多旋翼无人机培训指导_多旋翼无人机空气动力学理论课程_无人机空气动力的原理
多旋翼无人机的结构和原理
多旋翼无人机的结构和原理
翼型的升力:
升力的来龙去脉这是空气动力学中的知识,研究的内容十分广泛,本文只关注通识理论,阐述对翼型升力和旋翼升力的原理。
根据流体力学的基本原理,流动慢的大气压强较大,而流动快的大气压强较小。
由于机翼一般是不对称的,上表面比较凸,而下表面比较平(翼型),流过机翼上表面的气流就类似于较窄地方的流水,流速较快,而流过机翼下表面的气流正好相反,类似于较宽地方的流水,流速较上表面的气流慢。
大气施加与机翼下表面的压力(方向向上)比施加于机翼上表面的压力(方向向下)大,二者的压力差便形成了升力。
[摘自升力是怎样产生的]。
所以对于通常所说的飞机,都是需要助跑,当飞机的速度达到一定大小时,飞机两翼所产生的升力才能抵消重力,从而实现飞行。
旋翼的升力飞机,直升机和旋翼机三种起飞原理是不同的。
飞机依靠助跑来提供速度以达到足够的升力,而直升机依靠旋翼的控制旋转在不进行助跑的条件下实现垂直升降,直升机的旋转是动力系统提供的,而旋翼旋转会产生向上的升力和空气给旋翼的反作用力矩,在设计中需要提供平衡旋翼反作用扭矩的方法,通常有单旋翼加尾桨式(尾桨通常是垂直安装)、双旋翼纵列式(旋转方向相反以抵消反作用扭矩)等;而旋翼机则介于飞机和直升机之间,旋翼机的旋翼不与动力系统相连,由飞行过程中的前方气流吹动旋翼旋转产生升力(像大风车一样),即旋翼为自转式,传递到机身上的扭矩很小,无需专门抵消。
而待设计的四旋翼飞行器实质上是属于直升机的范畴,需要由动力系统提供四个旋翼的旋转动力,同时旋翼旋转产生的扭矩需要进行抵消,因此本着结构简单控制方便,选择类似双旋翼纵列式加横列式的直升机模型,两个旋翼旋转方向与另外两个旋翼旋转方向必须相反以抵消陀螺效应和空机动力扭矩。
多旋翼无人机的飞行原理PPT课件
多旋翼无人机操控原理——六种运动
要操控无人机,就要操控它的各种运动,如图1-10所示,无人机 的整个飞行轨迹都是靠操控它的这六种运动来实现的。
多旋翼无人机操控原理——运动控制
①垂直运动控制。 当同时增加或减小4个旋翼的升力时,无人机垂直上升或下降;当 四旋翼产生的升力总和等于机体的自重时,四旋翼无人机便保持平衡状 态。四个旋翼同时增加升力,无人机就开始垂直上升。
两个物体之间的作用力和反作用力,在同一直线上,大小相等, 方向相反。牛顿第三运动定律也称为作用力与反作用力定律。
在多旋翼无人机的操控中,要用到此定律,比如多旋翼无人机的 自旋操控就是通过控制正桨和反桨作用在无人机上的扭矩大小来实现 的。
主要知识点回顾——欠驱动系统
欠驱动系统就是指系统的独立控制变量个数小于系统自由度个数 的一种非线性系统,多旋翼无人机就是典型的欠驱动系统,由于高度 非线性、参数摄动、多目标控制要求及控制量受限等原因,所以控制 难度较大。
主要知识点回顾——牛顿第二运动定律
物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比。 牛顿第二运动定律也称为加速度定律,它表明力的瞬时作用规律:力 和加速度同时产生,同时变化,同时消失。
所以,无人机的姿态和飞行速度的改变,需要在相应的方向上有 力的作用。
主要知识点回顾——牛顿第三运动定律
主要知识点回顾——全驱动系统
和欠驱动系统不同,全驱动系统的独立控制变量个数等于系统自 由度个数,具有操纵灵活、控制算法设计简单等特点,固定翼无人机 就是典型的全驱动系统。
飞行原理
主要知识回顾
多旋翼无人机飞行 原理
多旋翼无人机操控原理——飞行模式
四旋翼无人机的飞行模式有两种,左图为十字模式,右图为X字模 式。如前所述,多旋翼无人机根据旋翼桨距是否可控分为两类:旋翼 变距类和旋翼变速类,而电动多旋翼无人机基本都属于旋翼变速类, 下面就以旋翼变速类四旋翼无人机的十字模式为例,来对多旋翼无人 机操控原理进行介绍。
无人机技术基础 多旋翼无人机的操纵原理-教案.pptx
《无人机技术基础》
教案
一、多旋翼无人机的飞行原理
由伯努利定理可知,旋翼下方空气流速慢静压力大,旋翼上方空气流速快静压力小,由此压差而形成向上的作用力,即升力。
由升力公式可知,四个螺旋桨转速相同时,产生的升力也相同。
即对应四个旋翼的升力相等,F_1 = F_2= F_3= F_4。
