第十二章配位平衡要点

合集下载

溶液中的化学平衡-配位平衡

溶液中的化学平衡-配位平衡
工业废水处理
工业废水中的重金属离子常通过配位反应进行沉 淀或吸附,从而达到净化废水的目的。
环境化学中的配位平衡问题
土壤污染修复
土壤中的重金属离子与有机配体发生配位反应,影响重金属的迁移 和生物有效性,从而影响土壤污染修复效果。
水质监测与净化
水体中的重金属离子、有机污染物等可通过配位反应进行转化和去 除,确保水质安全。
02
在化学分析中,可以利用配位平衡常数来计算溶液中各组分的浓度。
03
在生物学中,配位平衡常数可以用来描述生物体内的金属离子与蛋白 质、酶等生物大分子之间的相互作用。
04
在环境科学中,配位平衡常数可以用来研究重金属离子在土壤、水等 环境介质中的迁移转化行为。
04
配位平衡在化学反应中的作 用
配位反应的速率影响
由能变化等参数,从而预测反应结果。
05
实际应用中的配位平衡问题
工业生产中的配位平衡问题
1 2 3
金属冶炼
在金属冶炼过程中,配位平衡对于控制金属离子 的溶解度和稳定性至关重要,直接影响金属的提 取率和纯度。
化学品的合成与分离
许多化学品的合成和分离涉及到配位平衡,如利 用配位反应合成有机金属化合物、分离稀有元素 等。
03
配位平衡的计算与表示方法
配位平衡的计算
配位平衡是溶液中一种重要的化学平衡, 主要涉及配位体和中心离子之间的相互 作用。
配位平衡的计算通常需要使用平衡常数,如 稳定常数和不稳定常数,来描述配位体和中 心离子之间的结合和解离程度。
平衡常数的值取决于温度、压力和 溶液的组成,可以通过实验测定或 计算得出。
形成配合物的条件
金属离子和配位体需要在一定的条件下形成配合物,如温度、压 力、浓度等。

第12章 配位平衡习题简解

第12章 配位平衡习题简解

第12章配位平衡12-1:在1L 6mol/L 的NH3水中加入0.01 mol固体CuSO4,溶解后加入0.01mol固体NaOH,铜氨络离子能否被破坏?(K稳SCN [Cu(NH3)42+]=2.09×1013,K SP[Cu(OH)2]=2.2×10-20)12-2当少量NH4SCN和少量Fe3+ 同存于溶液中达到平衡时,加入NH4F使[F- ]=[SCN-]=1mol/L-1,问此时溶液中[FeF63- ]和[Fe(SCN)3]浓度比为多少?(K稳Fe[SCN]3=2.0×103,K稳[FeF6]=1×1016)解:5×101212-3:在理论上,欲使1×10-5mol的AgI溶于1cm3氨水,氨水的最低浓度应达到多少?事[Ag(NH3)2+]=1.12×107;Ksp(AgI)=9.3×10-17)实上是否可能达到这种浓度?(K稳解:3×102mol/L,实际上不可能达到。

12-4:通过配离子稳定常数和Zn2+/ Zn 和Au+/Au 的电极电势计算出Zn(CN)42-/Zn和Au(CN)2- /Au,说明提炼金的反应:Zn + 2 Au(CN)2- = Zn(CN)42-+ 2Au在热力学上是自发的。

12-5:为什么在水溶液中Co3+(aq) 离子是不稳定的,会被水还原而放出氧气,而3+氧化态的钴配合物,例如Co(NH3)63+,却能在水中稳定存在,不发生与水的氧化还原反应?通过标准电极电势作出解释。

(稳定常数:Co(NH3)62+ 1.38×105 ; Co(NH3)63+1.58×1035.标准电极电势:Co3+/Co2+1.808V,O2/H2O1.229V,O2/OH-0.401V;K b(NH3)=1.8×10-5)12-6:欲在1L水中溶解0.10molZn(OH)2,需加入多少克固体NaOH ?(Ksp[Zn(OH)2]=1.2×10-17;[Zn(OH)42-]=4.6×1017)解:13g12-7:在PH=10的溶液中需加入多少NaF才能阻止0.10mol/L 的Al3+溶液不发生Al(OH)3沉淀?(Ksp Al(OH)3=1.3×20-20; K稳(AlF63-)=6.9×1019)解:1.62mol/L12-8:测得Cu|Cu(NH3)42+ 1.00mol/L,NH31.00mol/L||H+1.00mol/L-1|H21bar, Pt的电动势为0.03V,试计算Cu(NH3)42+ 的稳定常数。

