人教版高一数学幂函数

合集下载

新人教版高一数学必修1课件2.3幂函数

新人教版高一数学必修1课件2.3幂函数
2.3 幂函数
一、基础知识讲解
观察: y x y x2 y x3
1
y x2 y x1
思考:这些函数是不是 指数函数?
思考2:这些函数的共同 特点是什么?
一、基础知识讲解
1、幂函数的定义:
一般的,函数 y = x α 叫做幂函数,其中 x 是
自变量,α 是常数。
随练:判断下列函数哪些是幂函数?
3.14
1
1
3.142 2
2 (0.38)3与(0.39)3
解:幂函数y x3在,是增函数 0.38 0.39 -0.383 0.393
小结
三、例题分析
31.251与1.221
解:y x1在(, 0)和(0, )上减函数
1.25 1.22 1.251 1.221
4 (1)0.25 与 (1)0.27
1
1 y 0.2x; √2 y x3; 3 y 3x5;
4 y x x; 5 y ( x)2
二、例题分析
例1、已知幂函数的图像过点(2, 2),试求出此 函数的解析式。
解:由已知,可设幂函数的解析式为 f (x) x
f (x)的图像过点 2, 2
f 2 2, 即 2 2,
解得 1
3
3
解:y
1 3
x

,
上是减函数,
0.25 0.27
1
0.25
3
1 3
0.27
四、课堂小结 1、定义:一般地,函数 f(x)=x 叫做幂函数,其
中 x 是自变量, 是常数。
2、注意 ①幂函数的概念及其指数函数表达式的区别 ②常见幂函数及其幂函数的性质
3、幂函数 f(x)=x的性质:
五、课堂作业 课本P82 复习参考题A组 10

3.3幂函数(7大题型)高一数学(人教A版必修第一册)课件

3.3幂函数(7大题型)高一数学(人教A版必修第一册)课件



D . p 为 偶 数 , q为奇 数且 < 0

典型例题
题型四:幂函数的图象、定点问题
【对点训练8】(2023·全国·高一假期作业)已知 ( ) = (2 − 1) + 1,则函数 = ( )的图象恒过的定点
的坐标为

【答案】 (1,2)
【解析】令 2 − 1 = 1 ,得 = 1, = 2 ,
故选:C.
2 ;⑤
= ,其中幂函
典型例题
题型二:求函数解析式
【例2】若 = 2 − 4 + 5 − + + 1 是幂函数,则 2 =
【答案】
1
4
2

− 4 + 5 = 1 ,解得 ቊ = 2 ,
【解析】由题意得 ቊ
= −1
+1=0
故 = −2 ,所以 2 = 2 −2 =
典型例题
题型二:求函数解析式
1
2
【对点训练3】已知 ∈ −2, −1, − , 2 ,若幂函数 = 为偶函数,且在(0,+∞)上单调递减,则
=

【答案】 -2
【解析】因为函数在 0, +∞ 上单调递减,所以 < 0 ,
当 = −2 时, = −2 是偶函数,成立
当 = −1 时, = −1 是奇函数,不成立,
1
1
当 = − 时, = − 2 的定义域是 0, +∞ ,不是偶
2
函数,故不成立,
综上, = −2.
故答案为:−2
典型例题
题型三:定义域、值域问题
4
【例3】(1)函数 = 5 的定义域是