当四个旋翼的升力和F大于重力的时候,无人机上升;升力小于重力时无人机下降,而两者相等时,无人机处于悬停状态。
通过调节多旋翼上各个电机的转速,可实现多旋翼无人机垂直升降,空中悬停,小速度前飞、后飞、侧飞、原地旋转等。
如沿着三个正交坐标轴的平移移动、和旋转运动,以及多通道组合下的自由移动。
二、多旋翼无人机的操纵原理
1.升降运动
四个旋翼电机转速同步增加或减小,就可以实现多旋翼无人机的垂直上升或垂直下降。
即升力大于重力时上升,小于重力时下降。
2.俯仰运动
指无人机能绕横轴(Y轴)转动。
当电机1加速,电机3减速,两者变化量相等时,可沿X负方向运动。
当电机1减速,电机3加速,两者变化量相等时,无人机可沿X正方向运动。
这时2、4号电机转速保持不变。
由于1、3号电机的变化量均相等,可知升力的总和并未发生变化。
即,在不改变升力合力的情况下,实现俯仰运动。
3.滚转运动
指无人机能绕纵轴(X轴)转动.当电机4减速,电机2加速,变化量相等时,无人机向左滚转。
当电机2减速,电机4加速,变化量相等时,无人机向右滚转。
同样,2、4号电机变化量相等,则升力的总和不变。
即,在不改变升
第二页(共2页)。
空气动力学与飞行原理 第5章 多旋翼无人机基本飞行原理
壹 多旋翼无人机飞行性能
(四)避障性能
避障性能是指多旋翼无人机发现、识别并躲避障碍物的能力 。它是多旋翼无人机特有的飞行性能之一,也是其安全性能的重 要指标。目前只有部分多旋翼无人机具备该性能(如大疆精灵 4Pro、零度多比等)。该项性能的提出主要源于多旋翼无人机 多数情况飞行高度较低(100m以内),近地飞行时面临的地形 环境复杂,有房屋建筑、树木、室内、行人等。避障性能的主要 衡量指标为障碍物的大小、躲避障碍物的反应时间、反应距离与 躲避维度。
3
壹 多旋翼无人机飞行性能
(一)飞行速度
多旋翼无人机的飞行速度性能与固定翼无人机不同,主要指最大 垂直上升速度、最大垂直下降速度和最大水平飞行速度。飞行速度对 竞速无人机、竞速航拍无人机有明显意义。但在普通消费级无人机中 ,该意义不大。目前最大垂直上升速度和下降速度均在5m/s以内。最 大水平飞行速度在28m/s以内。随着技术水平的提升,这些飞行速度 均会有所提升,同时对飞控系统、动力系统等提出更高要求
7
贰 多旋翼无人机操纵及控制原理 (一)垂直运动 (六)侧向运动
(五)前后运动
(二)俯仰运动 (三)滚转运动
(四)偏航运动
8
贰 多旋翼无人机操纵及控制原理
目前市场上普遍为无变距多旋翼无人机,其飞行原理与固定翼无人机和无人直升机原理不同,主要体 现在两个方面:
(1)通过调节每个旋翼的转速大小,从而调节升力大小,实现升力的大小和方向发生变化。没有自 动倾斜器,不能通过变距控制每片桨叶的攻角达到改变桨盘平面和升力的作用。
四旋翼无人机俯仰运动状态下的飞行原理示意图
5
壹 多旋翼无人机飞行性能
(三)悬停性能与定位性能 多旋翼无人机的悬停性能定义与无人 直升机相同,具体见4.5节。悬停是旋翼无 人机特有的飞行性能之一,它与定位性能 一起作为衡量多旋翼飞行性能的一项指标。 一般现有无人机采用GPS定位技术、超声 波定位技术或基于双目视觉的定位技术。 悬停精度受定位技术发展的限制。抗干扰 性能一方面与定位技术相关,另一方面与 飞控算法也有一定关系。目前较好的消费 级多旋翼无人机水平定位精度为1.5m,垂 直定位精度为0.5m。
多旋翼无人机的原理
多旋翼无人机的原理
多旋翼无人机是一种通过多个旋翼来产生升力和控制飞行的飞行器。
其原理基于飞行器在空气中产生升力,并通过改变旋翼的转速和姿态来控制飞行方向。
多旋翼无人机通常由一个或多个旋翼组成,每个旋翼由一个电动马达驱动,通过螺旋桨产生向上的推力。
这些旋翼安装在飞行器的平衡板上,通过控制各个旋翼的转速和提升力分配来实现飞行。
在飞行过程中,通过调整各个旋翼的转速,可以使飞行器在空中悬停、上升或下降。
通过改变旋翼的倾斜角,可以实现向前、后、左、右等方向的飞行。
旋翼的倾斜角度可以通过改变飞行器的姿态来实现,通常通过控制机身前后倾斜、左右倾斜和偏航来控制。
多旋翼无人机还可以通过配备陀螺仪和加速度计等传感器来实现自稳定和姿态控制。
陀螺仪可以感知飞行器的姿态变化,通过自动调整旋翼的转速来保持平衡。
加速度计可以感知飞行器的速度和加速度变化,通过自动调整旋翼的转速来保持稳定飞行。
此外,多旋翼无人机还可以通过配备GPS导航系统来实现自
动导航和定位。
