最新永磁同步电机弱磁调速

合集下载

反凸极永磁同步电机弱磁特性分析

反凸极永磁同步电机弱磁特性分析

反凸极永磁同步电机弱磁特性分析摘要:高速旋转运作电动机可以采用相对较小的直轴弱磁电流量来消弱磁密磁通,完成弱磁提速,合理扩大电动机的弱磁范畴。

创建新式反凸极永磁同步电机的复励轴等效电路实体模型,剖析新式反凸极永磁同步电机磁感应转距特点和弱磁特性,基础理论剖析结果与模拟仿真测算剖析结果相符合,认证了反凸极永磁同步电机弱磁的高效性和可行性分析。

关键词:反凸极永磁同步电机弱磁特性直轴和交轴电感调整铁心引言永磁同步电机具备高效能和高功率等优势,在新能源汽车和数控车床等行业已得到普遍的研究和运用。

由于永磁同步电机选用永磁体励磁,导致励磁调整器电磁场没法调整。

所以电动机在基速以上区域运作时,就必须开展弱磁控制才可以扩宽转速比范畴。

理想化的弱磁标准是直轴电感器与负向的弱磁电流量相乘,正好抵消永磁材料形成的磁通。

完成弱磁关键选用两种方式,一是扩大负性的直轴弱磁电流量,二是提升直轴电感器,但增大负向直轴弱磁电流会增加铜耗,还有可能引起不可逆退磁。

增大直轴电感又受到电机结构的限制,因为内置式永磁同步电机转子中永磁体始终放置于直轴位置,无法获得较大数值的直轴电感。

这就是永磁同步电机弱磁困难的原因。

1 反凸极永磁同步电机结构1.1 反凸极永磁同步电机结构反凸极永磁同步电机的电机转子构造如下图1所显示。

反凸极永磁同步电机由电机定子、电机转子和磁密组成。

电机定子与一般永磁同步电机定子同样。

电机转子由铁芯、永磁材料和气体槽构成。

其中铁芯包含调整铁芯和磁轭铁心两一部分。

调整铁芯外表层沿圆上方位由2p个弧形段和2p个平行线段组成。

永磁材料分为多个小段,每邻近两小段永磁材料之间产生磁桥。

永磁材料可选用同样规格的钕铁硼磁铁,也可选用不一样型号规格,使永磁材料1、永磁体2和永磁材料3的剩下磁通密度先后下降来改进磁密电磁场波型及其提升永磁材料的使用率。

凸极永磁同步电机的直轴和交轴等效电路实体模型各自长为2和图3所显示图2中,Fd、Fq各自为直轴磁动势、交轴磁动势,Rpm、Rδ、Rt、Rj分别为永磁材料磁电式、磁密磁电式、齿部磁阻和轭部磁电式。

永磁同步电动机三种基本调速方法

永磁同步电动机三种基本调速方法

永磁同步电动机三种基本调速方法
永磁同步电动机是一种常用的高效率电动机,常用于工业生产中的带载设备。

为了实现电动机的调速,常用以下三种基本调速方法: 1. 电压调制法:该方法通过改变电动机的输入电压来实现调速。

可以通过改变变频器的输出电压来改变电动机的输出电压和频率,从而改变电动机的转速。

该方法的优点是控制简单,响应速度快,但是对于负载变化较大的情况下,调速效果可能不稳定。

2. 磁场调制法:该方法通过改变电动机内部的磁场强度来实现调速。

可以通过改变变频器的输出频率和相位,来改变电动机内部的磁场强度分布,从而改变电动机的转速。

该方法的优点是调速范围广,调速效果稳定,但是控制复杂度较高。

3. 直接转矩控制法:该方法通过直接控制电动机的转矩大小来实现调速。

可以通过改变变频器输出的电流大小和相位,来控制电动机的转矩大小,从而改变电动机的转速。

该方法的优点是调速响应速度快,调速效果稳定,但是对于负载变化较大的情况下,需要进行较为复杂的控制设计。

综上所述,不同的永磁同步电动机调速方法各有优缺点,需要根据实际应用情况选择合适的调速策略。

- 1 -。

永磁同步电机弱磁控制的控制策略研究【范本模板】

永磁同步电机弱磁控制的控制策略研究【范本模板】

永磁同步电机弱磁控制的控制策略研究摘要永磁同步电机是数控机床、机器人控制等的主要执行元件,随着稀土永磁材料、永磁电机设计制造技术、电力电子技术、微处理器技术的不断发展和进步,永磁同步电机控制技术成为了交流电机控制技术的一个新的发展方向。

基于它的优越性,永磁同步电机获得了广泛的研究和应用.本文对永磁同步电机的弱磁控制策略进行了综述,并着重对电压极限椭圆梯度下降法弱磁控制、采用改进的超前角控制弱磁增速、内置式永磁同步电动机弱磁控制方面进行了调查、研究。

关键词:永磁同步电机、弱磁控制、电压极限椭圆梯度下降法、超前角控制、内置式永磁同步电动机一、永磁同步电机弱磁控制研究现状1.永磁同步电机及其控制技术的发展任何电机的电磁转矩都是由主磁场和电枢磁场相互作用产生的。

直流电机的主磁场和电枢磁场在空间互差90°电角度,因此可以独立调节;而交流电机的主磁场和电枢磁场互不垂直,互相影响。

因此,交流电机的转矩控制性能不佳。

经过长期的研究,目前交流电机的控制方案有:矢量控制、恒压频比控制、直接转矩控制等[1]。

1.1 矢量控制1971年德国西门子公司F.Blaschke等与美国P.C.Custman等几乎同时提出了交流电机磁场定向控制的原理,经过不断的研究与实践,形成了现在获得广泛应用的矢量控制系统。

矢量控制系统是通过坐标变换,把交流电机在按照磁链定向的旋转坐标系上等效成直流电机,从而模仿直流电机进行控制,使交流电机的调速性能达到或超过直流电机的性能。

1.2 恒压频比控制恒压频比控制是一种开环控制,它根据系统的给定,利用空间矢量脉宽调制转化为期望的输出进行控制,使电机以一定的转速运转。

但是它依据电机的稳态模型,从而得不到理想的动态控制性能。

要获得很高的动态性能,必须依据电机的动态数学模型,永磁同步电机的动态数学模型是非线性、多变量,它含有角速度与电流或的乘积项,因此要得到精确控制性能必须对角速度和电流进行解耦。

永磁同步电动机弱磁调速控制

永磁同步电动机弱磁调速控制

1.1 永磁同步电机简介
由于高性能电机控制理论和电力电子技术以及微机控制技术的迅速发展,永磁 (PM)电机以其高效性,高转矩惯量比,高能量密度而得到了更多关注。 PM电机通常分为两类: 永磁无刷直流电机(BLDC)和永磁同步电机(PMSM)。 BLDC 通常具有梯形波反电势波形,如图1.1b)。梯形波反电势由定子集中绕组和方波充磁的 表面磁铁产生。其转子位置的测量可以非常方便地利用反电势的测量得到,控制方式 简单。但存在转矩脉动,换相间存在冲击电流,一般不太适用于高性能驱动。
学位论文版权使用授权书
本学位论文作者完全了解学校有关保留、使用学位论文的规定, 即:学校有权保留并向国家有关部门或机构送交论文的复印件和电 子版,允许论文被查阅和借阅。本人授权华中科技大学可以将本学 位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、 缩印或扫描等复制手段保存和汇编本学位论文。
ωr
+
ωf