高中数学人教A版必修第一册3.3幂函数课件-

高中数学人教A版必修第一册3.3幂函数课件-

4
时,
y
4
x3
是偶函数.综上,实数
m
的值是
4,
故选 A.
C 7.在同一坐标系内,函数 y xa (a 0) 和 y ax 1 的图象可能为( ) a
A.
B.
C.
D.
解析:若 a 0 ,则 y xa 在 (0, ) 上是增函数, y ax 1 在 R 上是增函数且其图象 a
与 y 轴的交点在 y 轴的负半轴上,选项 C 可能,选项 B 不可能;若 a 0 ,则 y xa 在
所以 m 5 ,则 f (x) x5 .
(2)
f
(x)
x5
1 x5
, 要使函数有意义,则 x 0 ,
即定义域为 (,0) (0, ) ,其关于原点对称.
f
(x)
1 (x)5
1 x5
f
(x) ,
该幂函数为奇函数.
当 x 0 时,根据幂函数的性质可知 f (x) x5 在 (0, ) 上为减函数,
1 3
D.2
解析:因为函数 f (x) (m2 5m 7)xm1(m R) 是幂函数,所以 m2 5m 7 1 ,
解得 m 2 或 m 3 .当 m 2 时, f (x) x3 是奇函数,不符合题意,舍去;当 m 3 时,
f (x) x4 是偶函数,符合题意.故由 f (2a 1) f (a) 得, f ( 2a 1) f ( a ) ,又因为
A 5.如图,下列 3 个幂函数的图象,则其图象对应的函数可能是( )
A.①
y
x1
,②
y
1
x2
,③
y
1
x3
C.①
y
1
x3

3.3 幂函数 课件(共48张PPT)高一数学必修第一册(人教A版2019)

3.3 幂函数 课件(共48张PPT)高一数学必修第一册(人教A版2019)
1
(3) 在区间(0, )上,函数y x, y x2 , y x3 , y x 2单调递增, 函数y x1单调递减;
(4) 在第一象限内, 函数y x1的图象向上与y轴无限接近,向右与x轴 无限接近.
学习新知 例 证明函数f ( x) x是增函数.
证明:函数的定义域是[0, ). x1, x2 [0, ), 且x1 x2 ,
[0,+∞)递增
(-∞,0)和(0,+∞) 递减
图象
公共点
(1,1) ( R) (0,0) ( 0时)
①为偶数, y x是偶函 数. ②为—奇—数, y x是奇函 数.
3.3 幂函数
02 幂函数的图象 与性质
应用新知 1 幂函数的概念
一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.
本节我们利用这些知识研究一类新的函数.
学习新知
先看几个实例: (1)如果卢老师以1元/kg的价格购买了某种蔬菜t千克,那么他需要支付
的钱数P=t元,这里P是t的函数;
(2)如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数;
(3)如果立方体的棱长为b,那么立方体的体积V=b3,这里V是b的函数;

m=0.

m=2
时,f(x)=
x
1 2
,图象过点(4,2);

m=0
时,f(x)=
x
3 2
,图象不过点(4,2),舍去.
综上,f(x)=
x
1 2
.
能力提升 题型三:利用幂函数的单调性比较大小
【练习
3】已知幂函数
f(x)=m2
2m
1
m 3
x2
的图象过点(4,2).

高一数学人必修件第三章幂函数

高一数学人必修件第三章幂函数

分式型幂函数
要点一
函数形式
$y = x^a/b$ 或 $y = a/(x^b)$,其 中 $b neq 0$
要点二
图像特点
根据 $a$ 和 $b$ 的取值不同,图像 可能呈现出不同的形状和特点
要点三
性质
分式型幂函数的性质比较复杂,与 $a$ 和 $b$ 的取值密切相关。一般 来说,当 $b > 0$ 时,函数图像在 $x > 0$ 和 $x < 0$ 的区域内分别单 调递增或递减;当 $b < 0$ 时,函数 图像在 $x > 0$ 和 $x < 0$ 的区域内 分别单调递减或递增。此外,分式型 幂函数可能具有渐近线、拐点等特性 。

易错点二
混淆幂的运算性质。在运用幂的 运算性质时,需特别注意底数和 指数的变化规律,避免出现混淆

避免逐步推导求解。同时,多 做相关练习题,加深对知识点的
理解和记忆。
拓展延伸:多元幂函数初步了解
多元幂函数的定义
形如$z=x^ay^b$($a,b$为常数) 的函数称为二元幂函数。类似地,可 以定义三元及更多元的幂函数。
三次幂函数
函数形式
$y = ax^3$,其中 $a neq 0$
图像特点
一个关于原点对称的曲线
性质
比例系数 $a$ 决定了曲线的形状和走向,当 $a > 0$ 时,函数在整个定义域内单调递增;当 $a < 0$ 时 ,函数在整个定义域内单调递减。此外,三次幂函数具有拐点,即函数图像从凹到凸或从凸到凹的点。
指数型幂函数与对数的关系体现在:当且仅当a>1时,函数y=a^x在定 义域内单调增加;当0<a<1时,函数y=a^x在定义域内单调减少。

