八年级数学下册错题集
数学八年级下册经典易错题集附答案解析
八年级下易错题集(一)一.选择题(共16小题)1.代数式中,分式的个数是()A.1B.2C.3D.42.已知对任意实数x,式子都有意义,则实数m的取值范围是()A.m>4 B.m<4 C.m≥4 D.m≤4 3.(龙岩模拟)当式子的值为零时,x等于()A.4B.﹣3 C.﹣1或3 D.3或﹣3 4.若分式的值为正,则x的取值范围是()A.x>0 B.x>﹣C.x≠﹣D.x>﹣且x≠05.分式中的x,y同时扩大3倍,则分式的值()A.不变B.是原来的3倍C.是原来的4倍D.是原来的6.下面各分式:,其中最简分式有()个.A.4B.3C.2D.17.(眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.分钟D.分钟8.计算的结果为()A.a2B.C.D.9.计算的结果是()A.1B.﹣1 C.D.10.(鸡西)若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1C.﹣1.5或2 D.﹣0.5或﹣1.5 11.(扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1 D.1和﹣1 12.如图可作为函数y=f(x)的图象的是()A.B.C.D.13.(金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.14.下列函数:①y=﹣8x、②、③y=8、④y=﹣8x2+6、⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个15.(辽宁)下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.16.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较二.填空题(共9小题)17.约分:=_________;=_________.18.(清远)计算:(π﹣3)0+2﹣1=_________.19.等腰三角形的周长是16,写出底边长y与一腰长x的函数关系式____,自变量x的取值范围是________.20.(贵州模拟)在函数y=中,自变量的取值范围是_________.21.已知函数y=(k﹣1)x+k2﹣1,当k_________时,它是一次函数,当k=_______时,它是正比例函数.22.(包头)若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=_________.23.(襄阳)若一次函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则k的取值范围是_________.24.将直线y=2x沿x轴的正方向平移1个长度单位,得到直线_________.25.直角坐标系中,直线y=2x+3关于原点对称的解析式为_________.三.解答题(共5小题)26.通分:,.27.计算:(1);(2)÷(a2﹣4)•.28.(六合区一模)化简,求值:),其中m=.29.(苏州)解分式方程:+=3.30.(沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?参考答案与试题解析一.选择题(共16小题)1.代数式中,分式的个数是()A.1B.2C.3D.4考点:分式的定义.分析:找到分母中含有字母的式子的个数即可.解答:解:分式共有2个,故选B.点评:本题主要考查分式的定义,分母中含有字母的式子就是分式,注意π不是字母,是常数.2.已知对任意实数x,式子都有意义,则实数m的取值范围是()A.m>4 B.m<4 C.m≥4 D.m≤4考点:分式有意义的条件.专题:常规题型.分析:先把分母配方,然后根据分母不等于0结合平方数非负数解答即可.解答:解:∵x2﹣4x+m=(x﹣2)2+m﹣4,∵(x﹣2)2≥0,对任意实数式子都有意义,∴m﹣4>0,解得m>4.故选A.点评:本题考查了分式有意义的条件,熟记分式有意义⇔分母不为零,并利用配方法对分母进行整理是解题的关键.3.(龙岩模拟)当式子的值为零时,x等于()A.4B.﹣3 C.﹣1或3 D.3或﹣3考点:分式的值为零的条件.分析:根据分式为零,分子等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,|x|﹣3=0,解得x=3或﹣3,又x2﹣2x﹣3≠0,解得x1≠﹣1,x2≠3,所以,x=﹣3.故选B.点评:本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.若分式的值为正,则x的取值范围是()A.x>0 B.x>﹣C.x≠﹣D.x>﹣且x≠0考点:分式的值.专题:计算题.分析:根据分式的性质列出不等式组解此不等式组即可.解答:解:由分式的性质可得,解得x>﹣且x≠0,故选D.点评:本题考查不等式的解法和分式的取值,注意分式的分母不能为0,比较简单.5.分式中的x,y同时扩大3倍,则分式的值()A.不变B.是原来的3倍C.是原来的4倍D.是原来的考点:分式的基本性质.分析:x,y都扩大3倍就是分别变成原来的3倍,变成3x和3y,用3x和3y代替式子中的x和y,看得到的式子与原来的式子的关系.解答:解:用3x和3y代替式子中的x和y得:,则分式是原来的3倍.故选B.点评:解题的关键是抓住分子、分母变化的倍数.解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6.下面各分式:,其中最简分式有()个.A.4B.3C.2D.1考点:最简分式.分析:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解答:解:;=;;分子分母没有公因式,是最简分式.故选D.点评:判断一个分式是最简分式,主要看分式的分子分母是不是有公因式.7.(眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.分钟D.分钟考点:列代数式(分式).专题:应用题.分析:由题意可知收费为=a+(打长途电话的时间﹣1)b.解答:解:设此人打长途电话的时间是x分钟,则有a+b(x﹣1)=8,解得:x=.故选C.点评:注意此题的分类收费方式.找到相应的量的等量关系是解决问题的关键.8.计算的结果为()A.a2B.C.D.考点:分式的乘除法.专题:计算题.分析:先把除法转化成乘法,再根据分式的乘法法则进行计算即可.解答:解:=a2××=.故选B.点评:本题考查了分式的乘除法的应用,主要考查学生的计算能力,题目比较好,但是一道比较容易出错的题目.9.计算的结果是()A.1B.﹣1 C.D.考点:分式的加减法.专题:计算题.分析:几个分式相加减,根据分式加减法则进行运算,如果分式分母互为相反数,则先将其变为同分母分数,然后再直接相加减即可.解答:解:,故选B.点评:在进行分式的加减运算时,应注意分式符号的改变.10.(鸡西)若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1C.﹣1.5或2 D.﹣0.5或﹣1.5考点:分式方程的解.专题:计算题;压轴题.分析:去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.解答:解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x 的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选D.点评:本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.11.(扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1 D.1和﹣1考点:分式方程的增根.专题:压轴题.分析:增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母(x+1)(x﹣1)=0,所以增根可能是x=1或﹣1.解答:解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选B.点评:求增根只需将最简公分母等于0即可,但有两个或两个以上的增根时需进行检验.12.如图可作为函数y=f(x)的图象的是()A.B.C.D.考点:函数的概念.分析:由函数的概念,对每一个x有唯一的y和x对应.反映在图象上,取平行于y轴的直线x=a与图象始终只有一个交点.解答:解:由函数的定义.A、B、C中都存在x有两个y与x对应,不能构成函数.故选D点评:此题主要考查了对函数的概念、函数图象的理解,属基本概念的考查.13.(金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.考点:函数的图象.专题:压轴题.分析:随着时间的增大,路程也越来越远.经过起步,加速,匀速以及减速后停车,结合选项可得出答案.解答:解:随着时间的增多,路程越来越远.过程为起步、加速、匀速、减速之后停车.函数图象的形态为:缓,陡,缓,停.故选D.点评:应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.14.下列函数:①y=﹣8x、②、③y=8、④y=﹣8x2+6、⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个考点:一次函数的定义.分析:根据一次函数的定义进行逐一分析即可.解答:解:①是一次函数;②自变量次数不为1,故不是一次函数;③是常数函数;④自变量次数不为1,故不是一次函数;⑤是一次函数.∴一次函数有2个.故选B.点评:解题关键是掌握一次函数的定义条件:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.15.(辽宁)下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.考点:一次函数的图象.专题:压轴题.分析:分别根据四个答案中函数的图象求出m的取值范围即可.解答:解:A 、由函数图象可知,,解得,0<m<3;B 、由函数图象可知,,解得,m=3;C 、由函数图象可知,,解得,m<0,m>3,无解;D、由函数图象可知,解得,m<0.故选C.点评:此题比较复杂,解答此题的关键是根据各选项列出方程组,求出无解的一组.16.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较考点:一次函数图象上点的坐标特征.分析:先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.解答:解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.点评:本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.二.填空题(共9小题)17.约分:=;=.考点:约分.分析:先把分子和分母因式分解,再约去分母与分子的公因式,即可得出答案.解答:解:=;==;故答案为:,.点评:此题考查了约分,用到的知识点是分式的基本性质、平方差公式和完全平方公式,注意把结果化到最简.18.(清远)计算:(π﹣3)0+2﹣1=.考点:负整数指数幂;零指数幂.专题:计算题.分析:本题涉及零指数幂、负整数指数幂两个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=(π﹣3)0+2﹣1=1+=.故答案为1.5.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂等考点的运算.19.等腰三角形的周长是16,写出底边长y与一腰长x的函数关系式y=﹣2x+16,自变量x的取值范围是4<x<8.考点:函数关系式.分析:根据等腰三角形的周长、底边和腰长的关系可得函数关系式,根据三角形的两边之和大于第三边,可得自变量x的取值范围.解答:解:由等腰三角形的周长是16,底边长y与一腰长x,可得函数关系式:y=﹣2x+16,∵2x>﹣2x+16,∴自变量x的取值范围是4<x<8,故答案为:y=﹣2x+16,4<x<8.点评:本题考查了函数关系式,三角形的周长减两腰长等于底边长的解析式,三角形两边之和大于第三边得自变量的取值范围.20.(贵州模拟)在函数y=中,自变量的取值范围是x>1.考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:根据题意得,x﹣1≥0且x2﹣1≠0,解得x≥1且x≠±1,所以x>1.故答案为:x>1.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.21.已知函数y=(k﹣1)x+k2﹣1,当k≠1时,它是一次函数,当k=﹣1时,它是正比例函数.考点:一次函数的定义;正比例函数的定义.专题:待定系数法.分析:根据正比例函数的定义可得出k的值及取值范围.解答:解:∵函数y=(k﹣1)x+k2﹣1是一次函数,∴k﹣1≠0,即k≠1;函数y=(k﹣1)x+k2﹣1是正比例函数,则k﹣1≠0,k2﹣1=0,∴k=﹣1.点评:本题考查对正比例函数和一次函数的概念理解.形如y=kx,(k≠0)为正比例函数;y=kx+b,(k≠0)为一次函数.22.(包头)若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=1.考点:一次函数的性质.专题:计算题.分析:由一次函数y=ax+1﹣a中y随x的增大而增大,可以推出a>0,又由于它的图象与y轴交于正半轴可以得到a<1,最后即可确定a的取值范围,于是可以求出题目代数式的结果.解答:解:∵一次函数y=ax+1﹣a中,y随x的增大而增大,∴a>0,∵它的图象与y轴交于正半轴,∴1﹣a>0,即a<1,故0<a<1;∴原式=1﹣a+a=1.故填空答案:1.点评:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.23.(襄阳)若一次函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则k的取值范围是1<k≤2.考点:一次函数图象与系数的关系.专题:计算题.分析:若函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则此函数的x的系数小于0,b≤0.解答:解:∵函数y=2(1﹣k)x+k﹣1的图象不过第一象限,∴2(1﹣k)<0,k﹣1≤0,∴1<k≤2.点评:一次函数的图象经过第几象限,取决于x的系数是大于0或是小于0.24.将直线y=2x沿x轴的正方向平移1个长度单位,得到直线y=2x﹣2.考点:一次函数图象与几何变换.分析:沿x轴正方向平移即是向右平移,根据解析式“左加右减”的平移规律,即可得到平移后的直线解析式.解答:解:将直线y=2x沿x轴的正方向平移1个长度单位,得到直线y=2(x﹣1),即y=2x﹣2.故答案为y=2x﹣2.点评:本题考查一次函数图象与几何变换,掌握解析式的平移规律:左加右减,上加下减是解题的关键.25.直角坐标系中,直线y=2x+3关于原点对称的解析式为y=2x﹣3.考点:中心对称;一次函数图象与几何变换.分析:若两条直线关于原点对称,则这两条直线平行,即k值不变;与y轴的交点关于原点对称,即b值互为相反数.解答:解:直线y=2x+3关于原点对称的解析式为y=2x﹣3.点评:能够数形结合来分析此类型的题,根据图形,发现k和b值之间的关系.三.解答题(共5小题)26.通分:,.考点:通分.专题:计算题.分析:将两分式的分母中的系数取各系数的最小公倍数,相同因式的次数取最高次幂.解答:解:=,=.点评:本题考查了通分.解答此题的关键是熟知找公分母的方法:(1)系数取各系数的最小公倍数;(2)凡出现的因式都要取;(3)相同因式的次数取最高次幂.27.计算:(1);(2)÷(a2﹣4)•.考点:分式的混合运算.专题:计算题.分析:(1)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果.解答:解:(1)原式=1﹣•=1﹣==﹣;(2)原式=••=.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.28.(六合区一模)化简,求值:),其中m=.考点:分式的化简求值.分析:这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式化简,然后再代入求值.分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一.解答:解:原式======.当m=时,原式==.点评:考查了分式的化简求值,本题的关键是化简,然后把给定的m值代入求值.29.(苏州)解分式方程:+=3.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.30.(沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?考点:分式方程的应用.专题:压轴题.分析:根据“甲加工150个零件所用的时间与乙加工120个零件所用时间相等”可得出相等关系,从而只需表示出他们各自的时间就可以了.解答:解:设乙每小时加工机器零件x个,则甲每小时加工机器零件(x+10)个,根据题意得:=,解得x=40,经检验,x=40是原方程的解,x+10=40+10=50.答:甲每小时加工50个零件,乙每小时加工40个零件.点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。
八年级数学下册易错题及答案
八年级下册数学易错题一、选择题:1、如果把分式y x xy+中的x 和y 都扩大2倍,则分式的值( B )A 、扩大4倍B 、扩大2倍C 、不变D 、缩小2倍2、下面函数:①y=-3x ;②y=-x8;③y=4x-5;④y=5x -1;⑤xy=81。
其中反比例函数的个数是( B ) A 、2 B 、3 C 、4 D 、53、下列关系中的两个量成反比例关系的是( C )A 、三角形一边的长与这边上的高;B 、三角形的面积与一边上的高;C 、三角形的面积一定时,一边的长与这边上的高;D 、三角形一边的长不变时,它的面积与这边上的高。
4、若反比例函数y=xk 的图象经过点(-1,2),则这个函数的图象一定经过点( C ) A 、(-2,-1) B 、(-21,2) C 、(2,-1) D 、(21,2)5、当x=-2008时,分式2-11x x +的值为( D )A 、2008B 、-2008C 、20081 D 、20091 6、下列各式正确的是( B )A 、c b a c b a --=B 、cb ac a b ---= C 、c b a c --b a -+=+)( D 、c b a c b a ----= 7、若分式方程3234=++xm mx 的解为x=1,则m 的值为( C ) A 、1 B 、2 C 、3 D 、48、若分式11-2+x x 的值为0,则x 的值为( A )A 、1B 、-1C 、±1D 、0 9、如果分式)(3)(b a b a a ++的值是零,那么ab 满足的条件是( D )A 、a=-bB 、a≠-bC 、a=0D 、a=0且b≠010、计算x 2y 3÷(xy)-2的结果为( C )A 、xyB 、xC 、x 4y 5D 、y11、已知关于x 的函数y=k(x-1)和y=-xk (k≠0),它们在同一坐标系中的图象大致是( B )o x y A o x y Bo x y C o yD 12、如果把分式224y x xy+中的x 和y 都扩大2倍,则分式的值( A )A 、不变B 、扩大2倍C 、扩大4倍D 、缩小2倍13、美是一种感觉,当人体下半身与身高的比值越接近0.618时,越给人一种美感。
八年级下学期课堂错题、难题集锦
八年级1、2班下学期难题、错题集锦(2018.3——7)1、若2=a ,若3=b ,用含有a 、b 的式子表示24= ;54.0=2、已知n 是一个正整数,n 135是整数,则n 的最小值是( )A.3B.5C.15D.253、在二次根式21,12,30,2+x ,240x ,22y x +中,是最简二次根式的共有 个。
4、若2)3(-122=-+a a )(,则a 的取值范围是( )若2)3(-122=--a a )(,则a 的取值范围是( )A.a ≥3B.a ≤1C.1≤a ≤3D.a=1或a=35、不等式(1-3)x>1+3的最大整数解是______6、已知4x y +=-,2xy =7、先化简,再求值:aa a a a a a -+---+-22212112,其中3a =-8、若xy>0,化简二次根式 )若把条件改为xy <0呢?类题:化简(a-1)11-a= 9、求代数式的最大(小)值问题,一般要先配成完全平方式。
(1)x 2-2x-3当x= 时,有最 (填小或大)值是 。
(2)5-2x 2+3x 当x= 时,有最 (填小或大)值是 。
(3)已知关于x 的多项式﹣x 2+mx+4的最大值为5,则m 的值为( )A .±1B .±2C .4D .5(4)若a 为实数,则代数式27-12a+2a 2的最小值为 .10、等腰三角形一条边的边长为3,他的另两条边的边长是关于x 的一元二次方程x 2-12x+k=0的两个根,则k 的值是( )。
A.27B.36C.27或36D. 1811、已知关于x 的一元二次方程x 2+2(m+1)x+m 2-1=0(1)若方程有实数根,求实数m 的取值范围。
(2)若方程两实数根分别为x 1,x 2,且满足(x 1-x 2)2=16-x 1x 2,求实数m 的值。
12、设x 1,x 2是方程x 2-x-2013=0的两实数根,x 13+2014x 2-2013= ;类题:设实数α、β是一元二次方程x 2+x ﹣1=0的两根,则α2﹣β+2的值为 2 .13、①已知关于x 的一元二次方程x 2+ax+b=0有一个非零根﹣b ,则a ﹣b 的值为②若正数a 是一元二次方程x 2﹣5x+m=0的一个根,﹣a 是一元二次方程x 2+5x ﹣m=0的一个根,则a 的值是 ;③已知x =1是一元二次方程ax 2+bx-40=0的一个解,且a ≠b ,则a 2-b 22a-2b 的值为 . ④已知一元二次方程x 2﹣x ﹣2=0的一个根是m ,则2018﹣m 2+m 的值是( )A .2015B .2016C .2018D .2020⑤若α、β是一元二次方程x 2+3x ﹣6=0的两个不相等的根,则α2﹣3β的值是( )A .3B .15C .﹣3D .﹣15⑥设x 1,x 2是方程x 2-x-2013=0的两实数根,x 13+2014x 2-2013=14、若(x 2+y 2+2)(x 2+y 2-1)=0,则x 2+y 2的值为( )A.2或-1 B.-2或1 C.2 D.-1类题1:(x 2+y 2-3)(x 2+y 2+1)=5,则x 2+y 2的值类题2:a ,b 为直角三角形的两条直角边,且满足(a 2+b 2)( a 2+b 2-1)=12,则直角三角形的斜15、已知x 2-xy-2y 2=0,且x ≠0,y ≠0,求代数式x 2+2xy+5y 2的值。
八年级数学下册错题集
精品文档第十六章《二次根式》易错题一、选择题是正整数,计算的值是(n )a>0,b>0时,1.当)+ab(a ﹣b﹣aab)b)D.C.(b(A.b﹣a()B.ab22n+1233nn3n+1D错答:考点:二次根式的性质与化简。
分析:把被开方数分为指数为偶次方的因式的积,再开平方,合并被开方数相同的二次根式.﹣解答:解:原式=a=abb﹣23n+1n)b﹣aa=(b.2nn+13故选B.点评:本题考查的是二次根式的化简.最简二次根式的条件:被开方数中不含开得尽方的因式或因数.点评:解答此题,要弄清二次根式的性质:=|a|,分类讨论的思想.﹣2|﹣2|x﹣|x1|﹣的值为()12.当x<﹣时,C.2A.B.4x﹣64﹣4xD.4x+4C错答:考点:二次根式的性质与化简。
分析:根据x<﹣1,可知2﹣x>0,x﹣1<0,利用开平方和绝对值的性质计算.解答:解:∵x<﹣1∴2﹣x>0,x﹣1<0﹣﹣2|﹣2|x﹣1|∴|x=|x﹣(2﹣x)﹣2|﹣2(1﹣x)=|2(x﹣2)|﹣2(1﹣x)=﹣2(x﹣2)﹣2(1﹣x)精品文档.精品文档=2.故选A.时,=0a=0;时,=﹣a点评:本题主要考查二次根式的化简方法与运用:a>0;时,=a;a<0解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.|+(a<﹣4)的结果是(3.化简)|2a+3.﹣.a+D3aAB.﹣3a .3a ﹣C B错答:考点:二次根式的性质与化简;绝对值。
分析:本题应先讨论绝对值内的数的正负性再去绝对值,而根号内的数可先化简、配方,最后再开根号,将两式相加即可得出结论.解答:解:∵a<﹣4,∴2a<﹣8,a﹣4<0,8+3<<﹣0 ∴2a+3|+原式=|2a+3=|2a+3|+a=﹣3a.3+4﹣=﹣2a﹣故选D.点评:本题考查的是二次根式的化简和绝对值的化简,解此类题目时要充分考虑数的取值范围,再去绝对值,否则容易计算错误.时,化简得().当4x<2y)x2y﹣.x﹣2y)D((C 2yxxA .(﹣)B..C错答:考点:二次根式的性质与化简。
八年级数学下册期末试卷易错题(Word版含答案)
