三角形的内角和(优秀课件)

合集下载

三角形内角和定理-PPT课件

三角形内角和定理-PPT课件

请你帮小明把想法化为实际行动. 证明:过点A作PQ∥BC,则 ∠1=∠B(两直线平行,内错角相等), ∠2=∠C(两直线平行,内错角相等), 又∵∠1+∠2+∠3=1800 (平角的定义),
P AQ 132
B
C
∴ ∠BAC+∠B+∠C=1800 (等量代换).
小明的想法已经变为现实,由此你受到什么启发?
同学们,你们知道其中的道理吗?
2
1 .知识目标
(1)三角形的内角和定理的证明. (2)掌握三角形内角和定理,并初步学会利用辅助线证题. (3)理解掌握三角形内角和定理的推论及其应用.
2 .教学重点
(1)三角形内角和定理的证明. (2)三角形内角和定理的推论.
3.教学难点
(1)三角形内角和定理的证明方法. (2)三角形的外角、三角形内角和定理的推论.
2
∴∠DAE=∠B(等量代换) ∴ AD∥BC(同位角相等,两直线平行)
·B
C
这里是运用了公理
“同位角相等,两直
线平如图,在△ABC中, ∠1是它的一个
C
外角, E为边AC上一点,延长BC到D,连接DE.
求证: ∠1 >∠2.
E5
3
4 A
1
B
F
证明:∵ ∠1是△ABC 的一个外角 (已知) ∴ ∠1 >∠3 (三角形的一个外角大于任何一个和它不相邻的内角) ∵∠3是△CDE 的一个外角 (外角定义) ∴∠3 >∠2 (三角形的一个外角大于任何一个和它不相邻的内角) ∴ ∠1 >∠2 (不等式的性质)
又∵∠1+∠2+∠3=180°(平角的定义), ∴ ∠A+∠B+∠ACB=180°(等量代换). 你还有其它方法来证明三角形内角和定理吗?

三角形内角和ppt课件完整版

三角形内角和ppt课件完整版
度或边长。
余弦函数
cosA = b/c,表示邻边与斜边的 比值,同样用于直角三角形中。
正切函数
tanA = a/b,表示对边与邻边的比 值,常用于求解直角三角形的角度。
三角函数在解三角形中应用
已知两边及夹角求第三边
01
利用正弦定理或余弦定理求解。
已知三边求角度
02
利用余弦定理求解角度,再结合三角形内角和为180度求解其他
算错误。
公式选择
根据已知条件选择合适的公式 进行计算,避免使用错误的公
式导致结果不准确。
精度问题
在计算过程中要注意精度问题, 避免因舍入误差导致结果不准
确。
06
总结回顾与拓展延伸
关键知识点总结回顾
三角形的内角和定义 三角形三个内角的度数之和等于180度。
三角形内角和定理的证明 可以通过多种方法证明,如平行线性质、外角性质等。
角度。
已知两角及一边求其他边和角
03
利用正弦定理和三角形内角和求解。
边长比例与角度关系探讨
边长比例对角度的影响
在三角形中,边长比例的变化会影响角度 的大小,如等腰三角形底角相等。
VS
角度对边长比例的影响
角度的变化也会影响三角形的边长比例, 如直角三角形中,30度角所对的直角边等 于斜边的一半。
典型问题解决方法分享
建筑设计
建筑设计中经常涉及到三角形的面积计算,如屋顶、窗户等部分的 设计。
物理问题
在物理问题中,三角形的面积计算也经常出现,如求解力的大小和方 向等。
误区提示和易错点剖析
01
02
03
04
底和高的对应
在计算三角形面积时,一定要 注意底和高的对应关系,避免