PI
Tr
+
dT −
Hystersis controller
ψf
32
4
56
1
ia
ib
Tf
ψf
1
Ψ, T
Controller
VDC ia ib
s
encoder
PMSM
(c) 直接转矩控制器 图 1.3 PMSM 的主要控制方法 1.2.1 VVVF 控制 VVVF控制策略的控制变量为电机的外部变量,即电压和频率。控制系统将参考 电压和频率输入到实现VVVF的调制器中,最后由逆变器产生一个交变的正弦电压施 加在电机的定子绕组上,使之运行在指定的电压和参考频率下。逆变器所用的调制方 式为脉冲宽度调制(PWM)。PWM可以有多种不同的实现方式,如空间矢量调制 (SVPWM)。PMSM的VVVF控制方框图如图1.3(a)所示。 这种控制方法无需从电机引入任何速度、位置或电压、电流反馈信号,属于开环 控制。这种控制系统易于实现且价格低廉。由于系统中不引入速度、位置或其它任何 反馈信号,因此不能即时捕捉电机状态,无法对电机进行精确的电磁转矩控制。由于 仅使用一个调节器实现对输入电压和磁链的调制,将导致输入电压、频率信号和电机 最终的转矩、速度反应之间的通讯速度降低,使电机的响应变慢。这种驱动系统仅适 用于风机、水泵之类无需精确控制的场合。 1.2.2 磁场定向矢量控制 Blaschke在1971年发表了第一篇有关异步电机(IM)的矢量控制(VC)的方法,之后 该方法被应用于PMSM中。这种控制方法目前已经全面发展并在工业上被认为是较成

永磁同步电机弱磁控制理论研究

永磁同步电机弱磁控制理论研究

图 6 普通弱磁区域电流矢量轨迹(圆心在内) 3.3 最大功率输出区域 如图 7 所示,永磁同步电机的电压极限椭圆中心 M 在电流 极限圆的内部时,最大功率输出轨迹与电流极限圆必有交点 B, 随着转速的升高,电流矢量从 A 点变化到 B 点后将沿着最大功 率输出轨迹变化,直至椭圆中心 M 点。M 点为电机在该区域的极 限运行点,此时在理想状态下永磁体的磁链被完全抵消,电机的 转速能够达到无限大。
图 1 永磁同步电机 dq 轴坐标系模型 将电流矢量在 dq 轴系下进行分解,其中 d 轴电流的作用是 影响定子磁链。当永磁同步电机工作电压达到极限后,使 d 轴电 流变为负值,对永磁体励磁磁场产生削弱作用,从而减小电压矢 量幅值,使得电机转速可以继续上升,所以将这一过程称为弱磁 控制[2]。 2 电压极限椭圆和电流极限圆 受永磁同步电机逆变器容量的限制,定子电压和相电流不 能无限制增大,即可得到电机在运行过程中电压和电流的约束 条件[3-4]。 将三相静止坐标系中的电压方程通过坐标变换矩阵可以得
(3)
Hale Waihona Puke 蓘 蓡 (Lqiq)2 +(ψf+Ldid)2≤
ulim ωr
2
在 dq 轴系的电流平面内电流矢量满足条件:
(4)
i2s=i2d+i2q≤i2lim
(5)
通过分析可以发现,对于凸极式永磁同步电机,dq 轴电感之
比 Lq/Ld 一般大于 1,电流极限方程(5)在 dq 轴系内是一个以坐
标原点 O 为圆心的圆,电压极限方程(4)表示为一个椭圆,该椭
关键词:永磁同步电机;弱磁控制;约束条件;运行区域
永磁同步电机弱磁控制理论研究
衢州职业技术学院机电工程学院 郑丽辉 方晓汾

永磁同步电机弱磁扩速

永磁同步电机弱磁扩速

永磁同步电机弱磁扩速摘要:1.永磁同步电机的概述2.永磁同步电机弱磁扩速的背景和意义3.永磁同步电机弱磁扩速的原理和方法4.永磁同步电机弱磁扩速的实际应用和优势5.永磁同步电机弱磁扩速的未来发展趋势正文:一、永磁同步电机的概述永磁同步电机是一种采用永磁体作为磁场源的同步电机,其结构主要由定子、转子和端盖等部件构成。

定子由叠片叠压而成以减少电动机运行时产生的铁耗,其中装有三相交流绕组,称作电枢。

转子可以制成实心的形式,也可以由叠片压制而成。

永磁同步电机的主要特点是磁场恒定,运行稳定,效率高,因此在工业生产中得到了广泛的应用。

二、永磁同步电机弱磁扩速的背景和意义在永磁同步电机的运行过程中,往往会出现弱磁现象,即电机的磁场强度不足,导致电机的转速无法达到预期值。

为了解决这个问题,需要对电机进行弱磁扩速,以提高电机的转速和运行效率。

弱磁扩速对于永磁同步电机具有重要的意义,它可以使电机在低速运行时具有更高的效率和更好的性能,满足不同工况下的需求。

同时,弱磁扩速也可以提高电机的调速范围,使电机能够适应更广泛的应用场景。

三、永磁同步电机弱磁扩速的原理和方法永磁同步电机弱磁扩速的原理是通过调整电机的磁场强度,使电机在低速运行时能够保持恒定的磁场强度,从而提高电机的转速和运行效率。

具体的弱磁扩速方法包括以下几点:1.调整电机的磁场强度:通过改变电机的磁场强度,使电机在低速运行时能够保持恒定的磁场强度。

2.调整电机的电流:通过改变电机的电流,可以改变电机的磁场强度,从而达到弱磁扩速的目的。

3.采用先进的控制策略:通过采用先进的控制策略,可以实现对电机的精确控制,使电机在低速运行时能够保持恒定的磁场强度。

四、永磁同步电机弱磁扩速的实际应用和优势永磁同步电机弱磁扩速在实际应用中具有广泛的应用前景,它可以使电机在低速运行时具有更高的效率和更好的性能,满足不同工况下的需求。

同时,弱磁扩速也可以提高电机的调速范围,使电机能够适应更广泛的应用场景。

关于电机在弱磁状态下的调速问题

关于电机在弱磁状态下的调速问题

关于电机在弱磁状态下的调速问题什么叫弱磁呢?什么情况下应该考虑这个问题呢?答:当电机需要超过额定转速运行时,需要用到弱磁,弱磁出现在直流控制中的较多,直流电机在满磁下在额定速度下可以输出最大转矩,要想得到更高的速度就得减小励磁,但是是以减小转矩为代价的.一般直流调速器用到的多.弱磁的概念来自于直流传动控制,在其速度计算公式中速度与磁场的强度成反比。

一般电机的控制在其达到额定转速之前是按照恒转矩方式进行控制的,电机速度与电枢电压成正比,而达到了额定转速后则按照恒功率方式进行控制,电枢电压恒定,电机速度与磁场强度成反比。

交流电机的矢量控制是根据直流电机的模型进行控制的,因以沿用了直流电机的概念。

变频器输出电压不会超过进线电压.现在一般电机额定电压是380额定频率是50,电源电压一般也是380,当频率超过50.但输出电压不能超过380,导致磁通变小,自然回导致力矩下降.若电机额定频率是100HZ额定电压380,那在100HZ以上才是弱磁区.转矩闭环是相对于电流闭环而言的(不讨论转速闭环,因这和转速闭环不冲突)。

对恒磁通情况,转矩是正比于电流的。

但对于变磁通方式,转矩并不只正比于电流,还与磁通(并不是励磁电流)成反比。

在电流闭环情况下,当电机弱磁时,功率不变,但转矩降低,降低的原因是电流受控制系统限制不再增加,而磁通却减小了。

在转矩闭环情况下,当电机弱磁时,为保证转矩不降低,输出电流要相应的增加以弥补磁通减小的损失。

此时电机会处于过载状态,输出功率也就相应的增大了。

电机输出高于额定功率的功率不是什么稀奇的事,只要电机能承受,闭环系统的优越性就可以发挥的淋漓尽致!关于电机在弱磁状态下的调速问题在电机应用上必须保证在额定转速以下呢?如果要超过了额定转速应该调整有关弱磁方面的哪些参数呢?在传动专业,调速范围和弱磁升速尽管是专业术语,但也是热点专业知识,就是说,大量应用的专业知识。