人教版高一数学必修一第一章知识点梳理幂函数

人教版高一数学必修一第一章知识点梳理幂函数

人教版高一数学必修一第一章知识点梳理幂函数定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为为常量的函数称为幂函数。

定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不会等于0的所有实数。

当x为不同的数值时,幂函数的值域的不同情况如下:在x 大于0时,函数的值域似乎大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域性质:对于a的取值为非零数列,有必要分成情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是r,如果q是偶数,函数的定义域是[0,+∞),当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x;0,则a可以是任意实数;排除了为0这种可能,即对于x;0和x;0的所有实数,q不能是偶数;排除了为有理数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的开集为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的开集为大于0的所有实数;如果同时q为奇数,则整数的定义域为不等于0的所有实数。

高一数学人必修一课件第二章幂函数

高一数学人必修一课件第二章幂函数

感谢观看
THANKS
性质
一次幂函数具有比例性质 ,即y/x=n(常数),且 增减性与n的正负有关。
二次幂函数
定义
形如y=ax^2+bx+c(a≠0 )的函数。
图像
二次幂函数的图像是一条 抛物线,对称轴为x=b/2a,顶点坐标为(b/2a,(4ac-b^2)/4a)。
性质
二次幂函数具有对称性、 有界性和单调性等性质, 其增减性取决于a的正负和 x的取值范围。
自由落体运动的位移
自由落体运动中,物体下落的位移h与时间t的关系可以表示为h=1/2gt^2(g为 重力加速度)。这个关系式是一个幂函数,其中指数为2。
经济生活中应用举例
复利计算
在金融领域,复利是一种计算利息的方法。假设本金为P,年利率为r,经过n 年后,本金和利息的总和为A=P(1+r)^n。这个公式中的(1+r)^n部分就是一 个幂函数。
06
练习题与课堂互动环节
练习题选讲
题目一
求函数$y = x^{2}$在 区间$[1,2]$上的最大值 和最小值。
题目二
判断函数$y = x^{3}$ 在$R$上的单调性,并 证明。
题目三
已知函数$y = x^{-2}$ ,求其在点$(1,1)$处的 切线方程。
学生自主函数的奇偶性?
高一数学人必修一课
件第二章幂函数
汇报人:XX
20XX-01-22
• 幂函数基本概念与性质 • 常见幂函数类型及其特点 • 幂函数在生活中的应用举例 • 幂函数与指数、对数等其他类型
函数关系探讨 • 求解幂函数相关数学问题方法技
巧总结 • 练习题与课堂互动环节
目录
01

人教版高中数学必修一2.3《幂函数》ppt课件

人教版高中数学必修一2.3《幂函数》ppt课件

奇函数 偶函数 奇函数 非奇非偶 奇函数
R上 增函数
(, 0)减 (0, ) 增
R上 增函数
[0, ) 增
(, 0) 减 (0, ) 减
(1,1)
幂函数性质
y y x3 y x2
4
1
yx
(1)函数 y x, y x2 , y x3, y x 2
3
1
y x1在(0,+∞)上都有定义,
培养学生数形结合、分类讨论的思想,以及分析归纳的 能力,培养学生合作交流的意识.
学习重点
从具体函数归纳认识幂函数的一些性质并简单应用.
学习难点
概括幂函数的性质.
问题情境
问题1:如果张红购买了每千克1元的水果w千克,
a 那么她需要付的钱数p= w 元,这里p是w的函数 y x
S 问题2:如果正方形的边长为a,那么正方形的面积
S= a 2 , 这里S是a的函数
y x2
问题3:如果正方体的边长为a,那么正方体的体积
V
aa
S
V= a3 ,这里V是a的函数
y x3
问题4:如果正方形场地面积为S,那么正方形的边 1 1
长a= S 2 ,这里a是S的函数
y x2
问题5:如果某人ts内骑车行进了1km,那么他骑车
的速度 v = t 1 km/s. 这里v是t的函数
y y x3
4
y x2
(2,4)
yx
1
y x2 , y x3
3
1
2
y x2
1
-4
-3
-2
-1
o
(1,1)
1
2
y x1