三角形的内角和PPT课件

三角形的内角和PPT课件
三角形的内角和PPT课与性质 • 三角形内角和定理及其证明 • 三角形外角性质与计算 • 三角形角度计算技巧与方法 • 三角形内角和在生活中的应用 • 总结回顾与拓展延伸
01
CATALOGUE
三角形基本概念与性质
三角形定义及分类
三角形定义
由不在同一直线上的三条线段首 尾顺次连接所组成的封闭图形。
04
CATALOGUE
三角形角度计算技巧与方法
利用平行线求角度
平行线性质
两直线平行,同位角相等;内错角相等;同旁内角互补。
示例
已知三角形ABC中,角A=60度,角B=45度,求角C的度数。可以过点C作AB的 平行线,将角C分为两个与角A、角B分别相等或互补的角,从而求得角C的度数 。
利用相似三角形求角度
三角形分类
按边可分为不等边三角形、等腰 三角形;按角可分为锐角三角形 、直角三角形、钝角三角形。
三角形边与角关系
三角形边的关系
任意两边之和大于第三边,任意两边 之差小于第三边。
三角形角的关系
三个内角之和等于180°,外角等于与 它不相邻的两个内角之和。
特殊三角形性质
01
02
03
等腰三角形性质
两腰相等,两底角相等; 三线合一(即顶角的平分 线、底边上的中线、底边 上的高重合)。
相似三角形性质
两个三角形如果三边对应成比例,则这两个三角形相似。相 似三角形的对应角相等。
示例
已知三角形ABC中,AB=AC,D为BC上一点,且BD=DC。 求角BAD的度数。可以通过构造与三角形ABD相似的三角形 ,利用相似三角形的性质求得角BAD的度数。
利用三角函数求角度
三角函数性质
正弦、余弦、正切等三角函数在特定角度下有确定的值。

人教版数学八年级上册11.2.1.1 三角形的内角和定理课件(共28张PPT)

人教版数学八年级上册11.2.1.1  三角形的内角和定理课件(共28张PPT)
该怎么证明呢?
18世纪——法国数学家克莱多 利用辅助平行线将三角形的内角转化为一个平角
由图你能想出证明“三角
形的内角和等于180°”的
(1)
(2)
方法吗?
证明
已知:△ABC, 求证:∠A + ∠B + ∠C = 180°.
A
B
C
证明:如图,过点 A 作直线 l,使l ∥ BC,
∵ l ∥ BC,
北 D
50°
A 80°
C 北 E
40°
B
∠ACB = 180° -∠ABC -∠CAB = 180° - 60° - 30° = 90°
答:从 B 岛看 A,C 两岛的视角∠ABC 是 60°, 从 C 岛看 A,B 两岛的视角∠ACB 是 90°.
你还能想出 其他解法吗?
解法二:
北 D
50°
A 80°
你还有别的 方法吗?
讨论 请分享一下你想到的证明方法吧!
方法一 用量角器测量三角形的三个内角的度数,并相加.
60°
90°
60°
60°
50°
40°
1 1
1
方法二:折叠法
1 2
2 2
3
3
锐角三角形
1
2
3
钝角三角形
3 1
3
2
3
2
直角三角形
想一想
通过度量或剪拼的方法,可以验证三角形的内角和等于180°.但是, 由于测量常常有误差,这种“验证”不是“数学证明”,不能完全 让人信服;又由于形状不同的三角形有无数个,我们不可能用上述方 法一一验证所有三角形的内角和等于180°.
解:在△ABC 中,∵∠A = 60°, ∴∠ABC +∠ACB = 120°. ∵ BP 平分∠ABC,CP 平分∠ACB, ∴∠PBC +∠PCB = 1 (∠ABC +∠ACB) = 60°.

《三角形的内角和》优质ppt课件

《三角形的内角和》优质ppt课件

角之比为1:2:3,求这个三角形
的最大内角。
02
题目3:判断下列各组角能否
构成一个三角形的内角,并说
明理由。
03
A. 30°, 40°, 110°
04
B. 60°, 60°, 60°
05
C. 20°, 50°, 120°
06
学生自主思考、提问及讨论环节
01
02
03
问题1
三角形的内角和为什么是 180°?
应用举例
例1
计算五边形的内角和。

五边形可以划分为3个三角形,因此五边形的内角和 = 3 × 180° = 540°。
例2
计算正六边形的内角和。

正六边形可以划分为4个三角形,因此正六边形的内角 和 = 4 × 180° = 720°。
例3
已知一个多边形的内角和为1080°,求这个多边形的边 数。
有助于培养逻辑思维和空间想象能力
预习下一讲内容:《全等三角形》
了解全等三角形的定 义和性质
通过实例和练习加深 对全等三角形相关知 识的理解和应用
掌握全等三角形的判 定方法
谢谢您聆听
THANKS
《三角形的内角和》优质ppt 课件
CONTENTS
• 三角形基本概念与性质 • 三角形内角和定理推导 • 三角形内角和定理应用举例 • 拓展:多边形内角和计算方法
探讨 • 练习题与课堂互动环节 • 课程小结与预习提示
01
三角形基本概念与性质
三角形定义及分类
三角形定义
由不在同一直线上的三条线段首 尾顺次连接所组成的封闭图形。
已知三角形一个内角及相邻两边,求另一 个内角的大小。
已知三角形三边长度,利用余弦定理求任 一内角的大小。