12配位平衡的移动

12配位平衡的移动
13.5.3 配位平衡的移动
溶液的酸碱平衡与配位平衡的相互影响 (1)配合物的生成对溶液 pH 的影响
如:在La3+离子与 HAc 中Ac-发生的配位反应中,随 着配合物的生成,消耗了醋酸根 Ac-的同时而释放出 H+ 离子,从而使溶液的 pH 降低。
La3+ + 3HAc = [La(Ac)3] + 3H+ [H+]↑ → pH↓
[Ca-EDTA]2+ + Pb2+
[Pb-EDTA]2+ + Ca2+
此为临床上用依地酸钙 ([Ca-EDTA]2+) 对铅中毒的 病人进行解毒治疗的原理。依地酸钙在体内与 Pb2+反应, 生成更稳定的依地酸铅,依地酸铅是一种无毒可溶于水 的配离子,经由肾脏排出体外,达到解毒目的。
例题、在含有 Hg2+、I- 和 NH3 的溶液中,I- 和 NH3 两 者浓度相等,判断配位转化反应的方向,该溶液中 Hg2+
[Hg(NH3)4]2+ + 4I-
该反应的平衡常数为:
K

=
c ([Hg(NH3)4]2+) ·c (I-)4 c ([HgI4]2-) ·c (NH3)4
=
Kf ([Hg(NH3)4]2+) Kf ([HgI4]2-)
= 1.95×1019 5.66×1029
=
3.45×10-11
K 值很小,说明反应向左进行的趋势很大。
主要以哪种配离子形式存在,c[Hg(NH3)42+] / c[HgI42-] 为 多少?已知:Kf ([Hg(NH3)4]2+) = 1.95×1019

第4、12章 配合物及配位平衡

第4、12章 配合物及配位平衡

M(AABBCC)的异构体
配位化合物的立体异构 C C
M
D C A
m
C C 四面体配合物的一对异构体的空间相互关系如图: A A
C D B
B C B
M
B A A 左图将一对异构体的一个配体(D)的位置固定(向上), A B B M A A C M B D D C MM B M C M M M BC A M 三 反的 对 C C 顺 B AA 映异 列 , 一 另 三 个B B 体 具 有 相C 式 有螺 旋B排构 体 M 个 是 反 时 针 配 A A A C A M B C CC CB C A C A C BB 方向,另一个为顺时针方向。 B A B A AA C 固定一个配体(D)后 A C CB B 在空间不能 互为镜像的关系A 四面体的这对异构体又如同左右手一样在空间不能 MM M 另三个配体具有相反的 M AA 三反式 B 完全重合 三顺式 A 一反二顺式 B 螺旋(顺反时针)的排列 C C 重合。一个是左手体另一个则为右手体,它们互为镜像 A B B 4个配体不同的四面体配合物具有手性 B M(AABBCC)有5种几何异构体 B 关系(右图),称为对映体。这类异构称为对映异构,又 叫手性异构。 的 对 映 体 以 上 下 取 向 的 轴 旋 转 180度 左图右边 上 后 , 去 和 左 边 的 对 映 体 叠 合 ,就 可 六配位配合物的异构现象很复杂。 发 现 它 们 是 不可能叠合的
配位化合物的立体异构
K2[PtCl4]加氨水得棕黄色配合物,组成为
Cl [PtCl2(NH3)2],有极性,水中溶解度0.26g/100g; NH3 Pt Cl Cl NH3 Pt Pt NH3 将其用氯化氢处理或热至 250℃,转变为浅黄色, Cl Cl NH3 NH3 H3N Cl

第12章 配位平衡(使用)

第12章 配位平衡(使用)

解:
H4Y
3Y H H (1) (2)
θ K a,3 θ K a,4
H 3 Y H 2 Y 2 H H 2 Y HY3 H HY3 Y 4 H (1) (2) 得: H 2 Y 2 4 2H Y c(H 2 Y 2 )
θ 7 H 解: Kf (Ag(NH3 )2 ) 1.6710 很大,可假设溶于 NH3 · 2O后

全部生成了 Ag(NH3 ) 2
Ag 反应前 c /mol L1 0.010 反应后 c /mol L1 平 衡 c /mol L1 0 x
2NH3 0.030

Ag(NH3 ) 2 0 0.010 0.010 x
14
14
例4: Cd(NH3)42+ + 2 OH- = Cd(OH)2 + 4 NH3
K
K不稳 K sp (Cd (OH )2 )
6.4 10
8
例5: Cu(NH3)42+ + 4 H+ = Cu2+ + 4 NH4+
K
K不稳
4 Ka
1.971024
15
15
2.配位平衡与沉淀溶解平衡
0.030 0.020 0.010 2 x
0.010 x K fθ 1.67 107 x (0.010 2 x ) 2 0.010 x 0.010 0.010 2 x 0.010 0.010 1.67 107 x 6.0 106 x 0.0102 c( Ag ) 6.0 106 mol L1 c( NH3 ) c (Ag(NH3 ) 0.010mol L1 2

