电缆故障测距方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电缆故障测距方法
摘要:随着电力系统的发展,电缆得到了广泛的使用,并且因其自身的特点,具备较高的安全性。
但是因为电力电缆多埋于地下,给人们确定故障位置带来了不便。
本文对电力电缆故障原因、电缆故障测距方法、故障定点、故障测距方法等进行了分析。
关键词:电缆故障检测;测距;小波分析
引言
电力工业是国民经济的支柱产业,同时又是其它产业能够稳定发展的保证[1]。
因此,保证电力系统运行的安全性、可靠性是国民经济能否稳定快速发展的关键。
输电线路担负着传送电能的重要任务,是电力系统的经济命脉,其故障直接威胁到电力系统的安全运行。
一、引起电力电缆故障的原因
电力电缆是电气工程的重要组成部分,用来传输和分配电能,具有占地少、供电可靠、施工便利、绝缘性能好、能提供容性功率提高功率因素、运行及维护简单等特点。
但电力电缆存在绝缘老化变质、电缆接头过热、保护层机械损伤、谐波及过电压造成击穿引起电缆故障、中间接头及终端头设计、电缆头材料选择和制作工艺影响等问题。
同时电缆事故往往造成一定的损失。
了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。
1、绝缘老化变质;电力电缆长期处于电、热、化学及机械作用环境中,从而使绝缘介质发生物理及化学变化,导致介质损耗加大,绝缘强度下降。
2、电缆过热;造成电缆过热的主要原因是电缆内部气隙游离造成局部受热,加速绝缘老化、碳化,电缆过载或表面散热不佳导致绝缘加速老化。
3、过电压造成击穿;雷击过电压和谐振过电压使电缆绝缘所承受的耐受电压超过允许值而造成击穿。
4、中间接头、终端头材料选择和制作工艺问题;设计电缆电压等级低于运行电压,电缆处于长期过电压运行状态,加速绝缘老化,缩短电缆使用寿命。
电缆头材料选择不当,由于电缆绝缘材料和电缆头材料材质不同,热胀冷缩系数不同,长期运行电缆和电缆头之间产生间隙,发生树状爬电,引发电缆放电击穿。
电缆头制作工艺不规范,剥离半导体时损伤电缆绝缘,半导体剥离长度不够,绝缘表面存在微粒、灰尘等杂质,造成绝缘强度下降,使用寿命缩短。
5、绝缘受潮、腐蚀、外力损伤;中间接头或电缆头因做头密封不严造成绝缘受潮,穿墙套管外侧防雨棚设计不合理,造成电缆头长期淋雨受潮,引起电缆头击穿放电。
二、电力电缆故障类型
根据故障电阻与击穿间隙情况,电缆故障可分为低阻、高阻、开路与闪络性故障。
1、低电阻接地或短路故障:电缆线路一相导体对地或数相导体对地或数相导体之间的绝缘电阻低于正常阻值较多,电阻值低于10Zc(Zc为电缆线路波阻抗),而导体连续性良好。
常见类型有单相接地、两相短路、两相短路接地、三相短路接地等。
2、高电阻接地或短路故障:与低电阻接地或短路故障相似,但区别在于接地或短路的电阻大于10Zc而芯线连接良好。
常见类型有单相接地、两相短路、两相短路接地、三相短路接地等。
3、开路故障:电缆各相导体的绝缘电阻符合规定,但导体的连续性试验证明有一相或数相导体不连续,或虽未断开但工作电压不能传输到终端,或虽然终端有电压但负载能力较差。
常见类型有单相断线、两相断线、三相断线。
4、闪络故障:低电压时电缆绝缘良好,当电压升高到一定值或在某一较高电压持续一定时间后,绝缘发生瞬时击穿现象。
常见类型有单相剐络、两相闪络、三相闪络。
三、电缆故障测距方法分析
1、电桥法
将被测电缆终端故障相与非故障相短接,电桥两臂分别接故障相和非故障相,通过调节电阻使得电桥达到平衡,通过公式计算出故障点的距离。
目前现场中电桥法用的越来越少,但是对于一些没有明显的低压脉冲反射,又不容易用高压击穿的特殊故障,使用电桥法往往可以解决问题。
电桥法的优点是简单、方便、精确度高,但其主要缺点是不适用于高阻抗与闪络性故障以及相间短路性故障。
2、脉冲电压法
又称闪测法,是20世纪70年代发展起来的用于测量高阻与闪络性故障的方法。
该方法首先将电缆故障点在直流高压(直闪法)或冲击高压(冲闪法)信号下击穿,然后记录下放电脉冲在测量点与故障点往返一次所需的时间,再根据电波在电缆中的传播速度,就可算出故障点的距离。
该方法测试速度快,波形清晰易判。
但其接线复杂,分压过大时对人和仪器有危险。
3、低压脉冲反射法
测试时向电力电缆的故障相注入低压脉冲。
该脉冲沿电缆传播到阻抗不匹配
点即故障点时,脉冲产生反射回送到测试点由仪器记录下来,根据发射脉冲与反射脉冲的往返时间差和脉冲在电缆中传播的波速度,便可计算出故障点离测试点的距离。