三角形内角和说课ppt课件

三角形内角和说课ppt课件

感谢观看
THANKS
三角形内角和的基础知识
三角形的定义和分类
三角形是由不在同一直线上的三条线段首尾顺次 相接所组成的图形。根据边长特点,三角形可以 分为等边三角形、等腰三角形和普通三角形。
等腰三角形有两边长度相等,对应的两角也相等 ,另一个角为顶角。
等边三角形三边长度相等,三个内角相等,均为 60°。
普通三角形三边长度和三个内角均不相等。
电子工程
在电子工程中,三角形内角和定理可以用于计算电路中的 电阻、电容、电感等元件的参数,以及确定电路的性能和 稳定性。
05
三角形内角和定理的拓展和
深化理解
对称三角形内角和定理的拓展
总结词
揭示规律,拓展思维
详细描述
通过对称三角形的案例分析,揭示三角形内角和定理背后的规律,引导学生拓展 思维,探索不同证明方法的可能性。
三角形内角和说课 ppt课件
• 引言 • 三角形内角和的基础知识 • 三角形内角和的证明方法 • 三角形内角和的应用 • 三角形内角和定理的拓展和深化
理解 • 总结与回顾
目录
01
引言
主题和目的
主题
探究三角形的内角和
目的
通过多种方法证明三角形内角和为180度,并运用该结论解决实际问题
背景和重要性
03
这种证明方法较为抽象,但可以借助计算机软件进行计算 和验证。
04
三角形内角和的应用
在几何学中的应用
证明定理
三角形内角和定理是几何学中最 基本的定理之一,它可以应用于
证明其他定理和性质。
计算角度
通过三角形内角和定理,我们可以 快速计算出三角形的内角大小,以 及一个角度相对于其他角度的大小 。

三角形内角和ppt课件

三角形内角和ppt课件

直角三角形的内角和等于180° ,其中两个锐角的度数之和为 90°。
直角三角形是轴对称图形,其 对称轴为直角边中垂线。
THANKS
感谢观看
在实际问题中的应用
测量角度问题
通过PPT展示如何利用三角形内角和定理解决实际测量角度的问题,如测量山 的高度、建筑物的角度等。
工程设计问题
介绍如何利用三角形内角和定理进行工程设计,如桥梁设计、建筑结构设计等 。
04
特殊三角形的内角和
等边三角形的内角和
等边三角形的三个内角都相等,每个角的大小为60°,因此其 内角和为180°。
三角形内角和ppt课件
目录
• 三角形内角和的定义 • 三角形内角和的证明方法 • 三角形内角和的应用 • 特殊三角形的内角和
01
三角形内角和的定义
什么是三角形的内角
01
三角形的内角是指三角形内部的 角,即相邻两边之间的夹角。
02
三角形有三个内角,分别为∠A、 ∠B和∠C,它们的大小在0°到 180°之间。
通过三角函数的加法定理,将三角形 的三个内角表示为两角之和的形式, 再利用诱导公式进行推导,最终得出 三角形内角和的性质。
常用的三角函数证明方法包括利用三 角函数的加法定理和诱导公式进行推 导。
03
三角形内角和的应用
在几何图形中的应用
三角形内角和定理证明
通过PPT展示不同证明方法,如通过 平行线、通过三角形全等或通过三角 形相似来证明三角形内角和为180度 。
三角形内角和的定义
三角形内角和是指三角形三个内角的度数之和。 三角形内角和的大小等于180°。
三角形内角和定理
三角形内角和定理是几何学中的基本 定理之一,它表明任何三角形的三个 内角之和等于180°。

《三角形的内角和》完整版课件

《三角形的内角和》完整版课件

《三角形的内角和》完整版课件Contents目录•三角形基本概念与性质•三角形内角和定理及其证明•三角形外角性质与计算•三角形面积计算公式推导与应用Contents目录•直角三角形中特殊角度和边长关系探讨•三角形相似与全等条件判断及证明方法•总结回顾与拓展延伸01三角形基本概念与性质三角形定义及分类三角形定义由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形。