八年级数学下册期末试卷易错题(Word 版含答案)一、选择题1.函数3y x =+中,自变量x 的取值范围是( ) A .x >3 B .x ≥3 C .x >﹣3 D .x ≥﹣3 2.下列几组数中,能作为直角三角形三边长度的是( )A .2,3,4B .4,5,6C .6,8,11D .5,12,133.四边形ABCD 中,对角线AC ,BD 相交于点O ,要使四边形ABCD 是平行四边形,则可以增加条件( ) A .AB CD =,//AD CB B .AO CO =,BO DO = C .AB CD =,BAD BCD ∠=∠D .AB CD =,AO CO =4.某校有17名同学报名参加信息学竞赛,测试成绩各不相同,学校取前8名参加决赛,小童已经知道了自己的成绩,他想知道自己能否参加决赛,还需要知道这17名同学测试成绩的( ) A .中位数B .平均数C .众数D .方差5.如图,在四边形ABCD 中,AC =16,BD =12,且AC ⊥BD ,连接四边形ABCD 各边中点得到四边形EFGH ,下列说法错误的是( )A .四边形EFGH 是矩形B .四边形ABCD 的面积是92C .四边形EFGH 的面积是48D .四边形EFGH 的周长是286.如图,ABCD 的面积是12,E 是边AB 上一点,连结DE ,现将ADE 沿DE 翻折,点A 恰好落在线段AC 上的点F 处,且90BFC ∠=︒,则四边形EBCF 的面积是( )A .4B .4.5C .5D .5.57.如图,在平行四边形ABCD 中,连接AC ,若∠ABC =∠CAD =45°,AB =4,则平行四边形ABCD 的周长是( )A .82B .42+4C .828+D .168.一次函数y =kx +b (k ≠0)的图象经过点B (﹣6,0),且与正比例函数y =13x 的图象交于点A (m ,﹣3),若kx ﹣13x >﹣b ,则( )A .x >0B .x >﹣3C .x >﹣6D .x >﹣9二、填空题9.已知实数x ,y 满足360x y -+-=,则以x ,y 的值为两边长的等腰三角形的周长是_____.10.已知菱形的边长为2cm ,一个内角为60︒,那么该菱形的面积为__________2cm . 11.已知一个直角三角形的两直角边长分别是1和3,则斜边长为________.12.如图,矩形ABCD 的对角线相交于O ,AB =2,∠AOB =60°,则对角线AC 的长为___.13.某生态体验园推出了甲、乙两种消费卡.甲、乙两卡所需费用y 甲,y 乙(单位:元)与入园次数x (单位:次)的函数关系如图所示.当x 满足________时,y y >甲乙.14.如图,在矩形ABCD 中,4AB =,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为__________.15.如图1,在长方形ABCD 中,动点P 从点A 出发,沿A B C D →→→方向运动至D 点处停止,设点P 出发时的速度为每秒cm b ,a 秒后点P 改变速度,以每秒1cm 向点D 运动,直到停止.图2是APD △的面积()2cm S 与时间()s x的图像,则b 的值是_________.16.如图正方形 ABCD 中,E 是 BC 边的中点,将△ABE 沿 AE 对折至△AFE ,延长 EF 交 CD 于 G ,接 CF ,AG .下列结论:① AE ∥FC ; ②∠EAG = 45°,且BE + DG = EG ;③ABCD 19CEF S S ∆=正方形;④ AD = 3DG ,正确是_______ (填序号).三、解答题17.计算题(1)32712+48 (221233 (321233+(130; (451512718.如图,牧童在离河边3km的A处牧马,小屋位于他南6km东9km的B处,他想把他的马牵到河边饮水,然后回小屋.他要完成此过程所走的最短路程是多少?并在图中画出饮水C所在在位置(保留作图痕迹).⨯的正方形网格中,每个小正方形的顶点称为格点.点A,点B都在格点19.如图在55上,按下列要求画图.(1)在图①中,AB为一边画ABC,使点C在格点上,且ABC是轴对称图形;(2)在图②中,AB为一腰画等腰三角形,使点C在格点上;(3)在图③中,AB为底边画等腰三角形,使点C在格点上.20.如图,在矩形AFCG中,BD垂直平分对角线AC,交CG于D,交AF于B,交AC 于O,连接AD,BC.(1)求证:四边形ABCD是菱形;∠的度数.(2)若E为AB的中点,DE AB⊥,求BDC21.(1)观察下列各式的特点:>21323223,>,23525265>…2021202020222021“>”“<”或“=”).(2)观察下列式子的化简过程: 1212121(21)(21)-==-++-, 1323232(32)(32)-==-++-, 14343(43)(43)-=++-=43-, …根据观察,请写出式子11n n +-(n ≥2,且n 是正整数)的化简过程.(3)根据上面(1)(2)得出的规律计算下面的算式:1111||||21323243+++-+-++|114354++-|+•••+|1110099101100-++|.22.我国传统的计重工具——秤的应用,方便了人们的生活,如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x (厘米)时,秤钩所挂物重为y (斤).如表中为若干次称重时所记录的一些数据. x (厘米) 1 2 4 7 y (斤)0.751.001.502.25(1)在图2中将表x ,y 的数据通过描点的方法表示,观察判断x ,y 的函数关系,并求秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少斤?(2)已知秤砣到秤纽的最大水平距离为50厘米,这杆秤的可称物重范围是多少斤?23.已知:如图,平行四边形ABCD 中,AB =5,BD =8,点E 、F 分别在边BC 、CD 上(点E 、F 与平行四边形ABCD 的顶点不重合),CE =CF ,AE =AF . (1)求证:四边形ABCD 是菱形;(2)设BE =x ,AF =y ,求y 关于x 的函数解析式,并写出定义域;(3)如果AE =5,点P 在直线AF 上,△ABP 是以AB 为腰的等腰三角形,那么△ABP 的底边长为 .(请将答案直接填写在空格内)24.请你根据学习函数的经验,完成对函数y=|x|﹣1的图象与性质的探究.下表给出了y 与x的几组对应值.x…﹣3﹣2﹣10123…y…m10﹣1012…【探究】(1)m=;(2)在给出的平面直角坐标系中,描出表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象;(3)根据函数图象,当y随x的增大而增大时,x的取值范围是;【拓展】(4)函数y1=﹣|x|+1的图象与函数y=|x|﹣1的图象交于两点,当y1≥y时,x的取值范围是;(5)函数y2=﹣|x|+b(b>0)的图象与函数y=|x|﹣1的图象围成的四边形的形状是,该四边形的面积为18时,则b的值是.25.已知,△ABC为等边三角形,BC交y轴于点D,A(a,0)、B(b,0),且a、b满足方程269-10++=.a a b(1)如图1,求点A、B的坐标以及CD的长.(2)如图2,点P是AB延长线上一点,点E是CP右侧一点,CP=PE,且∠CPE=60°,连接EB,求证:直线EB必过点D关于x轴的对称点.(3)如图3,若点M在CA延长线上,点N在AB的延长线上,且∠CMD=∠DNA,试求AN-AM的值是否为定值?若是请计算出定值是多少,若不是请说明理由.【参考答案】一、选择题1.D解析:D【分析】根据二次根式的意义,被开方数是非负数即可求解.【详解】解:根据题意得:x+3≥0,解得x≥﹣3.故自变量x的取值范围是x≥﹣3.故选D.【点睛】本题主要考查了二次根式有意义的条件,自变量的取值范围,解题的关键在于能够熟练掌握二次根式有意义的条件.2.D解析:D【分析】利用勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、22+32≠42,故不是直角三角形,故错误;B、42+52≠62,故不是直角三角形,故错误;C、62+82≠112,故不是直角三角形,故错误;D、52+122=132,故是直角三角形,故正确.故选D.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.解析:B 【解析】 【分析】根据平行四边形的判定条件,对选项进行逐一判断即可得到答案. 【详解】解:A 、如下图所示AB CD =,//AD CB ,四边形ABCD 是一个等腰梯形,此选项错误;B 、如下图所示,AO CO =,BO DO =,即四边形的对角线互相平分,故四边形ABCD 是平行四边形,此选项正确;C 、AB CD =,BAD BCD ∠=∠,并不能证明四边形ABCD 是平行四边形,此选项错误; D 、AB CD =,AO CO =,并不能证明四边形ABCD 是平行四边形,此选项错误; 故选B. 【点睛】本题主要考查了平行四边形的判定,解题的关键在于掌握平行四边形的五种判定方法.4.A解析:A 【解析】 【分析】由于比赛取前8名参加决赛,共有17名选手参加,根据中位数的意义分析即可. 【详解】解:由于总共有17个人,且他们的分数互不相同,第9名的成绩是中位数, 要判断是否进入前8名,故应知道自己的成绩和中位数. 故选:A . 【点睛】本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数.解析:B 【分析】利用三角形的中位线定理证得四边形EFGH 为平行四边形,然后利用有一个角是直角的平行四边形是矩形可判断选项A 是否正确;由AC =8,BD =6,且AC ⊥BD ,可求出四边形EFGH 和ABCD 的面积,由此可判断选项CD 是否正确;题目给出的数据求出四边形EFGH 的周长,所以选项B 不符合题意. 【详解】解:∵点E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点, ∴EF =12AC ,GH =12AC , ∴EF =GH ,同理EH =FG ∴四边形EFGH 是平行四边形; 又∵对角线AC 、BD 互相垂直, ∴EF 与FG 垂直.∴四边形EFGH 是矩形,故选项A 正确,不符合题意; ∵AC =16,BD =12,且AC ⊥BD ,∴四边形ABCD 的面积=12AC •BD =96,故选项B 错误,符合题意; ∵四边形EFGH 是矩形,且HG =12AC =8,HE =12BD =6, ∴四边形EFGH 的面积6×8=48,故选项C 正确,不符合题意; ∵EF =12AC =8,HE =12BD =6,∴四边形EFGH 的周长=2(6+8)=28,所以选项D 正确,不符合题意, 故选:B . 【点睛】本题考查了中点四边形的知识,解题的关键是灵活运用三角形的中位线定理,平行四边形的判断及矩形的判断进行证明,是一道综合题.6.A解析:A 【解析】 【分析】设DE 与AC 交于H ,由折叠的性质可知,AH =HF ,∠AHD =90°,AE =EF ,再由直角三角形斜边上的中线等于斜边的一半可以得到AE =BE ,再证明△DAH ≌△BCF ,得到AH =CF =HF ,则13CF AC =,23AF AC =,从而得出1=23FBC ABC S S =△△,2=43FBA ABC S S =△△,1=22BEF ABF S S =△△.【详解】解:设DE 与AC 交于H ,由折叠的性质可知,AH =HF ,∠AHD =90°,AE =EF∵∠BFC =90°,∴∠BFC =∠DHA =∠AFB =90°, ∴EF 是直角三角形AFB 的中线, ∴AE =BE , ∴=AEF BEF S S △△,∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,1=62ABC ABCDS S=△∴∠DAH =∠BCF , ∴△DAH ≌△BCF (AAS ), ∴AH =CF =HF , ∴13CF AC =,23AF AC =, ∴1=23FBC ABC S S =△△,2=43FBA ABC S S =△△,∴1=22BEF ABF S S =△△,∴=4BEF FBC EBCF S S S +=△△四边形, 故选A .【点睛】本题主要考查了平行四边形的性质,全等三角形的性质与判定,折叠的性质,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.7.C解析:C 【解析】 【分析】由平行四边形的性质可求∠B =∠D =45°,AB =CD =4,AD =BC ,由等角对等边可得AC =CD =4,∠ACD =90°,在Rt △ACD 中,由勾股定理可求AD 的长,即可求解. 【详解】解:∵四边形ABCD 是平行四边形, ∴∠B =∠D =45°,AB =CD =4,AD =BC , ∴∠CAD =∠D =45°,∴AC=CD=4,∠ACD=90°,∴AD=∴平行四边形ABCD的周长=2×(CD+AD)=2×(4+8+,故选:C.【点睛】本题考查了平行四边形的性质,勾股定理等知识,利用勾股定理求出AD的长是解题的关键.8.D解析:D【分析】先利用正比例函数解析式,确定A点坐标;然后利用函数图像,写出一次函数y=kx+b(k≠0)的图像,在正比例函数图像上方所对应的自变量的范围.【详解】解:把A(m,﹣3)代入y=13x得13m=﹣3,解得m=﹣9,所以当x>﹣9时,kx+b>13 x,即kx﹣13x>﹣b的解集为x>﹣9.故选D.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图像的角度看,就是确定直线y=kx+b 在x轴上(或下)方部分所有的点的横坐标所构成的集合.二、填空题9.15【解析】【分析】根据绝对值及二次根式的非负性可得出x、y的值,由三角形三边关系可确定等腰三角形的三边长度,将其相加即可得出结论.【详解】∵实数x,y满足30x-,∴x=3,y=6,∵3、3、6不能组成三角形,∴等腰三角形的三边长分别为3、6、6,∴等腰三角形周长为:3+6+6=15,故答案是:15.【点睛】本题考查了等腰三角形的定义、二次根式(绝对值)的非负性以及三角形三边关系,根据绝对值及二次根式非负性结合三角形的三边关系找出等腰三角形的三条边的长度是解题的关键.10.A 解析:23【解析】【分析】连接AC ,过点A 作AM ⊥BC 于点M ,根据菱形的面积公式即可求出答案.【详解】解:过点A 作AM ⊥BC 于点M ,∵菱形的边长为2cm ,∴AB =BC =2cm ,∵有一个内角是60°,∴∠ABC =60°,∴∠BAM =30°,∴112BM AB ==(cm ), ∴223AM AB BM -cm ),∴此菱形的面积为:233=cm 2).故答案为:23【点睛】本题主要考查了菱形的性质和30°直角三角形性质,解题的关键是熟练运用菱形的性质,本题属于基础题型. 1110【解析】【分析】利用勾股定理计算即可.【详解】解:∵直角三角形的两直角边长分别是1和3,∴斜边2213+1010【点睛】本题考查勾股定理,解题的关键是记住勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.12.A解析:4【分析】根据矩形的性质可得OA =OB 、AC =2OA ,再结合∠AOB =60°可得三角形AOB 为等边三角形,则OA =AB =2,最后根据 AC =2OA 解答即可.【详解】解:∵四边形是矩形,∴OA =OB ,AC =2OA又∵∠AOB =60°,∴△AOB 为等边三角形,∴OA =AB =2,∴AC =2OA =2×2=4.故填4.【点睛】本题主要考查了矩形的性质、等边三角形的判定与性质等知识点,灵活运用等边三角形的判定与性质是解答本题的关键.13.x >10【分析】运用待定系数法,即可求出y 与x 之间的函数表达式,联立方程组解答即可求出两直线的交点坐标,根据函数图象回答即可.【详解】解:设y 甲=k 1x ,根据题意得5k 1=100,解得k 1=20,∴y 甲=20x ;设y 乙=k 2x +100,根据题意得:20k 2+100=300,解得k 2=10,∴y 乙=10x +100;解方程组2010100y x y x =⎧⎨=+⎩,解得10200x y =⎧⎨=⎩, ∴两直线的交点坐标为(10,200);根据图象可知:当x >10时,y y >甲乙.故答案为:x >10.【点睛】本题主要考查了一次函数的应用、学会利用方程组求两个函数图象的解得交点坐标,正确由图象得出正确信息是解题关键.14.A解析:【分析】结合题意,由矩形的性质和线段垂直平分线的性质可得AB=AO=OB=OD=4,根据勾股定理可求AD 的长.【详解】∵四边形ABCD 是矩形,∴AO=BO=CO=DO ,∵AE 垂直平分OB 于点E ,∴AO=AB=4,∴AO=OB=AB=4,∴BD=8,在Rt △ABD 中故答案为【点睛】本题考查矩形的性质和线段垂直平分线的性质,解题的关键是掌握矩形的性质和线段垂直平分线的性质.15.【分析】根据图像,结合题意,先求出AD 的长,再根据三角形的面积公式求出a ,即可求出b 的值.【详解】解:由函数图像可知:时,点P 在AB 上,,点P 在BC 上,时,点P 在CD 上,∴,∵,∴解得 解析:43【分析】根据图像,结合题意,先求出AD 的长,再根据三角形的面积公式求出a ,即可求出b 的值.【详解】解:由函数图像可知:010x ≤≤时,点P 在AB 上,1016x <≤,点P 在BC 上,16x >时,点P 在CD 上,∴()161016cm BC AD =-⨯==, ∵()110136242AD a -⨯=-, ∴解得6a =,又∵1242AD ab =,即166242b ⨯⨯= ∴43b =,故答案为:43. 【点睛】本题主要考查了动点问题的函数图像,解题的关键在于能够准确从函数图像中获取信息求解.16.①②④【分析】①根据折叠得△ABE ≌△AFE ,证明△EFC 是等腰三角形,得到∠EFC=∠ECF ,根据∠BEF=∠EFC+∠FEC ,得出∠BEA=∠AEF=∠EFC=∠ECF ,即可证明AE ∥FC , 解析:①②④【分析】①根据折叠得△ABE ≌△AFE ,证明△EFC 是等腰三角形,得到∠EFC=∠ECF ,根据∠BEF=∠EFC+∠FEC ,得出∠BEA=∠AEF=∠EFC=∠ECF ,即可证明AE ∥FC ,故①正确;②根据四边形ABCD 是正方形,且△ABE ≌△AFE ,证明Rt △AFG ≌Rt △ADG ,得出∠FAG=∠GAD ,根据∠BAF+∠FAD=90°,推出∠EAF+∠FAG=45°,可得∠EAG=45°,根据全等得:BE=FE ,DG=FG ,即可得BE+DG=EF+GF=EG ,故②正确;③先求出S △ECG ,根据EF :FG=2a :3a =3:2,得出S △EFC :S △FCG =3:2,即S △EFC =2110a ,再根据S ABCD =a 2,得出S △CEF :S △ABCD =2110a :2a ,即S △CEF =110S ABCD ,故③错误;④设正方形的边长为a ,根据勾股定理得,设DG=x ,则CG=a-x ,FG=x ,EG=2a +x ,再根据勾股定理求出x ,即可得出结论,故④正确.【详解】解:①由折叠可得△ABE ≌△AFE ,∴∠BEA=∠AEF ,BE=EF ,∵E 是BC 中点,∴BE=CE=EF ,∴△EFC 是等腰三角形,∴∠EFC=∠ECF ,∵∠BEF=∠EFC+∠FEC ,∴∠BEA=∠AEF=∠EFC=∠ECF ,∴AE ∥FC ,故①正确;②∵四边形ABCD 是正方形,且△ABE ≌△AFE ,∴AB=AF=AD ,∠B=∠D=∠AFG ,∴△AFG 和△ADG 是直角三角形,∴在Rt △AFG 和Rt △ADG 中AF AD AG AG ==⎧⎨⎩, ∴Rt △AFG ≌Rt △ADG (HL ),∴∠FAG=∠GAD ,又∵∠BAF+∠FAD=90°,∴2∠EAF+2∠FAG=90°,即∠EAF+∠FAG=45°,∴∠EAG=45°,由全等得:BE=FE ,DG=FG ,∴BE+DG=EF+GF=EG ,故②正确;③对于Rt △ECG ,S △ECG =12×EC×CG=12×2a ×23a =216a , ∵EF :FG=2a :3a =3:2, 则S △EFC :S △FCG =3:2,即S △EFC =2110a , 又∵S ABCD =a 2,则S △CEF :S △ABCD =2110a :2a ,即S △CEF =110S ABCD ,故③错误; ④设正方形的边长为a ,∴AB=AD=AF=a ,BE=EF=2a =EC ,由勾股定理得, 设DG=x ,则CG=a-x ,FG=x , EG=2a +x , ∴EG 2=EC 2+CG 2,即(2a +x )2=(2a )2+(a-x )2, 解得x=3a ,CG=23a , 即AD=3DG 成立,故④正确.【点睛】本题考查了正方形的折叠问题,等腰三角形的判定和性质,平行线的判定,全等三角形的判定和性质,勾股定理,掌握这些知识点灵活运用是解题关键.三、解答题17.(1);(2);(3);(4)【分析】(1)根据立方根以及二次根式的加减运算求解即可;(2)根据二次根式的四则运算求解即可;(3)根据二次根式的除法以及零指数幂的运算求解即可;(4)根据平解析:(1)3-+2)63)6;(4)4-【分析】(1)根据立方根以及二次根式的加减运算求解即可;(2)根据二次根式的四则运算求解即可;(3)根据二次根式的除法以及零指数幂的运算求解即可;(4)根据平方差公式以及二次根式的加减运算,求解即可.【详解】解:(1)313=-+=-+(2)6==;(30(122116=⨯++=;(4)1)514=---【点睛】此题考查了二次根式的四则运算,涉及了零指数幂、立方根以及平方差公式,解题的关键是熟练掌握二次根式的有关运算.18.最短路程是;画图见解析.【分析】先作关于的对称点,连接,构建直角三角形,利用勾股定理即可得出答案.【详解】解:如图,作出点关于的对称点,连接交于点,则点是马饮水的位置, 根据对称性可得,,解析:最短路程是15km ;画图见解析.【分析】先作A 关于MN 的对称点,连接A B ',构建直角三角形,利用勾股定理即可得出答案.【详解】解:如图,作出A 点关于MN 的对称点A ',连接A B '交MN 于点C ,则点C 是马饮水的位置,根据对称性可得AC A C '=,326km AA '=⨯=,则A B A C BC ''=+,∴A B AC BC '=+,由已知得6km OA =,9km OB =,6612km A O A A AO ''=+=+=,在Rt A OB '△中,由勾股定理求得15km A B ',即15km AC BC +=,答:他要完成这件事情所走的最短路程是15km ,饮水C 所在位置.【点睛】本题考查的是勾股定理和轴对称在实际生活中的运用,需要同学们联系实际,题目是一道比较典型的题目,难度适中.19.(1)见详解;(2)见详解;(3)见详解.【解析】【分析】(1)先根据以AB为边△ABC是轴对称图形,得出△ABC为等腰三角形,AB长为3,画以AB为腰的等腰直角三角形即可;(2)先根据勾股解析:(1)见详解;(2)见详解;(3)见详解.【解析】【分析】(1)先根据以AB为边△ABC是轴对称图形,得出△ABC为等腰三角形,AB长为3,画以AB为腰的等腰直角三角形即可;(2)先根据勾股定理求出AB的长,利用平移画出点C即可;(3)先求出以AB为底等腰直角三角形腰长AC=5,利用平移作出点C即可.【详解】解:(1)∵以AB为边△ABC是轴对称图形,∴△ABC为等腰三角形,AB长为3,画以AB为直角边,点B为直角顶点△ABC如图也可画以AB为直角边,点A为直角顶点△ABC如图;(2)根据勾股定理AB22+1310AB10A为顶角顶点根据勾股定理构建横1竖3,或横3竖1;点A向左1格再向下平移3格得C1,连结AC1,C1B,得等腰△ABC1,点A 向右3格再向上平移1格得C2,连结AC2,BC2,得等腰△ABC2,点A向右3格再向下平移1格得C3,连结AC3,BC3,得等腰△ABC3,点B向右3格再向上平移1格得C4,连结AC4,BC4,得等腰△ABC4,点B向右3格再向下平移1格得C5,连结AC5,BC5,得等腰△ABC5,点B向右1格再向上平移3格得C6,连结AC6,BC6,得等腰△ABC6;(3)AB为底边画等腰三角形,等腰直角三角形腰长为m,根据勾股定理222=+,AB AC BC即222m=,根据勾股定理AC=5,横1竖2,或横2竖1得图形,10+=,解得5m m点A向右平移2格,再向下平移1格得点C1,连结AC1,BC1,得等腰三角形ABC1,点A 向左平移1格,再向下平移2格得点C2,连结AC2,BC2,得等腰三角形ABC2.【点睛】本题考查网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质,轴对称性质,掌握网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质,轴对称性质是解题关键.20.(1)见解析;(2)60°【分析】(1)根据垂直平分线的性质,可以得到,,,由矩形的性质,得到,根据平行线的性质,利用证明从而得到,结合上步所求,由四边相等的四边形是菱形即可得出结论(2)由解析:(1)见解析;(2)60°【分析】(1)根据垂直平分线的性质,可以得到OA OC =,AD CD =,AB BC =,由矩形的性质,得到//CG AF , 根据平行线的性质,利用AAS 证明COD AOB △△≌从而得到CD AB =,结合上步所求,由四边相等的四边形是菱形即可得出结论(2)由题意,可以得到DE 垂直平分,AB 从而得出AD DB =,结合题意可得DBA ∠ 的度数,进而求得BDC ∠的度数【详解】(1)证明:BD 垂直平分AC ,OA OC ∴=,AD CD =,AB BC =,四边形AFCG 是矩形,//CG AF ∴,CDO ABO ∴∠=∠,DCO BAO ∠=∠,COD AOB ∴△≌△,CD AB ∴=,AB BC CD DA ∴===,∴四边形ABCD 是菱形.(2)E 为AB 中点,DE AB ⊥,DE ∴垂直平分AB ,AD DB ∴=, =AD AB ,ADB ∴为等边三角形,60DBA ∴∠=︒,//CD AB ,60BDC DBA ∴∠=∠=︒.【点睛】本题主要考查了矩形的性质,平行线的性质,全等三角形的判定,菱形的判定,等边三角形的判定和性质,熟练掌握这些性质及判定定理是解题关键.21.(1)>;(2)见解析;(3)【解析】【分析】(1)根据题目所给的例题大小关系可直接得到答案;(2)把分子分母同时乘以,然后化简即可得到答案;(3)根据(2)中的规律可得,,,分别把绝对值解析:(1)>;(2)见解析;(39【解析】【分析】(1)根据题目所给的例题大小关系可直接得到答案;(2(3)根据(21==⋯,【详解】解:(1)∵…,∴∴>故答案为:>;(2(3)原式|1)||||| =-+-++⋯+-1)=-+-+⋯+-1)=-1109.【点睛】此题主要考查了分母有理化,关键是注意观察题目所给的例题,找出其中的规律,然后再进行计算.22.(1),4.5斤;(2)最多13斤.