通过GPS系统,飞行器可以获取自身的位置
信息,并根据预设的航点来自动飞行。
总之,多旋翼无人机通过调整旋翼的转速和姿态来实现升力和
飞行控制。
搭配各种传感器和导航系统,可以实现自稳定、自动导航和定位等功能,广泛应用于航拍、物流、农业等领域。
空气动力学与飞行原理课件:旋翼空气动力学 、牛顿定律与无人机受力
例如无人机的定直平飞状态的飞行性能就可以利用牛顿第 一定律来分析。在定直平飞状态无人机所受的合外力为零。即升 力等于重力,推力等于阻力。此时无人机保持定直平飞状态。图 为无人机定直平飞所受外力示意图。
17
空气动力学与飞行原理
牛顿定律与无人机受力
LOGO 18
壹 目录页
一、
牛顿定律
二、
无人机受力
19
壹 牛顿定律
在考虑固定翼无人机的飞行稳定性特性时,需要将其当成 刚体,除了具有三个平动的自由度,还具有绕机体轴转动的三个 转动自由度。如果评价其飞行性能,则可以将无人机作为质点处 理,只有三个平动自由度,此时牛顿定律可以解释无人机的多数 飞行性能。
悬停时桨叶气动区域分布
前飞时刻桨叶气流区域分布
14
贰 旋翼
(三)桨尖失速、桨尖涡和地面效应
地面效应 由于在后退区域,桨叶旋转速度和前飞速度相减,会导致后退区域的升力损失,会造成桨盘升力的不对 称,此时为了保持升力对称,弥补升力损失,需要给桨叶一个较大的变距操纵,此时翼尖速度较大且处于较 大攻角之下,则会出现翼尖失速情况。 当直升机悬停靠近地面时,将会产生明显的地效效应。地效效应会使直升机诱导阻力减小,同时能获得 比空中飞行更高升阻比的流体力学效应:当运动的直升机距地面(或水面)很近时,整个桨盘的上下压力差增大, 升力会陡然增加。
桨叶截面形状-翼型
对称和非对称翼型
5
壹
翼型
对于翼型,其空气动力产生原理与固定翼翼型相同,由伯努利定理可以解释其升力产生原因。 升力计算公式也与固定翼翼型相同。即
L
1 2
多旋翼无人机飞行原理
多旋翼无人机飞行原理
多旋翼无人机是一种利用多个旋翼进行升降和悬停的飞行器,它在军事、民用、科研等领域有着广泛的应用。
其飞行原理主要涉及到空气动力学、控制系统和飞行动力学等方面的知识。
下面将详细介绍多旋翼无人机的飞行原理。
首先,多旋翼无人机的飞行原理与传统飞机有所不同。
传统飞机通过翅膀产生
升力,而多旋翼无人机则是通过旋翼产生升力。
每个旋翼都由一根旋翼桨叶和一个马达组成,它们可以通过控制旋翼桨叶的转速和倾斜角来调节飞行器的升力和姿态。
多旋翼无人机通常有四个以上的旋翼,这样可以提高飞行器的稳定性和操控性。
其次,多旋翼无人机的飞行原理涉及到空气动力学。
旋翼在飞行中产生升力的
过程中,会受到空气的阻力和扭矩的影响。
为了保持飞行器的稳定性,需要对旋翼的转速和倾斜角进行精确控制。
此外,飞行器的机身设计、气动外形和布局也会对飞行性能产生重要影响。
再次,多旋翼无人机的飞行原理还涉及到飞行动力学。
飞行器在飞行过程中需
要保持平衡、稳定和灵活。
这就需要通过控制系统对飞行器进行精确的控制。
控制系统通常包括姿态稳定系统、导航系统、飞行控制系统等,它们可以通过传感器获取飞行器的状态信息,并通过电子控制器对旋翼进行精确控制。
综上所述,多旋翼无人机的飞行原理涉及到空气动力学、控制系统和飞行动力
学等多个方面的知识。
通过对这些知识的深入理解和应用,可以设计出性能优良、稳定可靠的多旋翼无人机。
未来随着科技的不断发展,多旋翼无人机的飞行原理也将得到进一步完善和提升,为人类带来更多的便利和帮助。
多旋翼无人机原理
多旋翼无人机原理
多旋翼无人机是一种由多个旋翼组成的飞行器,它通过改变每个旋翼的旋转速度和方向,来实现飞行控制。
多旋翼无人机的旋翼通常由电动机和螺旋桨组成,通过电机驱动螺旋桨旋转产生升力。
通常,多旋翼无人机的旋翼数量为四或六个,不同数量的旋翼会对其飞行性能和稳定性产生影响。
多旋翼无人机的飞行原理基于空气动力学和动力学原理。
当旋翼旋转产生升力时,无人机可以在空中悬停、上升、下降、向前、向后、向左、向右等方向飞行。
通过调整旋翼的旋转速度和方向,无人机可以实现各种复杂飞行动作,如盘旋、飞行路径的变换、悬停等。
多旋翼无人机的飞行控制通常使用惯性测量单元(IMU)和飞行控制系统。
IMU可以通过加速度计和陀螺仪等传感器来测量无人机的姿态、加速度和旋转速度等参数,将这些参数传输给飞行控制系统进行实时分析和处理。