三角形分类按边可分为不等边三角形、等腰三角形和等边三角形;按角可分为锐角三角形、直角三角形和钝角三角形。

三角形边与角关系三角形边的关系任意两边之和大于第三边,任意两边之差小于第三边。

三角形角的关系三个内角之和等于180°,外角等于与它不相邻的两个内角之和。

两腰相等,两底角相等;三线合一(底边上的中线、高线和顶角的平分线互相重合)。

等腰三角形性质三边相等,三个内角都是60°;三线合一(任意一边上的中线、高线和这边所对角的平分线互相重合)。

等边三角形性质有一个角是90°;勾股定理(直角三角形的两条直角边的平方和等于斜边的平方)。

直角三角形性质特殊三角形性质02三角形内角和定理及其证明三角形内角和定理表述01三角形内角和定理:三角形的三个内角之和等于180度。

02该定理是三角形的基本性质之一,也是研究三角形的重要基础。

通过作辅助线,将三角形划分为两个直角三角形,利用直角三角形的性质证明三角形内角和定理。

几何证明法代数证明法向量证明法通过三角形的角度表示和代数运算,证明三角形内角和定理。

利用向量的夹角公式和向量运算,证明三角形内角和定理。

030201多种证明方法介绍定理应用举例计算三角形中未知角度已知三角形两个角度,可利用三角形内角和定理求出第三个角度。

判断三角形的形状根据三角形内角和定理,可以判断三角形的形状,如等边三角形、等腰三角形等。

解决与三角形有关的问题在几何、三角学等领域中,三角形内角和定理是解决与三角形有关问题的基础。

《三角形的内角和》ppt课件

《三角形的内角和》ppt课件
在数学教育中的价值
三角形内角和定理是初中数学中的重要内容之一,对于培养学生的逻辑思维、推理能力和数学素 养具有重要意义。
02
三角形内角和的基本概念
角度与三角形的关系
三角形是由三条边和三个角组成的几何图形。 角度是描述两条射线之间的夹角大小的量度。 三角形中的角度与边长之间存在一定的关系,如正弦、余弦定理等。
基于三角形内角和定理,可以推 导出许多三角恒等式,这些恒等 式在解决三角函数问题时非常有 用。例如,正弦定理、余弦定理
等。
三角函数的应用
在物理学、工程学、天文学等领 域中,经常需要使用三角函数来 解决实际问题。而三角形内角和 定理是解决这些问题的关键之一。
在实际问题中的应用
建筑设计
在建筑设计中,经常需要使用三 角形内角和定理来计算角度、长 度等参数,以确保建筑物的稳定
性和美观性。
地图绘制
在地图绘制中,三角形内角和定理 被用来确定地图上两点之间的角度, 从而保证地图的准确性和可靠性。
导航定位
在导航定位中,三角形内角和定理 被用来计算航向、俯仰角等参数, 以确保飞机、船舶等交通工具的正 确航行方向。
05
总结与回顾
三角形内角和的总结
三角形内角和的定义
三角形内角和是指三角形三个内角的度数之和。
培养空间思维
学习三角形内角和定理有 助于培养学生的空间思维 能力和几何直觉。
回顾与思考
01
回顾三角形内角和定理的证明过程,加深对定 理的理解。
02
思考三角形内角和定理在现实生活中的应用, 提高解决实际问题的能力。
03
探究其他几何图形的内角和性质,拓展几何知 识面。
THANKS
内角和为180度的结论。

优质课《三角形的内角和》课件

优质课《三角形的内角和》课件

课程展望
进一步优化教学方法
在未来的教学中,可以尝试引入更多的互动环节,如小组讨论、 探究性学习等,以激发学生的学习兴趣和主动性。
加强实际应用能力的训练
在未来的教学中,可以设计更多与实际生活相关的案例和问题,引 导学生运用所学知识解决实际问题,提高其应用能力。
完善教学资源
在未来的教学中,可以进一步完善课件内容,增加更多的图形、动 画等多媒体素材,以提高课件的生动性和形象性。
数学竞赛培训
在数学竞赛培训中,教师会使用 三角形内角和定理来设计各种练 习题和难题,以帮助学生提高数 学思维能力和解题技巧。
04
教学方法与技巧
启发式教学
总结词
通过提问和引导,激发学生思考,培养自主学习能力。
详细描述
教师通过提问引导学生思考三角形的内角和,例如问学生“三角形的内角和是多少度?”或“你们知道三角形内 角和的规律吗?”。这种教学方式能够激发学生的好奇心,促使他们主动探究和学习。
优质课《三角形的内角和 》课件
• 引言 • 三角形内角和的基本概念 • 三角形内角和的应用 • 教学方法与技巧 • 课程总结与展望
01
引言
课程背景
三角形是几何学中最基础、最重 要的图形之一,具有广泛的应用
价值。
三角形的内角和是三角形的一个 重要属性,也是几何学中的基本
定理之一。
本节课将通过探究、实验、证明 等多种方式,引导学生掌握三角 形的内角和定理,并能够灵活运
互动式教学
总结词
师生互动,生生互动,营造活跃的课堂氛围。
详细描述
教师组织学生进行小组讨论或同桌交流,让他们在互动中分 享自己的想法和见解。这种教学方式能够培养学生的合作精 神和沟通能力,同时也能让教师更好地了解学生的学习情况 。