无机化学教学资料——配合物及配位平衡

无机化学教学资料——配合物及配位平衡

第 4 章配合物[ 教学要求]1 .掌握配位化合物的基本概念,组成,命名,分类。

2 .掌握配位化合物价键理论和晶体场理论的基本内容。

[ 教学重点]1 .配合物的异构问题2 .配合物的价键理论[ 教学难点]配合物的几何异构和对映异构[ 教学时数] 4 学时[ 主要内容]1 .配位化合物的基本概念:什么叫配合物,组成,命名。

2 .配合物的价键理论:配合物的立体结构和几何异构,配合物类型简介(简单配离子、螯合物、多核配合物)。

3 .晶体场理论要点:简介d 轨道的能级分裂和晶体场效应:八面体场的分裂、四面体场的分裂、平面四边形场的分裂;分裂能和影响分裂能的因素,稳定化能;晶体场理论对配合物性质的解释(颜色、磁性)。

[ 教学内容]4-1 配合物的基本概念“科学的发生和发展一开始就是由生产所决定的”。

配合物这门科学的诞生和发展,也是人类通长期过生产活动,逐渐地了解到某些自然现象和规律,加以总结发展的结果。

历史上有记载的最早发现的第一个配合物就是我们很熟悉的亚铁氰化铁Fe4[Fe(CN)6]3 ( 普鲁士蓝) 。

它是在1704 年普鲁士人狄斯巴赫在染料作坊中为寻找蓝色染料,而将兽皮、兽血同碳酸纳在铁锅中强烈地煮沸而得到的。

后经研究确定其化学式为Fe4[Fe(CN)6]3。

近代的配合物化学所以能迅速地发展也正是生产实际需要的推动结果。

如原子能、半导体、火箭等尖端工业生产中金属的分离楼术、新材料的制取和分析;50 年代开展的配位催比,以及60 年代蓬勃发展的生物无机化学等都对配位化学的发展起了促进作用。

目前配合物化学已成为无机化学中很活跃的一个领域。

今后配合物发展的特点是更加定向综合,它将广泛地渗透到有机化学、生物化学、分析化学以及物理化学、量子化学等领域中去。

如生物固氮的研究就是突出的一例。

4-1-1 配合物的定义当将过量的氨水加入硫酸铜溶液中,溶液逐渐变为深蓝色,用酒精处理后,还可以得到深蓝色的晶体,经分析证明为[Cu(NH3)4]SO4。

无机化学:配位平衡

无机化学:配位平衡
较它们的稳定性。
第三节 配合物的稳定性
[Cu(NH3)4]2+ = Cu2+ + 4NH3
反应平衡常数为
K
[Cu 2 ][NH3 ]4 [Cu(NH 3 )42 ]
K称为[Cu(NH3)4]2+的不稳定常数,用K不稳表示。
K不稳越大, [Cu(NH3)4]2+越容易离解,配离子越
不稳定。
K稳
1 K 不稳
第三节 配合物的稳定性
(二) 影响配合物稳定性的因素 (一)鳌合效应
(二)软硬酸碱理论 (自学) 1. 中心离子的影响 2. 配体的影响
第三节 配合物的稳定性
什么是螯合物? 中心离子与多齿配体 形成的配合物
一、螯合物的结构特点: 具有多元环状结构
二、螯合物的稳定性: 稳定常数比较
返回
第三节 配合物的稳定性 一、配体的分类
2.091013
x 4.81017 mol L1
[Cu 2 ] x 4.81017 mol L1
计算结果说明什么?
结论:配合物十分稳定,游离态的中心离子浓度很小。
返回
第三节 配合物的稳定性
K稳值越大,生成配离子的倾向越大,解 离的倾向越小。
稳定常数的大小直接反映了配离子稳定 性的大小。对于同一类型配合物,K稳值越 大,配合物越稳定。
1035
[Fe2
]
[Fe(CN )64 ] 1035[CN ]6
E
(Fe(CN
)63
/
Fe(CN
)64
)
E
(Fe3
/
Fe 2
)
0.059
log
[Fe3 [ Fe 2
] ]
0.77