根据预设的飞行控制指令,飞行控制系统可以调整每个旋翼的旋转速度和方向,以实现精确的姿态和飞行控制。
除了飞行控制系统,多旋翼无人机还配备了其他关键组件,如电池、电调和遥控器。
电池为无人机提供能量,电调可以控制电机的转速和方向,而遥控器则用于远程操控无人机的飞行。
总之,多旋翼无人机的飞行原理是通过调整每个旋翼的旋转速度和方向,来实现飞行控制。
飞行控制系统根据传感器测量参数和预设指令,对无人机进行精确的姿态和飞行调整。
这些动
作的实施需要依赖其他关键组件的配合,如电池、电调和遥控器。
无人机驾驶员航空知识手册培训教材(多旋翼)
四轴飞行器的机架,必须要符合飞行器的结构基础,能够保 持对称稳定性。
另外需要注意的是四根轴架的尺寸长度,保证4个螺旋桨不打 架就可以了,但要考虑到螺旋桨之间因为旋转产生的乱流互相影 响,建议还是不要太近,否则影响效率。 这也是为什么四轴用2 叶螺旋桨比用3叶螺旋桨多的原因之一(3叶的还有个缺点,平衡 不好做)。
四旋翼飞行器
精选
四旋翼飞行器
精选
四旋翼飞行器
精选
四旋翼飞行器
精选
四旋翼飞行器
精选
精选
四旋翼飞行器
精选
精选
四旋翼飞行器
电调:
电调都会标上多少A,如20a电调就是电子调速器。电 调的作用就是将飞控板的控制信号,转变为电流的大小, 以控制电机的转速,因为电机的电流是很大的,通常每个 电机同时正常工作时,如果没有电调的存在,飞控板根本 无法承受这样大的电流(另外也没驱动无刷电机的功能) 。同时电调在四轴当中还充当了电压变化器的作用,将电 压变为5v为飞控板和遥控器供电,40a这个数字就是电调 能够提供的电流。大电流的电调可以兼容用在小电 流的地方。小电流电调不能超标使用。
入流角 γ:入流和旋转面之间的夹角
φ
桨弦
精选
α
相对气 流
γ 旋转面
四旋翼飞行器
飞行中,螺旋桨是一面旋转一面前进的。螺旋 桨剖面具有两个速度:一个是前进速度v,一个是 圆周速度(切向速度)u。
右图为桨叶切 面上某一点的运动 轨迹
精选
43
精选
四旋翼飞行器
飞控板:
飞控板就是飞行器的大脑,如果没有飞控板,四轴飞行器就 会因为安装、外界干扰、零件之间的不一致型等原因形成飞行 力量不平衡,后果就是左右、上下的胡乱翻滚,根本无法飞行 ,飞控板的作用就是通过飞控板上的陀螺仪,对四轴飞行状态 进行快速调整,如发现右边力量大,向左倾斜,那么就减弱右 边电流输出,电机变慢,升力变小,自然就不再向左倾斜。
无人机飞行原理课件:多旋翼无人机飞行原理
1 竹蜻蜓
2 牛顿第三定律 3 扭矩、反扭矩
发动机或电机带动螺 旋桨逆时针转动时, 螺旋桨就会对电机有 一个反方向的扭矩, 这个扭矩叫反扭矩。
01
多旋翼无人机 拉力控制原理
螺旋桨升力产生的原理
转速固定的情况下,螺距越大,升力越大。
多旋翼无人机拉力控制原理
● 螺旋桨旋转产生拉力,拉力随着转速的 增加而增加; ● 当螺旋桨的拉力等于其所承受的重力时, 无人机处于悬停状态; ● 当转速增加进一步提高时,拉力则持续 上升,这时无人机就会上升; ● 对于多旋翼无人机而言通过控制螺旋桨 转速就可以实现对无人机升力的控制。
多旋翼无人机几种飞行姿态
04
多旋翼无人机飞行原理
X型四旋翼无人机飞行原理
X型四旋翼无人机飞行原理
X型四旋翼无人机飞行原理
X型四旋翼无人机飞行原理
X型四旋翼无人机飞行原理
X型四旋翼无人机飞行原理
十字型四旋翼无人机飞行原理
十字型四旋翼无人机飞行原理
十字型四旋翼无人机飞行原理
十字型四旋翼无人机飞行原理
四旋翼无人机螺旋桨旋转方向
电机M1和M3逆时针旋转, 电机M2和 M4顺时针旋转, 这样设计的目的是∶当电 机转速相等时,电机自身 的反扭矩相互抵消,无人 机的航向保持不变。
旋翼桨盘平面的气动布局
03
多旋翼无人机飞行姿 态
多旋翼无人机几种飞行姿态
多旋翼飞行器是通过调节多个姿态控制的目的。
多旋翼无人机拉力控制原理
● 控制功率可以控制转速,对于多旋翼无人机,控制电流的大小就可以实现控制 功率。 ● 多旋翼无人机中,控制螺旋桨拉力大小是依靠控制电流大小来实现的(电调)。 ● 输入电流越大,转速越大,拉力就会增加;反之,转速、拉力都会减小。
多旋翼无人机培训指导细则
多旋翼无人机培训指导细则多旋翼无人机是一种飞行器,由多个旋翼组成,能够垂直起降和悬停,并且具有较强的机动性。
由于其简单易操作的特点,越来越多的人喜欢通过无人机进行航拍、探索和娱乐等活动。