高中数学人教版必修1课件:2.3幂函数

高中数学人教版必修1课件:2.3幂函数
学习目标:
1.通过实例了解幂函数的概念. 2.结合几个常见幂函数的图象发现幂函数的性质.
难点和重点:
学会数形结合的思想概括出幂函数的性质.
以下的函数解析式具有什么共同特征?
y=x y = x2
y xa
y = x3 y x 1
1
y x2
共同特征:函数解析式是幂的情势,且指数是常数, 底数是自变量。
(1,1)
幂函数的性质:(定义域、奇偶性、单调性,因函数
式中α的不同而各异) 1. 所有的幂函数在(0,+∞)都有定义,并且图 象都过点(1,1); 2. 当α为奇数时,幂函数为奇函数, 当α为偶数时,幂函数为偶函数.
3. 当α >0时,幂函数在区间(0,+∞)上是增函数; 当α<0时,幂函数在区间(0,+∞)上是减函数.
1
y x2
y x1
[0,+∞) ,0 (0,+) [0,+∞) ,0 (0,+)
奇偶性 奇函数 偶函数 奇函数 非奇非偶
奇函数
在(-∞,0)上 R上是 是减函数,
单调性 增函数在(0, +∞)上 是增函数
R上是 在(0,+∞) 增函数 上是增函数
在( -∞,0) 和(0, +∞)上 是减函数
公共点
练习1.
(1) 1.30.5 < 1.50.5
(2) 5.12 < 5.092
1
1
(3) 0.54 > 0.44
(4)
2
0.7 3

2
0.8 3
2.若m
4
1 2
3
2m
1 2
,则求m的取值范围.
解:
幂函数f

人教版高中数学必修一《幂函数》课件

人教版高中数学必修一《幂函数》课件
[0,+∞)
[0,+∞)
1 2
y=x-1 {x|x≠0} {y|y≠0} 奇 (0,+∞)减
(-∞,0)减
定义域
值域
奇偶性非奇非偶 增单调性 公共点增
理论升华
幂函数的性质
(1) 所有的幂函数在(0,+∞)都有定 义,并且图象都通过点(1,1);
(2) 如果α>0,则幂函数图象过原点, 并且在区间[0,+∞)上是增函数; (3) 如果α<0,则幂函数图象在区间(0,+∞)上是减函 数,在第一象限内,图象无限地逼近坐标轴; (4)当α为奇数时,幂函数为奇函数;当α为偶数时, 幂函数为偶函数.
探究2:如何判断一个函数是幂函数还是指数函数? 看看自变量x是指数还是底数
指数函数
幂函数
练一练 1.判断下列函数是否为幂函数. 1 (1) y=x4 2
1 (2) y 2 x
(3) y= 2x

(4) y x
(5) y=2x2
(6) y=x3+2

2 (2, ) 2.若幂函数y=f(x)的图像过点 2 1
幂函数
函数的完美追求 b 我们知道: N a
1.如果 a 一定,N 随 b 的变化而变化, x 我们建立了指数函数 y a ; 2.如果 a 一定, b 随 N 的变化而变化, 我们建立了对数函数: y log a x。
设想:如果b一定,N随a的变化而变化,
是不是也应该可以确定一个函数呢?
一、复习引入
我们先来看看几个具体的问题:
(1)如果张红买了每千克1元的蔬菜W千克,那么她需要支 P=W 元 p是w的函数 付 __________ y
x

3.3幂函数-高一数学(人教A版必修第一册)课件

3.3幂函数-高一数学(人教A版必修第一册)课件
(4)如果一个正方形场地的面积为,那么这个正方形场地的边长 =
,这里是的函数;
1
(5)如果某人 内骑车行进了1,那么他骑车的平均速度 = /,