【分析】(1)根据表中数据利用描点法在图二中画图,可得出x,y满足一次函数的变化关系,设函数关系式为,利用待定系数法求解即可;(2)根据秤砣到秤纽的最大水平解析:(1)1142y x=+,4.5斤;(2)最多13斤.【分析】(1)根据表中数据利用描点法在图二中画图,可得出x,y满足一次函数的变化关系,设函数关系式为y kx b=+,利用待定系数法求解即可;(2)根据秤砣到秤纽的最大水平距离为50厘米可知50x≤,求出y的取值范围即可.【详解】解:(1)利用描点法画出图像如下,观察图象可知x ,y 满足一次函数的变化关系,设y kx b =+,把107521x y .x y ====,,,,代入可得:0.7512k b k b =+⎧⎨=+⎩, 解得1412k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴1142y x =+, 当16x =时, 4.5y =,∴秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤;(2)由题意可得50x ≤ , 所以可得:311142x +≤, 即13y ≤,∴这杆秤的可称物重范围是13斤以内.【点睛】本题考查了一次函数的图象及应用,待定系数法,一元一次不等式等知识,利用数形结合的思想是解题的关键.23.(1)见解析;(2);(3)8或或6【分析】(1)连结,证明,得到相等的角,再由平行线的性质证明,从而得,由菱形的定义判定四边形是菱形;(2)连结,交于点,作于点,由菱形的面积及边长求出菱形的解析:(1)见解析;(2);(3)8或或6【分析】(1)连结AC ,证明,得到相等的角,再由平行线的性质证明,从而得,由菱形的定义判定四边形ABCD 是菱形;(2)连结AC,交BD于点H,作于点G,由菱形的面积及边长求出菱形的高,再求BG的长,由勾股定理列出关于x、y的等式,整理得到y关于x的函数解析式;(3)以AB为腰的等腰三角形分三种情况,其中有两种情况是等腰三角形与或全等,另一种情况可由(2)中求得的菱形ABCD的高求出BG的长,再求等腰三角形的底边长.【详解】解:(1)证明:如图1,连结AC,,,,,,即;四边形ABCD是平行四边形,∴,AB CD//,,,∴四边形ABCD是菱形(2)如图2,连结AC,交BD于点H,作于点G,则,由(1)得,四边形ABCD是菱形,,,,,,,由,且,得,解得;,,由,且,得,点E在BC边上且不与点B、C重合,,关于x的函数解析式为,(3)如图3,,且点P在的延长线上,,,,,,,,,,,,,,AB AD,,,即等腰三角形的底边长为8;如图4,,作于点M,于点G,则,,,,,,由(2)得,,,,即等腰三角形的底边长为;如图5,,点P与点F重合,连结AC,,,,,,即,等腰三角形的底边长为6.综上所述,以AB为腰的等腰三角形的底边长为8或或6,故答案为:8或或6.【点睛】此题重点考查菱形的性质、全等三角形的判定与性质、等腰三角形的判定、勾股定理、求与几何图形有关的函数关系式等知识与方法,在解第(3)题时,需要进行分类讨论,求出所有符合条件的值,以免丢解.24.(1)2;(2)见解析;(3)x≥0;(4)﹣1≤x≤1;(5)正方形;5【解析】【分析】(1)把x=﹣3代入y=|x|﹣1,即可求出m;(2)描点连线画出该函数的图象即可求解;(3)根据解析:(1)2;(2)见解析;(3)x≥0;(4)﹣1≤x≤1;(5)正方形;5【解析】【分析】(1)把x=﹣3代入y=|x|﹣1,即可求出m;(2)描点连线画出该函数的图象即可求解;(3)根据图象即可解答;(4)画出函数y1=﹣|x|+1的图象,根据图象即可得当y1≥y时,x的取值范围;(5)取b=3,在同一平面直角坐标系中画出y2=﹣|x|+3的图象,结合y1=﹣|x|+1的图象可得围成的四边形的形状是正方形,根据正方形的面积公式即可求解.【详解】解:(1)①把x=﹣3代入y=|x|﹣1,得m=3﹣1=2,故答案为:2;(2)该函数的图象如图,(3)根据函数图象,当y随x的增大而增大时,x的取值范围是x≥0,故答案为:x≥0;(4)画出函数y1=﹣|x|+1的图象如图,由图象得:当y1≥y时,x的取值范围为﹣1≤x≤1,故答案为:﹣1≤x≤1;(5)取b=3,在同一平面直角坐标系中画出y2=﹣|x|+3的图象,如图:由图象得:y1=﹣|x|+1的图象与函数y=|x|﹣1的图象围成的四边形的形状是正方形,y2=﹣|x|+3的图象与函数y=|x|﹣1的图象围成的四边形的形状是正方形,∴函数y2=﹣|x|+b(b>0)的图象与函数y=|x|﹣1的图象围成的四边形的形状是正方形,∵y=|x|﹣1,y2=﹣|x|+b(b>0),∴y与y2的图象围成的正方形的对角线长为b+1,∵该四边形的面积为18,∴1(b+1)2=18,2解得:b=5(负值舍去),故答案为:正方形,5.【点睛】本题是一次函数综合题,考查了一次函数的图象与性质,一次函数图象上点的坐标特征,利用了数形结合思想.正确画出函数的图象是解题的关键.25.(1)A (﹣3,0),B (1,0),CD =2;(2)证明见详解;(3)6,理由见详解;【分析】(1)由题意可知:a=-3,b=1,OA =3,OB =1,AB =BC =AC =4,在Rt △ODB 中,求出解析:(1)A (﹣3,0),B (1,0),CD =2;(2)证明见详解;(3)6,理由见详解;【分析】(1)由题意可知:a =-3,b =1,OA =3,OB =1,AB =BC =AC =4,在Rt △ODB 中,求出OD ,DB 即可解决问题.(2)如图2中,连接EC ,设BE 交PC 于K .由△ACP ≌△BCE (SAS ),推出∠APC =∠CEB ,可证∠KBP =∠KCE =60°勾股定理求出OF ,可得D ,F 关于x 轴对称,即可解决问题;(3)如图3中,作DH ⊥AC 于H .想办法证明△DHM ≌△DON 即可解决问题;【详解】解:(1)∵269-10a a b +++=∴23-10a b ++=()∴a =-3,b =1,∴A (﹣3,0),B (1,0),如图1中,∵△ABC 是等边三角形,∴∠ABC =60°,AB =BC =AC ,∵A (﹣3,0),B (1,0),∴OA =3,OB =1,∴AB =BC =AC =4,在Rt △ODB 中,30,ODB ∠=︒2,BD ∴=∴CD =BC ﹣BD =2.(2)如图2中,连接EC ,设BE 交PC 于K .∵CP=PE,∠CPE=60°,∴△CPE是等边三角形,∴∠PCE=60°,CP=CE,∵△ABC是等边三角形,∴∠ACB=∠PCE=60°,∴∠ACP=∠BCE,∵CA=CB,CP=CE,∴△ACP≌△BCE(SAS),∴∠APC=∠CEB,∵∠PKB=∠EKC,∠ECK+∠CKE+∠CEK=180°,∠KBP+∠PKB+∠KPB=180°,∴∠KBP=∠KCE=60°,∴∠OBF=∠PBK=60°,∵∠BOF=90°,OB=1,∴BF=2∴OF=22413-=-=,BF OB∵223,=-=OD BD OB∴OD=OF,∴D,F关于x轴对称,∴直线EB必过点D关于x轴的对称点.(3)是定值,理由如下:如图3中,作DH⊥AC于H.在Rt△CDH中,∵∠CHD=90°,∠C=60°,CD=2,∴CH=1,∴DH=∴AH=3,∵OD∴DH=OD,∵∠DHM=∠DON,∠M=∠DNO,∴△DHM≌△DON(AAS),∴HM=ON,∴AN﹣AM=OA+ON﹣(HM﹣AH)=3+3=6.【点睛】本题属于三角形综合题,考查了等边三角形的性质和判定,解直角三角形,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
数学八年级下册经典易错题集附答案解析
八年级下易错题集(一)一.选择题(共16小题)1.代数式中,分式的个数是()A.1B.2C.3D.42.已知对任意实数x,式子都有意义,则实数m的取值范围是()A.m>4 B.m<4 C.m≥4 D.m≤4 3.(龙岩模拟)当式子的值为零时,x等于()A.4B.﹣3 C.﹣1或3 D.3或﹣3 4.若分式的值为正,则x的取值范围是()A.x>0 B.x>﹣C.x≠﹣D.x>﹣且x≠05.分式中的x,y同时扩大3倍,则分式的值()A.不变B.是原来的3倍C.是原来的4倍D.是原来的6.下面各分式:,其中最简分式有()个.A.4B.3C.2D.17.(眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.分钟D.分钟8.计算的结果为()A.a2B.C.D.9.计算的结果是()A.1B.﹣1 C.D.10.(鸡西)若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1C.﹣1.5或2 D.﹣0.5或﹣1.5 11.(扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1 D.1和﹣1 12.如图可作为函数y=f(x)的图象的是()A.B.C.D.13.(金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.14.下列函数:①y=﹣8x、②、③y=8、④y=﹣8x2+6、⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个15.(辽宁)下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.16.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较二.填空题(共9小题)17.约分:=_________;=_________.18.(清远)计算:(π﹣3)0+2﹣1=_________.19.等腰三角形的周长是16,写出底边长y与一腰长x的函数关系式____,自变量x的取值范围是________.20.(贵州模拟)在函数y=中,自变量的取值范围是_________.21.已知函数y=(k﹣1)x+k2﹣1,当k_________时,它是一次函数,当k=_______时,它是正比例函数.22.(包头)若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=_________.23.(襄阳)若一次函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则k的取值范围是_________.24.将直线y=2x沿x轴的正方向平移1个长度单位,得到直线_________.25.直角坐标系中,直线y=2x+3关于原点对称的解析式为_________.三.解答题(共5小题)26.通分:,.27.计算:(1);(2)÷(a2﹣4)•.28.(六合区一模)化简,求值:),其中m=.29.(苏州)解分式方程:+=3.30.(沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?参考答案与试题解析一.选择题(共16小题)1.代数式中,分式的个数是()A.1B.2C.3D.4考点:分式的定义.分析:找到分母中含有字母的式子的个数即可.解答:解:分式共有2个,故选B.点评:本题主要考查分式的定义,分母中含有字母的式子就是分式,注意π不是字母,是常数.2.已知对任意实数x,式子都有意义,则实数m的取值范围是()A.m>4 B.m<4 C.m≥4 D.m≤4考点:分式有意义的条件.专题:常规题型.分析:先把分母配方,然后根据分母不等于0结合平方数非负数解答即可.解答:解:∵x2﹣4x+m=(x﹣2)2+m﹣4,∵(x﹣2)2≥0,对任意实数式子都有意义,∴m﹣4>0,解得m>4.故选A.点评:本题考查了分式有意义的条件,熟记分式有意义⇔分母不为零,并利用配方法对分母进行整理是解题的关键.3.(龙岩模拟)当式子的值为零时,x等于()A.4B.﹣3 C.﹣1或3 D.3或﹣3考点:分式的值为零的条件.分析:根据分式为零,分子等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,|x|﹣3=0,解得x=3或﹣3,又x2﹣2x﹣3≠0,解得x1≠﹣1,x2≠3,所以,x=﹣3.故选B.点评:本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.若分式的值为正,则x的取值范围是()A.x>0 B.x>﹣C.x≠﹣D.x>﹣且x≠0考点:分式的值.专题:计算题.分析:根据分式的性质列出不等式组解此不等式组即可.解答:解:由分式的性质可得,解得x>﹣且x≠0,故选D.点评:本题考查不等式的解法和分式的取值,注意分式的分母不能为0,比较简单.5.分式中的x,y同时扩大3倍,则分式的值()A.不变B.是原来的3倍C.是原来的4倍D.是原来的考点:分式的基本性质.分析:x,y都扩大3倍就是分别变成原来的3倍,变成3x和3y,用3x和3y代替式子中的x和y,看得到的式子与原来的式子的关系.解答:解:用3x和3y代替式子中的x和y得:,则分式是原来的3倍.故选B.点评:解题的关键是抓住分子、分母变化的倍数.解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6.下面各分式:,其中最简分式有()个.A.4B.3C.2D.1考点:最简分式.分析:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解答:解:;=;;分子分母没有公因式,是最简分式.故选D.点评:判断一个分式是最简分式,主要看分式的分子分母是不是有公因式.7.(眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.分钟D.分钟考点:列代数式(分式).专题:应用题.分析:由题意可知收费为=a+(打长途电话的时间﹣1)b.解答:解:设此人打长途电话的时间是x分钟,则有a+b(x﹣1)=8,解得:x=.故选C.点评:注意此题的分类收费方式.找到相应的量的等量关系是解决问题的关键.8.计算的结果为()A.a2B.C.D.考点:分式的乘除法.专题:计算题.分析:先把除法转化成乘法,再根据分式的乘法法则进行计算即可.解答:解:=a2××=.故选B.点评:本题考查了分式的乘除法的应用,主要考查学生的计算能力,题目比较好,但是一道比较容易出错的题目.9.计算的结果是()A.1B.﹣1 C.D.考点:分式的加减法.专题:计算题.分析:几个分式相加减,根据分式加减法则进行运算,如果分式分母互为相反数,则先将其变为同分母分数,然后再直接相加减即可.解答:解:,故选B.点评:在进行分式的加减运算时,应注意分式符号的改变.10.(鸡西)若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1C.﹣1.5或2 D.﹣0.5或﹣1.5考点:分式方程的解.专题:计算题;压轴题.分析:去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.解答:解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x 的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选D.点评:本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.11.(扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1 D.1和﹣1考点:分式方程的增根.专题:压轴题.分析:增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母(x+1)(x﹣1)=0,所以增根可能是x=1或﹣1.解答:解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选B.点评:求增根只需将最简公分母等于0即可,但有两个或两个以上的增根时需进行检验.12.如图可作为函数y=f(x)的图象的是()A.B.C.D.考点:函数的概念.分析:由函数的概念,对每一个x有唯一的y和x对应.反映在图象上,取平行于y轴的直线x=a与图象始终只有一个交点.解答:解:由函数的定义.A、B、C中都存在x有两个y与x对应,不能构成函数.故选D点评:此题主要考查了对函数的概念、函数图象的理解,属基本概念的考查.13.(金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.考点:函数的图象.专题:压轴题.分析:随着时间的增大,路程也越来越远.经过起步,加速,匀速以及减速后停车,结合选项可得出答案.解答:解:随着时间的增多,路程越来越远.过程为起步、加速、匀速、减速之后停车.函数图象的形态为:缓,陡,缓,停.故选D.点评:应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.14.下列函数:①y=﹣8x、②、③y=8、④y=﹣8x2+6、⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个考点:一次函数的定义.分析:根据一次函数的定义进行逐一分析即可.解答:解:①是一次函数;②自变量次数不为1,故不是一次函数;③是常数函数;④自变量次数不为1,故不是一次函数;⑤是一次函数.∴一次函数有2个.故选B.点评:解题关键是掌握一次函数的定义条件:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.15.(辽宁)下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.考点:一次函数的图象.专题:压轴题.分析:分别根据四个答案中函数的图象求出m的取值范围即可.解答:解:A 、由函数图象可知,,解得,0<m<3;B 、由函数图象可知,,解得,m=3;C 、由函数图象可知,,解得,m<0,m>3,无解;D、由函数图象可知,解得,m<0.故选C.点评:此题比较复杂,解答此题的关键是根据各选项列出方程组,求出无解的一组.16.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较考点:一次函数图象上点的坐标特征.分析:先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.解答:解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.点评:本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.二.填空题(共9小题)17.约分:=;=.考点:约分.分析:先把分子和分母因式分解,再约去分母与分子的公因式,即可得出答案.解答:解:=;==;故答案为:,.点评:此题考查了约分,用到的知识点是分式的基本性质、平方差公式和完全平方公式,注意把结果化到最简.18.(清远)计算:(π﹣3)0+2﹣1=.考点:负整数指数幂;零指数幂.专题:计算题.分析:本题涉及零指数幂、负整数指数幂两个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=(π﹣3)0+2﹣1=1+=.故答案为1.5.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂等考点的运算.19.等腰三角形的周长是16,写出底边长y与一腰长x的函数关系式y=﹣2x+16,自变量x的取值范围是4<x<8.考点:函数关系式.分析:根据等腰三角形的周长、底边和腰长的关系可得函数关系式,根据三角形的两边之和大于第三边,可得自变量x的取值范围.解答:解:由等腰三角形的周长是16,底边长y与一腰长x,可得函数关系式:y=﹣2x+16,∵2x>﹣2x+16,∴自变量x的取值范围是4<x<8,故答案为:y=﹣2x+16,4<x<8.点评:本题考查了函数关系式,三角形的周长减两腰长等于底边长的解析式,三角形两边之和大于第三边得自变量的取值范围.20.(贵州模拟)在函数y=中,自变量的取值范围是x>1.考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:根据题意得,x﹣1≥0且x2﹣1≠0,解得x≥1且x≠±1,所以x>1.故答案为:x>1.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.21.已知函数y=(k﹣1)x+k2﹣1,当k≠1时,它是一次函数,当k=﹣1时,它是正比例函数.考点:一次函数的定义;正比例函数的定义.专题:待定系数法.分析:根据正比例函数的定义可得出k的值及取值范围.解答:解:∵函数y=(k﹣1)x+k2﹣1是一次函数,∴k﹣1≠0,即k≠1;函数y=(k﹣1)x+k2﹣1是正比例函数,则k﹣1≠0,k2﹣1=0,∴k=﹣1.点评:本题考查对正比例函数和一次函数的概念理解.形如y=kx,(k≠0)为正比例函数;y=kx+b,(k≠0)为一次函数.22.(包头)若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=1.考点:一次函数的性质.专题:计算题.分析:由一次函数y=ax+1﹣a中y随x的增大而增大,可以推出a>0,又由于它的图象与y轴交于正半轴可以得到a<1,最后即可确定a的取值范围,于是可以求出题目代数式的结果.解答:解:∵一次函数y=ax+1﹣a中,y随x的增大而增大,∴a>0,∵它的图象与y轴交于正半轴,∴1﹣a>0,即a<1,故0<a<1;∴原式=1﹣a+a=1.故填空答案:1.点评:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.23.(襄阳)若一次函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则k的取值范围是1<k≤2.考点:一次函数图象与系数的关系.专题:计算题.分析:若函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则此函数的x的系数小于0,b≤0.解答:解:∵函数y=2(1﹣k)x+k﹣1的图象不过第一象限,∴2(1﹣k)<0,k﹣1≤0,∴1<k≤2.点评:一次函数的图象经过第几象限,取决于x的系数是大于0或是小于0.24.将直线y=2x沿x轴的正方向平移1个长度单位,得到直线y=2x﹣2.考点:一次函数图象与几何变换.分析:沿x轴正方向平移即是向右平移,根据解析式“左加右减”的平移规律,即可得到平移后的直线解析式.解答:解:将直线y=2x沿x轴的正方向平移1个长度单位,得到直线y=2(x﹣1),即y=2x﹣2.故答案为y=2x﹣2.点评:本题考查一次函数图象与几何变换,掌握解析式的平移规律:左加右减,上加下减是解题的关键.25.直角坐标系中,直线y=2x+3关于原点对称的解析式为y=2x﹣3.考点:中心对称;一次函数图象与几何变换.分析:若两条直线关于原点对称,则这两条直线平行,即k值不变;与y轴的交点关于原点对称,即b值互为相反数.解答:解:直线y=2x+3关于原点对称的解析式为y=2x﹣3.点评:能够数形结合来分析此类型的题,根据图形,发现k和b值之间的关系.三.解答题(共5小题)26.通分:,.考点:通分.专题:计算题.分析:将两分式的分母中的系数取各系数的最小公倍数,相同因式的次数取最高次幂.解答:解:=,=.点评:本题考查了通分.解答此题的关键是熟知找公分母的方法:(1)系数取各系数的最小公倍数;(2)凡出现的因式都要取;(3)相同因式的次数取最高次幂.27.计算:(1);(2)÷(a2﹣4)•.考点:分式的混合运算.专题:计算题.分析:(1)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果.解答:解:(1)原式=1﹣•=1﹣==﹣;(2)原式=••=.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.28.(六合区一模)化简,求值:),其中m=.考点:分式的化简求值.分析:这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式化简,然后再代入求值.分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一.解答:解:原式======.当m=时,原式==.点评:考查了分式的化简求值,本题的关键是化简,然后把给定的m值代入求值.29.(苏州)解分式方程:+=3.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.30.(沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?考点:分式方程的应用.专题:压轴题.分析:根据“甲加工150个零件所用的时间与乙加工120个零件所用时间相等”可得出相等关系,从而只需表示出他们各自的时间就可以了.解答:解:设乙每小时加工机器零件x个,则甲每小时加工机器零件(x+10)个,根据题意得:=,解得x=40,经检验,x=40是原方程的解,x+10=40+10=50.答:甲每小时加工50个零件,乙每小时加工40个零件.点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。
八年级数学下册期末试卷易错题(Word版含答案)