因此,多旋翼无人机培训指导细则显得尤为重要,下面将为大家详细介绍多旋翼无人机培训的指导细则。
第一,了解法律法规。
在进行无人机培训之前,了解无人机相关的法律法规是非常重要的。
各地都有相关的规定,需遵循航空局和民航局发布的相关规定。
例如,对于一些特定区域如机场、军事禁区等是禁飞区域,严禁无人机进入,否则可能会涉及到违法行为。
第二,了解基本知识。
无人机培训的第二步是要了解无人机的基本知识。
这包括无人机的构造、工作原理、控制方式和重要元件的作用等。
只有了解这些基础知识,才能更好地进行操作和维护。
同时,还要学习无人机的飞行姿态、悬停技巧和控制方法等。
第三,学习飞行技巧。
无人机培训的重点是学习飞行技巧。
在无人机的飞行过程中,掌握一些基本的飞行技巧是必要的。
首先,要学会进行起降和悬停,这是无人机基本的飞行技能。
其次,要学会进行平稳的飞行,避免出现不稳定的情况。
最后,要学会进行基本的飞行动作,如转向、上升下降等。
这些技巧的掌握需要不断的练习和实践。
第四,了解飞行安全。
安全是无人机飞行的首要原则。
在进行无人机飞行之前,要做好相应的准备工作,如检查无人机的电量、连接状态和环境等。
在飞行过程中,要注意周围环境的变化,避免出现碰撞和意外情况。
同时,要遵循相关的飞行规则,避免飞行过程中对他人和物品产生潜在的危险。
第五,学习故障排除。
无人机在飞行过程中可能会遇到各种故障,因此,学习故障排除是无人机培训的重要内容之一、首先,要学会判断故障类型,如电池电量不足、信号干扰等。
然后,根据故障的类型,采取相应的措施进行修复。
在学习故障排除的过程中,要注意安全,避免对无人机造成损害。
综上所述,多旋翼无人机培训指导细则主要包括了解法律法规、了解基本知识、学习飞行技巧、了解飞行安全和学习故障排除等内容。
多旋翼无人机培训
飞行器参数
机型:多旋翼
动力:动
机身重量:11Kg 轴径: 1450mm 产品翼展尺寸:2100mm 最大起飞重量:21Kg 最大载荷重量:10Kg 最大飞行速度: 12m/s 最大相对飞行高度:1000m 最大工作海拔:5000m 最大抗风等级: 6级 最大飞行半径: 10km 视频传输距离:10~25km 最大续航时间: 50Min 工作环境温度:-30℃~+60℃
无人机在消防领域扮演的角色越来越重要,可以弥补传统消防方 式的不足,具有响应快速、高空侦查及灭火的特点。
根据执行任务的特点,覆盖消防、救助及物资运输的不同领域,研制的无人机 分为三类:
5 - 10 kg 载荷无人机
70 - 110kg 载荷无人机
150kg 以上大载荷无人机
小载重无人机,机动性灵活,可快速部署并进入目标区域工作。根据使用需要, 可分别搭载热成像及可见光一体摄像机、喊话装置、定点空投装置、测风仪、 测温仪、有毒气体探测仪、简易火灾救护装置等载荷。主要用于灾情勘察,快 速评估现场火情,提供实时高清现场视频给决策者进行正确指挥。 具备火场自主避障及避温能力。
飞行控制系统包含主控器、GPSCompass Pro、
PMU(PowerManagement Unit) 和 LED 四个模块,外接两套升级套 件(内含 IMU Pro 和 GPSCompass Pro 模块),形成三余度冗 余系统,配合软件解析余度实现6 路冗余导航系统。
三余度设计系统,可靠性高
控制精准,容错性强
工业系统解决方案,全面兼容DJI SDK
大载重无人机,可同时携带多种载荷。主要用于直接参与消防灭火任务,人员 紧急转移救助,也可用于急救物资运输。 特点为续航时间长,载重能力大,可根据实际需要,进行不同载荷集成。
6.多旋翼无人机的动力学知识
用分子动理论解释
3.旋翼升力产生的原理
F升
F升
凹凸式翼型
攻角和螺距
转速固定的情况下,螺距越大,升力越大。
二.旋翼的种类及特点
旋翼又称螺旋桨或桨叶,是通过自身旋转,将电机转 动功率转化为动力的装置。
1.按材质分:
木桨
塑料浆 橡塑尼龙桨 碳纤维浆
2.按桨叶数量分: 双叶桨 四叶桨
三叶桨
五叶桨 涵道风扇
和 M4 顺时针旋转,
黑点
这样设计的目的是:
反 扭矩
当电机转速相等时, 白点
电机自身的反扭矩
相互抵消,无人机
M3
的航向保持不变。
M1 白点
黑点 M4
3.电机安装方向:(部分无人机电机并非垂直于机身平面)
电机 安装角
F2
F1
拉 力矩
F3
F4
电机转速相等时,
电机倾斜拉力矩相互抵消, 无人机保持航向不变.