即 = −1 ,这里是的函数.
问题1 概括出它们的解析式,观察出它们有什么异同点?
(1) = ;(2) = ;
y f ( x) | x | 为偶函数.
y
x 的图象如图所示,
f ( x) | x | | x | f ( x) ,
课本P95 习题3.3
当 x [0, ) 时, y | x | 为增函数,证明如下:
设任意的 x1 , x2 [0, ) ,且 x1 x2 ,则 y1 y2
概念2:
结合函数图象并结合解析式,将结论填写如下表所示:
定义域
值域
奇偶性
奇函数
偶函数
ቤተ መጻሕፍቲ ባይዱ奇函数
单调性
定点
(1,1)
非奇非偶函数
奇函数
(1)定点:所有的幂函数在(0, + ∞)
都有定义,并且图象都过点(1,1);
当α >0时,幂函数的图象都通过原点
(2)单调性:当α >0时,在区间[0, +
∞)上是增函数;当α<0时,幂函数在区
章节:第三章 函数的概念与性质
标题:3.3幂函数
课时:1课时


1.教学目标
2.新课讲授
3.新课小结
4.作业巩固
环节1:教学目标分解
教学目标
素养目标
2.结合这几个幂函数的图象,理解幂函数图象的变化情况
和性质;
数学抽象
数学运算
逻辑推理
直观想象
3.通过观察、总结幂函数的性质,培养学生概括抽象和识

人教版高中数学必修一课件:2.3幂函数 (共24张PPT)

人教版高中数学必修一课件:2.3幂函数 (共24张PPT)
(2) y 1 x
(4) y x
1 2
(5) y=2x2 (6) y=x3+2
(3) y= -x2
思考:指数函数y=ax与幂函数y=xα有什么 区别?
二.幂函数与指数函数比较
名称 式子 指数函数: y=a
(a>0且a≠1)
x
常数 a为底数 α为指数
x
指数 底数
y
幂值 幂值
幂函数: y= xα
1
一般地,幂函数的图象 在直线x=1的右侧,大指 数在上,小指数在下, 在Y轴与直线x =1之间正 好相反。
练习:已知幂函数f(x)的图像经过点(3,27), 求证:f(x)是奇函数。
证明 : 设所求的幂函数为
函数的图像过点
y x
( 3,27 )
3

27 3

,即 3
3
3

3
1
观察上述图象,将你发现的结论写在P78的表格内
(-2,4)
4
y= x 3
(2,4) y= x 2
3
y=x y= x
2
1 2
(4,2)
1
(-1,1)
(1,1) y= x -1
-6
-4
-2
-1
(-1,-1)
-2
-3
-4
在第一象限内, a >0,在(0,+∞)上为增函数; a <0,在(0,+∞)上为减函数. 幂函数的图象都通过点(1,1) a>0时,图象还都过点(0,0) α为奇数时,幂函数为奇函数, α为偶数时,幂函数为偶函数.
判断一个函数是幂函数还是指数函数切入点 看未知数x是指数还是底数 指数函数 幂函数

人教版高中数学必修第一册3.3幂函数 (课件)

人教版高中数学必修第一册3.3幂函数 (课件)

PPT论坛:
PPT课件:/kejian/
语文课件:/kejian/yuw en/ 数学课件:/kejian/shuxue/
英语课件:/kejian/ying yu/ 美术课件:/kejian/me ishu/
科学课件:/kejian/kexue/ 物理课件:/kejian/wul i/
化学课件:/kejian/huaxue/ 生物课件:/kejian/she ngwu/
地理课件:/kejian/dili/
=xα的形式,故选C.]
A.y= x
B.y=x3
C.y=3x D.y=x-1
栏目导航
7
2.已知 f(x)=(m+1)xm2+2 是幂函
D [由题意可知m+1=1,即m
数,则 m=( A.2
)
B.1
PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
2 语文课件:/kejian/yuwen/ 英语课件:/kejian/ying yu/
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/