如果一个电机,讨论它的调速范围和驱动能力的话,不会不涉及弱磁调速、恒转矩特性、恒功率特性等概念,因为一个电机的外特性,就把这个电机的特性包括了。

永磁同步电机的弱磁控制

永磁同步电机的弱磁控制

永磁同步电机的弱磁控制现有一永磁电机,需要超过额定转速运行。

使用变频器调速,则为恒功率调速,也就是弱磁掌握,不考虑电机机械和负载的因素的话,变频器能拖动电机达到多少转速?变频器一般弱磁调速的范围有多大?答:永久磁铁是恒磁的,不知如何弱磁,弱了后回到恒转矩区时又如何充磁。

1、沟通电机的电压不变,频率下降时,磁场会增加直到饱和;2、沟通电机的电压不变,频率上升时,磁场会减弱;3、缘由是电机的电势平衡原理打算的,电势平衡原理可以用电视平衡方程式表示:U-Ir=E=CeΦf U肯定,Φ↑f ↓或者Φ↓f ↑;4、电机的磁场Φ,打算于电压U的大小;5、变频器在额定频率以下运行,通过频率下降电压同时下降,保证电机磁场Φ恒定;6、变频器在额定频率以上运行,通过频率上升而电压不能上升,电机磁场Φ减弱,进入弱磁调速!7、弱磁调速,意味着电机速度超过额定转速时,额定转矩下降,就是说还要额定转矩运行,电机的功率就要随着转速正比增大,电机就会发热,无法正常运行;8、所以电机在弱磁运行时,速度高,转矩低,转速越高,转矩越小,保持功率不变,电机的发热量不增大而能正常运行;9、所以弱磁调速运行的关键是,电机所带的负载转矩必需随着速度上升反比下降,假如负载转矩不能因速度上升而反比下降,这个负载就不宜进入弱磁调速;10、你可以检测电流,弱磁调速时,假如电流随着速度上升而保持在额定电流一下,那么电机的发热量就不大,允许运行,否则就不允许弱磁调速运行;11、以上说的没有考虑轴承等机械强度是否允许的问题!12、电机进入弱磁调速,最高速度或者频率,应当是电机空载运行时,电机电流保持在额定电流及其一下的最大速度或最高频率!你可以空载试验确定!13、上述结论,是在电机轴承及其相关机械强度允许状况下!14、假如负载需要高速运行,可以通过机械传动比来实现,不肯定要电机进入弱磁调速区;。

永磁同步电机控制系统带过调制的弱磁控制策略研究

永磁同步电机控制系统带过调制的弱磁控制策略研究

永磁同步电机控制系统带过调制的弱磁控制策略研究涂群章;林加堃;曾繁琦;邹世超;陆影【摘要】永磁同步电机控制系统在实际应用中,复杂多变的工况对电机的响应需求是不同的.为了拓宽电机控制系统的调速范围,且满足系统对转矩响应能力和大转矩输出特性的要求,在弱磁控制策略的基础上引入过调制方法,将其应用于永磁同步电机控制系统,并进行仿真和实验研究.结果表明,相比于无过调制的弱磁控制策略,带过调制的弱磁控制策略能使系统在调速过程中充分利用直流母线电压,从而提高了转矩响应和大转矩输出能力,缩短了转速响应时间,同时电机的工作效率符合应用要求.【期刊名称】《兵工学报》【年(卷),期】2016(037)005【总页数】8页(P953-960)【关键词】兵器科学与技术;永磁同步电机;控制系统;弱磁控制;过调制【作者】涂群章;林加堃;曾繁琦;邹世超;陆影【作者单位】解放军理工大学野战工程学院,江苏南京 210007;解放军理工大学野战工程学院,江苏南京 210007;军事交通学院军用车辆系,天津 300161;海拉(厦门)电气有限责任公司,福建厦门 361100;解放军理工大学野战工程学院,江苏南京210007【正文语种】中文【中图分类】TM301.2永磁同步电机(PMSM)的励磁由永磁体提供,没有励磁损耗,因此,与一般电机相比,PMSM具有更高的功率密度和效率,从世界电传动研究情况以及电机发展水平来看[1],PMSM是军用电传动履带推土机的最佳选择。

军用履带推土机由于要求具备良好的机动性,因而需要尽量扩大其驱动电机的调速区间;在推土作业工况下则要求电机控制系统具有快速准确的转矩响应,在爬坡、突然加减速和深度挖掘时还应具有高效的大转矩输出特性。

为了拓宽电机调速范围,PMSM可采用弱磁控制策略。

对电机进行弱磁控制时,由于电压接近饱和[2],电机的转矩响应能力会弱化。

因此为了进一步提高直流电压利用率,人们在调制方法和过调制方法方面都进行了相关研究,在正弦波脉宽调制(SPWM)参考电压中加入3次谐波可提高电压利用率和消除特定次数谐波的离线脉宽调制方法[3]等都是在调制方法方面的改进,过调制方法则是在1991年Kerkman等提出逆变器增益的概念后开始得到了深入研究[4-7]。

内置式永磁同步电动机弱磁调速优化控制

内置式永磁同步电动机弱磁调速优化控制

内置式永磁同步电动机弱磁调速优化控制闫娜云;宗剑【摘要】从永磁同步电机(PMSM)的矢量控制出发,提出了一种PMSM弱磁优化控制方法.内置式永磁同步电机(IPMSM)相对表贴式永磁同步电机弱磁能力强,调速范围宽,以IPMSM为对象,对弱磁调速进行了仿真与优化.PMSM在基速以下采用最大转矩电流比的恒转矩控制,减小了电机损耗,提高了逆变器的效率,在基速以上采用恒功率调速.直轴电流去磁调速结合交轴电流去磁调速的弱磁控制方式,提高了PMSM的功率因数,扩展了调速范围.针对弱磁环节转速的波动问题,在传统PI控制上做出改进,提出了模糊自整定PI的控制方式,提高了PMSM弱磁调速的性能.在MATLAB/Simulink中搭建仿真模型,验证了该控制方法的可行性.【期刊名称】《电机与控制应用》【年(卷),期】2018(045)010【总页数】5页(P24-28)【关键词】永磁同步电机;矢量控制;弱磁调速;模糊自整定PI【作者】闫娜云;宗剑【作者单位】上海应用技术大学电气与电子工程学院,上海201418;上海应用技术大学电气与电子工程学院,上海201418【正文语种】中文【中图分类】TM3510 引言永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)作为一种高效的驱动系统,在电动汽车行业得到广泛应用。

钕铁硼等剩磁高、矫顽力大的稀土永磁材料的使用提高了PMSM的各项性能,促进了PMSM的发展[1]。

PMSM具有功率密度高、损耗小、效率高、转矩惯量大、振动噪声小等优点,受到国内外电动汽车界的高度重视,成为最具竞争力的电动车电驱动系统中的主流电机。

由于永磁体磁链恒定的限制,PMSM的弱磁调速比其他电机复杂,此外电动汽车用PMSM要求在恒转矩区具有输出恒定转矩的特点,能够平稳、快速地跟踪输入指令,并且要求对位置、转矩脉动等因素的控制精度高,保证电动汽车的启动和爬坡等功能;在恒功率区,要求具备很宽的速度范围,保证电动汽车的加速等功能[2]。

