式课堂,让学生在合作交流中掌握知识,提高解决问题的能力。
-设想一:开展小组合作学习,让学生在讨论、分享中加深对相似三角形性质的理解。
-提高题:结合其他知识点,综合运用相似三角形的性质解决问题。
2.学生独立完成练习题,教师巡回指导,解答学生的疑问。
(五)总结归纳
1.让学生回顾本节课所学的内容,总结相似三角形的性质。
-性质一:相似三角形的对应角相等,对应边成比例。
-性质二:相似三角形的周长比等于相似比,面积比等于相似比的平方。
2.教师点评,强调重点,解答学生的疑问。
2.实践应用题:设计一道实际生活中的相似三角形问题,要求学生运用所学性质进行分析和解答。
-例如,测量学校旗杆的高度,通过测量旗杆影子的长度和角度,利用相似三角形的性质求解。
-学生需要将问题解决过程详细记录,包括思路分析、步骤实施和结果验证。
3.拓展思考题:提供一道综合性的相似三角形问题,鼓励学有余力的学生挑战。
华师大版九年级数学上23.3.3《相似三角形的性质》教学设计
一、教学目标
(一)知识与技能
1.让学生掌握相似三角形的基本性质,理解并运用这些性质解决实际问题。
《相似三角形的性质》 学历案
《相似三角形的性质》学历案一、学习目标1、理解相似三角形的对应角相等,对应边成比例。
2、掌握相似三角形的对应线段(高、中线、角平分线)的比等于相似比。
3、能运用相似三角形的性质解决简单的实际问题。
二、学习重难点1、重点(1)相似三角形的性质:对应角相等,对应边成比例;对应线段的比等于相似比。
(2)运用相似三角形的性质进行计算和证明。
2、难点相似三角形性质的灵活运用,尤其是在复杂图形中找出相似三角形并运用其性质解决问题。
三、知识回顾1、相似三角形的定义:如果两个三角形的对应角相等,对应边成比例,那么这两个三角形叫做相似三角形。
2、相似三角形的判定方法:(1)两角对应相等的两个三角形相似。
(2)两边对应成比例且夹角相等的两个三角形相似。
(3)三边对应成比例的两个三角形相似。
四、自主探究1、相似三角形的对应角相等观察两个相似三角形,通过测量和比较,可以发现它们的对应角是相等的。
例如,若△ABC∽△A'B'C',则∠A =∠A',∠B =∠B',∠C =∠C'。
2、相似三角形的对应边成比例假设△ABC∽△A'B'C',AB/A'B' = BC/B'C' = AC/A'C' = k(k 为相似比)3、相似三角形的对应高的比等于相似比如图,△ABC∽△A'B'C',AD 和 A'D'分别是△ABC 和△A'B'C'的高。
因为∠ADB =∠A'D'B' = 90°,∠B =∠B',所以△ABD∽△A'B'D',则 AD/A'D' = AB/A'B' = k4、相似三角形的对应中线的比等于相似比同样,若 AE 和 A'E'分别是△ABC 和△A'B'C'的中线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生活动:同学们类似对应边上高的比的探究过程,
比和对应角平分线的比。
让学习程度稍好的学生说明解答过程,得出结论:
探究新知2
观察与思考:
(1) (2) (3)
图中(1)(2)(3)分别是边长为1、2、3的等边三角形,它们都相似吗?为什么?(2)与(1)的相似比=________________;
(2)与(1)的周长比=________________;
(2)与(1)的面积比=________________;
(3)与(1)的相似比=________________;
(3)与(1)的周长比=________________;
(3)与(1)的面积比=________________.
