全等三角形几种类型总结

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形的认识与性质

全等图形:

能够完全重合的两个图形就是全等图形. 全等多边形:

能够完全重合的多边形就是全等多边形.

相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角.

全等多边形的对应边、对应角分别相等.

如下图,两个全等的五边形,记作:五边形ABCDE ≌五边形'''

''A

B C D

E .

这里符号“≌”表示全等,读作“全等于”.

A'

B'

C'

D'

E'

E

D

C

B

A

全等三角形:

能够完全重合的三角形就是全等三角形.

全等三角形的对应边相等,对应角分别相等;

反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等.

全等三角形对应的中线、高线、角平分线及周长面积均相等.

全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形.能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角.全等符号为“≌”.

全等三角形的性质:

对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.

知识点睛

第一讲

全等三角形与角平分线

中考要求

寻找对应边和对应角,常用到以下方法:

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边.

(4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.

(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).

要想正确地表示两个三角形全等,找出对应的元素是关键.

全等三角形的判定方法:

(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.

(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.

全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.

判定三角形全等的基本思路:

SAS HL SSS →⎧⎪

→⎨⎪→⎩

找夹角已知两边 找直角 找另一边

ASA AAS

SAS AAS ⎧⎪

⎧⎪

⎨⎪

⎨⎪⎪⎪

⎩⎩ 边为角的对边→找任意一角→ 找这条边上的另一角→已知一边一角 边就是角的一条边 找这条边上的对角→ 找该角的另一边→ ASA

AAS →⎧⎨→⎩

找两角的夹边已知两角 找任意一边

全等三角形的图形归纳起来有以下几种典型形式:

⑴ 平移全等型

⑵ 对称全等型 ⑶ 旋转全等型

由全等可得到的相关定理:

⑴ 角的平分线上的点到这个角的两边的距离相等.

⑵ 到一个角的两边的距离相同的点,在这个角的平分线上.

⑶ 等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角).

⑷ 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合.

⑸ 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).

⑹ 线段垂直平分线上的点和这条线段两个端点的距离相等.

⑺ 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.

与角平分线相关的问题

角平分线的两个性质:

⑴角平分线上的点到角的两边的距离相等; ⑵到角的两边距离相等的点在角的平分线上. 它们具有互逆性.

角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1. 由角平分线上的一点向角的两边作垂线,

2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形, 3. OA OB ,这种对称的图形应用得也较为普遍,

三角形中线的定义:三角形顶点和对边中点的连线

三角形中线的相关定理: 直角三角形斜边的中线等于斜边的一半

等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合) 三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.

中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边. 中线中位线相关问题(涉及中点的问题)

见到中线(中点),我们可以联想的内容无非是倍长中线以及中位线定理(以后还要学习中线长公式),尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见.

重点:本节的重点是全等三角形的概念和性质以及判定,全等三角形的性质是以后证明三角形问题的

基础,也是学好全章的关键。同时全等三角形的判定也是本章的重点,特别是几种判定方法,尤其是当在直角三角形中时,HL 的判定是整个直角三角形的重点

难点:本节的难点是全等三角形性质和判定定理的灵活应用。为了能熟练的应用性质定理及其推论,

要把性质定理和推论的条件和结论弄清楚,哪几个是条件,决定哪个结论,如何用数学符号表示,即书写格式,都要在讲练中反复强化

板块一、全等三角形的认识与性质

例题精讲

重难点

相关文档
最新文档