永磁同步电动机调速范围的优化及性能分析

永磁同步电动机调速范围的优化及性能分析

2021年第49卷第3期D设计分析esign and analysis 程献会等 永磁同步电动机调速范围的优化及性能分析17 收稿日期:2020-11-24基金项目:山西省自然基金(2013011035-1);中国博士后科学基金(2018M640250)永磁同步电动机调速范围的优化及性能分析程献会,王淑红(太原理工大学电气与动力工程学院,太原030024)摘 要:根据内嵌式调速永磁同步电动机的弱磁控制特点,以弱磁扩速倍数为优化目标,利用有限元仿真软件,分析了内嵌式调速永磁同步电动机矩形和V 形永磁体尺寸和位置对电机参数和调速范围的影响,通过优化永磁体的位置和尺寸扩大了电机弱磁调速范围㊂计算了优化后电机的参数,对比了优化前后电机调速的范围㊂为内嵌式调速永磁同步电动机的优化和参数计算提供一定的参考㊂关键词:内嵌式调速永磁同步电动机;永磁体尺寸;调速范围;有限元分析中图分类号:TM351 文献标志码:A 文章编号:1004-7018(2021)03-0017-04Optimization and Performance Analysis of Speed Control Range of Permanent Magnet Synchronous MotorCHENG Xian -hui ,WANG Shu -hong(School of Electrical and Power Engineering,Taiyuan University of Technology,Taiyuan 030024,China)Abstract :According to the embedded control weak magnetic control characteristics of permanent magnet synchronousmotor,with weak magnetic speed ratio as the optimization goal,and using finite element simulation software,embedded speed permanent magnet synchronous motor was analyzed rectangle and V the size and position of permanent magnet motor parameters and the influence of the speed range,through optimizing the position and size of the permanent magnet motor weak magnetic speed range had expanded.The parameters of the optimized motor were calculated,and the range of motor speed before and after optimization was compared.It provided a certain basis for the optimization and parameter calculationof the built-in speed-regulating permanent magnet synchronous motor.Key words :built-in speed-regulating permanent magnet synchronous motor,permanent magnet size,speed regulatingrange,finite element analysis0 引 言永磁同步电动机具有结构简单㊁运行可靠㊁效率高等显著优点,其应用范围较为广泛,在航空㊁国防㊁工业生产和日常生活中都可以看到它的身影[1-2]㊂已有许多专家学者对永磁同步电动机进行过优化设计,从而使电机性能更优越,使用更广泛㊂文献[3]采用田口法,以电机的效率和磁钢用量作为优化目标,对内嵌式永磁电动机进行优化设计;文献[4]同样采用田口法对铁耗和转矩脉动进行了优化㊂文献[5-6]对电动汽车用永磁同步电动机进行了电磁设计和弱磁调速分析;文献[7]中搭建了凸极式永磁同步电动机弱磁调速的控制系统;文献[8]从内置式永磁同步电动机的数学模型及弱磁控制方式入手,采用数值计算方法,分析了不同参数对电机弱磁调速的影响;文献[9]讨论了永磁体分段对永磁同步电动机参数和调速范围的影响;文献[10]设置了一种分段Halbach 结构的表贴式永磁同步电动机以降低涡流损耗等;文献[11]对V 形异步起动永磁同步电动机的齿槽转矩进行了优化;文献[12]采用多目标遗传算法对不同类型的电机结构进行优化㊂对于调速永磁同步电动机,在传统的控制方法下,电机受到电源电压和电流的限制,基速以上很难有较大的调速范围㊂为了扩大电机的调速范围,并确保电机的恒功率运行范围和电机性能,不仅要采用带有弱磁控制模块的控制系统,电机本体参数也应与控制系统有较好的配合,满足弱磁调速策略对电机参数的要求㊂永磁同步电动机的励磁由电机转子上的永磁体提供,永磁体在电机制作时已放置好,励磁无法根据实际需要进行调节,所以在电机设计时应考虑永磁体的尺寸和位置,为弱磁调速控制提供合理的永磁体磁链及交直轴电感参数㊂本文在电机设计过程中,以弱磁调速的倍数为电机永磁体尺寸的优化目标,使用有限元仿真软件,对两种不同形状的永磁体电机进行参数化仿真,确定电机永磁体的位置和尺寸对电机调速范围的影响㊂分析了矩形永磁体和V 形永磁体在不同尺寸和位置,对电机参数的影响,给出永磁体的尺寸,完 D设计分析esign and analysis 2021年第49卷第3期 程献会等 永磁同步电动机调速范围的优化及性能分析 18 成对电机调速范围的优化并分析电机性能㊂1 永磁同步电动机弱磁调速的基本原理1.1 永磁同步电动机的数学模型在三相电流对称㊁电机稳定运行且忽略定子绕组电阻㊁铁心饱和㊁铁耗的情况下,永磁同步电动机在d,q坐标轴下的数学模型如式(1)㊁式(2)㊂电压方程:u=u2d+u2q= ω(L q i q)2+(L d i d+ψf)2(1)电磁转矩方程:T em=32p[ψf i q+(L d-L q)i d i q](2)由电压方程可得出:ω=u(L q i q)2+(L d i d+ψf)2(3)式中:p为电机的极对数;L q,L d分别为电机定子的交直轴电感;i q,i d分为电机定子的交直轴电流;ψf 是电机的永磁体磁链;ω为电机角频率㊂由式(3)可以看出,当电机的端电压和电流达到极限值,且电流全部为直轴去磁电流时,电机可以达到理想最大转速:ωmax=u limψf-L d i lim(4) 调速永磁同步电动机的电压和电流的极限值取决于控制系统的逆变器,如果需要更高的转速范围,需要减小永磁体的磁链和增加直轴电感㊂但过小的永磁体磁链会造成电机转矩的下降,在电机优化时应综合考虑,不应为了单纯提高调速范围而牺牲太多的转矩㊂1.2 基于最大转矩电流比控制的弱磁调速性能分析凸极永磁同步电动机采用最大转矩电流比控制时,电机的电流矢量应满足:∂(T em/i s)∂i d=0∂(T em/i s)∂i q=üþýïïïï(5) 定子电流矢量轨迹如图1所示,当电机的端电图1 定子电流矢量轨迹压和电流达到极限值时,经过公式推导可得出此时的转折速度:ωb=u lim(L q i lim)2+ψ2f+(L d+L q)C2+8ψf L d C16(L d-L q)(6)式中:C=-ψf+ψ2f+8(L d-L q)2i2lim㊂ 定义电机的弱磁扩速倍数:k=ωmaxωb(7) 将弱磁率ξ=L d i sψf和凸极率ρ=L qL d代入到式(7)中,可得:k=ωmaxωb= 1+(ρξ)2+116(1-ρ)[(1+ρ)C2f+8C f]1-ξ(8)式中:C