八年级数学下册期末试卷易错题(Word 版含答案) 一、选择题 1.()()1111a a a a +-=+⋅-成立的条件是( )A .﹣1≤a ≤1B .a ≤﹣1C .a ≥1D .﹣1<a <1 2.下列各比值中,是直角三角形的三边之比的是( ) A .1:2:3 B .2:3:4 C .3:4:5 D .1:3:1 3.在四边形ABCD 中,对角线AC 与BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AD ∥BC ,AB =DC C .AB ∥DC ,∠DAB =∠DCBD .AO =CO ,BO =DO4.期间,红星中学门卫对周末提前返校的5名学生进行体温检测,记录如下:36.1℃,36.5℃,36.9℃,36.5℃,36.6℃,则这5名学生体温的众数是( )A .36.1℃B .36.6℃C .36.5℃D .36.9℃ 5.如图,在矩形纸片ABCD 中,AB =6,AD =8,折叠该纸片,使得AB 边落在对角线AC 上,点B 落在点F 处,折痕为AE ,则线段EF 的长为( )A .3B .4C .5D .66.如图,在菱形ABCD 中,8AB =,120BAD ∠=︒,点O 是对角线BD 的中点,OE CD ⊥于点E ,则OE 的长为( )A .23B .3C .4D .437.如图,在平行四边形ABCD 中,BD 为对角线,点O 是BD 的中点,且//AD EO ,//OF AB ,四边形BEOF 的周长为10,则平行四边形ABCD 的周长为( )A .10B .12C .15D .208.如图所示,已知点C (1,0),直线7y x =-+与两坐标轴分别交于A ,B 两点,D ,E 分别是线段AB ,OA 上的动点,则△CDE 的周长的最小值是( )A .42B .10C .424+D .12二、填空题 9.若式子1x x -在实数范围内有意义,则x 的取值范围是________. 10.若菱形的两条对角线长分别是8cm 和10cm ,则该菱形的面积是________2cm . 11.若一直角三角形的两直角边长为3,1,则斜边长为_____.12.如图,矩形ABCD 被两条对角线分成四个小三角形,如果四个小三角形的周长的和是40厘米,矩形的周长是22厘米,则对角线AC 的长为 ___厘米.13.在平面直角坐标系中,直线1y kx =-与直线3y x =-交于点(4,)A m ,则k =______. 14.如图,在正方形ABCD 中,点E 、F 分别在对角线BD 上,请你添加一个条件____________,使四边形AECF 是菱形.15.A ,B 两地相距60km ,甲、乙两人从两地出发相向而行,甲先出发,如图,l 1,l 2表示两人离A 地的距离:s (km )与时间t (h )的关系,则乙出发_____h 两人恰好相距5千米.16.“以自然之道,养自然之身”,生命在于运动,周末,小靓和小丽先后来到山脚,从山脚出发,沿着同一直线型登山步道进行锻炼,当小靓先匀速前行400米到达途中A 地观景台时,小丽开始从山脚匀速追赶,小靓继续以原速前行.追上后,小靓立即以原速的2倍率先到达山顶,然后立即以提高后的速度原路返回山脚.在上山过程中,小丽一直保持匀速登山,到达山顶后,立即以上山速度的1.5倍原路返回山脚.两人距A 地观景台的距离之和y (米)与小丽从山脚出发的时间t 分钟之间的部分函数关系如图所示,则两人第三次相遇时距A 地观景台________米.三、解答题17.计算:(1)02(52)()π++-;(2)3127683-+-. 18.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA 静止的时候,踏板离地高一尺(1AC =尺),将它往前推进两步(10EB =尺),此时踏板升高离地五尺(5BD =尺),求秋千绳索(OA 或OB )的长度.19.如图,每个小正方形的边长都为1.(1)求线段CD 与BC 的长;(2)求四边形ABCD 的面积与周长;(3)求证:90BCD ∠=︒.20.如图,在矩形ABCD 中,4AB =,8AD =,将矩形折叠,折痕为EF ,使点C 与点A 重合,点D 与点G 重合,连接CF .(1)判断四边形AECF 的形状,并说明理由;(2)求折痕EF 的长.21.[观察]请你观察下列式子的特点,并直接写出结果:221111111212++=+-= ; 221111112323++=+-= ; 221111113434++=+-= ; …… [发现]根据你的阅读回答下列问题:(1)请根据上面式子的规律填空: ()221111n n ++=+ (n 为正整数); (2)请证明(1) 中你所发现的规律.[应用]请直接写出下面式子的结果: ()222222221111111111111223341n n ++++++++++ .22.由于持续高温和连日无雨,某水库的蓄水量y (万立方米)与干旱时间t (天)之间的关系满足一次函数y kt b =+,(k ,b 为常数,且k ≠0),其图象如图所示.(1)由图象知k = ,其实际意义是 ;(2)若水库的蓄水量小于360万立方米时,将发生严重干旱警报,那么多少天后将发生严重干旱警报?(3)在(2)的条件下,照这样干旱下去,预计再持续多少天,水库将干涸?23.(1)如图1,在平行四边形ABCD 中,对角线AC 、BD 相交于O 点,过点O 的直线l 与边AB 、CD 分别交于点E 、F ,绕点O 旋转直线l ,猜想直线l 旋转到什么位置时,四边形AECF 是菱形.证明你的猜想.(2)若将(1)中四边形ABCD 改成矩形ABCD ,使AB =4cm ,BC =3cm ,①如图2,绕点O 旋转直线l 与边AB 、CD 分别交于点E 、F ,将矩形ABCD 沿EF 折叠,使点A 与点C 重合,点D 的对应点为D′,连接DD′,求△DFD′的面积.②如图3,绕点O 继续旋转直线l ,直线l 与边BC 或BC 的延长线交于点E ,连接AE ,将矩形ABCD 沿AE 折叠,点B 的对应点为B′,当△CEB′为直角三角形时,求BE 的长度.请直接写出结果,不必写解答过程.24.如图,在平面直角坐标系中,直线24y x =+与x 轴交于点A ,与y 轴交于点B ,过点B 的直线交x 轴正半轴于C ,且ABC ∆面积为10.(1)求点C 的坐标及直线BC 的解析式;(2)如图,设点F 为线段AB 中点,点G 为y 轴上一动点,连接FG ,以FG 为边向FG 右侧作正方形FGQP ,在G 点的运动过程中,当顶点Q 落在直线BC 上时,求点G 的坐标; (3)如图2,若M 为线段BC 的中点,点E 为直线OM 上一动点,在x 轴上是否存在点D ,使以点D ,E ,B ,C 为顶点的四边形为平行四边形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.25.在平面直角坐标中,四边形OCNM 为矩形,如图1,M 点坐标为(m ,0),C 点坐标为(0,n ),已知m ,n 满足550n m -+-=.(1)求m ,n 的值;(2)①如图1,P ,Q 分别为OM ,MN 上一点,若∠PCQ =45°,求证:PQ =OP+NQ ; ②如图2,S ,G ,R ,H 分别为OC ,OM ,MN ,NC 上一点,SR ,HG 交于点D .若∠SDG =135°,55HG =,则RS =______; (3)如图3,在矩形OABC 中,OA =5,OC =3,点F 在边BC 上且OF =OA ,连接AF ,动点P 在线段OF 是(动点P 与O ,F 不重合),动点Q 在线段OA 的延长线上,且AQ =FP ,连接PQ 交AF 于点N ,作PM ⊥AF 于M .试问:当P ,Q 在移动过程中,线段MN 的长度是否发生变化?若不变求出线段MN 的长度;若变化,请说明理由.【参考答案】一、选择题1.C解析:C【分析】直接利用二次根式有意义的条件、二次根式的乘法运算法则得出关于a 的不等式组,进而得出答案.【详解】解:由题意可得:1010a a +≥⎧⎨-≥⎩, 解得:a ≥1,故选:C .【点睛】本题考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.2.C解析:C【分析】先分别设三角形的三边,依据勾股定理的逆定理列式计算即可判断.【详解】解:A、设三边分别为x、2x、3x,∵222+≠,x x x(2)(3)∴三边比为1:2:3的三角形不是直角三角形;B、设三边分别为2x、3x、4x,∵222+≠,x x x(2)(3)(4)∴三边比为2:3:4的三角形不是直角三角形;C、设三边分别为3x、4x、5x,∵222+=,x x x(3)(4)(5)∴三边比为3:4:5的三角形是直角三角形;D、设三边分别为x、3x、x,∵222(3)+≠,x x x∴三边比为1:3:1的三角形不是直角三角形;故选:C.【点睛】此题考查应用勾股定理的逆定理判断三角形是否是直角三角形,熟记定理并应用解决问题是解题的关键.3.B解析:B【解析】【分析】依据平行四边形的定义和判定方法逐一判断即可得解;【详解】A、∵AB∥DC,AD∥BC,∴四边形ABCD是平行四边形,故选项A不符合题意;B、由AD∥BC,AB=DC,即一组对边平行,一组对边相等,无法判断四边形ABCD是平行四边形,举反例如等腰梯形,故选项B符合题意;C、∵AB∥DC,∴∠ABC+∠DCB=180°,∠DAB+∠ADC=180°,∵∠DAB=∠DCB,∴∠ABC=∠ADC,∴四边形ABCD是平行四边形,故选项C不符合题意;D、∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,故选项D不符合题意;故选:B.【点睛】本题主要考查平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键,同时注意一组对边平行,一组对边相等得四边形不一定是平行四边形.4.C解析:C【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据,进行求解即可.【详解】解:∵36.5℃出现了两次,出现的次数最多,∴这组数据的众数为36.5℃,故选C.【点睛】本题主要考查了众数的定义,解题的关键在于能够熟知众数的定义.5.A解析:A【分析】根据矩形的性质可得BC=AD,∠B=90°,利用勾股定理可求出AC的长,根据折叠的性质可得AF=AB,∠B=∠AFE=90°,BE=EF,在Rt△CEF中利用勾股定理列方程求出EF的长即可得答案.【详解】∵四边形ABCD是矩形,AD=8,∴∠B=90°,BC=AD=8,∴AC10,∵折叠该纸片,使得AB边落在对角线AC上,点B落在点F处,折痕为AE,∴BE=EF,AF=AB=6,∠AFE=∠B=90°,∴CF=AC-AF=10﹣6=4,在Rt△CEF中,由勾股定理得,EF2+CF2=CE2,∴EF2+CF2=(BC-EF)2,即EF2+42=(8-EF)2,解得:EF=3,故选:A.【点睛】本题主要考查了翻折变换的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、勾股定理等几何知识点来分析、判断、推理或解答.6.A解析:A【解析】【分析】连接OA ,由菱形的性质得AD =AB =8、AO ⊥BD 、∠ADB =∠CDB =30°,然后由含30°角的直角三角形的性质求解即可.【详解】连接OA ,如图所示:∵四边形ABCD 为菱形,点O 是对角线BD 的中点,∴AD =AB =8,AO ⊥BD ,∠ADB =∠CDB∵120BAD ∠=︒∴∠ADB =∠CDB =30°,在Rt △AOD 中,142OA AD ==, ∴2243OD AD OA =-=∵OE ⊥CD ,∴∠DEO =90°,∴在Rt △DOE 中,1232OE OD == 故选:A .【点睛】本题考查了菱形的性质、含30°角的直角三角形的性质等知识;熟练掌握菱形的性质是解题的关键.7.D解析:D【解析】【分析】根据点O 是BD 的中点,且AD //EO ,OF //AB ,可得OE ,OF 分别是三角形ABD ,三角形BCD 的中位线,四边形OEBF 是平行四边形,则AD =2OE ,CD =2OF ,OE =BF ,OF =BE ,由此可以推出OE +OF =5,再由四边形ABCD 的周长=AB +BC +AD +CD =2(AD +CD )=4(OE +OF )进行求解即可.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∵点O 是BD 的中点,且AD //EO ,OF //AB ,∴OE ,OF 分别是三角形ABD ,三角形BCD 的中位线,BC //EO ,∴四边形OEBF 是平行四边形,AD =2OE ,CD =2OF ,OE =BF ,OF =BE ,∵四边形OEBF 的周长为10,∴OE+BE+BF+OF=10,∴OE+OF=5,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴四边形ABCD的周长=AB+BC+AD+CD=2(AD+CD)=4(OE+OF)=20,故选D.【点睛】本题主要考查了平行四边形的性质与判定,中位线定理,解题的关键在于能够熟练掌握相关知识进行求解.8.B解析:B【解析】【分析】点C关于OA的对称点C′(-1,0),点C关于直线AB的对称点C″(7,6),连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,可以证明这个最小值就是线段C′C″.【详解】解:如图,点C(1,0)关于y轴的对称点C′(-1,0),点C关于直线AB的对称点C″,∵直线AB的解析式为y=-x+7,∴直线CC″的解析式为y=x-1,由71 y xy x-+⎧⎨-⎩==解得43xy==⎧⎨⎩,∴直线AB与直线CC″的交点坐标为K(4,3),∵K是CC″中点,C(1,0),设C″坐标为(m,n),∴14232mn+⎧=⎪⎪⎨+⎪=⎪⎩,解得:76mn=⎧⎨=⎩∴C″(7,6).连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,△DEC的周长=DE+EC+CD=EC′+ED+DC″=C′C10故答案为10.【点睛】本题考查轴对称-最短问题、两点之间距离公式等知识,解题的关键是利用对称性在找到点D、点E位置,将三角形的周长转化为线段的长.二、填空题9.1x>【解析】【分析】利用分式和二次根式有意义的条件确定关于x的不等式,从而确定答案.【详解】解:根据题意得:10x-≥且10x-≠,∴10x->,解得:1x>,故答案为:1x>.【点睛】考查了二次根式及分式有意义的条件,属于基础题,比较简单.10.40【解析】【分析】根据菱形的面积公式计算即可.【详解】解:这个菱形的面积为:12×8×10=40cm2,故答案为:40【点睛】本题主要考查菱形的面积公式,熟知菱形的面积等于两条对角线乘积的一半是解题关键.11.2【解析】【分析】根据勾股定理计算,得到答案.【详解】2,故答案为2.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.12.A解析:5【分析】根据矩形性质得出OA=OB=OC=OD,AB=CD,AD=BC,求出8OA+2AB+2BC=40厘米和2AB+2BC=22厘米,求出OA,即可求出答案.【详解】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,AC=BD,AO=OC,OD=OB,∴AO=OC=OD=OB,∵矩形ABCD被两条对角线分成四个小三角形的周长的和是40厘米,∴OA+OD+AD+OD+OC+CD+OC+OB+BC+OA+OB+AB=40厘米,即8OA+2AB+2BC=40厘米,∵矩形ABCD的周长是22厘米,∴2AB+2BC=22厘米,∴8OA=18厘米,∴OA=2.25厘米,即AC=BD=2OA=4.5厘米.故答案为:4.5.【点睛】本题考查了矩形的性质的应用,注意:矩形的对边相等,矩形的对角线互相平分且相等.13.A解析:12【分析】利用y=x-3即可求得m的值,然后再把该点代入y=kx-1中可得k的值.【详解】解:把(4,m)代入y=x-3得:m=1,∴A(4,1),把(4,1)代入y=kx-1得1=4k-1,,解得k=12故答案为1.2【点睛】本题考查了两直线相交问题,首先会利用代入法求点的坐标,然后再根据待定系数法求k.14.B解析:BE=DF【分析】根据正方形的性质,可得正方形的四条边相等,对角线平分对角,根据 SAS,可得△ABF与△CBF与△CDE与△ADE的关系,根据三角形全等,可得对应边相等,再根据四条边相等的四边形,可得证明结果.【详解】添加的条件为:BE=DF,理由:正方形ABCD中,对角线BD,∴AB=BC=CD=DA,∠ABE=∠CBE=∠CDF=∠ADF=45°.∵BE=DF,∴△ABE≌△CBE≌△DCF≌△DAF(SAS).∴AE=CE=CF=AF,∴四边形AECF是菱形;故答案为:BE=DF.【点睛】本题考查了正方形的性质,菱形的判定,全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.15.8或1【分析】分相遇前或相遇后两种情形分别列出方程即可解决问题.【详解】解:由题意可知,乙的函数图象是l2,甲的速度是=30(km/h),乙的速度是=20(km/h).设乙出发x小时两人解析:8或1【分析】分相遇前或相遇后两种情形分别列出方程即可解决问题.【详解】解:由题意可知,乙的函数图象是l2,甲的速度是602=30(km/h),乙的速度是603.50.5=20(km/h).设乙出发x小时两人恰好相距5km.由题意得:30(x+0.5)+20x+5=60或30(x+0.5)+20x﹣5=60,解得x=0.8或1,所以甲出发0.8小时或1小时两人恰好相距5km.故答案为:0.8或1.本题考查了一次函数的应用,解题的关键是读懂图象信息,灵活应用速度、路程、时间之间的关系解决问题.16.【分析】设小靓和小丽开始的速度分别为每分钟a 米和每分钟b 米,分析可知小丽出发第5分钟时,小丽追上了小靓,在这5分钟小丽比小靓多走400米;第11分钟时,小丽到达了山顶,此时y=3360;据此列方解析:【分析】设小靓和小丽开始的速度分别为每分钟a 米和每分钟b 米,分析可知小丽出发第5分钟时,小丽追上了小靓,在这5分钟小丽比小靓多走400米;第11分钟时,小丽到达了山顶,此时y=3360;据此列方程组求出a 和b ;然后求出小丽下山追上小靓的时间,即可求出两人第三次相遇时与A 地观景台的距离.【详解】解:设小靓和小丽开始的速度分别为每分钟a 米和每分钟b 米,函数关系图可知,小丽出发第5分钟时,小丽追上了小靓,在这5分钟小丽比小靓多走400米;第11分钟时,小丽到达了山顶,此时y=3360,此时小靓距离山顶(12a-6b)米,距A 地观景台(5a+6b) -(12a-6b)=(12b-7a)米,∴55400(56)(127)3360b a a b b a -=⎧⎨++-=⎩ ∴120200a b =⎧⎨=⎩∴A 地观景台距离山顶512062001800⨯+⨯=米,第11分钟时小靓距离山顶121206200240⨯-⨯=米,∴小丽下山追上小靓所需时间= 240(1.52002120)4÷⨯-⨯=(分钟)此时距离A 地观景台=1800 1.52004600-⨯⨯=,两人第三次相遇时距A 地观景台600米.故答案是:600.【点睛】本题考查了从函数图象获取信息的能力及二元一次方程组的应用,掌握数形结合思想是解题关键.三、解答题17.(1);(2)【分析】(1)根据二次根式乘法法则及零指数幂计算即可;(2)先把各二次根式化为最简二次根式,然后合并同类二次根式即可.【详解】解:(1)=+3;(2)=3-解析:(13;(22【分析】(1)根据二次根式乘法法则及零指数幂计算即可;(2)先把各二次根式化为最简二次根式,然后合并同类二次根式即可.【详解】解:(10()π+-2+13;(2=2,2.【点睛】此题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算;注意乘法运算公式的运用.18.秋千绳索的长度为尺.【分析】设OA=OB=x 尺,表示出OE 的长,在中,利用勾股定理列出关于x 的方程求解即可.【详解】解:设尺,由题可知:尺,尺,∴(尺),尺,在中,尺,尺,尺,由勾股解析:秋千绳索的长度为14.5尺.【分析】设OA =OB =x 尺,表示出OE 的长,在Rt OEB 中,利用勾股定理列出关于x 的方程求解即可.【详解】解:设OA OB x ==尺,由题可知:5EC BD ==尺,1AC =尺,∴514EA EC AC =-=-=(尺),()4OE OA AE x =-=-尺,在Rt OEB 中,()4OE x =-尺,OB x =尺,10EB =尺,由勾股定理得:()222410x x =-+,解得:14.5x =,则秋千绳索的长度为14.5尺.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理,学会利用方程解决问题是解题的关键. 19.(1),;(2)四边形的面积,的周长;(3)见解析【解析】【分析】(1)利用勾股定理直接计算即可得到答案;(2)利用四边形的周长公式计算四边形的周长即可,再利用割补法求解四边形的面积即可;解析:(1)BC =CD =2)四边形ABCD 的面积12.5=,ABCD 的周长5=;(3)见解析【解析】【分析】(1)利用勾股定理直接计算即可得到答案;(2)利用四边形的周长公式计算四边形的周长即可,再利用割补法求解四边形的面积即可;(3)利用勾股定理的逆定理证明即可.【详解】解:(1)BC =CD(2)5AB =,AD∴四边形ABCD 的周长55=,四边形ABCD 的面积111542124311222=⨯-⨯⨯-⨯⨯-⨯⨯- 2014 1.51=----12.5=(3)连接BD ,5BD =,222225BC CD +=+=,22525BD ==,222BC CD BD ∴+=,90BCD ∴∠=︒.【点睛】本题考查的是勾股定理与勾股定理的逆定理的应用,掌握利用勾股定理求解边长,利用勾股定理的逆定理判断直角三角形是解题的关键.20.(1)菱形,理由见解析;(2)【分析】(1)根据矩形的性质,可知,进而可得,根据折叠的性质可知,则,进而可得,又,根据四边相等的四边形是菱形即可判断;(2)连接,先根据折叠的性质,利用勾股定理解析:(1)菱形,理由见解析;(2)25【分析】(1)根据矩形的性质,可知//AD BC ,进而可得AFE AEF ∠=∠,根据折叠的性质可知CEF AEF ∠=∠,则AFE AEF ∠=∠,进而可得AF AE =,又,AF CF AE EC ==,根据四边相等的四边形是菱形即可判断;(2)连接AC ,先根据折叠的性质,利用勾股定理求得AF ,进而勾股定理求得AC ,根据菱形的面积12AF AB AC EF ⋅=⋅即可求得EF . 【详解】(1)四边形ABCD 是矩形,∴//AD BC ,∴AFE AEF ∠=∠, 根据折叠的性质,可知CEF AEF ∠=∠,,AF CF AE EC ==,∴AFE AEF ∠=∠,∴AF AE =,∴AF CF AE EC ===,∴四边形AECF 是菱形;(2)连接AC ,如图,四边形ABCD 是矩形,90B BCD ∴∠=∠=︒,4AB =,8AD =,2245AC AB BC ∴+=折叠,90G BCD ∴∠=∠=︒4,AG CD AB GF FG ====,设AF x =,则8GF FD AD AF x ==-=-,在Rt AGF △中,222AF AG FG =+,即222(8)4x x =-+,解得5x =,5AF ∴=,12AF AB AC EF ⋅=⋅, 22545AF AB EF AC ⋅∴===【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,菱形的性质与判定,灵活晕用勾股定理是解题的关键.21.[观察],,;[发现](1)或;(2)证明见解析;[应用]或.【解析】【分析】(1)计算题目中结果,并根据计算过程和结果,总结得到一般规律,作出猜想,并对猜想进行计算,即可进行证明;(2)运解析:[观察]32,76,1312;[发现](1)1111n n +-+或221n n n n+++;(2)证明见解析;[应用]1n n n ++或221n n n ++. 【解析】【分析】(1)计算题目中结果,并根据计算过程和结果,总结得到一般规律,作出猜想,并对猜想进行计算,即可进行证明;(2)运用(1)中发现规律,进行计算即可.【详解】[观察]32,76,1312, [发现](1)1111n n +-+或221n n n n +++(2)左=====∵n 为正整数,∴()11111011n n n n +-=+>++ ∴左1111n n =+-=+右[应用11n +++111111111111223341n n =+-++-++-+++-+ (1111)n n =⨯+-+ 1n n n =++ 22=1n n n ++ ∴答案为:1n n n ++或221n n n ++. 【点睛】(1)此类规律探究问题一定要结合式子特点和数的规律进行探究,类比;(2)此类题目往往无法直接进行计算,一般要根据规律进行变形,往往会消去部分中间项,实现简化运算目的.22.(1);水库蓄水量每天减少30万立方米;(2)38;(3)12【分析】(1)根据图像运用待定系数法求得函数解析式即可得k 的值,解释k 的具体意义即可;(2)根据(1)中函数解析式,令万立方米时,解析:(1)30-;水库蓄水量每天减少30万立方米;(2)38;(3)12【分析】(1)根据图像运用待定系数法求得函数解析式即可得k 的值,解释k 的具体意义即可; (2)根据(1)中函数解析式,令360y =万立方米时,求出对应的干旱天数t 即可; (3)根据(1)中函数解析式,令0y =万立方米时,求出对应的干旱天数t ,减去(2)中的干旱天数即为所求.【详解】解:(1)一次函数y kt b =+,(k ,b 为常数,且k ≠0),根据图像可得:900=2030040k b k b+⎧⎨=+⎩, 解得:301500k b =-⎧⎨=⎩, 所以一次函数解析式为:301500y t =-+,k 的值代表每干旱一天水库蓄水量将减少30万立方米,故答案为:-30;水库蓄水量每天减少30万立方米;(2)由(1)知一次函数解析式为:301500y t =-+,令360y =,即360301500t =-+,解得:38t =,故38天后将发生严重干旱警报;(3)由(1)知一次函数解析式为:301500y t =-+,令0y =,即0301500t =-+,解得:50t =,503812-=(天),故预计再持续12天,水库将干涸.【点睛】此题考查了函数的图像问题,一次函数的实际应用,根据图像求出一次函数的解析式是解题的关键.23.(1)四边形AECF 是菱形,见解析;(2)① cm2;②BE 的长为cm 或cm 或4cm 或cm .【分析】(1)根据题意作图,先根据平行四边形得出∠FCO=∠EAO ,再证明△COF ≌△AOE ,结合题意解析:(1)四边形AECF 是菱形,见解析;(2)①147400 cm 2;②BE 的长为43cm 或16473-cm 或4cm 或16473+cm . 