教学过程
1. 旋翼的空气动力学知识. 2. 无人机旋翼的种类及特点. 3. 多旋翼无人机的各种动作. 4. 四旋翼无人机的飞行原理.
一.旋翼的空气动力学知识
1.旋翼机的产生
葛洪发明的竹蜻蜓
达芬奇设计的直升机
葛洪:东晋道教学者、炼丹家、药学家,文学家,思想家, 化学家。官至宰相,隐居罗浮山. 所著<抱朴子>记述:
“或用枣心木为飞车,以牛革结环剑,以引其机.” 其中的“飞车”被认为是关于竹蜻蜓的最早记载。
美国西科斯基研制
首架直升机 支奴干
国产直10 美国鱼鹰
2.固定翼升力产生原理:
升力产生的力学分析
据:F P S
y F1
F浮
无人机驾驶员航空知识手册培训教材(多旋翼)
四旋翼飞行器
➢ 前后运动与侧向运动:
要想实现飞行器在水平面内前后、左右的运动,必须在水平电机 转速不变,反扭矩仍然要保持平衡。按图 b的面内对飞行器施 加一定的力。在图 e中,增加电机 3转速,使拉力增大,相应减 小电机 1转速, 使拉力减小,同时保持其它两个,飞行器首先 发生一定程度的倾斜,从而使 旋翼拉力产生水平分量,因此可 以实现飞行器的前飞运动。向后飞行与向前飞行正好相反;
φ
桨弦
α
相对气 流
γ 旋转面
四旋翼飞行器
飞行中,螺旋桨是一面旋转一面前进的。螺旋 桨剖面具有两个速度:一个是前进速度v,一个是 圆周速度(切向速度)u。
右图为桨叶切 面上某一点的运动 轨迹
第三章 第 页
43
四旋翼飞行器
飞控板:
飞控板就是飞行器的大脑,如果没有飞控板,四轴飞行器就 会因为安装、外界干扰、零件之间的不一致型等原因形成飞行 力量不平衡,后果就是左右、上下的胡乱翻滚,根本无法飞行, 飞控板的作用就是通过飞控板上的陀螺仪,对四轴飞行状态进 行快速调整,如发现右边力量大,向左倾斜,那么就减弱右边 电流输出,电机变慢,升力变小,自然就不再向左倾斜。
四旋翼飞行器的组成:
电机 电调 螺旋桨 飞控板 锂电池 遥控器(六通控制) 一个四轴机架 基本线路连接
四旋翼飞行器
四旋翼飞行器的结构形式:
四旋翼飞行器采用四个旋翼作为飞行的直接动力源,旋翼对称分 布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四 个旋翼的结构和半径都相同,旋翼 1和旋翼 3逆时针旋转,旋翼 2和旋 翼 4顺时针旋转,四个电机对称的安装在飞行器的支架端,支架中间 空间安放飞行控制计算机和外部设备。四旋翼飞行器的结构形式如图 所示:
空气动力学与飞行原理课件:无人机空气动力学概述 、翼型空气动力学
空气动力学与飞行原理
翼型空气动力学
LOGO 6
壹 目录页 一、 二、 三、 四、
翼型几何特性 伯努利定理 升力 阻力
五、 六、 七、
升阻比
空气动力特性影响因素
翼型选择
7
壹 翼型几何特性
在固定翼无人机的各种飞行状态下,机翼是 无人机产生升力的主要部件。如果平行于机身对 称面在机翼展向任意位置切一刀,切下来的机翼 剖面称作为翼剖面或翼型。如图,翼型设计是无 人机设计中必不可少的一环,它直接影响到固定 翼无人机的空气动力学特性和飞行性能。
(四)S翼型 中弧线是一个平躺的S型,这类翼型
因迎改变时,压力中心变动较小,升力 较大,常用于飞翼布局无人机。
(五)内凹翼 下弧线在翼弦线上,中弧线高,升
力系数大,常见于早期飞机及牵引滑翔 机。
13
壹 翼型几何特性
(六)其它特种翼型 例如:直升机OA系列翼型等。 20世纪初设计了很多低速飞机的翼型,如德 国人奥托·利林塔尔设计并测试了RAF-6,还有 Gottingen 398,Clark Y,NACA翼型系列等, 如图2.5所示。目前这些翼型在低速无人机和航空 模型中得到了广泛的应用。尤其是Clark Y系列翼 型,因其良好的加工性能,在微型和轻型无人机 中得到了广泛应用。
空气动力学与飞行原理
无人机空气动力学概述
LOGO 1
壹 无人机空气动力学概述