f=-1+1+8(1-ρ)2ξ2㊂根据式(8)可得如图2所示的凸极永磁同步电动机弱磁扩速倍数随凸极率和弱磁率的变化曲线,可以看出,电机的弱磁扩速倍数随凸极率和弱磁率的增加而增加㊂对永磁同步电动机的凸极率和弱磁率进行优化,便可以影响电机的扩速范围㊂图2 弱磁扩速倍数k与ξ,ρ的关系2 永磁同步电动机优化分别对原功率为2.2kW,永磁体为矩形和V形的两台内置式永磁同步电动机进行优化,以弱磁率和凸极率为优化目标,使其满足两倍以上的调速范围㊂2.1 建立电机的物理模型样机的基本参数如表1所示,电机的物理模型如图3㊁图4所示㊂在电机基本结构尺寸不变的情况下,对电机的永磁体尺寸㊁位置进行优化,永磁体尺寸主要有永磁体宽度b m,永磁体磁化方向长度h m㊂矩形永磁体的位置主要靠轴心距确定,就是永磁体下边缘距离电机中心的距离,即o2㊂轴心距越大,永磁体离气隙越近,离电机转轴的中心则越远㊂V形永磁体的位置还要依靠永磁体旋转角度来确 2021年第49卷第3期 D设计分析esign and analysis 程献会等 永磁同步电动机调速范围的优化及性能分析19 定,旋转角为θ㊂表1 电机的基本参数参数值参数值定子外径Φso /mm 155定子槽数36定子内径Φsi /mm 98极对数2转子内径Φri /mm 38额定转速n /(r㊃min -1)1500气隙长度δ/mm0.6轴向长度l /mm105图3 矩形永磁体电机模型图4 V 形永磁体电机模型2.2 电机的优化在初步确定电机额定电流的情况下,对永磁体的尺寸范围进行优化设计㊂利用Maxwell 软件,分别建立两种永磁同步电动机的2D 模型,并设置永磁体宽度㊁磁化方向长度和轴心距为参数化变量,求解不同情况下的凸极率和弱磁率,参数化范围如表2㊁表3所示㊂表2 矩形永磁体参数矩形参数范围步长宽度b m /mm30~502磁化方向长度h m /mm4~5.50.5轴心距o 2/mm33~351表3 V 形永磁体参数V 形参数范围步长单片宽度b m /mm 15~242磁化方向长度h m /mm4~70.5轴心距o 2/mm30~351 对在此范围内的所有不同组合进行参数化扫描仿真,并进行最优化求解,最优化算法采用默认的拟牛顿算法,它是求解非线性优化问题最有效的方法之一,收敛速度快㊂最优化求解的目标为ρ≥1.5,ξ≥0.5,由图2可以看出,理论上满足3倍的调速范围㊂经过Maxwell的最优化求解,可得出永磁体宽度㊁永磁体磁化方向长度和轴心距的初选结果㊂2.2.1 永磁体的尺寸确定经过分析和有限元软件的计算,可得到ρ和ξ随电机永磁体尺寸的参数变化规律㊂矩形永磁体和V 形永磁体的变化规律都是随着电机永磁体厚度和磁化方向的增加,ρ增加且ξ下降;永磁体宽度对两个参数的影响更明显,如图5㊁图6所示㊂(a)矩形永磁体电机(b)V 形永磁体电机图5 凸极率和弱磁率随永磁体宽度的变化(a)矩形永磁体电机(b)V 形永磁体电机图6 凸极率和弱磁率随永磁体磁化方向长度的变化两个优化参数变化趋势并不相同,在有限元优化求解给出的结果下,要想达到优化目标,并考虑制作工艺难度㊂最后确定矩形永磁体尺寸确定为宽42mm,厚4mm;V 形永磁体尺寸确定为单片永磁体宽20mm,厚4mm㊂2.2.2 永磁体的位置确定在永磁体尺寸确定的情况下,随着轴心距的增加,如图7所示,矩形永磁体电机的ρ会增加,ξ会下降;V 形永磁体电机的ρ和ξ呈相同变化规律,凸极率增加,弱磁率下降㊂(a)矩形永磁体电机(b)V 形永磁体电机图7 凸极率和弱磁率随轴心距的变化经过优化求解,矩形永磁体电机轴心距选择35mm;V 形永磁体电机轴心距选择33mm㊂V 形永磁体不仅要考虑轴心距,还要考虑永磁体旋转的角度θ对交直轴电感的影响㊂如图8所示,随着旋转角度的增加,凸极率上升,弱磁率下降,最终旋转角选择23°㊂图8 凸极率和弱磁率随旋转角度的变化3 电机参数分析与对比3.1 矩形永磁体电机在永磁体尺寸和位置确定之后,对电机模型进行有限元仿真,电机的直轴电感为0.074H,交轴电感为0.143H,磁链为0.608Wb,仿真得出凸极率为1.93,弱磁率为0.597,满足求解目标㊂ D设计分析esign and analysis 2021年第49卷第3期 程献会等 永磁同步电动机调速范围的优化及性能分析 20 对优化后的电机进行MATLAB仿真分析,采用基于最大转矩电流比的弱磁控制方式,控制框图如图9所示㊂在空载及负载条件下进行仿真分析,对比优化前后电机的调速范围,结果如表4㊁图10所示㊂可以看出,优化后空载条件下调速范围可以达到两倍以上,负载下调速范围也明显提高,达到了优化的目的㊂图9 弱磁控制框图表4 矩形永磁体电机最高转速对比转矩T/(N㊃m)优化前n f/(r㊃min-1)优化后n a/(r㊃min-1)仿真实验仿真020001900310010185018002400(a)空载下电机转速(b)负载下电机转速图10 矩形永磁体电机转速优化3.2 V形永磁体电机对确定永磁体位置和尺寸的电机模型进行有限元仿真,电机的直轴电感为0.073H,交轴电感为0.142H,磁链为0.635Wb,凸极率为1.96,弱磁率为0.56,满足求解要求㊂对优化后的V形永磁体电机,进行基于最大转矩电流比的弱磁调速控制下的空载及负载仿真,结果如表5所示㊂空载可以达到两倍左右的调速范围,负载下速度也有所提高,满足优化目标,如图11所示㊂表5 V形永磁体电机最高转速对比转矩T/(N㊃m)转速n/(r㊃min-1)优化前优化后022003000 1020002450(a)空载下电机转速(b)负载下电机转速图11 V形永磁体电机转速优化4 结 语本文借助有限元仿真软件,以内嵌式永磁同步电动机的调速范围为优化目标,讨论了矩形和V形永磁体不同尺寸和位置对电机参数的影响,结合对调速范围的影响,确定了电机永磁体的尺寸和位置,完成了电机的优化设计㊂以优化完成的电机尺寸,对其进行参数分析和对比,较之前的电机有了明显的转速范围的提升,达到了本次优化的目的㊂优化过程和结果对内嵌式永磁同步电动机的设计和参数提供了一定的参考㊂参考文献[1] 唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,2015.[2] 王秀和.永磁电机[M].北京:中国电力出版社,2011.[3] 贾金信,杨向宇,曹江华.基于田口法的内嵌式永磁电动机的优化设计[J].微电机,2013,46(6):1-4.[4] 王艾萌,温云.田口法在内置式永磁同步电机优化设计中的应用[J].华北电力大学学报(自然科学版),2016,43(3):39-44.[5] 陈晨.纯电动汽车用永磁同步电动机设计及弱磁扩速分析[D].天津:天津大学,2010.[6] 解志霖.电动大巴车用永磁电机设计[D].沈阳:沈阳工业大学,2017.[7] 郭殿林,陈康,包兵.电动汽车凸极式永磁同步电机弱磁调速的研究[J].煤矿机械,2016,37(7):58-60.[8] 皮秀,王善铭.弱磁调速的永磁同步电机参数的分析设计[J].中国科技论文在线,2010,5(8):585-591.[9] 孙慧芳,高琳,李计亮,等.弱磁调速用永磁同步电机设计分析[J].微电机,2010,43(12):16-20.[10] 高锋阳,齐晓东,李晓峰,等.部分分段Halbach永磁同步电机优化设计[J/OL].电工技术学报:1-14[2021-02-04].ht⁃tp:///10.19595/ki.1000-6753.tces.191554..[11] 李晓峰,高锋阳,齐晓东,等.对称V型异步起动永磁同步电机齿槽转矩优化[J/OL].电力系统及其自动化学报:1-9[2021-02-04]./10.19635/ki.csu-epsa.000497.[12] 刘晓宇,袁彬,戴太阳,等.基于自适应网格及响应面模型的永磁电机多目标优化[J].微特电机,2020,48(7):24-27,30.作者简介:程献会(1995 ),女,硕士研究生,研究方向为电机与电器㊂。