《三角形的内角和》PPT课件

《三角形的内角和》PPT课件
三角形内角和性质
三角形内角和与角度关系
三角形内角和为180度
在任何三角形中,三个内角的和总是 等于180度。
角度互余关系
在一个三角形中,如果两个角的和小 于90度,则这两个角互为余角。
角度互补关系
在直角三角形中,两个锐角的角度和 为90度,它们互为补角。
三角形内角和与边长关系
边长与角度关系
在三角形中,边长越长, 对应的角度越大;边长越 短,对应的角度越小。
步骤四
将剪下来的三个角拼在 一起,观察是否能拼成
一个平角。
实验结果分析与讨论
结果分析
通过实验操作,我们发现三角形ABC的三个内角拼在一起后,能够形成一个平角,即三角形的内角和为 180度。
讨论
实验结果验证了三角形的内角和定理,即任意三角形的内角和都等于180度。这一结论在数学和几何学中 有着广泛的应用,对于解决与三角形相关的问题具有重要意义。同时,实验结果也说明了实验操作的准确 性和可靠性。
通过不断练习和挑战自我,可 以提高自己的几何思维能力和 解题能力。
THANKS
感谢观看
《三角形的内角 和》PPT课件
目录
• 课程引入 • 三角形内角和定理 • 三角形内角和性质 • 三角形内角和计算 • 实验操作与探究 • 拓展延伸与应用举例
01
课程引入
三角形的定义与分类
三角形的定义
由不在同一直线上的三条线段首尾 顺次相接所组成的图形叫做三角形。
三角形的分类
根据三角形的边长和角度,可以将 三角形分为等边三角形、等腰三角 形、直角三角形等。
三角形内角和概念
三角形内角和的定义
三角形三个内角的度数之和。
三角形内角和的性质
任意三角形的内角和都等于180度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(180o-96o)÷2
90o-40o=50o
=84o ÷2
= 42o
1800-700 -700 40度 1800-700×2
一个等腰三角形的风筝, 0 它的一个底角是70 ,他 的顶角是多少度?
180°
180°
180度
180度
180度
180度
180度
4 .
图形
求四边形、五边形、六边形的内角和
活动二:
撕一撕 拼一拼

3
1
2
3 平角:1800
1
2
2
钝角三角形
1 1
2 2 2
2
3
3
直角三角形
锐角三角形
1
1
3
3
3
3
1
结论:
三角形的内角和是180°。
在一个三角形中,已知∠1=1400,∠3=250, 求∠2的度数? 1800-1400-250 =400-250 =150
答:∠2的度数为150。
1、什么是三角形的内角? ∠1, ∠2, ∠3 2、什么是三角形的内角和? ∠1+∠2+∠3
1
2
3
90 +60 +30 =180
30 ° 90 +45 +45 =180 45°
算一算,三角形 的内角和是多少度 呢?
45°
90°
90° 60°
方法一:

600
锐角三角形
480
720
600+480+720=1800
名称
三角形
四边形
五边形
六边形
有几个 1 三角形 内角和 180°
2
3 360° 540°
4 720°
四、回顾 这节课你有什么收获?我们是怎样研 究三角形的内角和是180°? 这节课我们分别用度量、撕拼、 折拼、推算四个方法对猜想进行验证, 最后运用三角形内角和是180°的知 识解决问题。如果给你重新选择,你 会选择什么方法验证?
此时,你想对它 们说点什么呢?
我的内角和度 数最大。
不对,是我们 直角三角形的 内角和最大。 你们别吵了,还是钝角三 角形的内角和最大。
帕斯卡:法国的著名 数学家、哲学家、物理 学家,他在 12 岁时就独 立发现了任何三角形的 内角和都是 180 °。帕 斯卡留给世人一句名言: “人只不过是一根芦苇, 但他是一根有思想的芦 苇 。 ”
(3)最后要求计算出三个角 的和是多少?