【分析】(1)根据题意作图,先根据平行四边形得出∠FCO =∠EAO ,再证明△COF ≌△AOE ,结合题意即可得出结论;(2)①根据四边形ABCD 是矩形,设DF =x cm ,则CF =(4﹣x )cm ,结合折叠和勾股定理得出CF ,过D′作D′H ⊥CF 于H ,由面积相等可得D′H =2125,进而得出所求面积; ②根据不同图示分情况设BE =x cm ,CE =(3﹣x )cm ,根据折叠并结合勾股定理得出x 即为所求.【详解】解:(1)猜想:当l ⊥AC 时,四边形AECF 是菱形,如图1:连接AF 、CE ,∵四边形ABCD 是平行四边形,∴OA =OC ,AB ∥CD ,∴∠FCO =∠EAO ,又∵∠FOC =∠EOA ,∴△COF ≌△AOE , ∴OE =OF ,∵AC ⊥EF ,∴四边形AECF 是菱形;(2)①∵四边形ABCD 是矩形,∴∠ADC =90°,CD =AB =4,AD =BC =3,设DF =x cm ,则CF =(4﹣x )cm ,由折叠性质可知:D′F =DF =x ,CD′=AD =3,∠CD′F =∠ADC =90°,由勾股定理得(4﹣x )2=32+x 2,解得x =78, ∴D′F =DF =78, ∴CF =4﹣78=258, 如图2,过D′作D′H ⊥CF 于H ,由面积相等可得,CF •D′H =D′F •CD′,∴D′H =2125, ∴S △DFD ′=12×78×2125=147400(cm 2); ②如图①,设BE =x cm ,CE =(3﹣x )cm ,∵AC =2234+=5cm ,∴B′C =5﹣4=1cm ,根据勾股定理可得B′C 2+B′E 2=CE 2,即:12+x 2=(3-x )2解得:x =43cm , 如图②,设BE =x cm ,则CE =(3﹣x )cm ,AB′=4cm ,B′E =x cm ,在R t △ADB′中,由勾股定理可得BD′22AB AD '-169-7,B′C =(47cm ,在R t △CB′E 中,B′C 2+CE 2=B′E 2,即16﹣7+7+9﹣6x +x 2=x 2,解得x 1647-cm , 如图③,当四边形ABEB′是正方形时,点B 和点B′关于直线AE 对称,△B′EC 是直角三角形, 此时CE =1cm ,BE =4cm ;如图④,BE =x cm ,AB′=4cm ,AD =3cm ,CE =(x ﹣3)cm ,在R t △ADB′中,B′D 22'AB AD -169-7,B′C 7,在R t △B′CE 中,7x 2﹣6x +9=x 2,解得x 1647+cm , 综上,BE 的长为43cm 1647-或4cm 1647+. 【点睛】此题属于四边形综合性试题,涉及到平行四边形,菱形,矩形,正方形的性质和勾股定理的应用,有一定难度,注意不同情况分别做图求解.24.(1),;(2)或;(3)存在,或或.【解析】【分析】(1)利用三角形的面积公式求出点坐标,再利用待定系数法即可解决问题.(2)设G (0,n )分两种情形:①当时,如图中,点落在上时,过作直线解析:(1)(3,0)C ,443y x =-+;(2)23(0,)7或(0,1)-;(3)存在,(0,0)或(6,0)-或(6,0).【解析】【分析】(1)利用三角形的面积公式求出点C 坐标,再利用待定系数法即可解决问题. (2)设G (0,n )分两种情形:①当2n >时,如图21-中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .求出(2,1)Q n n --.②当2n <时,如图22-中,同法可得(2,1)Q n n -+,利用待定系数法即可解决问题.(3)由(0,4)B ,(3,0)C 得3(2M ,2),即得直线OM 为43y x =,设4(,)3E s s ,(,0)D t ,①以BC 、DE 为对角线,此时BC 、DE 中点重合,而BC 中点为03(2+,40)2+,DE 中点为(2s t +,403)2s +,即得0344003s t s +=+⎧⎪⎨+=+⎪⎩,解得(0,0)D ;②以BE 、CD 为对角线,同理可得:(6,0)D -;③以BD 、CE 为对角线,同理(6,0)D .【详解】解:(1)直线24y x =+与x 轴交于点A ,与y 轴交于点B ,(2,0)A ∴-,(0,4)B ,2OA ∴=,4OB =,1102ABC S AC OB ∆=⋅⋅=, 5AC ∴=,3OC ∴=,(3,0)C ∴,设直线BC 的解析式为y kx b =+,则有403bk b =⎧⎨=+⎩, 解得434k b ⎧=-⎪⎨⎪=⎩, ∴直线BC 的解析式为443y x =-+; (2)FA FB =,(2,0)A -,(0,4)B ,(1,2)F ∴-,设(0,)G n ,①当2n >时,如图21-中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .四边形FGQP 是正方形,90FGQ ∴∠=︒,=FG QG ,90FGM NGQ GQN ∴∠=︒-∠=∠,而90FMG GNQ ∠=∠=︒,()FMG GNQ AAS ∴∆≅∆,1MG NQ ∴==,2FM GN n ==-,(2,1)Q n n ∴--,点Q 在直线443y x =-+上, 41(2)43n n ∴-=--+, 237n ∴=, 23(0,)7G ∴; ②当2n <时,如图22-中,同法可得(2,1)Q n n -+,点Q 在直线443y x =-+上, 41(2)43n n ∴+=--+, 1n ∴=-,(0,1)G ∴-.综上所述,满足条件的点G 坐标为23(0,)7或(0,1)-; (3)存在,理由如下: (0,4)B ,(3,0)C ,M 为线段BC 的中点,3(2M ∴,2), 设直线OM 为y mx =,则322m =, 解得43m =,∴直线OM 为43y x =, 设4(,)3E s s ,(,0)D t ,①以BC 、DE 为对角线,此时BC 、DE 中点重合,而BC 中点为03(2+,40)2+,DE 中点为(2s t +,403)2s +, ∴0344003s t s +=+⎧⎪⎨+=+⎪⎩,解得30s t =⎧⎨=⎩, (0,0)D ∴;②以BE 、CD 为对角线,同理可得: ∴0344003s t s +=+⎧⎪⎨+=+⎪⎩,解得36s t =-⎧⎨=-⎩, (6,0)D ∴-;③以BD 、CE 为对角线,同理可得: ∴0344003t s s +=+⎧⎪⎨+=+⎪⎩,解得36s t =⎧⎨=⎩, (6,0)D ∴;综上所述,D 的坐标为:(0,0)或(6,0)-或(6,0).【点睛】本题属于一次函数综合题,考查了待定系数法,三角形的面积,全等三角形的判定和性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题 25.(1)m =5,n=5;(2)①证明见解析;②;(3)MN 的长度不会发生变化,它的长度为.【分析】(1)利用非负数的性质即可解决问题.(2)①作辅助线,构建两个三角形全等,证明△COE ≌△CNQ解析:(1)m=5,n=5;(2)①证明见解析;②5103;(3)MN的长度不会发生变化,它的长度为102.【分析】(1)利用非负数的性质即可解决问题.(2)①作辅助线,构建两个三角形全等,证明△COE≌△CNQ和△ECP≌△QCP,由PE=PQ=OE+OP,得出结论;②作辅助线,构建平行四边形和全等三角形,可得▱CSRE和▱CFGH,则CE=SR,CF=GH,证明△CEN≌△CE′O和△E′CF≌△ECF,得EF=E′F,设EN=x,在Rt△MEF中,根据勾股定理列方程求出EN的长,再利用勾股定理求CE,则SR与CE相等,所以SR=5103;(3)在(1)的条件下,当P、Q在移动过程中线段MN的长度不会发生变化,求出MN 的长即可;如图4,过P作PD∥OQ,证明△PDF是等腰三角形,由三线合一得:DM=1 2FD,证明△PND≌△QNA,得DN=12AD,则MN=12AF,求出AF的长即可解决问题.【详解】解:(1)∵5|5|0n m-+-=,又∵5n-≥0,|5﹣m|≥0,∴n﹣5=0,5﹣m=0,∴m=5,n=5.(2)①如图1中,在PO的延长线上取一点E,使NQ=OE,∵CN=OM=OC=MN,∠COM=90°,∴四边形OMNC是正方形,∴CO=CN,∵∠EOC=∠N=90°,∴△COE≌△CNQ(SAS),∴CQ=CE,∠ECO=∠QCN,∵∠PCQ=45°,∴∠QCN+∠OCP=90°﹣45°=45°,∴∠ECP=∠ECO+∠OCP=45°,∴∠ECP=∠PCQ,∵CP=CP,∴△ECP≌△QCP(SAS),∴EP=PQ,∵EP=EO+OP=NQ+OP,∴PQ=OP+NQ.②如图2中,过C作CE∥SR,在x轴负半轴上取一点E′,使OE′=EN,得▱CSRE,且△CEN≌△CE′O,则CE=SR,过C作CF∥GH交OM于F,连接FE,得▱CFGH,则CF=GH=552,∵∠SDG=135°,∴∠SDH=180°﹣135°=45°,∴∠FCE=∠SDH=45°,∴∠NCE+∠OCF=45°,∵△CEN≌△CE′O,∴∠E′CO=∠ECN,CE=CE′,∴∠E′CF=∠E′CO+∠OCF=45°,∴∠E′CF=∠FCE,∵CF=CF,∴△E′CF≌△ECF(SAS),∴E′F=EF在Rt△COF中,OC=5,FC 55,由勾股定理得:OF225552⎛⎫-⎪⎪⎝⎭=52,∴FM=5﹣52=52,设EN=x,则EM=5﹣x,FE=E′F=x+52,则(x+52)2=(52)2+(5﹣x)2,解得:x=53,∴EN=53,由勾股定理得:CE2222553CN EN⎛⎫+=+ ⎪⎝⎭510∴SR=CE=5103.故答案为5103.(3)当P、Q在移动过程中线段MN的长度不会发生变化.理由:如图3中,过P作PD∥OQ,交AF于D.∵OF=OA,∴∠OFA=∠OAF=∠PDF,∴PF=PD,∵PF=AQ,∴PD=AQ,∵PM⊥AF,∴DM=12FD,∵PD∥OQ,∴∠DPN=∠PQA,∵∠PND=∠QNA,∴△PND≌△QNA(AAS),∴DN=AN,∴DN=12AD,∴MN=DM+DN=12DF+12AD=12AF,∵OF=OA=5,OC=3,∴CF2222534OF OC--=,∴BF=BC﹣CF=5﹣4=1,∴AF22221310BF AB++∴MN=12AF10∴当P、Q在移动过程中线段MN10【点睛】本题是四边形与动点问题的综合题,考查了矩形、正方形、全等三角形等图形的性质与判定,灵活运用所学知识是解答本题的关键.。
八年级下册数学错题集
八年级下册数学错题集一、二次根式部分(5题)1. 化简:√(18)- 错解:√(18)=√(9 + 9)=3 + 3 = 6- 正解:√(18)=√(9×2)=3√(2)。
解析:二次根式化简时,要将被开方数分解成完全平方数与其他数相乘的形式,而不是简单的数字相加分解。
2. 计算:√(8)+√(18)- 错解:√(8)+√(18)=2√(2)+3√(2)=5√(2)√(2)=5×2 = 10- 正解:√(8)+√(18)=2√(2)+3√(2)=5√(2)。
解析:在计算二次根式加法时,最后结果应保留最简二次根式形式,不能再对√(2)进行错误的乘法运算。
3. 若√(x - 1)+√(1 - x)=y + 4,求x,y的值。
- 错解:由√(x - 1)+√(1 - x)=y + 4,得x-1≥0且1 - x≥0,解得x≥1且x≤1,所以x = 1或x = 0,当x = 0时,y=-4;当x = 1时,y=-4。
- 正解:由√(x - 1)+√(1 - x)=y + 4,因为二次根式有意义的条件是被开方数非负,所以x - 1≥0且1 - x≥0,解得x = 1。
把x = 1代入原式得y+4 = 0,解得y=-4。
解析:在确定x的值时,根据二次根式有意义的条件,x只能取1,不能取0。
4. 比较大小:2√(3)和3√(2)- 错解:因为2√(3)=√(12),3√(2)=√(18),所以2√(3)>3√(2)。
- 正解:因为2√(3)=√(12),3√(2)=√(18),所以2√(3)<3√(2)。
解析:比较二次根式大小时,先将它们化为最简二次根式对应的被开方数,再比较被开方数大小。
5. 已知a=√(5)+2,b=√(5)-2,求a^2+b^2的值。
- 错解:- 先求ab=(√(5)+2)(√(5)-2)=5 - 4 = 1。
- 然后a + b=√(5)+2+√(5)-2 = 2√(5)。
初二下数学经典易错必考试题附答案A3打印版
1. 设a=根号下19-1,a 在两个相邻整数之间,那么这两个整数是2. x 、y 为实数,且满足,)(0y 11y x 1=---+ 那么yx 20152015-=3. 如果y x xy --和都是二次根式〔x ≠0,y ≠0〕,那么x 和y 的符号应为4. a 、b 、c 是△ABC 的三边,那么=-++-+)()(c b a c b a 225. 将-4432根号外的因式移进根号,结果等于6. y=,x 211x 221-+-+求y x 22xy +-的值7. 48512739-+=8. 55154420251--+=9. 4832315311312--+=10. ⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--6813225.024= 11. 当a >0,≥0时,=-ab2ab312. 最简二次根式6b a 2b 3a 41-a 3+-+与是可以合并的二次根式,那么=+)(b a 213. 在△ABC 中,∠C=90°,a 、b 、c 分别为∠A 、∠B 、∠C 所对的边,①假设a :b =3:4,c=15,那么a= ;②假设∠A=30°,BC=2,那么AB=14. 斜边为3cm ,一条直角边长为1cm ,那么斜边上的高为 15. :△ABC 三边长分别为AB=15,AC=20,BC=25,求△ABC 的面积16. 在△ABC 中,∠C=90°,CD ⊥AB 于D ,假设AB=13,CD=6,那么AC+BC=17. Rt △ABC 中,AC=6,BC=8,C 点在以AB 为直径的半圆上,分别以AC,BC 为半径作半圆,那么图中阴影局部的面积为18. Rt △ABC 是等腰直角三角形,AB=AC,D 是斜边BC 的中点,E,F 分别是AB,AC 边上的点,且DE ⊥DF,假设BE=12,CF=5,求△DEF 的面积19. 在△ABC 中,AB=12cm ,AC=5cm ,BC=13cm ,那么BC 边上的高AD=20. 在△ABC 中,BC=n m 22-,AC=2mn ,AB=n m 22+〔m >n 〕 那么△ABC 中是直角21. 有一个三角形的两边长是6和10,要是这个三角形成为直角三角形,那么第三边长22. 在一棵树的10m 高的B 处有两只猴子,一只爬下树走到离大树20米出的池塘A 处,另外一只爬到树顶D 处后直接越到A 处。
八年级数学下册错题集精编版
八年级数学下册错题集集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-第十六章《二次根式》易错题一、选择题1.当a>0,b>0时,n是正整数,计算的值是()A.(b﹣a)B.(a n b3﹣a n+1b2)C.(b3﹣ab2)D.(a n b3+a n+1b2)错答:D考点:二次根式的性质与化简。
分析:把被开方数分为指数为偶次方的因式的积,再开平方,合并被开方数相同的二次根式.解答:解:原式=﹣=a n b3﹣a n+1b2=(a n b3﹣a n+1b2).故选B.点评:本题考查的是二次根式的化简.最简二次根式的条件:被开方数中不含开得尽方的因式或因数.点评:解答此题,要弄清二次根式的性质:=|a|,分类讨论的思想.2.当x<﹣1时,|x﹣﹣2|﹣2|x﹣1|的值为()A.2 B.4x﹣6 C.4﹣4x D.4x+4错答:C考点:二次根式的性质与化简。
分析:根据x<﹣1,可知2﹣x>0,x﹣1<0,利用开平方和绝对值的性质计算.解答:解:∵x<﹣1∴2﹣x>0,x﹣1<0∴|x﹣﹣2|﹣2|x﹣1|=|x﹣(2﹣x)﹣2|﹣2(1﹣x)=|2(x﹣2)|﹣2(1﹣x)=﹣2(x﹣2)﹣2(1﹣x)=2.故选A.点评:本题主要考查二次根式的化简方法与运用:a>0时,=a;a<0时,=﹣a;a=0时,=0;解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.3.化简|2a+3|+(a<﹣4)的结果是()A.﹣3a B.3a﹣C.a+D.﹣3a错答:B考点:二次根式的性质与化简;绝对值。
分析:本题应先讨论绝对值内的数的正负性再去绝对值,而根号内的数可先化简、配方,最后再开根号,将两式相加即可得出结论.解答:解:∵a<﹣4,∴2a<﹣8,a﹣4<0,∴2a+3<﹣8+3<0原式=|2a+3|+=|2a+3|+=﹣2a﹣3+4﹣a=﹣3a.故选D.点评:本题考查的是二次根式的化简和绝对值的化简,解此类题目时要充分考虑数的取值范围,再去绝对值,否则容易计算错误.4.当x<2y时,化简得()A.x(x﹣2y)B. C.(x﹣2y)D.(2y﹣x)错答:C考点:二次根式的性质与化简。
初中数学八年级下册几何易错题集锦(含答案)
1、如图:在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B,试说明AB=AC+CD2、如图,AD是∠BAC的角平分线,DE⊥AB垂足为E,DF⊥AC,垂足为点F,且BD=CD 求证:BE=CF3、如图,点B和点C分别为∠MAN两边上的点,AB=AC。
(1)按下列语句画出图形:①AD⊥BC,垂足为D;②∠BCN的平分线CE与AD的延长线交于点E;③连结BE;(2)在完成(1)后不添加线段和字母的情况下,请你写出除△ABD≌△ACD外的两对全等三角形:____≌____,____≌____;(3)并选择其中的一对全等三角形予以证明。
已知:AB=AC,AD⊥BC,CE平分∠BCN,求证:△ADB≌△ADC;△BDE≌△CDE。
AB D CM NEB CP5、如图,△ABC中,p是角平分线AD,BE的交点. 求证:点p在∠C的平分线上6、下列说法中,错误的是()A.三角形任意两个角的平分线的交点在三角形的内部B.三角形两个角的平分线的交点到三边的距离相等C.三角形两个角的平分线的交点在第三个角的平分线上D.三角形任意两个角的平分线的交点到三个顶点的距离相等7、如图在三角形ABC中BM=MC∠ABM=∠ACM求证AM平分∠BAC8、如图,AP、CP分别是△ABC外角∠MAC与∠NCA的平分线,它们相交于点P,PD⊥BM于点D,PF⊥BN于点F.求证:BP为∠MBN的平分线。
9、如图,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C.求证:点C在∠AOB 的平分线上.10、如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论;(2)线段DM与AM有怎样的位置关系?请说明理由.11、八(1)班同学上数学活动课,利用角尺平分一个角(如图所示).设计了如下方案:(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(Ⅱ)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由;PM⊥OA,PN⊥OB.此方案是否可行?请说明理由.ADEBFC12、如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF。
八年级下册数学选择题易错题
八年级下册数学选择题易错题一、二次根式部分。
1. 若√(x - 3)在实数范围内有意义,则x的取值范围是()A. x>3B. x≥3C. x<3D. x≤3解析:二次根式有意义的条件是被开方数为非负数。
所以在√(x - 3)中,x-3≥0,解得x≥3,答案为B。
2. 化简√((-2)^2)的结果是()A. - 2.B. 2.C. 4.D. ±2解析:√((-2)^2)=√(4) = 2,这里要注意算术平方根是非负的,答案为B。
二、勾股定理部分。
3. 一个直角三角形的两条直角边分别为3和4,则斜边为()A. 5.B. 6.C. 7.D. 8.解析:根据勾股定理a^2+b^2=c^2(其中a、b为直角边,c为斜边),所以斜边c=√(3^2)+4^{2}=√(9 + 16)=√(25)=5,答案为A。
4. 已知直角三角形的斜边为5,一条直角边为3,则另一条直角边是()A. 4.B. 3.C. 5.D. 6.解析:设另一条直角边为x,根据勾股定理可得3^2+x^2=5^2,即x^2=25 -9=16,解得x = 4,答案为A。
三、平行四边形部分。
5. 在平行四边形ABCD中,∠ A:∠ B = 1:2,则∠ C的度数为()A. 30^∘B. 60^∘C. 120^∘D. 150^∘解析:因为平行四边形邻角互补,即∠ A+∠ B=180^∘,又因为∠ A:∠ B = 1:2,设∠ A=x,∠ B = 2x,则x+2x=180^∘,3x=180^∘,x = 60^∘。
平行四边形的对角相等,所以∠ C=∠ A=60^∘,答案为B。
6. 平行四边形的对角线AC、BD相交于点O,若AC = 10,BD = 12,AB=m,则m 的取值范围是()A. 1B. 2C. 10D. 5解析:平行四边形的对角线互相平分,所以AO = 5,BO=6。
在三角形ABO中,根据三角形三边关系,BO - AO,即6 - 5,1,答案为A。
数学八下易错题 含答案
八年级下册易错题第一章 三角形的证明1.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是DA .7㎝B .9㎝C .12㎝或者9㎝D .12㎝考查知识点:三角形的基本知识及等腰三角形边的关系:任意两边之和大于第三边,等腰三角形两腰相等,因此只能是:5cm,5cm,2cm.2.一个等腰三角形的一个角是40°,则它的底角是DA .40°B .50°C .60°D .40°或70°考查知识点:三角形的内角和及等腰三角形两底角相等:①当40°是顶角时,底角就是70°;②40°就是一个底角.3.已知△ABC 的三边长分别是6cm 、8cm 、10cm,则最长边上的高是DA.2.4cmD.提示:设最长边上的高为h,由题意可得△ABC 是直角三角形,利用面积相等求,即h .10.218.6.21 解得h=4.等腰三角形一腰上的高与另一腰的夹角为300,腰长为6,则其底边上的高是3或33.解:①三角形是钝角三角形时,如图1,∵∠ABD=30°∴AD=21AB=21×6=3,∵AB=AC,∴∠ABC=∠ACB=21∠BAD=2190°-30°=30°,∴∠ABD=∠ABC,∴底边上的高AE=AD=3;②三角形是锐角三角形时,如图2,∵∠ABD=30°∴∠A=90°-30°=60°,∴△ABC 是等边三角形, ∴底边上的高为23×6=33 综上所述,底边上的高是3或335.到三角形三个顶点的距离相等的点是三角形B 的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高考查的知识点:三角形三边垂直平分线的交点到到三角形三个顶点的距离相等归纳为:点到点距离相等,为垂直平分线上的点还有一个:三角形三个内角平分线的交点到三角形三边的距离相等归纳为:点到线的距离相等,为角平分线的交点,此时的距离有“垂直”6.如图,在△ABC 中,AB=5,AC=3,BC 的垂直平分线交AB 于D,交BC 于E,则△ADC 的考查的知识点:垂直平分线上的点到线段两端点的距离相等7. 用反证法证明:一个三角形中至少有一个内角小于或等于60°.答案:已知:△ABC , 求证:△ABC 中至少有一个内角小于或等于60° 证明:假设△ABC 中没有一个内角小于或等于60°,即每一内角都大于60° 则∠A>60°,∠B>60°,∠C>60°∴∠A+∠B+∠C>60°+60°+60°=180° 即∠A+∠B+∠C>180°,这与三角形的内角和为180度矛盾.假设不成立. ∴△ABC 中至少有一个内角小于或等于60°考查知识:反证法,用反证法进行证明时先写出已知、求证,再假设求证的反面成立,推出与题设、定理等相矛盾的结论,从而肯定原结论成立注意:反证法一般很少用到,除非是题目要求用反证法证明,否则一般不考虑该方法8. 如图所示,∠AOB=30°,OC 平分∠AOB,P 为OC 上任意一点,PD∥OA 交OB 于点D,PE⊥OA 于点E,若PE=2cm,则PD=_________cm .解:过点P 作PF ⊥OB 于F,∵∠AOB=30°,OC 平分∠AOB,∴∠AOC=∠BOC=15°,∵PD ∥OA,∴∠DPO=∠AOP=15°,∴∠DPO=∠AOP=15°,∴∠BOC=∠DPO,∴PD=OD=4cm,∵∠AOB=30°,PD ∥OA,∴∠BDP=30°,∴在Rt △PDF 中,PF=21PD=2cm, ∵OC 为角平分线,PE ⊥OA,PF ⊥OB,∴PE=PF,∴PE=PF=2cm9.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E,过点E 作MN∥BC 交AB 于M,交AC 于N,若BM+CN=9,则线段MN 的长为解:∵∠ABC 、∠ACB 的平分线相交于点E,∴∠MBE=∠EBC,∠ECN=∠ECB,∵MN ∥BC,∴∠EBC=∠EBC,∠ECN=∠ECB,∴BM=ME,EN=CN,∴MN=BM+CN,∵BM+CN=9,∴MN=9考查知识点:平行+平分,必有等腰三角形10.如图,AD 是△ABC 的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG 和△AED 的面积分别为50和39,则△EDF 的面积为B 解:作DM=DE 交AC 于M,作DN ⊥AC,∵在△AED 和△AMD 中∴△AED ≌△AMD∴ADM ADE S S V V∵DE=DG,DM=DE,∴DM=DG,∵AD 是△ABC 的外角平分线,DF ⊥AB,∴DF=DN,在Rt △DEF 和Rt △DMN 中,Rt △DEF ≌Rt △DMNHL,∵△ADG 和△AED 的面积分别为50和39,∴ADM ADG MDG S S S V V V -==50-39=11MDG DEF DNM S S S V V V 21===21×11= 考查知识点:角平分线上的点到角两边的距离相等及三角形的全等11.在Rt△ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是AA. B. C.D.