无人机之所以能在大气中做持续的飞行,主要靠空气给它的反作用力(即升力)。空气动力学 最重要的是知道无人机上所受到的分布压力、升力、阻力和力矩,以及无人机参数对这些空气动力的 影响规律。
无人机主要在对流层和平流层飞行,此时无人机尺寸远大于气体分子的自由行程,因此,无人 机所处的介质是连续空气。对于无人机空气动力学,最重要的两个无量纲量是马赫数和雷诺数,它体 现了空气的压缩性和粘性特性。
简述多旋翼无人机的飞行原理
简述多旋翼无人机的飞行原理多旋翼无人机是一种利用多个电动螺旋桨产生升力和控制飞行姿态的飞行器。
其飞行原理主要涉及到气动学、动力学和控制理论等方面。
一、气动学原理1. 空气动力学基础空气是一种流体,当物体在空气中运动时,会受到空气的阻力和升力的作用。
升力是垂直于流体运动方向的力,它是由于物体表面上方的流体速度比下方快而产生的。
根据伯努利定律,速度越快的流体压强越低,因此在物体表面上方形成了一个低压区域,从而产生了升力。
2. 旋翼产生升力原理多旋翼无人机利用电动螺旋桨产生升力。
螺旋桨是一种叶片形状呈扁平椭圆形的转子,在转动时会将周围空气向下推送,从而产生反作用力使得无人机获得向上的升力。
同时,螺旋桨还可以通过改变叶片角度来调节升降速度。
3. 旋翼产生的气流对姿态控制的影响旋翼产生的气流会对无人机的姿态控制产生影响。
例如,当无人机向前飞行时,前方螺旋桨产生的气流会使得无人机头部上仰;而后方螺旋桨产生的气流则会使得无人机头部下俯。
因此,通过调节各个螺旋桨的转速和叶片角度来实现姿态控制。
二、动力学原理1. 动力学基础动力学是研究物体运动状态和运动规律的学科。
在多旋翼无人机中,电动螺旋桨提供了推力,从而使得无人机具有向上飞行的能力。
2. 电动螺旋桨推力计算电动螺旋桨推力与其转速和叶片角度有关。
一般来说,推力与转速成正比,与叶片角度成平方关系。
因此,在设计多旋翼无人机时需要根据所需升降速度和搭载重量等因素来确定电动螺旋桨数量、大小和转速等参数。
三、控制理论原理1. 控制理论基础控制理论是研究如何使系统达到期望状态的学科。
在多旋翼无人机中,通过调节各个螺旋桨的转速和叶片角度来实现姿态控制和飞行控制。
2. 姿态控制姿态控制是指调节无人机的姿态,使其保持稳定飞行。
一般来说,可以通过加速度计、陀螺仪和罗盘等传感器来获取无人机的姿态信息,然后通过PID控制器等算法来调节螺旋桨转速和叶片角度。
3. 飞行控制飞行控制是指调节无人机的飞行状态,包括升降、前进、后退、左右平移等动作。
无人机操控技术课件第3章飞行原理与性能第5节多旋翼基础知识
5.2.3 动力系统—电调
建议最基础测试电机与电调兼容性的方案: 在地面拆除螺旋桨,姿态或增稳模式启动,启 动后油门推至50%,大角度晃动机身、快速大范围 变化油门量,使飞控输出动力。仔细聆听电机转动 声音,并测量电机温度,观察室否出现缺相。 在调试前,用遥控器设置电调时,需要接上电 机。
5.3 多旋翼气动布局—Y字型、H字型
Y型
优点:动力组较少,成本 低;外形炫酷,前方视线开阔。
缺点:尾旋翼需要使用一 个舵机来平衡扭矩,增加了机 械复杂性和控制难度。
H型
H型比较容易设计成折叠 结构,且拥有X型相当的特点。
5.3 多旋翼气动布局—4\6\8旋翼
单纯从气动效率出发,旋翼越大,效率越高,同样 起飞重量的4轴飞行器比8轴飞行器的效率高,故轴数越 多载重能力不一定越大。
一般锂聚合物电池上都有2组线。1组是输出线(粗, 红黑各1根);1组是单节锂电引出线(细,与S数有关), 用以监视平衡充电时的单体电压。
多轴飞行器飞行中,图像叠加OSD信息显示的电压 一般为电池的负载电压。
5.2.3 动力系统—电池
锂电池在使用时必须串联才能达到使用电压需要,因此 聚合物电池需要专用的充电器,尽量选用平衡充电器。 根据充电原理的不同分为串型式平衡充电器和并行式平衡充 电器。并行式平衡充电器使被充电的电池块内部每节串联电 池都配备一个单独的充电回路,互不干涉,毫无牵连。
5.2.2 飞控系统—飞控软件