600
锐角三角形
480
720
600+480+720=1800

380
钝角三角形 0
260
116
1160+260+380=1800

640
直角三角形
260
900
640+260+900=1800
你还有其他办法证明三 角形的内角和是180°吗?
折一折,撕一 撕,看看能不能把 三角形的三个内角 拼成什么呢?
一个等腰三角形的风筝, 它的一个底角是700,它 的顶角是多少度?
400 1800-700- 700 1800-700×2 700 700 =400
一个等腰三角形的风筝, 它的一个底角是700,它 的顶角是多少度?
小结
拓展
知识的升华
你能根据自己的知识求出四边形和 正六边形的内角和吗?
两个三角形: 180°×2=360 °

380
钝角三角形 0
260
116
1160+260+380=1800

640
直角三角形
260
900
260+640+900=1800
方法二:
撕一撕 拼一拼拼3来自123 平角:1800
方法三:
折一折
拼一拼
1
2
2
钝角三角形
1 1
2 2 2
2
3
3
直角三角形
锐角三角形
1
1
3
3
3
3
1
结论:
三角形的
内角和是180°
4个三角形: 180°×4=720°
总结:通过今天的学习, 大家有什么收获?
三角形内角和180°。
三角形的内角和
我的内角和度 数最大。
不对,是我们 直角三角形的 内角和最大。 你们别吵了,还是钝角三 角形的内角和最大。
3
1
2
认识内角、内角和
每个三角形都有三个角,它们在三角形内, 所以我们把它们叫做三角形的内角。
∠1+∠2+∠3=180°
在一个三角形中,已知∠1=1400,∠3=250, 求∠2的度数? 1800-1400-250 =400-250 =150
答:∠2的度数为150。
判断下列说法对吗?
①钝角三角形的内角和大于锐角三角形的内 角和。( × ) ②在直角三角形中,两个锐角的和等于90 º 。 (√ ) ③在钝角三角形中,两个锐角的和大于90 º 。 (×) ④三角形中有一个角是60 º ,那么这个三角形 一定是个锐角三角形。( ×) ⑤一个三角形中一定不可能有两个钝角。( ) √
复 习
什么是平角?平角有多少度?
0 180
复 习 已知∠1=300, ∠2=800, 求∠3的度数。
800 300

1:什么是三角形的内角?
三角形的内角指三角形里面的角。
自主探究:
3:什么是三角形的内角和?
三角形的内角和就是这三个内角的
度数之和。
活动一:
合作要求:
(1)小组分工
(2)用量角器测量你们小组 内的三角形每个内角的度数。
三角形有三个内角,把三个内角的度数 加起来的和就是三角形的内角和。
90°
45°
60°
30°
45°
90°
90°+30°+60°=180° 90°+45°+45°=180°
量一量, 算一算。
1 2 1 1 3 3
2
1 2 1 2 3 3
1 3 2
2
三角形有多种,高矮胖瘦啥都有,
内角和永不变,180度要记心间。
在能组成三角形的三个角后面画 “√ ”
90°
50°
50°
50°
40°
50°
(
(

)
)
120°
30°
30°
(

)
100°
32°
19°
(
)
三角形∠1=140°,∠3=25°,求 ∠2的度数。
140°
25°
180°-140°-25°=15°
180 °-(140° +25°)=15 °
180o÷3=60o
我的一个角 是多少度?
我的一个底角 是多少度?
我是一个直角三角 形,我的另一个锐 角是多少度?
0-900-400 ① 180 0-960) ÷2 (180 0-400 1800÷3=60° 0 =90 =84 ÷2 =50° =42°
②900-400=50°
选择
1.下面每组三个角,不可能在同一个三角内 的是( C )。 A.15° 78° 87°B.55° 120° 5°C.90° 18° 102° 2.把一个三角形纸片剪成两个小三角形,每 个小三角形的内角和( C )180度。 A.大于 B.小于 C.等于
75° 35°

一个等腰三角形的风筝, 它的一个底角是700,它 的顶角是多少度?
400 1800-700 -700 =1100 -700 =400 700 700
1800-700×2 =1800 -1400 一个等腰三角形的风筝, 0 =40 它的一个底角是700,它 的顶角是多少度? 答:它的顶角是400。
相关文档
最新文档