永磁同步电机弱磁扩速

永磁同步电机弱磁扩速

永磁同步电机弱磁扩速
永磁同步电机(PMSM)弱磁扩速是指在保证电压平衡的条件下,通过减小磁通强度,使电机在额定转速以上运行,从而拓宽调速范围。

这一控制方法源于他励直流电动机的调磁控制。

弱磁扩速原理如下:1.当电机的端电压达到最大值后,无法通过调压调速继续提高转速。

此时,只能通过降低电动机的励磁电流,从而降低励磁磁通,实现电机速度的提升。

2.永磁同步电机的励磁磁通由永磁体提供,磁通是恒定不变的。

要降低磁通强度,只能通过增大定子电流的去磁分量来削弱气隙磁通。

3.在dq轴坐标系下,通过给id一个负电流,来削弱永磁体磁链,使得反电动势下降,从而继续提高转速。

4.电压极限环和电流极限环的概念:
电压极限环:电机稳定运行时,电压必须处于一个椭圆环内部。

超过这个环,电机将不稳定。

电流极限环:电机允许运行的最大电流或逆变器所允许的最大运行电流定额。

实现永磁同步电机弱磁扩速的方法:
1.调整逆变器电压和电流,使电机运行在电压极限环和电流极限环之间。

2.通过调节id和iq电流分量,实现在保证电压平衡的条件下提高电机转速。

增大id电流分量,从而实现弱磁扩速。

3.采用弱磁控制算法,如模糊控制、神经网络控制、预测控制等,优化电机控制性能。

总之,永磁同步电机弱磁扩速是通过调整磁通强度,在满足电压和电流限制条件下,提高电机转速,从而拓宽调速范围。

这一技术在新能源汽车、混合动力电动汽车等领域具有广泛应用价值。

车用永磁同步电机的各种弱磁策略

车用永磁同步电机的各种弱磁策略
4
永磁同步电机的控制原理
在D-Q坐标系中,IPM电机运行在第二 (电动状态)和第三象限(发电状态)。
图中的红色轨迹即为MTPA(最大转矩 电流比)电流轨迹。
图中的黑色线为等转矩曲线。 图中的绿色圆圈为电流极限圆。
IPM电机的转矩功率曲线包括两个区域, 一个是恒转矩区,一个是恒功率区。
两个运行区域的拐点转速Wo称为基速 (base speed, corner speed, rated speed)
一般将F=Wmax/Wo定义电机的弱磁比, 用于评价电机的弱磁深度。
5
永磁同步电机的控制原理
绿色电流圆代表电机/控制器系统的最大运行交流电流 蓝色电压椭圆代表在固定直流母线电压但不同转速下的电压限制运行区间(IPM为椭
圆,SPM为圆形) 受限于电压条件和电流条件,电机在某个转速下,仅能运行在此转速下的电压椭圆
结果在MTPV曲线的左侧或右侧来决定单向PI产生的∆ 随着输
入偏差是增加还是减小,效果见右下图
Source: Lei Zhu 2010, < A New Deep Field-Weakening Strategy of IPM Machines Based on Single Current Regulator and Voltage Angle Control >
此基础上有各种变形,以及优化。 磁链闭环弱磁方法,在国内多个第一梯队的供应商中有使用,值得关注。 查表和电压闭环一般结合起来使用,弱磁动态性能和鲁棒性会更好。
16
3
永磁同步电机的控制原理
永磁同步电机的控制使用矢量控制。电流控制基于转子位置。 控制策略为闭环控制,反馈量为三相电流和电机转子位置。 电压调制方式一般采用SVPWM(空间矢量脉冲宽度调制)。 函数fd和fq是从转矩转化为Id和Iq指令的函数,遵照电机本身的MTPA(最大转矩电

一种提高永磁牵引电机弱磁扩速能力的新结构

一种提高永磁牵引电机弱磁扩速能力的新结构

一种提高永磁牵引电机弱磁扩速能力的新结构陈丽香;张兆宇;唐任远【摘要】弱磁扩速能力差是困扰永磁牵引电机向高速度发展的主要原因。

本文提出了一种内置分段式的转子磁路结构形式有利于改善永磁牵引电机的弱磁扩速能力。

利用Ansoft电磁场分析软件分别分析了普通转子磁路结构形式和内置分段式转子磁路结构形式对直轴电枢反应电抗的影响,从计算结果来看分段式磁路结构的直轴电感比传统式结构提高了60%,当电流同为13A时,所能达到的最高转速提高了50%。

样机试验结果表明,内置分段式转子磁路结构形式可有效改善永磁牵引电机的弱磁扩速能力,且其他基本性能指标满足要求。

%Poor flux-weakening level of permanent magnet traction motor is the main reason to limit its development in high-speed field.In this paper,interior segmented rotor magnetic circuit structure is proposed to improve its flux-weakening level.By Ansoft software,the effects of ordinary rotor magnetic circuit structure and segmented rotor magnetic circuit structure on the direct-axis armature reaction inductance are analyzed.D-axis inductance of segmented rotor circuit structure is increasing by 60% than that of traditional rotor structure,and the highest speed is increasing by 50% when value of current is 13A.The conclusion that the motor with interior segmented rotor structure can effectively improve flux-weakening level of permanent magnet traction motor and still meet basic performance requirements is verified by prototype test.【期刊名称】《电工技术学报》【年(卷),期】2012(027)003【总页数】5页(P100-104)【关键词】弱磁扩速;分段结构;气隙磁通密度;直轴电感【作者】陈丽香;张兆宇;唐任远【作者单位】沈阳工业大学国家稀土永磁电机工程技术研究中心,沈阳110870;沈阳工业大学国家稀土永磁电机工程技术研究中心,沈阳110870;沈阳工业大学国家稀土永磁电机工程技术研究中心,沈阳110870【正文语种】中文【中图分类】TM3511 引言电机“弱磁”扩速时,转速计算公式为[1]式中 n——电机转速;p——电机极对数;ulim——极限电压;Lq——交轴同步电感;Ld——直轴同步电感;iq——交轴电流;id——直轴电流;ψf——空载永磁磁链。

永磁同步电机的弱磁控制方法

永磁同步电机的弱磁控制方法

永磁同步电机的弱磁控制方法司文;冯友兵;陈坤华;叶艳根【摘要】永磁同步电机(PMSM)是最流行的电机,例如作为高速电动列车的牵引电机,源于其高转矩电流比的特性和能够通过弱磁控制扩大恒功率区域的能力,矢量控制理论的发明是交流调速领域中的一个重大突破,文中将详细讨论永磁同步电动机的矢量控制,在推导其精确数学模型的基础上分析了矢量控制理论用于永磁同步电动机控制的几种电路控制策略,包括了id=0控制,最大转矩/电流控制,最大输出功率控制,最小磁链转矩比控制,最大电压转矩比等.【期刊名称】《电子设计工程》【年(卷),期】2014(022)009【总页数】4页(P81-84)【关键词】内置式;永磁同步电机;弱磁;调速;控制【作者】司文;冯友兵;陈坤华;叶艳根【作者单位】江苏科技大学电子信息学院,江苏镇江212003;江苏科技大学电子信息学院,江苏镇江212003;江苏大学电气信息工程学院,江苏镇江212013;铜陵新亚星焦化有限公司安徽铜陵244000【正文语种】中文【中图分类】TN-9随着越来越高的消费者期望对于先进的电动交通工具(EV)的表现,自动化生产商正在意识到设计下一代的电力推动系统将会很大程度上依赖于高性能表现的电机尤其是在电力交通工具的应用上。

由于采用高能量的永磁体作为激励机制,永磁同步电机(PMSM)设计上采用高能量密度,高速度和高运行效率,这使得它成为主导自动化生产者首要的选择。

PSMS根据永磁体在转子中的位置和形状分类。

3种普通的组群为:表面式,插入式,或者内嵌式的PMSM。

表面安装式和插入式PMSM,他门的永磁体被暴露在空气隙里[1]。

内嵌式PMSM(IPMSM)把它的磁体埋在转子内部,由于其q轴的电感比d轴的电感高很多,具有更高的弱磁能力。

由于永磁同步电动机自身具有比感应电动机更为优越的性能,而且其dq变换算法相对简单、电机转子磁极的位置易于检测,因此交流调速的矢量控制理论在永磁同步电动机的控制领域也得到了同样的重视,有关永磁同步电动机矢量控制研究的成果陆续发表[2-3],对矢量控制的不同电流控制策略的研究成为了永磁同步电动机矢量控制研究的重点部分。