配位化合物

配位化合物
例如:NH2-、NO2-
第二节 配位化合物的化学键理论
一、价键理论 (一)价键理论的基本要点 1.中心原子与配位体以配位键结合。配位 体的配位原子提供孤对电子,中心原子提供 空轨道容纳这些电子,形成配位键。
配位键 :M L
2. 成健过程中,中心原子外层能量相近 的轨道首先要进行轨道杂化,形成数 目相等、能量相同、具有一定伸展方 向的杂化轨道。
对价键理论的评价:
• 很好地解释了配合物的空间构型、
磁性、稳定性。
• 直观明了,使用方便。
• 无法解释配合物的颜色(吸收光谱)。
• 无法解释 [Cu (H2O)4 ]2 的稳定性。
Cu 2 (3d9 )
3d
4s
4p
[Cu (H2O)4 ]2
dsp2
第三节 配位平衡
一、配位平衡常数 配合物生成反应的平衡常数,称为配 合物的稳定常数 Ks (stability constant)。
inner sphere and outer sphere
中心原子和配位体组成配合物的内界, 用方括号表示内界,内界多为带电荷的配 离子,也有不带电荷地配位分子。配离 子以外的部分称为外界。
内外界之间以离子键结合 。
配合物的组成
配位键 配位原子 离子键
例:[ Cu ( N H 3 ) 4 ]
中心原子 配位体 配体数
第十二章 配位化合物
配位化合物简称配合物,是 一类非常广泛和重要的化合物。
在植物生长中起光合作 用的叶绿素,是一种含镁的 配合物;
叶绿素
含镁的 配合物
人和动物血液中起着输 送氧作用的血红素——含亚 铁的配合物;
血红素
含铁的 配合物
维生素B12——含钴的配 合物;

《配位平衡教学》课件

《配位平衡教学》课件
登录
课件界面:熟悉课件界面,了 解各个功能模块的位置和作用
课件操作流程
打开PPT课件,选择“开 始”选项卡
点击“新建幻灯片”按钮, 选择“空白”或“标题和 内容”模板
在幻灯片中输入标题和内 容,使用“插入”选项卡 添加图片、表格等元素
使用“动画”选项卡为幻 灯片添加动画效果
点击“幻灯片放映”按钮, 预览课件效果
实验目的:了解配位平衡的 基本原理和实验方法
实验步骤:配制溶液、滴定、 记录数据、分析结果等
实验注意事项:注意安全、 准确操作、认真记录等
配位平衡应用实例
化学实验:配位 平衡在化学反应 中的应用
生物医学:配位平 衡在药物设计和生 物医学中的应用
环境科学:配位 平衡在环境污染 治理中的应用
材料科学:配位平 衡在新材料设计和 合成中的应用
配位平衡教学 PPT课件内容
配位平衡基本概念
配位平衡:指在化学反应中,一种物质与另一种物质形成稳定的化学键的过程 配位平衡常数:描述配位平衡状态的常数,用于衡量配位平衡的程度 配位平衡反应:指在配位平衡状态下,一种物质与另一种物质形成稳定的化学键的反应 配位平衡原理:指在配位平衡状态下,一种物质与另一种物质形成稳定的化学键的原理
教学方法效果评估
学生参与度:观察学生在课堂上的参与程度,如回答问题、讨论等 学习成果:通过测试、作业等方式评估学生的学习成果 教学方法适用性:根据学生的反馈和教师的观察,评估教学方法的适用性
教学方法创新性:评估教学方法的创新性和独特性,是否对学生的学习产生积极影响
教学方法改进建议
采用互动式教学, 增加学生参与度
感谢您的观看
汇报人:
在播放过 程中,可 以通过点 击“结束” 按钮来结 束播放

第12章 配位化合物-2012.12.3

第12章  配位化合物-2012.12.3
但令化学家迷惑不解的是 : 既然简单化合物 中的原子都已满足了各自的化合价 , 是什么驱动 力促使它们之间形成新的一类化合物? 由于人们
不了解成键作用的本质, 故将其称之为“复杂化
合物” 。
获1913年诺贝尔化学奖
1893 年 苏 黎 世 大 学 维 尔
纳(Werner A)教授对这类
化合物本性提出了天才
书写时,内界用方括号框住,是配合物 1.总体来说配合物是由配位单元(内界)和 的核心部分,方括号以外的部分为外界 与内界带相反电荷的外界两大部分组成。
H3N
Cu
NH3
SO4
NH3
H3N
内界(正/负电荷) 外界(负/正电荷)
它们之间靠什么作 用形成配合物呢?
正负电荷的 离子键 静电引力
内界和外界通过离子键结合。
[Co Cl2 (NH3)3 (H2O) ] Cl
[PtCl2(NH3)2]
H2O、NH3、CO、CN-、X-
顺铂
Pt
卡铂
顺铂是全球广泛应用的三大抗肿瘤药物之一,顺 铂在生物体中的靶分子为脱氧核糖核酸 (DNA),
能破坏遗传信息的复制和转录,抑制癌细胞的分
裂。
常见多齿配体举例:
• 乙二胺(en),NH2 CH2CH2NH2
二齿配体
1,10-二氮菲,双齿
N N
2, 2’-联吡啶,双齿
N N
•卟啉 四齿配体
•乙二胺四乙酸 EDTA 六齿配体
(1)重金属解毒剂:依地酸二钠钙
EDTA二钠盐的钙配合物
Pb2+
(2) 防止血液凝固 EDTA与Ca2+形成配合物减少血浆中的Ca2+
Ca2+ Ca2+ Ca2+