新课标人教版必修一幂函数课件(共11张PPT)

新课标人教版必修一幂函数课件(共11张PPT)
幂 函 数
代 兵
高中数学必修1同步辅导课程——幂函数
知识要点:
1:幂函数的定义:
一般地,函数y x 叫做幂函数, 其中x是自变量,

是常数.
注: 1 1.对于幂函数,我们重点讨论 =1,2,3, ,-1 2 时的情形。(对照教材,作出上述图像)
2.幂函数不同于指数函数和对数函数,其定义域
1
高中数学必修1同步辅导课程——幂函数
p x (0,1) 变式1: 时,函数 y x 的图像在直线 y x
上方,则P的取值范围是_________.
高中数学必修1同步辅导课程——幂函数
变式2:如果函数 f ( x) (m m 1) x
2
m2 ;∞ )内是减函数,求满足条件 的实数m的集合。
1.所有的幂函数在(0,+∞)都有定义,并且函 数图象都通过点(1,1);
a>1 0<a<1
2.如果a>0,则幂函数的图象过点 (0,0),(1,1)并在(0,+∞)上为增函数;
a<0
3.如果a<0,则幂函数的图象过点(1,1), 并在(0,+∞)上为减函数; 其它象限的图像可由函数奇偶性对称作出
高中数学必修1同步辅导课程——幂函数
典型题例:
例1:若f(x)=(m2-3m+3)x3为幂函数,求m的值
解析:由题意: m2-3m+3=1 解得:m=1或4
高中数学必修1同步辅导课程——幂函数
例2:如图所示,曲线是幂函数 y = xa 在第一象
1 限内的图象,已知 a分别取 1,1, , 2 2
四个值,则相应图象依次为:________
高中数学必修1同步辅导课程——幂函数

人教A版高中数学必修第一册3.3幂函数【课件】

人教A版高中数学必修第一册3.3幂函数【课件】

α


∴f(2)=,∴2 =,解得 α=-2,
∴f(x)=x-2.
f(x)的图象如图所示.
f(x)的定义域为(-∞,0)∪(0,+∞),单调递减区间为(0,+∞),单调递
增区间为(-∞,0).
反思感悟
1.幂函数的图象一定出现在第一象限内,一定不会出现在第四
象限内,图象最多只能同时出现在两个象限内,至于是否在第


(2)y= 的图象位于第一象限,因为函数为增函数,所以函数图




象是上升的,函数 y= -1 的图象可看作由 y= 的图象向下平


移 1 个单位长度得到(如选项 A 中的图象所示),将 y= -1 的图
象关于 x 轴对称后即为选项 B 中的图象.
答案:(1)B (2)B
探究二 幂函数的性质及其应用




对称,且在区间(0,+∞)内单调递减,求满足(2a-1) <(3-a) 的实
数 a 的取值范围.
解:∵函数 f(x)在区间(0,+∞)内单调递减,∴3m-9<0,解得 m<3.
又 m∈N*,∴m=1,2.
又函数图象关于 y 轴对称,∴3m-9 为偶数,故 m=1,Leabharlann -


-
-
∴有(2a-1) <(3-a) .∵y= 在区间(-∞,0),(0,+∞)内均单调递减,
【例2】 比较下列各组数的大小:
(1)1.13,1.23;
(2)4.8-3,4.9-3;
(3) -
-

, -
-

.
解:(1)设f(x)=x3,因为f(x)在区间(0,+∞)内单调递增,

幂函数 课件-高一上学期数学人教A版必修第一册

幂函数 课件-高一上学期数学人教A版必修第一册

y x 1
[0,+∞) ,0 (0,+) [0,+∞) ,0 (0,+)
奇偶性 奇函数 偶函数
奇函数
非奇非偶 函数
奇函数
R上 单调性
公共点
在(-∞,0]