永磁同步直线电机弱磁调速时的设计

永磁同步直线电机弱磁调速时的设计

永磁同步直线电机弱磁调速时的设计
摘要:从凸极率角度出发,对内部磁极结构电机提出了新的设计方法。

为使电机的特性具有可比性,假设电机均运行于相同的基值点,并采取相同的控制策略。

着重研究了凸极率(l[sub]d[/sub]/l[sub]q[/sub])对电机最大可能速度、逆变器功率(vA)和电流控制特性的影响。

所得结论对电机及其驱动系统的选择和设计有积极的参考指导作用。

关键词:内部磁极;永磁同步直线电机;凸极率;弱磁
永磁同步直线电机可以用弱磁技术拓宽调速范围.根据永磁体的安装位置不同永磁电机分为表面磁极和内部磁极两类电机,表面磁极的凸极率l[sub]d[/sub]/l[sub]q[/sub]=1,内部磁极的凸极率l[sub]d[/sub]/l[sub]q[/sub]<1
1 永磁同步直线电机稳定运行状态
为了简化分析,对永磁同步直线电机作如下假设:a.忽略电枢电阻;b.铁磁体的磁导率趋于无穷,不考虑磁场的饱和效应;c.忽略铁耗;d.不考虑电枢电流对永磁体的去磁作用,永磁体有适当的矫顽力;e忽略摩擦力.
为便于比较,所有数据都采用标么值形式,标么值基值定义如下:电压基值v[sub]b[/sub]为逆变器最大电压;推力基值f[sub]b[/sub]为当电机电压等于v[sub]b[/sub]并且电流控制角能够产生单位最大推力时的电机推力;角速度基值w[sub]b[/sub]为推力等于f[sub]b[/sub]时的电角速度(假设有相同的负载标么值),其他量的标么值基值由下列式子计算得到:
[b][align=center]详细内容请点击:
永磁同步直线电机弱磁调速时的设计[/align][/b]。

永磁同步电机弱磁控制策略研究

永磁同步电机弱磁控制策略研究

永磁同步电机弱磁控制策略研究摘要在飞速发展的生产力水平下,各类科学技术在不断发展更新。

在实体制造业上,对于永磁同步电机的需求越来越广泛,继而推动着对它的深入研究,其中控制策略以及方法的研究仍是重中之重,弱磁控制便是其中的一个方面。

本文即是对弱磁控制策略加以理论研究。

关键词永磁同步电机;反馈;弱磁控制引言20世纪中后期,钕铁硼等其他性能更高的永磁材料问世,以及电力半导体器件的更新,微处理器技术的优化提升,各国学者及技术人员对永磁同步电机的研究热情愈发强烈,使之应用领域愈发的宽广。

然而,当电机运行时,其转速在逐步上升的同时,永磁同步电机本身的反电动势也会随着转速的增加而增加,继而会突破逆变器的最大限额值,这时候,如果转速进一步加大,永磁同步电机里的定子电流则会出现反方向流动,这种情况是不被允许的。

因此则需要采用弱磁控制算法,通过减弱电机的磁场,来达到永磁同步电机的正常运作。

1 弱磁控制研究现状九十年代中后期,随着弱磁控制理论技术的愈发完善,在永磁同步电机的应用发展研究上,人们研究的方向主要集中在两个方面:一是应用现代科技构造出全新的控制理念以及全新控制算法策略,二是对已存在的控制算法理念进行技术改进[1]。

1.1 本身结构设计在永磁同步电机内部,对于是永磁体的电机转子,其结构多样化,复杂化。

产生的磁路结构相对比较特殊,这大大削弱了弱磁控制的性能。

因此,学者们便以永磁同步电机的内的磁路为研究出发点,来系统改进优化电机的本体设计。

如在永磁同步电机的定子的外壳以及铁芯上安装一个特殊的循环水道,这样的目的是提高电机的散热速率,进提高永磁同步电机的弱磁调速范围。

1.2 电机控制策略方面主要从两个方向进行深入研究:一个是经典弱磁控制策略,另一个则是智能控制策略。

其中经典的控制策略由以下几个主要策略构成,分别是弱磁控制策略(混合型),前馈式控制策略(开环),以及反馈式控制策略(闭环)。

智能控制策略则包括神经网络控制策略、滑模控制策略、模糊控制策略以及遗传控制策略等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

永磁同步电机弱磁调速控制文献阅读报告专业:电气工程及其自动化学生姓名:学生学号:学生班号:本篇论文是从阅读文献报告的角度来解读论文的。

稀土永磁同步电机早在上世纪七十年代就开始出现,现在已被广泛使用,其具有重量轻、体积小、效率高、弱磁扩速能力强等一系列优点,成为航空、航天、武器装备、电动汽车等领域重要发展方向。

由于永磁同步电机磁场结构复杂,使得计算准确度差,磁极形状与尺寸的优化,调速性能等都是永磁电机设计的难点。

这些年来,如何提高永磁同步电机恒功率调速比的问题是研究的重点,永磁电机及其驱动器的设计成了电机领域研究的热点课题。

本文主要研究内容是对内置式永磁同步电机设计及弱磁性能的研究。

分析永磁同步电机(PMSM)数学模型的基础上,通过阐述弱磁调速的控制原理,提出了一种基于电流调节的PMSM定子磁链弱磁控制算法,有效地拓宽了恒功率调速比。

并在Matlab/Simulink环境下,构建了永磁同步电机弱磁控制系统的速度和电流双闭环仿真模型。

仿真结果证明了该控制系统模型的有效性,恒功率调速比达到了4: 1,为永磁同步电机弱磁调速控制系统的设计和调试提供了理论基础,有一定的实际工程价值。

关键词:内置式;永磁电机;弱磁控制;电流跟踪算法;仿真建模目录永磁同步电机弱磁调速控制文献阅读报告 (1)一、研究的问题 (4)二、研究方法 (5)2.1 永磁电机的数学模型 (5)2.2弱磁调速原理 (6)2.3 基于Matlab的PMSM弱磁控制系统仿真模型建立 (7)2.4 仿真结果 (11)三、解决效果 (12)3.1 结论 (12)3.2感悟与体会 (12)本次阅读文献报告的主要课题是研究对内置式永磁同步电机弱磁调速控制的研究,报告内容主要来自等,在写作过程中也参考了一些关于永磁同步电机弱磁调速控制方法设计以及弱磁性能研究等方面的资料现在从关注的问题、所用的研究方法及关注问题解决的效果三个方面来阐述报告内容。

一、研究的问题近年来,随着稀土永磁材料和电子功率器件的发展,永磁同步电机获得了广泛研究。

永磁同步电机较异步电机具有功率密度大、转子发热量小、结构紧凑等优点,用永磁同步电机做主轴传动正在成为一个新的研究方向。

普通永磁同步电机为了实现力矩随电流线性可控,一般将励磁电流设为零,这种控制策略将导致电机的最高转速不能超过额定转速,转矩输出能力也不能满足主轴电机的要求。

为了充分挖掘永磁同步电机的潜能,总是需要并希望在额定功率下输出的转速尽可能高些,然而,在基速(注意:在直流母线电压达到最大值,也就是电机输入电压最大且在额定转矩的情况下,对应的转速被称为基速)以上时,如果磁通保持不变,电机的反电动势必将大于电机的最大输入电压,造成电机绕组电流的反向流动,这在电机实际运行时是不允许的,而弱磁时,磁通反比于定子频率,使感应电动势保持常值而不随转速上升而增加,所以采用弱磁控制方可解决此类问题,且永磁调速系统具有体积小、节能、控制性能好,系统运行噪低、平滑度和舒适性好等优点。