第12章配位平衡

第12章配位平衡
4
K稳 K1 K2 K3 K4 4.8 10
12
配合物的稳定常数越大,表示配位反 应进行的程度越大,该配合物越易生成, 即越稳定。反之,表示该配合物越易解 离,即越不稳定。 常见配合物的K稳可以查化学手册。 教材P414、415附表4、5给出了常见配离子 的lgn。
对于同类型的配合物,可以直接通过
Ag 2NH3 Ag(NH ) 1 反应前 c(mol L ) 0.010 0.030 0 反应后c(mol L1 ) 0 0.030 0.020 0.010 1 平 衡 c(mol L ) x 0.010 2 x 0.010 x
3 2


0.010 x 7 K 稳 1.1210 2 x (0.010 2 x) 0.010 x 0.010 0.010 2 x 0.010
求:
3
3 )6 ]来自3 1.58 10 ,
35 5
2 ) ] 3 6
1.29 10
[Co( NH 3 )6 ] e [Co( NH 3 )6 ]

2
?V

解: 解法(1): 根据能斯特方程求
[Co( NH3 )6 ]3 e [Co( NH3 )6 ]2
K[ Ag ( S O ) K[ Ag ( NH
2 3 2]
3
) ] 3 2
2.8810 6 2.57 10 7 1.1210
(0.10 x)(1.2 2 x) 6 2.57 10 2 x (0.80 2 x)
2
0.101.2 6 K很大, x 很小,则有 2.57 10 2 x 0.80 8 1 x 8.7 10 mol L
[Cu(en)2 ] 2 [Zn(en)2 ] 2 [Cd(en)2 ] 2 [Ni(en)3 ]

配位平衡2010-12-22

配位平衡2010-12-22
+
[Ag(NH 3 ) 2 ]+ (aq) + e −
Ag(s) + 2NH 3 (aq)
根据 Nernst方程,298.15 K时电对 [Ag(NH3) 2]+ /Ag 的电极电势为:
E {[Ag(NH 3 ) 2 ]+ /Ag }= E (Ag + / Ag)
+0.05916 V × lg
ceq {[Ag(NH 3 ) 2 ]+ }/ c [ceq (NH 3 ) / c ]2 ⋅ K s {[Ag(NH3 ) 2 ]+ }
+Байду номын сангаас
= 0.7991V − 0.05916 V × lg1.67 ×107 = 0.372 V
Zn2+ +4NH3 [Zn(NH3 ) 4 ]2+ 解: [Zn(NH3) 4]2+ 的标准稳定常数为:
K s {[Zn(NH 3 ) 4 ]2+ } =
ceq {[Zn(NH 3 ) 4 ]2+ }/ c
[ceq (Zn 2+ ) / c ] ⋅ [ceq (NH 3 ) / c ]4 1 = = 5.0 ×108 (6.7 ×10−3 ) 4
ceq [ Cu(NH 3 ) 4 ]
标准平衡常数表达式为:
KS
{[Cu(NH ) ] } = [c
2+ 3 4
(Cu 2+ ) / c ] ⋅ [ceq (NH 3 ) / c ]4 eq
{
2+
}/ c
对于配体个数相同的配位个体,KS 越大,配 位个体就越稳定。
配位个体的稳定性除了用标准稳定常数表示 以外,也可以用标准不稳定常数 Kis 表示。例如, [Cu(NH3) 4]2+ 的解离反应为:

章配位平衡

章配位平衡

Ag(CN)2[Ag +]
· [Ag +]
+ 2NH3
= K稳 [Ag(CN)2- ] K稳 [Ag(NH3)2+]
= 5.8×1013
K很大,故反应向右进行。
同类型的配离子,Kf小的可转化为Kf大 的配合物。
例 向血红色的[Fe(NCS)2] + 配离子溶液中,加入 足量的氟化钠溶液,血红色溶液变浅。计算该反
例2: 0.1 gAgBr固体能否完全溶解于100mL 的
1 mol·L -1氨水溶液中?
Kf=1.6×107
Ksp=7.7×10-13
解:设1L 1 mol·L -1氨水可溶解xmolAgBr, 则
AgBr(s) + 2NH3 = Ag(NH3)2+ + Br-
平衡浓度/ mol·L -1
1-2x
数(常用β表示)等于逐级稳定常数的乘积。 累积稳定常数:β=∏K
例如 [Cu(NH3)4]2+的生成分四级进行 β1=K1 β2 = K 1× K 2 β3= K 1× K 2 ×K3 β4 = K 1× K 2 × K 3 × K 4 = K稳
12-1-3 K稳的应用
1. 比较配合物稳定性 (1) 对于相同类型,K稳越大,1.01016/ 2.2103
=4.5 1012 K很大,故反应向右进行。
3.计算配离子溶液中有关离子的浓度
例:在1mL0.04mol•L-1AgNO3溶液中,加入
1mL 2 mol•L-1 NH3, 求平衡时溶液中的[Ag]+=?
解: Ag+ + 2NH3
Ag(NH3)2+
起始浓度 0.02 1
12-1-2 配离子的逐级形成常数 配离子是分步形成,配离子有逐级形成常