R上
在(0, +∞) 上
(1,1)
在(0,+∞) 在( -∞,0),

(0, +∞)上
幂函数性质:
1)定点:所有的幂函数在(0,+∞)都有定义,并且图象都过点 (1,1); 当α >0时,幂函数的图象都通过原点
y
y
y
y
o
x
o
x
o
x
o
x
A
B
C
D
(2)当α∈{-1,1,1,3}时,幂函数 y=xα的图象不可能经过第_二__、__四__象限. 2
题型三
角度1 比较幂的大小 探究问题]
1.幂函数 y=xα在(0,+∞)上的单调性与α有什么关系? 提示:当α>0时,幂函数y=xα在(0,+∞)上单调递增;当α<0时,幂
2)单调性:当α >0时,在区间[0,+∞)上是增函数 当α<0时,幂函数在区间(0,+∞)上是减函数.
3)奇偶性: 当α为奇数时,幂函数为奇函数, 当α为偶数时,幂函数为偶函数
题型一
1.已知幂函数 f(x)的图象过点(2,2 2),则 f(4)的值为( )
A.4
B.8
C.2 2
[D解.析1] 设 f(x)=xα,∴2 2=
⑤ x3 ⑥
1
yx 2
中,是幂函数的是(①⑤⑥)
.
(2) 已知幂函数 y=f (x)的图象过点(3, 3),则 f (9)= 3 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• [点评] 此题将幂函数的问题转化为指数函 数来研究,很巧妙,而且使题迎刃而解.
类型三 幂函数的定义域与值域
[例 3] 求下列函数的定义域和值域:
(1)y=
x ; 2 - 3
(2)y=
3
x-4.
[分析] 由题目可获取以下主要信息:本例两个函数
均为幂函数,且幂指数分别为-23,-34.
解答本题可将分数指数幂化为根式,并使根式有意
变式体验 4 已知 x23>x35,求 x 的取值范围.
图4
解:函数 y=x23 及函数 y=x35 的定义域为 R,其中,
函数 y=x23 的图象分布在一、二象限,且关于 y 轴对称,
y=x35 的图象分布在一、三象限,且关于原点对称,如

4
所示,由图象可知,若x23
3
>x5
,则
x∈(-∞,0)∪
是幂函数,且当x∈(0,+∞)时是减函数,求实数m.
解:∵f(x)=(m2-m-1)·x m2-2m-2是幂函数. 则m2-m-1=1,即m2-m-2=0, 解得m=2或m=-1. 当m=2时,f(x)=x-2;当m=-1时,f(x)=x. 又∵当x∈(0,+∞)时,函数是减函数, ∴f(x)=x-2,m=2为所求.
1.通过实例,了解幂函数的概念,结合函数的图象,了 解它们的变化情况.
2.结合函数
y=x,y=x2,y=x3,y=x-1,y=x
1的图象,
2
体验研究具体函数的过程和方法,了解它们的变化情况
和图象特征,会总结幂函数的简单性质.
新知视界 1.幂函数的概念 一般地,形如 y=xα(α∈R)的函数叫做幂函数,
2.下列函数中,定义域为 R 的是( ) A.y=x-2 B.y=x12 C.y=x2 D.y=x-1
答案:C
3.已知幂函数 f(x)的图象经过点(2, 2),则 f(4) =________.
解析:设 f(x)=xα,则 2=2α=212, ∴α=12,f(x)=x12,∴f(4)=412=2.
R
[0,+∞)
R
[0,+ ∞)
(-∞, 0)∪
(0,+∞)
奇偶 性



非奇非 偶

(-∞,0)
(-∞,0)
单调 性

减, (0,+∞)


减, (0,+∞)