飞控
基本情况
优点
缺点
KK飞控
开源,只使用 三个成本低廉
的单轴陀螺
价格便宜,硬件 结构简单
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多旋翼无人机培训指导_多旋翼无人机空气动力学理论课程_无人机空气动力的原理
关键词速读:无人机空气动力学、无人机理论课程、无人机考证理论、
无人机培训考证、多旋翼无人机
根据《民用无人机驾驶员管理规定》,起飞全重 7 千克以下的无人机视距内飞行时无须持证,超出该范畴的,比如农机植保、测绘航测等行业,则在飞行资质管理范围内,必须通过民用无人机驾驶员培训学习来考取民用无人机驾照(电子执照),方可持证合法飞行。
本文为理论培训课程中的多旋翼无人机空气动力学理论部分。
力学基础:
牛顿第一定律:孤立质点保持静止或匀速直线运动;
牛顿第二定律:物体因受力作用而产生加速度;
牛顿第三定律:相互作用的两个质点之间的作用力和反作用力总是大小相等,方向相反。
空气流动的描述:
空气动力是空气相对于飞机运动时产生的,要学习和研究飞机的升力和阻力,首先要研究空气流动的基本规律。
流体模型化:
理想流体,不考虑流体粘性的影响。
不可压流体,不考虑流体密度的变化,Ma<0.4。
绝热流体,不考虑流体温度的变化,Ma<0.4。
飞机相对气流方向与飞行速度方向相反
风洞实验:
迎角:
迎角就是相对气流方向与翼弦之间的夹角
相对气流:
相对气流方向就是飞机速度方向的反方向相对气流方向就是判断迎角大小的依据。
平飞中,可以通过机头高低判断迎角大小。
而其他飞行状态中,则不可以采用这种判断方式。
水平飞行、上升、下降时的迎角。
流线和流线谱:
空气流动的形式一般用流线、流管、流线谱来描述。
流线:流场中一条空间曲线,在该曲线上流体微团的速度与曲线在该点的切线重合。
对于定常流,流线是流体微团流动的路线。
流管:
由许多流线所围成的管状曲面。
连续性定理
流体流过流管时,在同一时间流过流管任意截面的流体质量相等。
质量守恒定律是连续性定理的基础。
伯努利定理:
同一流管的任意截面上,流体的静压与动压之和保持不变。
能量守恒定律是伯努力定理的基础。
空气能量主要有四种:动能、压力能、热能、重力势能。
低速流动,热能可忽略不计;空气密度小,重力势能可忽略不计。
因此,沿流管任意截面能量守恒,即为:动能+压力能=常值。
公式表述为:
2
1
2
v P P ρ+=
上式中第一项称为动压,第二项称为静压,第三项称为总压。
—动压,单位体积空气所具有的动能。
这是一种附加的压力,是空气在流动中受阻,流速降低时产生的压力。
—静压,单位体积空气在静止时所受到的法向力。
—总压(全压),它是动压和静压之和。
总压可以理解为气流速度减小到零之点的静压。
同一流管:
截面积大,流速小,压力大。
截面积小,流速大,压力小。
同一流线:
总压保持不变,动压越大,静压越小。
流速为零的静压,即为总压。
升力产生的原理:
上下表面出现的压力差,在垂直于(远前方)相对气流方向的分量,就是升力。
机翼升力的着力点,称为压力中心(Center of Pressure)
驻点和最低压力的点:
A点,称为驻点,是正压最大的点,位于机翼前缘附近,该处气流流速为零。
B点,称为最低压力点,是机翼上表面负压最大的点。
厦门市润航无人机有限公司承接无人机行业应用的开发、定制,承接无人机飞行培训、飞行服务外包、售后维修,代办无人机保险及飞行计划申请等涉飞服务,是厦门市首家取得民航(AOPA)授权的无人机驾照(无人机电子执照、驾驶员合格证)训练单位,是目前厦门地区唯一取得无人机固定运营空域的企业。
依托以上资源,公司可承接多旋翼视距内、多旋翼视距外以及农业植保多旋翼无人机驾照(驾驶员合格证)培训,经与有资质的警用无人机驾驶航空器培训机构合作并可以承接警用无人机驾驶员合格证培训。
润航无人机同时还推出考证后的行业延伸班,植保、航拍、电力、水利、警用、消防等行业应用高级培训。