第四章和第十二章 配位化合物-S

第四章和第十二章  配位化合物-S

5 命名
(1)内界与外界
¬ [配离子]+
简单负离子
某化某 某酸某
[Ag(NH3)2]Cl 氯化二氨合银(Ⅰ)
¬ [配离子]+ 复杂负离子
[Cu(NH3) 4]SO4 硫酸四氨合铜(Ⅱ) ¬正离子[配离子] 某酸某 K4[Fe(CN)6 ] 六氰合铁(Ⅱ)酸钾 (2)内界之间
第四章
配位化合物 外界
§4.1 配位化合物的基本概念 内界
配位化合物
§4.1 配位化合物的基本概念
如NH3、H2O和Cl-、Br-、I-、CN-等
配位原子:在配位体中直接与
中心原子结合的原子。 配合物中含有π键的烯烃、炔 烃、芳香烃等分子也可作为配体。
按照配位原子种类的不同,可把配体分为以下几种
第四章
配位化合物
§4.1 配位化合物的基本概念
含氮配体 如NH3 、NO(亚硝基)、NO2-(硝基)等。 含氧配体 如H2O、OH- (羟基) 、 CO32-、ONO-(亚 硝酸根) 等。 含碳配体 如 CN-、 CO(羰基) 等。 含硫配体 如S²-、SCN-(硫氰酸根) 等。 含磷配体 如 PH3 (膦) 、 PX3等。 卤素配体 如 F-、Cl-、 Br-、I-等。
s区 d区
VIII
p区 f区
Na Mg 钠 镁 IIIB IVB VB VIB VIIB K Ca Sc 钾 钙 钪 Rb Sr 铷 锶 Y 钇 Ti 钛 V 钒
Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 铬 锰 铁 钴 镍 铜 锌 镓 锗 砷 硒 溴 Sn 锡 Pb 铅
第四章
配位化合物
§4.2 配合物的异构现象和立体异构
第四章
配位化合物

第12章 配位化合物与配位平衡

第12章 配位化合物与配位平衡

O
N
C
CH3NH2 甲胺
N
阴离子 F- Cl- Br- I- OH- CN- NO2配体 氟 氯 溴 碘 羟基 氰 硝基
配位原子 F Cl Br I O
C
N
阴离子 配体
ONO-
SCN-
亚硝酸根 硫氰酸根
NCS异硫氰酸根
配位原子
O
S
N
分子式
O
O
CC
-O O-
常见多齿配体 名称
草酸根
乙二胺
N N N N
外轨型配合物:由外轨配键形成的配合物
单电子数多
Co(CN)63-
3d
d2sp3
内轨配键:由次外层(n-1)d与最外层ns、
np轨道杂化所形成的配位键 内轨型配合物:由内轨配键形成的配合物
单电子数少
b. 影响内轨型和外轨型的因素
(i) 中心离子的电子构型
离子的电子 形成配合物类型 构型
d10
外轨型
[Cu(NH3)4]2+ 四氨合铜(Ⅱ)离子 [Co(NH3)6]3+ 六氨合钴(Ⅲ)离子 [CrCl2(H2O)4]+ 二氯·四水合铬(Ⅲ)离子
2. 配位体命名原则 不同配体之间用“”隔
(1) 先阴离子,后中性开分子
[PtCl5(NH3)] 五氯·(一)氨合铂(Ⅳ)离子
(2) 先无 机配体,后有 机配体
② 中心离子的价层轨道首先杂化, 杂化类型决定于 a.中心离子的价层电子构型 b.配位数 c.配位体的配位能力
③ 中心离子的价层空轨道与配体的含孤对电子的 轨道重叠,成键形成配合物。
即M L
④中心离子的杂化类型决定配合物的空间构型。
2. 中心离子的杂化轨道