该方法的优点是简单直观,不需要知道电缆的准确长度等原始资料;缺点是不能适用于高阻抗与闪络性故障,需要知道电缆的走向。
4、二次脉冲法
20世纪90年代,国外发明二次脉冲法。
它先用高压脉冲将故障点击穿,在故障点起弧后熄弧前,由测试仪器向电缆耦合注入一低压脉冲。
此脉冲在故障点闪络处(电弧的电阻值很低)发生短路反射,并记忆在仪器中。
电弧熄灭后,测量仪器复发一测量脉冲通过故障处直达电缆末端并发生开路反射,比较两次低压脉冲波形可非常容易地判断故障点(击穿点)位置。
二次脉冲法使得电缆高阻故障的测试变得十分简单,是目前电力电缆故障离线测试最先进的基础测试方法。
四、故障定点
1、声测定点法
声测定点法是电缆故障的主要定点方法,主要用于测量高阻与闪络性故障,测量时使用高压设备使故障点击穿放电,故障间隙放电时产生的机械振动,传到地面,便听到“啪、啪”的声音,利用这种现象可以十分准确地对电缆故障进行定点,缺点是受外界干扰较大。
2、声磁法
在向电缆施加冲击高压信号使故障点放电时,会在电缆的外皮与大地形成的回路中感应出环流来,这一环流在电缆周围产生脉冲磁场,在监听到声音信号的同时,接受到脉冲磁场信号,即可判断该声音是由故障点放电产生的,故障点就在附近。
3、音频感应法
探测时,用1kHz的音频信号发生器向待测电缆通音频电流,发出电磁波;然后在地面上用探头沿被测电缆路径接收电磁场信号,并将之送入放大器进行放大,将放大后的信号送人耳机或指示仪表,根据耳机中声响的强弱或指示仪表的指示值大小而定出故障点的位置,当探头从故障点前移l~2m时,音频信号中断,则音频信号最强处为故障点。
五、故障测距方法
近年来,还有许多新颖的测距方法被提出,如优化方法、卡尔曼滤波技术、模式识别技术、概率和统计决策、模糊理论和光纤测距等方法,目前多处于研究阶段,电缆的故障是很复杂的,目前还没有一种万能的仪器可以检测所有的故障。
按其主要功能可分为以下几类:
1、简单便携式检测设备
这类设备结构简单、功能单一,是较早期的产品。
国外的T510便携式电缆故障遥测仪就属于这类产品,它采用脉冲反射法,由电池驱动,正常使用3个月,最大工作距离为3km,精度为1.6%,我国科汇公司生产的T-COl也属于这类产品。
2、有一定附加功能的检测设备
这类产品可以对检测资料进行简单的处理,并有一定的附加功能。
英国百考泰思特公司的通信故障遥测仪器属于这类设备,它的检测范围为20km,精度为1%,检测的结果也可直接打印,也可输入PC机存储、分析,是目前较先进的仪器。
国内的同类产品有武汉的桑迪电子仪器公司WY系列的WY51313电缆故障路径探测仪,它利用脉冲反射法的基本原理,可自动定位故障点,并有发讯功能。
它的检测距离为3km,分辨率为1%。
此外国内淄博通信电器有限公司的TC98通信电缆障碍测试仪、TCO2市话电缆线路障碍测试仪;成都华泰仪器有限公司的DLC、DXC和GTA-2等测试仪都属于此类检测设备。
3、功能强劲的检测系统
这一类设备大多由前台检测、数据传输、后台控制处理等部分构成。
具有状态资料的采集、传输、处理的功能。
意大利的尼考特拉(NlCOTRA)电缆监控系统属于这类设备,它是近几年才引进我国的电信市话维护的高技术设备,主要用于充气电缆的检测。
系统有检测控制中心、数据采集器单元DSA-800、传感器系统、全自动电子干燥系统、电子流量配气单元五部分组成。
它通过数据传输、定时检测、自动检测、实时操作等基本操作,可完成电缆气压值的测定、估测电缆漏气点等检测功能,并警告维护人员,而且在建立的系统数据库中可存有线路的技术资料和维修档案,极大地方便了维护人员和工程技术人员对线路的维护和改造。
这套系统改变了传统的充气维护模式,有效地提高了线路设备的维护质量和管理水平。
结束语
随着电缆电网的发展,电缆的运用越来越广泛,在电缆数量增加、工作时间延长的环境下,其故障发生频率也逐渐升高,而由于电缆路线隐蔽性强、检测设备和技术有限等原因的影响,使得电缆故障检测难度提升,然而电力电缆一旦发生故障将直接影响着整个电力系统的安全运行,因此我们需要准确、迅速、经济地查找出电缆故障。
参考文献
[1]李明华,闫春江,严璋.高压电缆故障测距及定位方法[J].高压电器,2012年
[2]陈韶勇,李越.电力电缆常见故障检测方法[J].科技创新导报,2012年
[3]魏书宁,龚仁喜,刘珺等.电力电缆故障检测的方法与分析[J].计算技术与自动化,2013年
[4] 王耀亚.电力电缆故障测距方法研究[J].无线互联科技,2011年。