所以,此背景下,研究永磁同步电动机的弱磁调速系统具有重大意义。

二、研究方法2.1 永磁电机的数学模型以二相导通星形三相状态为例,分析PMSM的数学模型及转矩特性。

为建立永磁同步电动机的转子轴(dq轴)数学模型,作如下假定:(1)三相绕组完全对称,气隙磁场为正弦分布,定子电流、转子磁场分布对称;(2)忽略齿槽、换相过程和电枢反应等影响;(3)电枢绕组在定子内表面均匀连续分布;(4)磁路不饱和,不计涡流和磁滞损耗。

则三相绕组的电压平衡方程式可表示为式中,,,a b c u u u 为定子绕组的相电压;R s 为定子每相绕组电阻;,,a b ci i i 为定子绕组相电流; s L 为定子每相绕组的自感;M 为定子每相绕组的互感;p 为微分算子p=d/dt ;f 为转子永磁体磁链;θ为转子位置角,即转子q 轴与a 相轴线的夹角。

因为三相绕组为星型连接,有 ++=0a b c i i i ,则式(1)可简化为:式(2)为永磁同步电机在abc 静止坐标系下电压方程。

利用坐标变换,把abc 静止坐标系变换到dq 转子坐标系,得到相应的动态电压方程:式中,r ω为转子电角速度;d q L L 、为直、交轴同步电感。

在d 、q 坐标系下电机的电磁转矩为:式中,n P 表示电机极对数。

2.2弱磁调速原理永磁同步电机中,感应电势随着转速的增加而增加,当电机的端电压达到控制器直流侧电压时, PWM 控制器将失去追踪电流的能力。

因此定子端电压Us 和相电流Is ,受到逆变器输出电压和输出电流极限(Usmax 和Ismax )的限制。

由此可得电流极限圆电压极限椭圆又因为0f d d q q E x L x L ωψωω===,,,所以电压极限椭圆方程可以改写为永磁同步电动机的运行范围是受以满足电流极限圆和电压极限椭圆为条件限制的,即电机的电流矢量 Is (其分量为 Id 与 Iq )应处于两曲线共同包围的面积内,如图 1 中阴影部分所示。

由图 1可以看出,电机转速 ω 升高, Id 分量趋于增大,相应的 Iq 分量必须减小,因此,电机的电磁转矩也随转速升高而下降,显示出恒功率的特性。

图1 PMSM电压电流限制曲线2.3 基于Matlab的PMSM弱磁控制系统仿真模型建立在 Matlab6. 5的Simulink环境,利用SimPower2 System Toolbox2. 3丰富的模块库,在分析PMSM数学模型的基础上提出了建立PMSM弱磁控制控制系统仿真模型的方法,弱磁控制系统总体设计框图见图2。

PMSM 弱磁控制建模仿真系统采用双闭环控制方案:速度环为控制外环,它使电机的实际转速与给定的转速值保持一致,实现电机的加速、减速和匀速运行,并且及时消除负载转矩扰动等因素对电机转速的影响。

电流环为控制内环,它的作用是控制逆变器在定子绕组上产生准确的电流。

根据模块化建模的思想,将图2 中的控制系统分割为各个功能独立的子模块,其中主要包括:PMSM 本体模块、矢量控制模块、电流滞环控制模块、速度控制模块、弱磁控制模块等,通过这些功能模块的有机整合,就可在 Matlab/Simulink中搭建出PMSM 控制系统的仿真模型,并实现双闭环的控制算法。

图2 PMSM弱磁控制系统总体设计框图2.3.1 PMSM 本体模块在整个控制系统的仿真模型,PMSM 本体模块是最重要的部分。

Matlab/ Simulink 的工具箱提供了按交直轴磁链理论建立的定子绕组按 Y 型连接的 PMSM 模块。

PMSM 模块共有四个输入端,其中前三个输入端,分别为 A 相、 B 相、 C 相输入端, 第四个输入端为转矩输入端 T 1 (N·m)。

当 T 1 >0 时,为电动机模式;当 T 1 < 0 时为发电机模式。

PMSM 的主要设置参数包括:定子电阻R (Ω);交直轴定子电感 d q L L 、(H)转子磁场磁Ф(W b );转动惯量 J (kg·m2) ; 粘 滞 摩 擦 系 数B (N·m·s);电机的极对数 p 等。

2.3.2 矢量控制模块dq 向abc 转换模块主要是根据转子的位置即图2中的θ,按照dq 变换的反变换公式产生三路基准信号,dq 变换的反变换公式如下:式(8)中包含了零序分量,在对称三相条件下,没有零序分量dq 向abc 转换结构框图如图3所示。

dq 向abc 转换模块输出三路基准信号,该曲线的横坐标按转子位置标注, 纵坐标按电流标注。

三根曲线分别代表对应与转子的某一位置的三个绕组各自驱动电流瞬时值,通过矢量合成可知此刻的旋转磁场矢量的角度。

图3 dq 到abc 转换结构框图2.3.3 电流滞环控制模块三相电流源型逆变器模块是按照矢量控制理论,利用滞环电流控制方法,实现电流逆变控制。

输入为三相参考电流和三相实际电流,输出为变器电压信号,模块结构框图如图4所示。

当实际电流is 经过惯性环节1)S T +1/(低于参考电流sr i 且偏差大于滞环比较器的环宽时,电机对应相正向导通,负向关断;当实际电流si 经过惯性环节1)S T +1/(超过参考电流sr i 且偏差大于滞比较器的环宽时,对应相正向关断,负向导通选择适当的滞环环宽,即可以实际电流不断跟踪参考电流的波形,实现电流闭环控制。

图4 三相电流源型逆变器模块结构框图2.3.4 速度控制模块速度控制模块的结构较为简单,如图5所示,参考转速和实际转速的差值为单输入项,三相考相电流的幅值qref i 为单输出项。

其中, Ki 为PI 控制器中P(比例)的参数,1/K T 为PI 控制器中I(积分的参数,饱和限幅模块将输出的三相参考相电流的幅值限定在要求范围内。

图5 速度控制模块2.3.5 弱磁控制模块电机在恒转矩区运行时, 直轴电流q i *的计算公式如下电动机转速超过基速时,恒功率运行,d i * 切换为下面公式计算式中,d L 为永磁同步电机直轴电感;q L 为永磁同步电机交轴电感;R s 为定子绕组的电阻; ω为感应电动势的电角度。

2.4 仿真结果在前面理论分析的前提下,本文基于Matlab/Simulink 建立PMSM 弱磁控制系统的仿真模型,并对该模型进行了PMSM 双闭环控制系统的仿真。

PMSM 电机仿真参数设置:相绕组电阻R 为2.87 Ω,极限电压值max s U 为240 V ,d 轴电感分量d L 为388.5 mH ,极限电流值max s I 为1.6 A ,q 轴电感分量q L 为475.5 mH ,起始机械转矩i T 为5 N•m,永磁磁链m ψ为447, 机械转矩变化时刻t 为0.015 s ,极对数p 为4,最终机械转矩Tend 为3 N •m。

通过仿真试验表明,转速达到基本转速以后,若不加该电流弱磁控制算法,继续升速的空间很小。

采取了本文提出的电流调节算法以后,永磁同步电机的弱磁调速区域明显扩大,恒功率运行区域调速比达到了4: 1;最高转速达到2200 rad/s,转速为1600 rad/s时的仿真波形如图6到图8所示。

图6 转矩响应曲线图7 转速响应曲线图8 三相电流仿真波形由仿真波形可以看出:在转速为1600 rad/s时,系统转矩响应快速且平稳,三相电流波形较为理想,转速响应快且稳态运行时无静差,具有较好的静态和动态特性。

三、解决效果3.1 结论本文在分析 PMSM 数学模型的基础上,提出了一种基于电流调节的 PMSM 定子磁链弱磁控制算法。

仿真实验结果表明,本文提出的方拓宽了电动机弱磁调速范围,有效地提高了恒功率运行区域的调速比,转速响应迅速,转矩变平稳,系统具有良好的动态和稳态性能,达到预期的设计指标要求。

相关文档
最新文档