配位平衡

配位平衡

Cu2++NH3 = [Cu(NH3)]2+
[Cu(NH3)]2+ + NH3 = [Cu(NH3)2]2+ [Cu(NH3)2]2+ + NH3 = [Cu(NH3)3]2+ [Cu(NH3)3]2+ + NH3 = [Cu(NH3)4]2+
[Cu(NH3) 2+] K1= [Cu2+] [NH3]
K2=[Cu(NH3)2+] [NH3]
[Cu(NH3)3 2+] K3=[Cu(NH3)22+] [NH3] [Cu(NH3)4 2+] K4=[Cu(NH3)32+] [NH3]
[Cu(NH3)2 2+]
K1、K2、K3、K4称为分步稳定常数(逐级稳定常数), 一般是随配位数的增多而变小,这是由于当配位体数目增 多时,配位体间的排斥作用增大导致其稳l[Cu(NH3)4]2+和1.0mol氨的溶液中,加入1.0 × 10-3molNaOH有无Cu(OH)2沉淀生成?
已知[Cu(NH3)4]2+的K=2.09×1013,Cu(OH)2 Ksp=2.2×10-20
解: 根据[Cu(NH3)4]2+的配位平衡,计算体系中的[Cu2+] Cu2++4NH3= [Cu(NH3)4]2+ 平衡时浓度( mol/L) x 1.0 1.0×10-3 K= [Cu(NH3)4 2+]/([Cu2+][NH3]4)=2.09 ×1013 x=4.78 ×10-17 ( mol/L) = [Cu2+] 加入1.0 × 10-3molNaOH,溶液中[OH-]= 1.0 × 10-3mol/L 而Cu(OH)2的Ksp=2.2 ×10-20 在溶液中: [Cu2+] [OH-]2= 4.78 ×10-17 × ( 10-3)2 = 4.78 ×10-23 4.78 ×10-23 < Ksp Cu(OH)2 即没有Cu(OH)2沉淀生成.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

总之,一般来说:稳定性:9-17e,18e >(18+2)e > 8e
12-2-2 配体性质的影响
(1) 配体碱性越强,给电子能力越强,配离子越稳定。
(2)螯合效应
a) 饱和五元环 具有双键体系的六元环 很稳定
因为形成饱和五元环时,C 是 sp3 杂化, 其键角 109°28´ 与五边形顶角
108°很接近,张力最小。
0.1-y
y
2y
4.9×1019
求得: x < y,