猜想结论:
学生活动:相似三角形的周长比等于__相似比______
相似三角形的面积比等于__相似比_________
教师活动:两个相似三角形的周长比会等于相似比吗?两个相似三角形的面积比会等于相似比的平方吗?接下来我们推理进行证明。
问题6、相似三角形的周长比与相似比k有怎样的关系呢?你能给出证明吗?学生活动:学生小组讨论后有学生代表口述
教师活动:教师用PPT展示过程
∵△ABC∽△A’B’C’,
∴
'
'
'
'
'
'
'
'
'
'
'
'
C
A
C
B
B
A
C
kA
C
kB
B
kA
+
+
+
+
=k
=
即∆ABC、∆A’B’C’的周长比等于相似比
得出结论:相似三角形的周长比等于相似比。
问题6、相似三角形的面积比与相似比k又有什么关系呢?你能给出证明过程
'
'
'
'
'
'A
C
C
B
B
A
CA
BC
AB
+
+
+
+
∴k
A
C
CA
C
B
BC
B
A
AB
=
=
=
'
'
'
'
'
'
'
'
,'
'
,'
'C
kA
AC
C
kB
BC
B
kA
AB=
=
=
∴
吗?
学生活动:学生小组讨论后有学生代表口述
教师活动:教师用PPT展示过程
解:作AD⊥BC于点D, A’D’⊥B’C’于点D
∵△ABC∽△A’B’C’
k
C
B
BC
D
A
AD
=
=
'
'
∴
'
'(相似三角形对应高的比等于相似比)
’
’
’C
B
A
ABC
S
S
∆
∆
∴
'
'
'
'
2
1
2
1
D
A
C
B
AD
BC
⋅
⋅
=
C`
D`
B`
A`
A
B C
D
'
'
'
'D
A
AD
C
B
BC
⋅
=2
k
k
k=
⨯
=
得出结论:相似三角形面积的比等于相似比的平方。
课中反馈2
1.如图,DE∥BC, DE = 1, BC = 4。
(1)△ADE与△ABC相似吗?如果相似,求它们的相似比.
(2) △ADE的周长︰△ABC的周长=_______.
(4) ______.
三、例题讲解
例3、(教材P38例3)
在△ABC和△DEF,AB=2DE,AC=2DF, 。
若△ABC的边BC上的高为6,面积为,求△DEF的边EF上的高和面积。
(师生共同分析,教师板书)略
学生练习:
1.已知△ABC∽△DEF,BG、EH分别是△ABC和△DEF的角平分线,BC=6cm,EF =4cm,BG=4.8cm.求EH的长。
()_______.
ADE
ABC
S
S
3
BCED
ADE
S
S
A D
125
(学生自主完成,教师投影展示部分学生的作业,进行点评,最后PPT展示答案) 解:∵△ABC∽△DEF
∴ BC∶EF=BG∶EH
6∶4=4.8∶EH
EH=3.2(cm)
答:EH的长为3.2cm。
强调:一定要保证答题的完整性.
2.课后演练
(1).如果两个三角形相似,相似比为3∶5,则对应角的角平分线的比等于
______.
(2).相似三角形对应边的比为2:5,那么相似比为_______;对应角的角平分线
的比为______;周长的比为_________;面积的比为_________.
(3).把一个三角形变成和它相似的三角形,
1.如果边长扩大为原来的5倍,那么面积扩大为原来的______倍。
2.如果面积扩大为原来的100倍,那么边长扩大为原来的______倍。
3.两个相似三角形的一对对应边分别是35厘米和14 厘米,①它们的周长
差60厘米,这两个三角形的周长分别是______ ____。
②它们的面积
之和为58平方厘米,这两个三角形的面积分别是______ ____。
四、课堂小结:学而不思则罔
我有哪些收获呢?与大家共分享!(学生畅所欲言)
相似三角形有哪些性质?(师生共同回顾总结)
1、相似三角形对应边成比例,对应角相等
2、相似三角形对应边上的高、对应边上的中线、对应角平分线的比和周长比
都等于相似比
3、相似三角形面积比等于相似比的平方。
作业设计
作业:
课时掌控相似三角形的性质全部完成
教学反思
教学中通过充分的计算来验证学生的猜想,结合具体的实例,体现从特殊到一般的认知规律,通过研究相似三角形的内在联系,得出“相似三角形周长之比等于相似比,面积之比等于相似比的平方”的结论,然后通过例题与练习,加强对知识的理解与应用,最后通过变式应用,进一步开发学生的潜能。