解:在Rt △ABC 中,AC=9,BC=12,根据勾股定理得:AB=151292222=+=+BC AC过C 作CD ⊥AB,交AB 于点D,则由ABC S V =21AC .BC=21AB .CD,得CD=AB BC AC .=1512x 91=536 考查知识:利用面积相等法12.如图,在△ABC 中AD⊥BC,CE⊥AB,垂足分别为D 、E,AD 、CE 交于点H,已知EH=EB=3,AE=4,则CH 的长是A解:∵AD ⊥BC,∴∠EAH+∠B=90°,∵CE ⊥AB,∴∠EAH+∠AHE=90°,∴∠B=∠AHE,∵EH=EB,在△AEH 和△CEB 中,∴△AEH ≌△CEBASA∴CE=AE,∵EH=EB=3,AE=4,∴CH=CE-EH=4-3=1考查知识:利用三角形全等求线段长度.13.如图,在△ABC 中,AD 是中线,AE 是角平分线,CF ⊥AE 于点F,AB=5,AC=2,则DF的长为23.解:延长CF 交AB 于点G,∵AE 平分∠BAC,∴∠GAF=∠CAF,∵AF 垂直CG,∴∠AFG=∠AFC,在△AFG 和△AFC 中,∴△AFG ≌△AFCASA∴AC=AG,GF=CF,又∵点D 是BC 的中点,∴DF 是△CBG 的中位线,∴DF=21BG=21AB-AG=21AB-AC=23点评:本题考查了三角形的中位线定理,解答本题的关键是作出辅助线,一般出现既是角平分线又是高的情况,我们就需要寻找等腰三角形.14.如图,在△ABC 中,AD 为∠BAC 的平分线,FE 垂直平分AD,交AD 于E,交BC 的延长线于F.求证:∠CAF=∠B.解:∠B=∠CAF.∵FE 垂直平分AD,∴FA=FD,∴∠FAD=∠ADF∵AD 为∠BAC 的平分线,∴∠CAD=∠BAD又∵∠CAF=∠FAD=∠CAD,∠B=∠ADF-∠BAD,∴∠B=∠CAF点评:此题考查了线段垂直平分线的性质、角平分线的定义及三角形的外角等知识点.15.如图,OA、OB表示两条相交的公路,点M、N是两个工厂,现在要在∠AOB内建立一个货物中转站P,使中转站到公路OA、OB的距离相等,并且到工厂M、N的距离也相等,用尺规作出货物中转站P的位置.解:①作∠AOB的角平分线;②连接MN,作MN的垂直平分线,交OM于一点,交点就是所求货物中转站的位置.16. 如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.1求证:△ACD≌△AED;2若∠B=30°,CD=1,求BD的长.1证明:∵AD平分∠CAB∴∠CAD=∠EAD∵DE⊥AB,∠C=90°,∴∠ACD=∠AED=90°又∵AD=AD,∴△ACD≌△AED2解:∵△ACD≌△AED∴DE=CD=1∵∠B=30°,∠DEB=90°,∴BD=2DE=217.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.1求证:BF=2AE;2若CD=,求AD的长.1证明:∵AD⊥BC,∠BAD=45°∴∠ABD=∠45°=∠BAD∴AD=BD∵BE⊥AC∴∠CAD+∠AFE=90°∵AD⊥BC∴∠FBD=∠BFD=90°又∠AFE=∠BFD∴∠CAD=∠FBD又∠ADC=∠BDF=90°∴△ADC≌△BDF∴AC=BF∵AB=BC,BE⊥AC∴AC=2AE∴BF=2AE2解:设AD=x,则BD=x∴AB=BC=2+x∵△ABD是等腰直角三角形∴AB=2AD∴2+x=2x解得x=2+2即AD=2+218.如图,已知△ABC是等边三角形,D、E分别在BA、BC的延长线上,且AD=BE. 求证:DC=DE证明:延长BE至F,使EF=BC∵△ABC是等边三角形∴∠B=60°,AB=BC∴AB=BC=EF∵AD=BE,BD=AB+AD, BF=BE+EF∴BD=BF∴△BDF是等边三角形∴∠F=60°,BD=FD在△BCD和△FED中,BC=EF∠B=∠F=60°BD=FD∴△BCD≌△FEDSAS∴DC=DE19.如图,在△ABC 中,AC=BC,∠ACB=90°,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E,且AE=21BD,求证:BD 是∠ABC 的角平分线.证明:延长AE 、BC 交于点F∵AE ⊥BE∴∠BEF=90°,又∠ACF=∠ACB=90°∴∠DBC+∠AFC=∠FAC+∠AFC=90°∴∠DBC=∠FAC在△ACF 和△BCD 中∴△ACF ≌△BCDASA∴AF=BD又AE=21BD∴AE=EF,即点E 是AF 的中点∴AB=BF∴BD 是∠ABC 的角平分线20.如图,在△ABC 中,分别以AC 、AB 为边,向外作正△ACD,正△ABE,BD 与AE 相交于F,连接AF,求证:AF 平分∠DME证明:过点A 分别作AM ⊥BD,AN ⊥CE,分别交BD,CE 于M,N 两点∵△ABE 和△ACD 均为等边三角形,∴∠EAB=∠CAD=60°,AD=AC,AB=AE∵∠EAC=∠BAD=60°+∠BAC,∴△EAC ≌△BAD,∴ AM BD S AN CE S BAD EAC .21.21===V V CE=BD∴AN=AM∴AF 平分∠DME 在角的内部到角两边距离相等的点在该角的平分线上21.如图,已知:AB=AC,∠A=90°,AF=BE,BD=DC.求证:FD ⊥ED.证明:连接AD.∵∠A=90° AB=AC D 是BC 的中点∴AD ⊥BC ∠ADB=90° ∠B=45°=∠CAD AD=BD 直角三角形中,中线等于斜边的一半且BE=AF∴易证△BED ≌△AFD SAS∴∠BDE=∠ADF ∵∠ADE+∠EDB=∠ADB=90°∴∠ADF+∠ADE=90°∴ED ⊥FD第二章 不等式组自己做1已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围.2 已知关于x 的不等式1-ax >2的解集为x <a-12 ,则a 的取值范围是a >1. 提示:利用不等式的基本性质三:a-1<0 3如果不等式组⎩⎨⎧<+>-00b x a x 的解集是3<x <5,那么a=3,b=-5.提示:解得不等式组的解集为:a<x <-b而不等式组的解集为:3<x <5∴a=3,b=-54 如果不等式 ⎩⎨⎧><mx x 8 无解,那么m 的取值范围是 BA .m >8 ≥8 <8 ≤8提示:不等式组无解的条件是:比大的还大,比小的还小;∴m ≥8“=”一定要考虑,这个题取“=”就满足题意5如果不等式组⎩⎨⎧>-<+mx x x 148的解集是3>x ,则m 的取值范围是A . A .m≤3 B . m≥3 C .m=3 D .m <3提示:不等式组解集:同大取大;解不等式组得而该不等式组的解集是3>x ,∴m≤3“=”一定要考虑,这个题取“=”就满足题意6关于x 的不等式组()⎪⎩⎪⎨⎧->-+--<-325251263x x a x x 有三个整数解,则a 的取值范围是65-<a ≤32-. 解:解该不等式组得∵有三个整数解∴2<x <6a+10∴三个整数解应该是3,4,5∴5<6a+10≤6解得65-<a ≤32-自己解答7 若方程组⎩⎨⎧+=++=+3654,2m y x m y x 的解x ,y 均为正数,求m 的取值范围.提示:先将m 当作已知数,将x 、y 用含m 的式子表示出来,然后利用x ,y 均为正数,列出含m 的不等式组,解出m 的取值范围自己解2.解不等式组不等式组的结果不能写成大括号的形式1解不等式1213312+-≥+)(x x ,并将解集在数轴上表示出来; 2解不等式组⎪⎩⎪⎨⎧≤+--+<-1215312)1(315x x x x ,并把它的解集表示在数轴上. 3.一元一次不等式组与一次函数利用一次函数解一元一次不等式组:实质就是比较两个函数y 值得大小,函数值y 越大,图像越高,函数值y 越小,图像越高低,这里一般是让求自变量x 的取值范围,找出与x 轴交点的横坐标指一元一次不等式,看让求图像在x 轴以上的自变量的取值范围还是图像在x 轴以下的自变量的取值范围;或找出函数交点的横坐标,然后看在该交点以左满足题意还是交点以右满足题意.1函数y =kx +bk 、b 为常数,k ≠0的图象如图所示,则关于x 的不等式kx+b>0的解集为C .A .x>0B .x<0C .x<2D .x>22直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式x k b x k 21>+的解为x<-14.一元一次不等式组应用题◆一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最多打9折.商品销售中需注意的地方:①“进价”也叫“成本”;“售价”也叫“标价”;②获利是在进价的基础上获利;打折是在售价基础上打折;③打几折就是给售价×10x 解:设可以打x 折.那么600×10x -500÷500≥8%解得x≥9.故答案为:9.◆某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x元;下午,他又买了20斤.价格为每斤y元.后来他以每斤2yx+元的价格卖完后,结果发现自己赔了钱,其原因是Bx<y B.x>y C.x≤y D.x≥y1某商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元;该商场为促销制定了如下两种优惠方式:第一种:买一支毛笔附赠一本书法练习本;第二种:按购买金额打九折付款;八年级2班的小明想为本班书法兴趣小组购买这种毛笔10支,书法练习本 xx≥10本;试问小明应该选择哪一种优惠方式才更省钱利用一次函数与不等式组的知识进行解答解:1y1=25×10+x-10×5=5x+200;y2=25×10+5x×=+225.2①y1>y2时,即5x+200>+225,解得:x>50;②y1=y2时,即5x+200=+225,解得:x=50;③y1<y2时,即5x+200<+225,解得x<50.3甲方案:25×10+50×5=500元;乙方案:25×10+60×5×=495元;两种方案买:25×10+50×5×=475元,2甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价折优惠.设顾客预计累计购物x元x>300.1请用含x的代数式分别表示顾客在两家超市购物所付的费用;2顾客到哪家超市购物更优惠说明你的理由.解:1设应付金额为y 则在甲超市购物所付的费用是:y=300+x-300=+60在甲超市购物所付的费用是:y=200+x-200=+302①当+60>+30时,解得x<600,而x>300∴300<x<600即顾客购物超过300元且不满600元时,到乙超市更优惠;②当+60=+30时,解得x=600∴当顾客购物600元时,到两家超市所付费用相同;③当+60<+30时,解得x>600∴当顾客购物超过600元时,到甲超市更优惠;3去年6月份广州市某果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往深圳,已知甲货车可装荔枝4吨和香蕉1吨;乙种货车可装荔枝、香蕉各2吨:①该果农安排甲、乙两种货车时有几种方案请你帮助设计出来;②若甲种货车每辆要付出运输费2000元;乙种货车每辆要付出运输费1300元,则该果农应选择哪种方案使运费最少最少是多少解:1设安排甲种货车x辆,则安排乙种货车10-x辆,由题意得解得5≤x≤7∵x是整数∴x取5、6、7因此,安排甲、乙两种货车有三种方案:方案1:甲种货车5辆,乙种货车5辆;方案2:甲种货车6辆,乙种货车4辆;方案3:甲种货车7辆,乙种货车3辆.2方案1需要运费:2000×5+1300×5=16500元方案2需要运费:2000×6+1300×4=17200元方案3需要运费:2000×7+1300×3=17900元∴该果农应选择方案1运费最少,最少运费是16500元.4某工厂计划为震区生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅一桌两椅需木料0.5m3,一套B型桌椅一桌三椅需木料0.7m3,工厂现有库存木料302m3.①有多少种生产方案②现要把生产的全部桌椅运往震区,已知每套A型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y元与生产A型桌椅x套之间的关系式,并确定总费用最少的方案和最少的总费用.总费用=生产成本+运费③按②的方案计算,有没有剩余木料如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.解:1设生产A型桌椅x套,则生产B型桌椅500-x套,由题意得解得240≤x≤250∵x是整数,∴有11种生产方案2 由题意得y=100+2x+120+4×500-x= -22x+62000240≤x≤250∵-22<0,∴y随x的增大而减小∴当x=250时,y有最小值∴当生产A型桌椅250套、B型桌椅250套时,总费用最少,为-22×250+62000=56500元3有剩余木料,302-05+×250÷×2=8或302-05+×250=2<3∴有以下几种方案:① 全部做A 型可做4套,② 全部做B 型可做2套,③一部分做A 型一部分做B 型最多3套,比较可知,应选第①中方案,故最大值应为8∴最多还可以为8名学生提供桌椅.5本学期我校开展了课外兴趣小组活动,有很多同学参加了书法兴趣小组;小刚代表兴趣小组的同学去文具店购买毛笔;一个批发兼零售的文具店规定:凡一次购买毛笔100枝以上包括100枝,可以按批发价付款;购买100枝以下不包括100枝只能按零售价付款;小刚来到该店购买毛笔,如果给兴趣小组的同学每人购买一枝,那么只能按零售价付款,需270元;如果多购买10枝,那么可以按批发价付款,同样需270元;①请问参加书法兴趣小组的同学人数在什么范围内3分②若按批发价购买10枝与按零售价购买9枝的款相同,那么参加书法兴趣小组的同学有多少人解:① 设有x 人则由题意可得:∴90≤x <100且x 为整数 ②设批发价为m 元,零售价为n 元 则得到 10m=9n 还有条件得∴xm=x+10n ∴10910==+m n x x 解得 x=906若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满,问学生有多少人宿舍有几间解:设宿舍有x间,则学生有4x+20人,由题意可得:解得:5<x<7∵x为整数,∴x=6∴学生有4×6+20=44人答:学生有44人,宿舍有6间.7某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒.1现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共l00个,按两种纸盒的生产个数来分,有哪几种生产方案2若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知306<a,求a的值.290<解:1设生产竖式纸盒x个,则生产横式纸盒100-x个,由题意得:解得38≤x≤40∴有3种生产方案,如下:方案1:生产竖式纸盒38个,横式纸盒62个;方案2:生产竖式纸盒39个,横式纸盒61个;方案3:生产竖式纸盒40个,横式纸盒60个.2设竖式纸盒x个,横式纸盒y个,由题意得:解得648-5y=a∵290<a<306∴290<648-5y<306解得<y<∵y为整数,∴y只能取69、70、71∴对应的a的取值为303、298、293.第三章图形的平移与旋转1.下列图形中,既是轴对称图形又是中心对称图形的有CA.4个B.3个C.2个D.1个2.在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC 上一点P,2平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为CA.,-1B.,2C.,1D.,13.如图所示,△DEF是由△ABC绕着某点旋转得到的,则这个点的坐标是0,1. 解:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′,其坐标是0,14.如图,在方格纸上,以格点连线为边的三角形叫做格点三角形,请按要求完成下列操作:先将格点△ABC绕A点逆时针旋转90°得到△A1B1C1,再将△A1B1C1沿直线B1C1作轴反射得到△A2B2C2.5.如图1,已知:Rt△ABC和Rt△DBE,∠ABC=∠DBE=90°,AB=CB,DB=EB.1如图1,点D在△ABC外,点E在AB边上时,求证:AD=CE,AD⊥CE;2若将1中的△DBE绕点B顺时针旋转,使点E在△ABC的内部,如图2,则1中的结论是否仍然成立请证明;3若将1中的△DBE绕点B顺时针旋转,使点E在△ABC的外部,如图3,请直接写出AD,CE的数量关系及位置关系.解:1证明:如图图1所示,在△ABD和△CBE中,∴△ABD≌△CBESAS∴AD=CE,∠BAD=∠BCE,∵∠BCE+∠BEC=90°,∠AEF=∠BEC,∴∠BAD+∠AEF=90°∴∠AFE=90°∴AD⊥CE21中的结论AD=CE,AD⊥CE仍然成立,理由为:证明:如图图2所示,∵∠ABC=∠DBE=90°∴∠ABC-∠ABE=∠DBE-∠ABE,即∠ABD=∠CBE在△ABD和△CBE中,∴△ABD≌△CBESAS∴AD=CE,∠BAD=∠BCE,∵∠BCE+∠BOC=90°,∠AOF=∠BOC,∴∠BAD+∠AOF=90°∴∠AFE=90°∴AD ⊥CE3 AD=CE,AD ⊥CE,理由为:证明:如图图3所示,设AF 和BC 相交于点M∵∠ABC=∠DBE=90°∴∠ABC-∠DBC=∠DBE-∠DBC,即∠ABD=∠CBE在△ABD 和△CBE 中,∴△ABD ≌△CBESAS∴AD=CE,∠BAD=∠BCE,∵∠BAD+∠AMB=90°,∠AMB=∠CMF,∴∠BCE+∠CMF=90°∴∠AFC=90°∴AD ⊥CE6.在Rt △ABC 中,∠ACB=90°,∠A=30°,点D 是AB 的中点,DE ⊥BC,垂足为点E,连接CD . 1如图1,DE 与BC 的数量关系是 ;2如图2,若P 是线段CB 上一动点点P 不与点B 、C 重合,连接DP,将线段DP 绕点D 逆时针旋转60°,得到线段DF,连接BF,请猜想DE 、BF 、BP 三者之间的数量关系,并证明你的结论;3若点P 是线段CB 延长线上一动点,按照2中的作法,请在图3中补全图形,并直接写出DE 、BF 、BP 三者之间的数量关系.解:1∵∠ACB=90°,∠A=30°∴∠B=60°∵点D 是AB 的中点,∴DB=DC,∴△DCB 为等边三角形∵DE ⊥BC,∴DE=23BC2 BF+BP=332DE,理由如下: ∵线段DP 绕点D 逆时针旋转60°,得到线段DF, ∴∠PDF=60°,DP=DF, 而∠CDB=60°∴∠CDB-∠PDB=∠PDF-∠PDB, ∴∠CDP=∠BDF, 在△DCP 和△DBF 中 ∴△DCP ≌△DBFSAS ∴CP=BF 而CP=BC-BP ∴BF+BP=BC ∵DE=23BC ∴BC=332DE ∴BF+BP=332DE 3如图,与2一样可证明△DCP ≌△DBF ∴CP=BF而CP=BC+BP ∴BF-BP=BC ∴BF-BP=332DE 点评:本题考查了全等三角形的判断与性质:判断三角形全等的方法有“SSS ”、“SAS ”、“ASA ”、“AAS ”;全等三角形的对应边相等,也考查了等边三角形的判断与性质以及含30度的直角三角形三边的关系.第四章 因式分解★这种变形叫做把这个多项式因式分解,也叫分解因式;由此可见:分解因式”和“因式分解”实质是一样的是一回事;★分解因式时一定要分到不能分解为止;如:2y x -不能再分解了;再如: 22)4(-a 还可以分解为22)2()2(+-a a★分解因式的方法:①提公因式法;②公式法平法差公式 完全平方公式③十字相乘法. 十字相乘法:简单的概括为:把多项式中第一个和第三个数竖着写成相乘的形式,然后再十字相乘,相加,要等于多项式里中间的那个数,最后横着分解出来即可如上图 1.下列从左边到右边的变形,是因式分解的是: D =3a ·4abB.x+3x -3=x 2-9 +8x -1=4xx+2-1D.()()41432+-=-+x x x x2.下列各组代数式中没有公因式的是 B A .4a 2bc 与8abc 2 B .a 3b 2+1与a 2b 3–1 C. ba –2b 2与a2b –a 2 D. x+1与x 2–13.将–x 4–3x 2+x 提取公因式–x 后,剩下的因式是)13(3-+-x x x .4.若4a 4–ka 2b+25b 2是一个完全平方式,则k=±20.提示:完全平方式有两个,中间是±2ab5.若一个正方形的面积是9m 2+24mn+16n 2,则这个正方形的边长是n m 43+.6. 已知x 2+y 2—4x+6y+13=0,则x=2,y=-3. 提示:0)3()2(22=++-y x7.若0342=-+x x ,那么51232-+x x 的值为4提示:由0342=-+x x 得342=+x x ,∴45)4(3512322=-+=-+x x x x 8.已知119×21=2499,则119×213-2498×212等于212.提示:119×21×212-2498×212=2499×212-2498×212=212×2499-2498=212 9.多项式m x x +-42可以分解为)7)(3(-+x x ,则m 的值为C B.-3 C.-2110. 若)32)(32)(94(81)2(2-++=-x x x x n ,则n 等于B .A .2B .4C .6D .8 11.分解因式我只写了答案,在答卷子时一定要写过程①()22241a a -+=2)1(-a 2)1(+a ②228168ay axy ax -+-=2)(8y x a -- ③1﹣9x 3+6x 2﹣x=2)13(--x x④a 4﹣8a 2+16=22)2()2(+-a a⑤4233ay ax -=))((322y x y x a +- ⑥4)()(42-+-+b a b a =2)2(-+-b a12.计算①2010200820092⨯-=1120092009)12009()12009(2009222=+-=+⨯-- ②20142+16﹣8×2014= 20142﹣8×2014 +16=2)42014(-=20102=4040100③9992﹣1002×998=19954)1000999)(1000999(41000999)21000()21000(999222-=++-=+-=-⨯+-13.1利用因式分解说明:127636-能被210整除.证明:∵1111122121212212141276.2106.6.356.35)16(666.666636===-=-=-=-∴127636-能被210整除2若c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,试探索△ABC 的形状,并说明理由;解:bc ac ab c b a ++=++222=2)(2)(222bc ac ab c b a ++=++=0)2()2()2(222222=+-++-++-c bc b c ac a b ab a =0)()()(222=-+-+-c b c a b a 解得:a=b,a=c,b=c∴a=b=c∴△ABC 为等边三角形14.已知多项式a 2+ka +25–b 2,在给定k 的值的条件下可以因式分解.1写出常数k 可能给定的值;答案k=±10 2针对其中一个给定的k 值,写出因式分解的过程.解:当k=10时,原式=22)5(b a -+=)5)(5(b a b a ++-+★★★15.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2x ﹣1x ﹣9,另一位同学因看错了常数项而分解成2x ﹣2x ﹣4,请将原多项式分解因式. 解:因看错一次项,分解为,所以二次项和常数项对; 因看错常数项,分解为所以二次项和一次项对 所以原多项式为:=16.仔细阅读下面例题,解答问题:例题:已知二次三项式x 2﹣4x+m 有一个因式是x+3,求另一个因式以及m 的值. 解:设另一个因式为x+n,得 x 2﹣4x+m=x+3x+n则x 2﹣4x+m=x 2+n+3x+3n ∴.解得:n=﹣7,m=﹣21∴另一个因式为x ﹣7,m 的值为﹣21 问题:仿照以上方法解答下面问题:已知二次三项式2x 2+3x ﹣k 有一个因式是2x ﹣5,求另一个因式以及k 的值.解:设另一个因式为x+m,得2x 2+3x ﹣k=2x ﹣5x+m=2x2+2m-5x-5m∴2m-5=3 -5m=-k解得m=4,k=20∴另一个因式为:x+417.根据条件,求下列代数式的值:1若xy ﹣1﹣yx ﹣1=4,求的值;解:∵xy ﹣1﹣yx ﹣1=4∴xy-x-xy+y=4 ∴y-x=4∴162)(222=+-=-x xy y x y ∴xy y x 21622+=+∴82216222=-+=-+xy xyxy y x 2若a+b=5,ab=3,求代数式a 3b ﹣2a 2b 2+ab 3的值.3利用“配方法”分解因式:a 2-6a+8. 解:原式=)2)(4(1)3(19622--=--=-+-a a a a a 4若a+b=5,ab=6,求:a 4+b 4的值. 解:第五章 分式及分式方程★分母上含有字母的式子叫分式不要约分,直接进行判断如:xx 25也是分式★分式的基本性质:给分式的分子和分母都乘以或除以同一个不为零的整式,分式的值不变.★分式有意义:使分母不为零,分子有意义主要是分子中含有平方根的情况如:2154-+-x x 则4x-5≥0x-2≠0解得x ≥45且x ≠2★分式值为零:分子为零,且分母不为零;最简分式:分子分母不能再进行约分的分式叫最简分式★分母中含有未知数的等式叫分式方程;★解分式方程时,解完后一定要检验,若算出的解使公分母为零,则该解为分式方程的增根;若算出的解使公分母不为零,则该解为分式方程的根. ★增根:使公分母为零的根或解1. 已知有理式:错误!,错误!,错误!,错误!,错误!x 2,错误!+4其中分式有B A .2个 个 个 个▲在盒子里放有三张分别写有整式a+1、a+2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是C A.61B .31C .32 D .432.使分式2+x x有意义的x 取值范围是D A.0≠x B.2≠x C.2->xD.2-≠x▲若y 与x 的函数关系式是y=12-x ,则自变量x 取值范围1≠x . 3. 