定点
(0,0) (1,1)
(1,1)
• 思考感悟
• 幂函数的图象能过第四象限吗?
• 提示:对幂函数y=xα而言,当x>0时,必有 y>0,故幂函数图象不过第四象限.
解得mn==32-3 ,
所以 m=-3,n=32.
[点评] 表达式 y=xα(x∈R)的要求比较 严格,系数为 1,底数是 x,α∈R 为常数,如 y=x12=x-2,y=1=x0 为幂函数,而如 y=2x2, y=(x-1)3 等都不是幂函数.
变式体验1 已知函数f(x)=(m2-m-1) x m2 2m2
变式体验 3 求下列函数的定义域、值域:
(1)y=
x45;(2)y=
x ; 1 - 5
(3)y=x-14.
解:(1)y=5 x4,由 x4≥0,知 x∈R,y≥0,即定 义域为 R;值域为[0,+∞).
(2)y= 1 ,由分母不为 0 知,定义域为{x|x≠0}; 5 x
由分子不为 0 知,y≠0,值域为{y|y≠0}.
其中 α 为常数,x 为自变量.
2.关于幂函数 y=x,y=x12,y=x2,y=1x,y= x3 的图象的研究.
用描点法画出图象.
思考:这些函数有什么共同的特征?
y x, y x2, y x3,
(1) 都是函数;
1
y x 2 , y x1
(2) 指数为常数;
(3) 均是以自变量为底的幂.
• 当m=1时,f(x)=x3为奇函数,不符合题 意.
• 当m=2时,f(x)=x4为偶函数,满足题目要 求.所以m=2.
典例导悟 类型一 幂函数的概念
1
[例 1] 已知 y=(m2+2m-2) xm2-1 +2n-3 是
幂函数,求 m,n 的值.
m2+2m-2=1
[解] 由题意得m2-1≠0

2n-3=0
(1,+∞).
思悟升华 1.熟练的理解记忆以下五种幂函数的图象及性 质:①y=x,②y=x2,③y=x3,④y=x-1,⑤y= x, 并注意由图象说性质. 2.求幂函数的定义域时,首先改写成分式或根式 形式,再由分式、根式有意义求定义域. 3.从函数的定义域、值域、单调性、奇偶性多角 度了解一般幂函数的特征.
义.
[解]
(1)解析式化为
y=
x = 2 - 3
1
,其定义域为
3 x2
{x|x∈R 且 x≠0};值域为(0,பைடு நூலகம்∞).
(2)解析式化为
y=
x = 3 - 4
1
,其定义域为(0,+∞);
4 x3
值域为(0,+∞).
• [点评] 当幂函数的指数为分数形式时,须 将其转化为熟悉的根式,利用根式的有关 要求求出自变量的取值范围.
1
3.幂函数y=x,y=x2,y=x2
,y=1,
x
y=x3 的 图像 &性质:
y2.在x,同y 一 x平2 ,面y直 x角3 , Y
坐1
y x2,
y x1
y
标系内作出幂函数
的图象.
O
xx
y=x y=x2 y=x3 y=x12
y=x-1
定义域 R
R
R
[0,+∞)
(-∞,0)∪ (0,+∞)
值域
答案:2
• 4.幂函数y=x-1在[-4,-2]上的最小值 为________.
解析:∵y=x-1 在(-∞,0)上单调递减,
∴y=x-1 在[-4,-2]上递减,
∴y=x-1 在[-4,-2]上的最小值是-12.
答案:-1 2
• [解析] 由幂函数的图象知,m,n均小于0, 取特殊值,令x=2,由图象可知,2m>2n, 而y=2x为增函数,所以0>m>n.故选择A.
(3)y= 1 ,由 x>0 知定义域为(0,+∞);值域为 4 x
(0,+∞).
• 类型四 比较大小
利用幂函数的增减性比较两个数的大小.
(1) 若能化为同指数,则用幂函数的单调; (2) 若能化为同底数,则用指数函数的单性; (3)当不能直接进行比较时,可在两个数
中间插入一个中间数,间接比较上述 两个数的大小.
y xa
• 自我检测
• 1.下列所给出的函数中,是幂函数的是
()
• A.y=-x3
B.y=x-3
• C.y=2x3
D.y=x3-1
• 答案:B
• 2.函数f(x)=(m2-3m+3)xm+2是幂函数, 且函数f(x)为偶函数,求m的值.
• 解:∵f(x)=(m2-3m+3)xm+2是幂函数, • ∴m2-3m+3=1,即m2-3m+2=0. • ∴m=1或m=2.
相关文档
最新文档