2-
CuY
更稳定。
也可通过计算离解度来比较:α{CuY2- }= x / 0.1
α{Cu(en)22+ }= y / 0.1 12-2 影响配合物在溶液中的稳定性的因素
12-2-1 中心离子
(1)2e 和 8e 构型的金属离子 ⅠA、ⅡA、ⅢA、RE3+及Si4+ 、Ti4+、Zr4+、Hf4+等具有 2e或 8e构型,形成
解:
Ag++ 2NH3 ====
+
Ag(NH3)2
x 2+2x=2
0.1-x=0.1
2
K 稳=[Ag(NH3)2+] / [Ag+][NH3]2 =0.1 / 2x
x =1.47×10-9 J=0.001×1.47×10-9 < Ksp[AgCl]=1.77 ×10-10
所以,无沉淀。
实践中,常加入过量的配位剂,降低中心离子在溶液中的浓度。
Ag++Cl-
NH3·H2O AgCl
Ag(NH3)2+
KBr
AgBr
12-3-3 氧化还原反应的改变
例 1:
HgCl2
+SnCl2 Hg2Cl2 白 +KI(过) [HgI4]2-无
SnCl 2
氧化性降低
Hg黑 X
(φºSn4+/Sn2+=0.15V, φº[HgI4]2-/Hg=-0.04V)
例 2: Au +
K稳 = [M Ln] / [M][L]n
K稳越大,配离子生成倾向越大,离解倾向越小,越稳定。
12-1-2 逐级形成常数
配离子的生成一般是分步进行的(当然配离子也是逐步离解的)。故,溶液中
存在着一系列的配位平衡。
如:
Cu2+
2+
+ NH3 = Cu(NH3)
1
K1=
2+
[Cu(NH3) ]
/
2+
[Cu ]
于配离子逐级形成常数相差不大,在无大量配体存在下,中间体Ag(NH3)+不能
忽略,应该用逐级形成常数结合物料平衡来计算。
3. 讨论难溶盐生成或其溶解的可能性
例 1: 在含有 2mol•L-1 NH3 的 0.1mol•L-1Ag(NH3)2+中,加入NaCl使其为 0.001mol•L-1,问有无沉淀?
HNO3(浓)+HCl(浓) = HAuCl4 + NO + H2O 王水
因为 Au-3e-=Au3+ , 加入浓 HCl 使 Au3+形成[AuCl4]-, 使φAu3+/Au 降低 。
例 3:金矿砂中提取金----氰化法
Au + NaCN + O2 + H2O Na[Au(CN)2] + NaOH
[NH3]
=
2.0×104
2+
2+
Cu(NH3) + NH3 = Cu(NH3)2
K2
=
2+
[Cu(NH3)2 ]
/
[Cu(NH3)2+]
[NH3]
=
4.7×103
2+
Cu(NH3)2
+
NH3
=
Cu(NH3)32+
K3=[Cu(NH3)32+]/[Cu(NH3)32+][NH3]=1.1×103
2+
+
Ag(NH3)2
起始浓度
0 1-0.02×2=0.96
0.02
平衡浓度
x
0.96+2x=0.96
0.02-x=0.02
所以,
K稳
2
= 0.02 / x • 0.96
x =1.28 × 10-9 mol•L-1
注意:若求 0.02 mol•L-1 Ag(NH3)2+在水溶液中[Ag]+=?,不能用上述方法。 由
开平方: x / (1.00-2x) = 3.95
x= 0.444 mol/L 思考:若该题知道溶解度,如何求配合剂的最低浓度?
4.计算金属与其配离子的 φo 值
例: 已知K稳[Cu(NH3)4+] =2.1×1013,
φo Cu2+/Cu = 0.34V,
求:
2+
[Cu(NH3)4] + 2e = Cu +4NH3
3
5. 比较配合物稳定性 (1) 对于相同类型,K 稳越大,配离子生成倾向越大,离解倾向越小,越稳定。
NH3 AgCl 白色
Ag(NH3)2+ 无色
KBr AgBr 浅黄
Na2S2O3
Ag(S2O3)23无色
KI
AgI
KCN
Ag(CN)2-
Na2S
黄色
无色
如:稳定性 Ag(CN)2->Ag(S2O3)23->Ag(NH3)2
Ag2S 黑色
(2)不同类型,不可以直接按 K 稳比较,只能由 K 稳计算来判断。由 K 稳值 计算相同浓度(如 0.1 mol•L-1)配离子溶液中中心离子的浓度,此值越小,配离
子离解度越小,表示该配合物越稳定。
例:
2-
CuY
=
2+
4-
Cu + Y
K稳
0.1-x
xx
6.3×1018
2+
2+
Cu(en)2 = Cu + 2en
(3)(9-17)e 构型的金属离子(d 电子亚层未填满)
因为这些金属离子都具有未充满的 d 轨道,容易接受配体孤对电子,所以生
成配合物能力强。配位离子稳定性可用 CFSE 来衡量。
如: Ni2+ > Co2+ > Fe2+
[Co(NH3)6]3+ > [Co(NH3)6]2+
因为高价金属离子分裂能大,电子尽量在低能级成对。
若六元环内有双键,C 是 sp2 杂化,键角 120°与六元环夹角相近,张力较
小。 如:
H C
O
Fe O
b) 螯合环的数目越多,螯合物越稳定。 如:EDTA能与Ca2+、Mg2+等形成稳定配合物,就是因为该配合物中有
6 个五元环。
从热力学角度看,螯合效应是由熵值增加引起的。
2+
2+
Cd(H2O)4 + 2 en = Cd(en)2 + 4 H2O
解:
2+
[Cu(NH3)4] + 2e = Cu +4NH3
-1
1mol•L
-1
1mol•L
φo =?
[Cu(NH3)42+] [Cu2+][NH3]4
= K稳
[Cu2+] =
1 K稳
=4.76X10-14 mol.L-1
φ(Cu2+ /Cu )
= φo ([Cu(NH3)4] 2+ /Cu )
= φo Cu2+/Cu+ 0.059/2 lg[Cu2+]
[Cu(N H3)4]SO 4(深 蓝 )
[Cu(NH3)42+] = K稳 [Cu2+] [NH3]4
少 量 N aO H Na2S Δ
× (表明Cu2+不 多) CuS↓ NH3↑
K不 稳 =
[Cu2+] [NH3]4 = [Cu(NH3)42+]
1 K稳
推而广之:M + n L === M Ln
-14
= 0.34+ 0.059/2 lg [4.76x10 ]
= - 0.054V
从计算结果可以看出当简单离子配合以后,其标推电极电位一般变小。因而 使简单离子得电子的能力减弱,不易被还原为金属。增加了金属离子的稳定性。 根据这个道理,在电镀银时,不用硝酸银等简单银盐溶液,而用含[Ag(CN)2]-的 溶液。这是由于银的析出电位比其标准电位负得多。在许多情况下,避免了被镀 金属与Ag+离子的置换反应,也有利致密的微细晶体的生成,达到镀层与被镀物 结合牢固,表面平滑、质密、厚度均匀和美观的要求。
5
(3)空间位阻: 使配合物稳定性降低。
N
HO
Mn+
(有 位 阻 )
N
CH3
HO
Mn+
12-3 配合物形成时的性质变化
12-3-1 颜色的改变
如:
Fe3++6SCN-
[Fe(SCN)6]3-(血红) +NH4F
FeF63- +H+ HF(弱) 又出现血红色
12-3-2 溶解度的改变 形成配合物可使难溶物变为易容。
[作业] p394:1,3,5,7,8,9,10
7
(因为 Au(CN)- + e- == Au + 2CN-
φo= -0.60V)
2Au(CN)- + Zn
相关文档
最新文档