若分式yx yx -+中的x 、y 的值都变为原来的3倍,则分式的值 A A.不变 B.是原来的3倍 C.是原来的31 D.是原来的614.若将分式24a ba +中的a 与b 的值都扩大为原来的2倍,则这个分式的值将 C A.扩大为原来的2倍 B.分式的值不变 C.缩小为原来的21D.缩小为原来的41 5.下列各式中最简分式是 B A.b a 1512 B.162+x x C.331++x x D.a a 56.若分式112--x x 的值为零,则x 的值为-17.若关于x 的方程2121--=-+x m x x 产生增根,则m 是A▲若关于x 的分式方程3232-=--x m x x 无解,则m 的值为±3 8.若:错误!=错误!=错误!=错误!=3,则错误!=3;若:错误!=错误!,则错误!=35.9.若034=-y x ,则y y x -=41- 提示:利用特殊值法:让x=3,y=4 10.如果3=-y x ,4=xy ,y xy x yxy 32322x -+--那么=17211.计算)1(1aa a a -÷-的结果是11+a 12.有一组数是1,43,32,85,……则第100个数是200101解:1,43,32,85,……=22,43,64,85…nn 21+ ∴第100个数是20010113.符号“cdab ”称为二阶行列式,规定它的运算法则为:bc ad cdab-=,请你根据上述规定求出下列等式中的x 的值.111112--x x =1 则x =4. 解:由题意得:11112=---xx 解得 x=4经检验,x=4是原方程的根14.计算题我只写了答案,在考试时一定要写过程 1⎪⎭⎫ ⎝⎛+-÷⎪⎭⎫⎝⎛---21121422m m m m =11+m 2a a a a a a a 133969222++-÷++-=0322224421y xy x y x y x y x ++-÷+-- =y x y +- 4x x x x x x x ÷--++--22121222=12-x x5先化简,再求值,xx x x x x x x x 416441222222+-÷⎪⎭⎫ ⎝⎛+----+其中22+=x 解:原式=2)2(1-x ,将22+=x 代入得,原式=21▲先化简再求值2244422+--+--x x x x x 其中x=2解:原式=482-x x,将x=2代入得,原式=24- 6若65432+==+c b a ,且2132=+-c b a ,求c b a +-34的值. 解:设65432+==+c b a =k,则a=3k -2,b=4k,c=6k-5 ∴23k -2-4k+36k-5=21 解得k=2 ∴a=4,b=8,c=7 ∴c b a +-34=-1 7 已知11)1)(1(42++-=+--x Bx A x x x ,求A ,B 的值. 解:∵)1)(1()()1)(1()1()1(11)1)(1(42+--++=+--++=++-=+--x x BA xB A x x x B x A x B x A x x x ∴ A+B=2 A-B=-4 解得A=-1,B=315.解方程:我只写了答案,在考试时一定要写过程①)1(5316-+=+-x x x x x 解得:x=1经检验,x=1是原方程的增根②1613122-=-++x x x 解得:x=1经检验,x=1是原方程的增根③xx x -=--2123 解得:x=2经检验,x=2是原方程的增根16.分式方程应用题1在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时C . A.221v v +千米 B.2121v v v v +千米 C.21212v v vv +千米 D.无法确定 解:设上坡的路程为S 千米,则下坡路程也为S 千米,由题意得:212v s v s s +=21212v v v v + 2一项工程,A 单独做m 小时完成;A,B 合作20小时完成,则B 单独做需2020-m m小时完成. 解:由题意得:202012011-=-m mm3我市从今年1月1日起调整居民用水价格,每立方米水费上涨31;小明家去年12月份的水费是15元,而今年7月份的水费则是30元;已知小明家今年7月份的用水量比去年12月份的用水量多5 立方米,求该市今年居民用水的价格是每立方米多少元解:设去年的水费为每立方米x 元,则今年为每立方米34x 元,由题意得:解得x=23经检验,x=23是原方程的根且符合题意 ∴今年居民用水的价格是每立方米23×34=2元 答:_____________________________4小明带15元钱请朋友喝饮料,如果买一种A 饮料,正好付15元且自己可以多喝一瓶,但售货员建议他买一种新口味的B 饮料,这种B 饮料比A 饮料价格高出41,因此,他也只能喝一瓶,问这两种饮料的价格各是多少解:设买A 饮料所需钱为x 元,买B 饮料所需钱为45x 元 解得x=3经检验,x=3为原方程的根且符合题意∴B 种饮料的价格是 3×45=元 答:A 饮料的价格是3元,B 饮料的价格是元5甲、乙两人都从A 地出发到B 地,已知两地相距50千米,且乙的速度是甲速度的倍.现甲先出发1小时30分,乙再出发,结果乙反而比甲早到1小时,问两人速度各是多少解:设甲的速度为x 千米/小时,则乙的速度为千米/小时,由题意得: 解得 x=12经检验,x=12为原方程的根且符合题意 ∴乙的速度12×=30千米/小时 答:_____________________________6为了支援四川人民抗震救灾,某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划10天完成.1按此计划,该公司平均每天应生产帐篷2000顶;2生产2天后,公司又从其它部门抽调了50名工人参加帐篷生产,同时,通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产帐篷解:12000。
数学八年级下册数学期末试卷易错题(Word版含答案)
数学八年级下册数学期末试卷易错题(Word 版含答案) 一、选择题 1.二次根式5x -中字母x 的取值可以是( ) A .x =0B .x =1C .x =2D .x =5 2.下列各组数中不能作为直角三角形的三边长的是( ) A .1.5,2,3 B .7,24,25 C .9,12,15 D .1,2,5 3.如图,在四边形ABCD 中,对角线AC 和BD 相交于点O ,下列条件不能判断四边形ABCD 是平行四边形的是( )A .//AB DC ,ABC ADC ∠=∠B .AB DC =,AD BC = C .OA OC =,OB OD =D .//AD BC ,AB CD = 4.某校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班平均得分( )A .9B .6.67C .9.1D .6.745.如图,在正方形ABCD 中,22CD =,若点P 为线段AD 上方一动点,且满足PD =2,∠BPD =90°,则点A 到直线BP 的距离为( )A 3B .3-C 31D 31 6.如图是两个全等的三角形纸片,其三边长之比为3: 4: 5,按图中方法分别将其对折,使折痕(图中虚线)过其中的一个顶点,且使该顶点所在两边重合,记折叠后不重叠部分面积分别为,A B S S ,已知15A B S S -=,则纸片的面积是( )A .102B .104C .106D .1087.如图,以Rt △ABC (AC ⊥BC )的三边为边,分别向外作正方形,它们的面积分别为S 1﹑S 2﹑S 3,若S 1+S 2+S 3=12,则S 1的值是( )A .4B .5C .6D .78.如图,菱形ABCD 的边长为4cm ,60ABC ∠=︒,且M 为BC 的中点,P 是对角线BD 上的一动点,则PM PC +的最小值为( )A .4cmB .3cmC .25cmD .23cm二、填空题9.若二次根式21x -在实数范围内有意义,则x 的取值范围是____.10.已知菱形的两条对角线长为6和8,菱形的周长是_______,面积是________. 11.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,∠AOD =60°,AD =4,则AB =___.12.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,OE BD ⊥交AD 于点E ,连接BE .若矩形ABCD 的周长为8cm ,则ABE △的周长为__________cm .13.饮料每箱24瓶,售价48元,买饮料的总价y (元)与所买瓶数x 之间的函数________.14.如图,矩形ABCD 中,对角线AC 和BD 交于点O ,过O 的直线分别交AD 和BC 于点E 、F ,已知AD =4 cm ,图中阴影部分的面积总和为6 cm 2,则矩形的对角线AC 长为___cm.15.如图,在平面直角坐标系中,点A 1,A 2,A 3,…,都在x 轴正半轴上,点B 1,B 2,B 3,…,都在直线33y x =上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…,都是等边三角形,且OA 1=1,则点B 6的纵坐标是______________.16.如图,Rt ,90,6,8ABC ACB AC BC ∠=︒==,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将BC 沿CF 翻折,使点B 落在CD 的延长线上的点B '处,两条折痕与斜边AB 分别交于点,E F ,则线段CE 的长等于_________,线段BF 的长等于_________.三、解答题17.计算:(11213127(2)(232318.由于大风,山坡上的一颗甲树从A 点处被拦腰折断,其顶点恰好落在一棵树乙的底部C 处,如图所示,已知AB =4米,BC =13米,两棵树的水平距离是12米,求甲树原来的高度.19.如图,在4×3正方形网格中,每个小正方形的边长都是1,正方形顶点叫格点,连接两个网格格点的线段叫网格线段,点A 固定在格点上.(1)若a 是图中能用网格线段表示的最小无理数,b 是图中能用网格线段表示的最大无理数,则a = ,b = ;(2)请你画出顶点在格点上且边长为5的所有菱形ABCD ,你画出的菱形面积为 ; 20.如图所示,在矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交BC ,AD 于点E ,F ,垂足为O ,连接AE ,CF .(1)求证:四边形AFCE 为菱形;(2)求AF 的长.21.[观察]请你观察下列式子的特点,并直接写出结果:221111111212++=+-= ; 221111112323++=+-= ; 221111113434++=+-= ; …… [发现]根据你的阅读回答下列问题:(1)请根据上面式子的规律填空:()221111n n ++=+ (n 为正整数); (2)请证明(1) 中你所发现的规律.[应用]请直接写出下面式子的结果:()222222221111111111111223341n n ++++++++++++=+ . 22.寒假将至,某健身俱乐部面向大中学生推出优惠活动,活动方案如下:方案一:购买一张学生寒假专享卡,每次健身费用按六折优惠;方案二:不购买学生寒假专享卡,每次健身费用按八折优惠.设某学生健身x (次),按照方案一所需费用为y 1(元),且y 1=k 1x +b ;按照方案二所需费用为y 2(元),且y 2=k 2x .在平面直角坐标系中的函数图象如图所示.(1)求k 1和b 的值,并说明它们的实际意义;(2)求k 2的值;(3)八年级学生小华计划寒假前往该俱乐部健身8次,应选择哪种方案所需费用更少?请说明理由.(4)小华的同学小琳也计划在该俱乐部健身,若她准备300元的健身费用,最多可以健身多少次?23.如图,在平面直角坐标系中,矩形ABCO 的顶点O 与坐标原点重合,顶点A 、C 在坐标轴上,B (8,4),将矩形沿EF 折叠,使点A 与点C 重合.(1)求点E 的坐标;(2)点P 从O 出发,沿折线O -A -E 方向以每秒2个单位的速度匀速运动,到达终点E 时停止运动,设点P 的运动时间为t ,△PCE 的面积为S ,求S 与t 的关系式,井直接写出t 的取值范围.(3)在(2)的条件下.当PA =PE 时,在平面直角坐标系中是否存在点Q .使得以点P 、E 、 G 、 Q 为顶点的四边形为平行四边形? 若不存在,请说明理出, 若存在,请求出点Q 的坐标.24.如图1,直线y=kx+b 经过第一象限内的定点P(3,4).(1)若b=7,则k=_______;(2)如图2,直线y=kx+b 与y 轴交于点C ,已知点A(6,t),过点A 作AB//y 轴交第一象限内的直线y=kx+b 于点B ,连接OB ,若BP 平分∠OBA .①证明OBC 是等腰三角形;②求k 的值;(3)如图3,点M 是x 轴正半轴上的一个动点,连接PM ,把线段PM 绕点M 顺时针旋转90°至线段NM (∠PMN=90°且PM=MN ),连接OP ,ON ,PN ,当OPN 周长最小时,求点N 的坐标;25.在平面直角坐标系xOy 中,对于点P 给出如下定义:点P 到图形1G 上各点的最短距离为1d ,点P 到图形2G 上各点的最短距离为2d ,若12d d =,就称点P 是图形1G 和图形2G 的一个“等距点”.已知点()6,0A ,()0,6B .(1)在点()6,0D -,()3,0E ,()0,3F 中,______是点A 和点O 的“等距点”;(2)在点()2,1G --,()2,2H ,()3,6I 中,______是线段OA 和OB 的“等距点”;(3)点(),0C m 为x 轴上一点,点P 既是点A 和点C 的“等距点”,又是线段OA 和OB 的“等距点”.①当8m =时,是否存在满足条件的点P ,如果存在请求出满足条件的点P 的坐标,如果不存在请说明理由;②若点P 在OAB 内,请直接写出满足条件的m 的取值范围.【参考答案】一、选择题1.D解析:D【分析】根据二次根式的被开方数是非负数得到50x -,求解即可.【详解】解:由题意,得50x -,解得5x ≥,故x 可以取5,故选:D .【点睛】0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.A解析:A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:A 、1.52+22≠32,不符合勾股定理的逆定理,故本选项符合题意;B 、72+242=252,符合勾股定理的逆定理,故本选项不符合题意;C 、92+122=152,符合勾股定理的逆定理,故本选项不符合题意;D 、12+22=2,符合勾股定理的逆定理,故本选项不符合题意.故选:A .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.D解析:D【解析】【分析】根据平行四边形的判定定理逐项判断即可.【详解】A 、由//AB DC ,得180ABC ACD ∠+∠=︒,又ABC ADC ∠=∠,得180ADC ACD ∠+∠=︒,得//AD BC ,可得到四边形ABCD 是平行四边形,故A 选项不符合题意B 、由AB DC =,AD BC =,可得到四边形ABCD 是平行四边形,故B 选项不符合题意; C 、由OA OC =,OB OD =,可得到四边形ABCD 是平行四边形,故C 选项不符合题意; D 、由//AD BC ,AB CD =,不可得到四边形ABCD 是平行四边形,故D 选项符合题意. 故选:D .【点睛】本题主要考查了平行四边形的判定,解题的关键是理解并掌握平行四边形的判定定理,并会灵活运用.4.C解析:C【解析】【分析】根据加权平均数的定义列式计算即可.【详解】解:该班平均得分5889710587⨯+⨯+⨯++=9.1(分),故选:C.【点睛】本题主要考查了加权平均数,解题的关键是掌握加权平均数的定义.5.C解析:C【分析】由题意可得点P在以D为圆心,2为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,由勾股定理可求BP,AH的长,即可求点A到BP的距离.【详解】解:作正方形ABCD的外接圆,另外以点D为圆心,2为半径作圆,两圆在线段AD上方的交点即为点P,连接AC、BD、PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE AP⊥,交BP于点E,如图,∵四边形ABCD是正方形,∴∠ADB=45°,∴2,90AB AD DC BC BAD︒====∠=,∴BD=4,∵DP=2,∴3BP=AE AP⊥,90EAD DAP∴∠+∠=,又90BAE EAD∠+∠=,DAP BAE∴∠=∠,,ADP ABE AD AB∠=∠=,ADP ABE∴∆≅∆,,BE DP AE AP∴==,AEP为等腰直角三角形,AH PE⊥,2PE AH∴=,2BP BE PE AH PD∴=+=+,即2322,AH+,31AH ∴=- 即点A 到BP 的距离为31-.故选C .【点睛】本题考查四边形综合题、全等三角形的判定和性质、等腰三角形的判定和性质、勾股定理、圆等知识,解题的关键是灵活运用这些知识.6.D解析:D【解析】【分析】设3AC FH x ==,则4BC GH x ==,5AB GF x ==,根据勾股定理即可求得CD 的长,利用x 表示出A S ,同理表示出B S ,根据15A B S S -=,即可求得x 的值,进而求得三角形的面积.【详解】解:设3AC FH x ==,则4BC GH x ==,5AB GF x ==.设CD y =,则4BD x y =-,DE CD y ==,在直角BDE ∆中,532BE x x x =-=,根据勾股定理可得:2224(4)x y x y +=-,解得:32y x =, 则2113322222A S BE DE xx x ==⨯=, 同理可得:223B S x =,15A B S S -=, ∴22321523x x -=, 解得:32x =,∴纸片的面积是:213461082x x x ⨯==, 故选:D ..【点睛】本题主要考查了翻折变换(折叠问题),三角形面积的计算,根据勾股定理求得CD 的长是解题的关键.7.C解析:C【解析】【分析】根据正方形的面积公式结合勾股定理就可发现大正方形的面积是两个小正方形的面积和,即可得出答案.【详解】解:∵由勾股定理得:AC2+BC2=AB2,∴S3+S2=S1,∵S1+S2+S3=12,∴2S1=12,∴S1=6,故选:C.【点睛】题考查了勾股定理和正方形面积的应用,注意:分别以直角三角形的边作相同的图形,则两个小图形的面积等于大图形的面积.8.D解析:D【分析】根据菱形的性质,得知A、C关于BD对称,根据轴对称的性质,将PM+PC转化为AP+PM,再根据两点之间线段最短得知AM为PM+PC的最小值.【详解】∵四边形ABCD为菱形,∴A、C关于BD对称,∴连AM交BD于P,则PM+PC=PM+AP=AM,根据两点之间线段最短,AM的长即为PM+PC的最小值.连接AC,∵四边形ABCD是菱形,∴AB=BC,又∵∠ABC=60°,∴△ABC为等边三角形,又∵BM=CM,∴AM⊥BC,∴AM=2222--,=42=23AB BM故选D.【点睛】本题考查了轴对称---最短路径问题,解答过程要利用菱形的性质及等腰三角形的性质,转化为两点之间线段最短的问题来解.二、填空题9.12x≥【解析】【分析】根据二次根式有意义的条件可直接进行求解.【详解】解:由二次根式21x-在实数范围内有意义可得:210x-≥,解得:12x≥;故答案为12x≥.【点睛】本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.10.A解析:24【解析】【分析】首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积.【详解】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=12AC=4,OB=12BD=3,AC⊥BD,∴AB222243OA OB+=+=5,∴C菱形的周长=5×4=20,S菱形ABCD=12×6×8=24,故菱形的周长是20,面积是24.故答案为:20;24.【点睛】本题考查了菱形的周长和性质得求法,勾股定理,属于简单题,熟悉菱形的性质和菱形求面积的特殊方法是解题关键.11.B解析:【解析】【分析】由矩形对角线的性质得到AO DO =,结合题意证明ADO △是等边三角形,解得BD 的长,在Rt ABD △中,理由勾股定理解题即可.【详解】解:矩形ABCD 中,AC=BD 且AO=OC ,BO=DOAO DO ∴=ADO ∴△是等腰三角形∠AOD =60°ADO ∴△是等边三角形AD DO AO ∴==AD =44DO ∴=28BD DO ∴==Rt ABD △中AB ==故答案为:【点睛】本题考查矩形的性质、等边三角形的判定与性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键.12.B解析:4【分析】由矩形的性质可得OB =OD ,AB =CD ,AD =BC ,可证OE 是线段BD 的中垂线,可得BE =DE ,即可求解.【详解】解:∵四边形ABCD 是矩形,∴OB =OD ,AB =CD ,AD =BC ,∵矩形ABCD 的周长为8cm ,∴AB +AD =4cm ,∵OE ⊥BD ,∴OE 是线段BD 的中垂线,∴BE =DE ,∴△ABE 的周长=AB +AE +BE =AB +AE +DE =AB +AD =4cm ,故答案为4.【点睛】本题考查了矩形的性质,线段的中垂线的性质以及三角形周长等知识,解答本题的关键是判断出OE是线段BD的中垂线.13.y=2x.【详解】试题解析:每瓶的售价是4824=2(元/瓶),则买的总价y(元)与所买瓶数x之间的函数关系式是:y=2x.考点:根据实际问题列一次函数关系式.14.A解析:5【解析】∵阴影部分的面积总和为6 cm 2,∴矩形面积为12 cm 2;∴AB×AD=12,∴AB=12÷4=3cm.22345AC cm∴=+=15.【分析】设△BnAnAn+1的边长为an,根据直线的解析式能的得出∠AnOBn=30°,再结合等边三角形的性质及外角的性质即可得出∠OBnAn=30°,从而得出AnBn=OAn,列出部分an的值解析:163【分析】设△B n A n A n+1的边长为a n,根据直线的解析式能的得出∠A n OB n=30°,再结合等边三角形的性质及外角的性质即可得出∠OB n A n=30°,从而得出A n B n=OA n,列出部分a n的值,发现规律 :a n+1=2a n,依此规律结合等边三角形的性质即可得出结论.【详解】设△B n A n A n+1的边长为a n,∵点B1,B2,B3,…是直线y= 33x上的第一象限内的点,过A1作A1N⊥x轴交直线OB1于N点,∵OA1=1,∴点N的横坐标为1,将x=1代入, 得到∴点N 的坐标为(1∴A 1在Rt △NOA 1tan ∠A1ON=11A NA O∴∠A 1OB 1 = 30°,又∵△B n A n A n+1为等边三角形,∴∠B n A n A n+1 = 60°,∴∠OB n A n = 30°,A nB n = OA n ,∵OA 1=1a 1 =1,a 2=1+1=2= 2a 1,a 3= 1++a 1 +a 2=4= 2a 2,a 4 = 1+a 1 +a 2十a 3 =8= 2a 3,a n+1 = 2a n ,a 5 =2a 4= 16, a 6 = 2a 5 = 32,a 7= 2a 6= 64,△A 6B 6A 7为等边三角形,点B 6的坐标为(a 7-12a 67- 12a 6)), ∴点B 6的坐标为(48,故答案为:【点睛】本题考查了一次函数的性质、等边三角形的性质以及三角形外角的性质,解题的关键是找出规律:a n+1=2a n 本题属于灵活题,难度较大,解决该题型题目时,根据等边三角形边的特征找出边的变化规律是关键.16.【分析】先依据勾股定理求得AB 的长,然后在△ABC 中,利用面积法可求得CE 的长,然后依据勾股定理定理可求得AE 的长,证明△ECF 为等腰直角三角形可求得EF 的长,依据FB=AB-A 解析:245 85【分析】先依据勾股定理求得AB 的长,然后在△ABC 中,利用面积法可求得CE 的长,然后依据勾股定理定理可求得AE 的长,证明△ECF 为等腰直角三角形可求得EF 的长,依据FB =AB -AF 求得FB 的长即可.【详解】解:在Rt △ABC 中,AB ,∵S △ABC =12AC •BC =12AB •CE ,∴CE =6824105⨯=, 在△AEC 中,依据勾股定理得:AE =185, 由翻折的性质可知∠ECD =12∠ACD ,∠DCF =12∠DCB ,CE ⊥AD ,∴∠ECF =45°.∵CE ⊥AD ,∴CE =EF =245, ∴FB =AB -AE -EF =10-185-245=85, 故答案为:245,85. 【点睛】 本题主要考查的是翻折的性质、勾股定理的应用,利用面积法求得CE 的长,然后再利用勾股定理和等腰三角形的性质求得AE 和EF 的长是解答问题的关键.三、解答题17.(1) ;(2)【分析】(1)先把每一个二次根式化为最简,然后再进行二次根式的加减运算即可; (2)先变形为原式= ,然后利用平方差公式计算;【详解】解:(1)﹣+,,;(2)(3解析:(1;(2)【分析】(1)先把每一个二次根式化为最简,然后再进行二次根式的加减运算即可;(2))11 ,然后利用平方差公式计算; 【详解】解:(1,=,=;(2)())11= , ()61=- ,=.【点睛】本题考查了平方差公式、二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.19米【分析】如图所示,过点C 作CD ⊥AB 交AB 延长线于D ,则根据题意可以得到CD=12米,根据勾股定理即可求出BD 的长,再利用勾股定理求出AC 的长即可得到AC+AB 的长.【详解】解:如图所解析:19米【分析】如图所示,过点C 作CD ⊥AB 交AB 延长线于D ,则根据题意可以得到CD =12米,根据勾股定理即可求出BD 的长,再利用勾股定理求出AC 的长即可得到AC +AB 的长.【详解】解:如图所示,过点C 作CD ⊥AB 交AB 延长线于D由题意得:CD =12,AB =4米,BC =13米在Rt △BCD 中5BD ==米∴9AD AB BD =+=米在Rt △ACD 中15AC ===米∴19AC AB +=米∴甲树原来的高度是19米.【点睛】本题主要考查了勾股定理的应用,解题的关键在于能够熟练掌握勾股定理. 19.(1);(2)见解析,菱形面积为4或5.【解析】【分析】(1)根据题意,画出图形,即可求解;(2)先画出边长为的所有菱形ABCD,,然后求出面积即可.【详解】解:如图,(1)∵a是图解析:(1)2,25;(2)见解析,菱形面积为4或5.【解析】【分析】(1)根据题意,画出图形,即可求解;(2)先画出边长为5的所有菱形ABCD,,然后求出面积即可.【详解】解:如图,(1)∵a是图中能用网格线段表示的最小无理数,∴22a=+=,112∵b是图中能用网格线段表示的最大无理数,22b=+=;425(2)∵22215+=,即可画出图形,如图,菱形ABC1D1和菱形ABC2D2即为所求;菱形ABC 1D 1的面积为12442⨯⨯= ; 菱形ABC 2D 2223110+=,故菱形ABC 2D 2的面积为1101052; 5ABCD 的面积为4或5.【点睛】本题主要考查了应用设计与作图以及勾股定理等知识,熟练掌握菱形的性质是解题关键. 20.(1)见解析;(2)AF=5【分析】(1)根据EF 是AC 的垂直平分线可以得到AF=CF ,AE=CE ,再只需证明△AFO ≌△CEO即可得到答案;(2)根据四边形AECF 是菱形可以得到AE=EC解析:(1)见解析;(2)AF =5【分析】(1)根据EF 是AC 的垂直平分线可以得到AF =CF ,AE =CE ,再只需证明△AFO ≌△CEO 即可得到答案;(2)根据四边形AECF 是菱形可以得到AE =EC =x ,则BE =8-x ,然后利用勾股定理求解即可.【详解】解:(1)∵EF 是AC 的垂直平分线,∴AF =CF ,AE =CE ,AO =CO∵四边形ABCD 是矩形,∴AF ∥EC∴∠FAO =∠ECO ,∠AFO =∠CEO ,在△AFO 和△CEO 中,AFO CEO AO COFAO ECO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AFO ≌△CEO (AAS ),∴AF =EC ,∴AF =FC =AE =EC ,∴四边形AECF 是菱形;(2)由(1)得AE =CE =AF ,设AE =CE =AF =x ,则BE =8-x ,∵四边形ABCD 是矩形,∴∠B =90°,在直角三角形ABE 中222AB BE AE +=,∴()22248x x +-=, 解得x =5,∴AF =5,21.[观察],,;[发现](1)或;(2)证明见解析;[应用]或.【解析】【分析】(1)计算题目中结果,并根据计算过程和结果,总结得到一般规律,作出猜想,并对猜想进行计算,即可进行证明;(2)运解析:[观察]32,76,1312;[发现](1)1111n n +-+或221n n n n+++;(2)证明见解析;[应用]1n n n ++或221n n n ++. 【解析】【分析】(1)计算题目中结果,并根据计算过程和结果,总结得到一般规律,作出猜想,并对猜想进行计算,即可进行证明;(2)运用(1)中发现规律,进行计算即可.【详解】[观察]32,76,1312, [发现](1)1111n n +-+或221n n n n+++ (2)左()221111n n =+++()22221211n n n n n ++=-++()22121()1n n n n +=-++==∵n 为正整数, ∴()11111011n n n n +-=+>++ ∴左1111n n =+-=+右[应用11n +++111111111111223341n n =+-++-++-+++-+ (1111)n n =⨯+-+ 1n n n =++ 22=1n n n ++ ∴答案为:1n n n ++或221n n n ++. 【点睛】(1)此类规律探究问题一定要结合式子特点和数的规律进行探究,类比;(2)此类题目往往无法直接进行计算,一般要根据规律进行变形,往往会消去部分中间项,实现简化运算目的.22.(1),实际意义见解析;(2)20;(3)选择方案一所需费用更少,理由见解析;(4)小琳最多健身18次,理由见解析【分析】(1)把点(0,30),(10,180)代入y1=k1x+b ,得到关于k解析:(1)11530k b =⎧⎨=⎩,实际意义见解析;(2)20;(3)选择方案一所需费用更少,理由见解析;(4)小琳最多健身18次,理由见解析【分析】(1)把点(0,30),(10,180)代入y 1=k 1x +b ,得到关于k 1和b 的二元一次方程组,求解即可;(2)根据方案一每次健身费用按六折优惠,可得打折前的每次健身费用,再根据方案二每次健身费用按八折优惠,求出k 2的值;(3)将x =8分别代入y 1、y 2关于x 的函数解析式,比较即可.(4)分别求解小琳选择方案一,方案二的健身次数,再比较即可得到答案.【详解】解:(1)∵11y k x b =+过点(0,30),(10,180),∴13010180b k b =⎧⎨+=⎩,解得:11530k b =⎧⎨=⎩, 115k =表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元, b =30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元),则k 2=25×0.8=20;(3)选择方案一所需费用更少.理由如下:由题意可知,y 1=15x +30,y 2=20x .当健身8次时, 选择方案一所需费用:y 1=15×8+30=150(元),选择方案二所需费用:y 2=20×8=160(元),∵150<160,∴选择方案一所需费用更少.(4)当1300y =时,1530300,x +=解得:18,x =即小琳选择方案一时,可以健身18次,当2300y =时,则20300,x =解得:15,x =即小琳选择方案二时,可以健身15次,1815,>所以小琳最多健身18次.【点睛】本题考查了一次函数的应用,最优化选择问题,解题的关键是理解两种优惠活动方案,求出y 1、y 2关于x 的函数解析式.23.(1);(2)或;(3)存在,点Q 坐标为:,,【分析】(1)设AE=x ,根据勾股定理列方程得:,解出可得结论;(2)分两种情况:P 在OA 或AE 上,分别根据三角形面积列式即可; (3)先根据分别解析:(1);(2)或;(3)存在,点Q 坐标为:,, 【分析】(1)设AE =x ,根据勾股定理列方程得:,解出可得结论; (2)分两种情况:P 在OA 或AE 上,分别根据三角形面积列式即可;(3)先根据分别计算PA 和PE 的长,分类讨论,当PE 为边时,如图4,过G 作GH⊥OC于H,设OF=y,根据勾股定理列方程可得y的值,利用面积法计算GH的长,得G 的坐标,根据平行四边形的性质和平移规律可得Q的坐标;当PE为对角线时,借助中点坐标法即可求得点Q的坐标,综上即可得出点Q所有可能性.【详解】解:(1)在矩形ABCO中,B(8,4),∴AB=8,BC=4,设AE=x,则EC=x,BE=8-x,Rt△EBC中,由勾股定理得:EB2+BC2=EC2,∴解得:x=5,即AE=5,∴E(5,4);(2)分两种情况:①当P在OA上时,0≤t≤2,如图2,由题意知:,,,,∴S=S矩形OABC-S△PAE-S△BEC-S△OPC,=8×4-12×5(4-2t)-12×3×4-12×8×2t,=-3t+16,②当P在AE上时,2<t≤4.5,如图3,由题意知:∴S=综上所述:(3)存在,由PA=PE可知:P在AE上当PE为边时,如图4所示,过G作GH⊥OC于H,∵AP+PE=5,∴AP=3,PE=2,设OF=y,则FG=y,FC=8-y,由折叠得:∠CGF=∠AOF=,OA=CG,由勾股定理得:FC2=FG2+CG2,∴(8-y)2=y2+42,解得:y=3,∴FG=3,FC=8-3=5,∴,∴12×5×GH=12×3×4,解得:GH=2.4,由勾股定理得:FH,∴OH=3+1.8=4.8,∴G(4.8,-2.4),∵点P、E、G、Q为顶点的四边形为平行四边形,且PE=2,∴Q(4.8,-2.4)或(6.8,-2.4).当PE为对角线时,如图5所示:过点G作交CF于点H由上述可知:,,,设由中点坐标法可得:解得:∴点综上所述:点Q的坐标为:,,【点睛】此题考查四边形综合题,矩形的性质、翻折变换、勾股定理、中点坐标法求解、平行四边形的判定和性质,解题的关键是学会用分类讨论的思想思考问题.24.(1)-1;(2)①证明见详解;②;(3)(,)【解析】【分析】(1)把P(3,4),b=7代入y=kx+b中,可得k=-1(2)①根据平行的性质:内错角相等,证明∠OCB=∠OBC,由等角解析:(1)-1;(2)①证明见详解;②34-;(3)(7715,2815-)【解析】【分析】(1)把P(3,4),b=7代入y=kx+b中,可得k=-1(2)①根据平行的性质:内错角相等,证明∠OCB=∠OBC,由等角对等边得到OBC是等腰三角形②根据坐标证明P是BC的中点,由等腰三角形三线合一性质得OP⊥BC,求出OP函数关系式中k的值,根据两个一次函数图像互相垂直时k的关系,求解出直线BC的表达式中的k=3 4 -(3)根据动点M的运动情况分析出N的轨迹函数,然后证明△OHG是等腰直角三角形,根据中点坐标公式求得直线O’P的表达式,联立方程求出N点坐标【详解】(1)把P(3,4),b=7代入y=kx+b中,可得4=3k+7解得k=-1故答案为-1(2)①∵AB∥y轴∴∠ABC=∠OCB∵BP平分∠OBA∴∠OBC=∠ABC∴∠OCB=∠OBC∴OBC是等腰三角形②如图4所示,连接OP∵AB//y轴,A(6,t)∴B点横坐标是6∵P横坐标是3∴P是BC的中点∴OP⊥BC设直线OP的表达式为y=kx将P(3,4)代入得4=3k解得k= 43,则设直线BC的表达式中的k=3 4 -.故答案为3 4 -.(3)①如图5-1,当点M与O重合时,作PE⊥y轴于点E,作NF⊥y轴于点F∵PM ⊥NM∴∠PMN=90°∴∠PME+∠NMF=90°∵∠FMN+∠FNM=90°∴∠PME=∠MNF在△PEM △MFN 中=PME MNF PEM MFN PM MN ∠=∠⎧⎪∠∠⎨⎪=⎩∴△PEO ≌△OFN (AAS )∴MF=PE=3,FN=ME=4则N 点的坐标为(4,-3)②如图5-2所示,,当PM ⊥x 轴时,N 点在x 轴上,则MN=PM=3,ON=OM+MN=7,∴N 的坐标为(7,0)综上所述得点N 在直线y=x-7的直线上运动设直线y=x-7与坐标轴分别交于点G 、H ,作O 关于直线HG 的对称点O`,连接O`P 交直线HG 于点N ,此时ON+PN 有最小值,最小值为线段O`P 的长度.如图5-3所示.当直线y=x-7可得H(0,-7),G(7,0),OG=OH,△OHG是等腰直角三角形,当OQ⊥HG时,Q是HG的中点,由中点坐标公式可得Q(72,-72),∵O`与O对称∴Q是OO`的中点由中点坐标公式可得O’(7,-7),∴可得直线O’P的表达式为1149y x44=-+联立方程1149447x xy x⎧=+⎪⎨⎪=-⎩﹣,解得77152815 xy⎧=⎪⎪⎨⎪=-⎪⎩∴N点坐标为(7715,2815-)∴当△OPN周长最小时,点N的坐标为(7715,2815-)故答案为(7715,2815-)【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、角平分线的性质,平行的性质等,熟练掌握数形结合的解题方法是解决此题目的关键,综合性强,难度较大.25.(1)点E;(2)点H;(3)①存在,点P的坐标为(7,7);②【分析】(1)根据“等距点”的定义,即可求解;(2)根据“等距点”的定义,即可求解;(3)①根据点P是线段OA和OB的“等距点解析:(1)点E ;(2)点H ;(3)①存在,点P 的坐标为(7,7);②60m -<<【分析】(1)根据“等距点”的定义,即可求解;(2)根据“等距点”的定义,即可求解;(3)①根据点P 是线段OA 和OB 的“等距点”,可设点P (x ,x )且x >0,再由点P 是点A 和点C 的“等距点”,可得22AP CP = ,从而得到()()222286x x x x -+=-+ ,即可求解; ②根据点P 是线段OA 和OB 的“等距点”, 点P 在∠AOB 的角平分线上,可设点P (a ,a )且a >0,根据OA =OB ,可得OP 平分线段AB ,再由点P 在OAB 内,可得0<<3a ,根据点P 是点A 和点C 的“等距点”,可得22AP CP = ,从而得到()()22226a m a a a -+=-+,整理得到()()()2666m a m m -=+-,即可求解.【详解】解:(1)根据题意得:()6612AD =--= ,633AE =-= ,AF == ,6OD = ,3OE = ,3OF = ,∴AE OE = ,∴点()3,0E 是点A 和点O 的“等距点”;(2)根据题意得:线段OA 在x 轴上,线段OB 在y 轴上,∴点()2,1G --到线段OA 的距离为1,到线段OB 的距离为2,点()2,2H 到线段OA 的距离为2,到线段OB 的距离为2,点()3,6I 到线段OA 的距离为6,到线段OB 的距离为3,∴点()2,2H 到线段OA 的距离和到线段OB 的距离相等,∴点()2,2H 是线段OA 和OB 的“等距点”;(3)①存在,点P 的坐标为(7,7),理由如下:∵点P 是线段OA 和OB 的“等距点”,且线段OA 在x 轴上,线段OB 在y 轴上, ∴可设点P (x ,x )且x >0,∵点P 是点A 和点C 的“等距点”,∴22AP CP = ,∵点C (8,0),()6,0A ,∴()()222286x x x x -+=-+ , 解得:7x = ,∴点P 的坐标为(7,7);②如图,∵点P 是线段OA 和OB 的“等距点”,且线段OA 在x 轴上,线段OB 在y 轴上, ∴点P 在∠AOB 的角平分线上,可设点P (a ,a )且a >0,∵()6,0A ,()0,6B .∴OA =OB =6,∴OP 平分线段AB ,∵点P 在OAB 内,∴当点P 位于AB 上时, 此时点P 为AB 的中点,∴此时点P 的坐标为6060,22++⎛⎫ ⎪⎝⎭,即()3,3 , ∴0<<3a ,∵点P 是点A 和点C 的“等距点”,∴22AP CP = ,∵点(),0C m ,()6,0A ,∴()()22226a m a a a -+=-+, 整理得:()()()2666m a m m -=+- ,当6m = 时,点C (6,0),此时点C 、A 重合,则a =6(不合题意,舍去),当6m ≠时,62m a +=, ∴6032m +<<,解得:60m -<< , 即若点P 在OAB 内,满足条件的m 的取值范围为60m -<<.【点睛】本题主要考查了平面直角坐标系内两点间的距离,点到坐标轴的距离,等腰三角形的性质,角平分线的判定等知识,理解新定义,利用数形结合思想解答是解题的关键.。
部编人教版初中八年级下册数学错题集
八年级下册选择、填空1、若等腰三角形的顶角为50°,则它的底角为 ______。
2、等腰三角形的一个角为40°,则它的底角为______。
3、等腰三角形的一边为4,另一边为9,则这个三角形的周长为 ______。
4、等腰三角形的一个外角为80°,则它的底角为______。
5、等腰三角形ABC 中,底边上的高AD=3cm ,则顶角A 的平分线长为______。
6、若等腰三角形的底边长为5cm ,一腰上的中线把其周长分成的两部分之差为3cm ,则腰长为______。
7、如图,在等腰三角形ABC 中,∠BAC=120°,D 为BC 的中点,DE ⊥AB 于E ,求证:AE=41AB .8、如图,在△ABC 中,∠ACB=90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC=3cm ,那么AE+DE 等于 ______。
9、补全“求作∠AOB 的平分线”的作法: (1)在OA 和OB 上分别截取OD ,OE ,使______ ;(2)分别以D ,E 为圆心,以______ 为半径画弧,两弧在∠AOB 内交于点C ; (3)作 ______.∴OC 就是∠AOB 的角平分线.10、如图,已知MN ∥BC .求作:在MN 上确定一点P ,使点P 到AB ,BC 的距离相等.11、如图所示,在△ABC 中,∠C=90°,DE ⊥AB 于点D ,交AC 于点E .若BC=BD ,AC=4cm ,BC=3cm ,AB=5cm ,则△ADE 的周长是 ______.12、如图,在△ABC中,AB=AC,D是BC边上的中点,且DE⊥AB,DF⊥AC.求证:∠1=∠2.13、如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有 ______处。
14、如图所示,若AB∥CD,AP、CP分别平分∠BAC和∠ACD,PE⊥AC于点E,PE=6,则AB与CD之间的距离为______15、如图所示,AC、BD相交于O,AB∥DC,AB=BC,∠D=40°,∠ACB=35°,则∠AOD=______.16、在△ABC中,AB=AC=5,BC=6.若点P在边AC上移动,则BP的最小值是______.17、如图,∠MON内有一点P,PP1、PP2分别被OM、ON垂直平分,P1P2与OM、ON分别交于点A、B.若P1P2=10cm,则△PAB的周长为______18、用反证法证明下列问题:如图,在△ABC 中,点D 、E 分别在AC 、AB 上,BD 、CE 相交于点O .求证:BD 和CE 不可能互相平分.19、如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为______20、若不等式组⎪⎩⎪⎨⎧>>-ax x 1312的解集为x >2,则a 的取值范围是( )A. a <2B. a ≤2C. a >2D. a ≥2 21、不等式ax >b 的解集为abx <,那么a 的取值范围是( ) A. a ≤0 B. a <0 C. a ≥0 D. a >0 22、已知不等式5x +a <3的解集为x <2,试求a 的值。
八年级下册数学错题摘抄
八年级下册数学错题摘抄一、选择题错题。
题1。
- 题目:下列二次根式中,最简二次根式是()A. √(12)B. √(0.2)C. √(7)D. √(frac{1){3}}- 错选:A。
- 解析:- 对于选项A,√(12)=√(4×3)=2√(3),不是最简二次根式。
- 对于选项B,√(0.2)=√(frac{1){5}}=(√(5))/(5),不是最简二次根式。
- 对于选项C,√(7)不能再化简,是最简二次根式。
- 对于选项D,√(frac{1){3}}=(√(3))/(3),不是最简二次根式。
所以这题正确答案是C。
题2。
- 题目:若在实数范围内有意义,则x的取值范围是()A. x>5B. x≥5C. x≤5D. x≠5- 错选:A。
- 解析:- 要使二次根式√(x - 5)有意义,则被开方数x-5≥0,即x≥5。
所以正确答案是B。
题3。
- 题目:下列计算正确的是()A. √(2)+√(3)=√(5)B. 3√(2)-√(2)=3C. √(6)÷√(3)=√(2)D. √(3)×√(2)=√(5)- 错选:A。
- 解析:- 选项A,√(2)与√(3)不是同类二次根式,不能直接相加,所以A错误。
- 选项B,3√(2)-√(2)=(3 - 1)√(2)=2√(2),所以B错误。
- 选项C,√(6)÷√(3)=√(frac{6){3}}=√(2),C正确。
- 选项D,√(3)×√(2)=√(3×2)=√(6),所以D错误。
正确答案是C。
二、填空题错题。
题4。
- 题目:计算:√(18)-√(8)=___。
- 错误答案:√(10)- 解析:- 先将二次根式化简,√(18)=√(9×2)=3√(2),√(8)=√(4×2)=2√(2)。
- 则√(18)-√(8)=3√(2)-2√(2)=√(2)。
题5。
- 题目:若y=√(x - 3)+√(3 - x)+2,则x^y =___。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=(anb3﹣an+1b2).故选B.
点评:本题考查的是二次根式的化简.最简二次根式的条件:被开方数中不含开得尽方的因式或因数.点评:解答此题,要弄清二次根式的性质: =|a|,分类讨论的思想.
2.当x<﹣1时,|x﹣ ﹣2|﹣2|x﹣1|的值为()A.2B.4x﹣6C.4﹣4xD.4x+4
解答:解:∵a<﹣4,
∴2a<﹣8,a﹣4<0,
∴2a+3 <﹣8+3 <0原式=|2a+3|+
=|2a+3|+
=﹣2a﹣3 +4﹣a= ﹣3a.
故选 D.
点评:本题考查的是二次根式的化简和绝对值的化简,解此类题目时要充分考虑数的取值范围,再去绝对值,否则 容易计算错误.
4.当x<2y时,化 得() A.x(x﹣2y)B. D.(2y﹣x)
分析:计算时首先要分清运算顺序,先乘方,后加减.二次根式的加减,实质是合并同类二次根式,需要先化简, 再合并.
解答:解: •(﹣ )﹣2﹣(2)0+|﹣|+
= +1+
=2
=7.
点评:计算时注意负指数次幂与 0 次幂的含义,并且理解绝对值起到括号的作用.
十七章《勾股定理》易错题
一、审题不仔细,受定势思维影响
考点:二次根式的性质与化简;点的坐标。 专题:计算题;分类讨论。
分析:先判断出点的横纵坐标的符号,进而判断点所在的象限或坐标轴.解答:解:∵实数a、b满 ,
∴a、b 异号,且 b>0;
故 a<0,或者 a、b 中有一个为 0 或均为 0.
于是点(a,b)在第二象限或坐标轴上.故选 C.
点评:根据二次根式的意义,确定被开方数的取值范围,进而确定 a、b 的取值范围,从而确定点的坐标位置.
考点:二次根式的性质与化简。
分析:由 ≥0,所以1﹣2x≥0,解不等式即可.解答:解 =1﹣2x,
∴1﹣2x≥0,解得 .
故选 B.
点评:算术平方根是非负数,这是解答此题的关键.
6.如果实数a、b满 ,那么点(a,b)在()
A.第一象限B.第二象限C.第二象限或坐标轴上D.第四象限或坐标轴上错答:B
10.若0<x<1,化 =2x.
考点:二次根式的性质与化简。
分析: , ,又0<x<1,则 ﹣x>0,通过变形化简原式即可得出最终结果.
解答:解:原式=﹣
=x+ ﹣(﹣x)=2x.
点评:本题考查的是对完全平方公式的灵活使用和对二次根式的化简应用. 三、计算题
11.计算: •(﹣ )﹣2﹣(2)0+|﹣|+ 的结果是.考点:二次根式的性质与化简;绝对值;零指数幂;负整数指数幂。
点评:本题主要考查二次根式的化简方法与运用:a>0时 =a;a<0时 =﹣a;a=0时 =0;解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.
3.化简 |+ (a<﹣4)的结果是() ﹣3a C.a+ D. ﹣3a
错答:B
考点:二次根式的性质与化简;绝对值。
分析:本题应先讨论绝对值内的数的正负性再去绝对值,而根号内的数可先化简、配方,最后再开根号,将两式相 加即可得出结论.
二、填空题
9.若a<1,化 =﹣a.考点:二次根式的性质与化简。
分析: =|a﹣1|﹣1,根据a的范围,a﹣1<0,所以|a﹣1|=﹣(a﹣1),进而得到原式的值.解答:解:∵a<1,
∴a﹣1<0,
∴ =|a﹣1|﹣1
=﹣(a﹣1)﹣1
=﹣a+1﹣1=﹣a.
点评:对 化简,应先将其转化为绝对值形式,再去绝对值符号, .
错答:C
考点:二次根式的性质与化简。
分析:本题可先将根号内的分式的分子分解因式,再根据 x 与 y 的大小关系去绝对值.
解答:解:原式= ==|x﹣2y|
∵x<2y
∴原式 .故选D.
点评:本题考查的是二次根式的化简,解此类题目时要注意题中所给的范围去绝对值.
5. =1﹣2x,则x的取值范围是()
A.x≥ B.x≤ C.x> D.x<错答:A
8.代数 取最大值时,x=±2.
考点:二次根式的性质与化简。专题:计算题。
分析:根据二次根式有意义的条件,求出x的取值即可.解答:解 ≥0,
∴代数 取得最大值时 取得最小值,即 =0时原式有最大值,
解 =0得:x=±2,答案为±2.
点评:本题比较简单,考查了二次根式有意义的条件,即被开方数大于等于 0.
1、在△ABC中,A,B,C的对边分别为a,b,c,且(ab)(ab)c2,则()
(A)A为直角(B)C为直角(C)B为直角(D)不是直角三角形错解:选(B)
分析:因为常见的直角三角形表示时,一般将直角标注为C,因而有同学就习惯性的认为C就一定表示直角,加之对本题所给条件的分析不缜密,导致错误.该题中的条件应转化为a2b2c2,即a2b2c2,因根据这一公式进行判断.
一、选择题
..
1.当a>0,b>0时,n是正整数,计 的值是()A.(b﹣a) B.(anb3﹣an+1b2) C.(b3﹣ab2) D.(anb3+an+1b2)
错答:D
考点:二次根式的性质与化简。
分析:把被开方数分为指数为偶次方的因式的积,再开平方,合并被开方数相同的二次根式.
解答:解:原式 ﹣
7.计算:= .
考点:二次根式的性质与化简;零指数幂;负整数指数幂。
分析:本题涉及零指数幂、负整数指数幂、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算, 然后根据实数的运算法则求得计算结果.
解答:解:原式 ﹣ +2
=2﹣+2
=2+.
点评:本题考查0次幂、负数次幂、பைடு நூலகம்次根式的化简以及合并,任何非零数的0次幂都得 =1,负数次幂可以运用底倒指反技巧, =21=2.
正解:a2b2c2,∴a2b2c2.故选(A)
2、 已知直角三角形的两边长分别为3、4,求第三边长.
错解:第三边长为
5.
分析:因学生习惯了“勾三股四弦五”的说法,即意味着两直角边为3和4时,斜边长为5.但这一理解的前提是
3、4为直角边.而本题中并未加以任何说明,因而所求的第三边可能为斜边,但也可能为直角边.正解:(1)当两直角边为3和4时,第三边长为
错答:C
考点:二次根式的性质与化简。
分析:根据x<﹣1,可知2﹣x>0,x﹣1<0,利用开平方和绝对值的性质计算.解答:解:∵x<﹣1
∴2﹣x>0,x﹣1<0
∴|x﹣ ﹣2|﹣2|x﹣1|
=|x﹣(2﹣x)﹣2|﹣2(1﹣x)
=|2(x﹣2)|﹣2(1﹣x)
=﹣2(x﹣2)﹣2(1﹣x)
=2.
故选 A.