人教版七年级数学下册平行线的性质平行线的性质教案

合集下载

(新)人教版七年级数学下册《平行线的性质》教学设计

(新)人教版七年级数学下册《平行线的性质》教学设计

5.3.1平行线的性质
教学目标:1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。

2.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.
重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.
难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用.
创设情境,动手操作:
a
b
探究新知:
自学课本18页探究部分,完成以下任务:
1.测量各角,探究当两直线平行时,同位角、内错角、同旁内角的
数量关系。

2.试着用自己的语言总结归纳你发现的性质。

3.尝试用性质1证明其他结论。

4.试着找出平行线的性质和平行线的判定区别
展示交流:
实际应用:
例1 小明不小心把家里的梯形玻璃块打碎了,还剩下梯形上底的一部分(如图)。

要订造一块新的玻璃,已经量得∠A=115°,∠D=100°,你想一想,梯形另外两个角各是多少度?
拓展提升: 如图,直线AC ∥BD ,直线AC
、BD 及AB 把平面分成(1)、(2)、
(3)、(4)、(5)、(6)六个部分,点P 是其中的一个动点,连接PA 、PB ,
观察∠APB 、∠PAC 、∠PBD 三个角有什么数量关系?
总结归纳:
我掌握了 我想提醒大家注意 我在
合作
学习

这节课我 2018-4-10 最大
的感
表现悟
还有疑惑是作业下一
步计
划。

(新人教版)数学七年级下册:5.3.1《平行线的性质(第2课时)》教学设计(两套)

(新人教版)数学七年级下册:5.3.1《平行线的性质(第2课时)》教学设计(两套)

5.3.2平行线的性质(第2课时)平行线的性质(二)教学目标1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.3.能够综合运用平行线性质和判定解题. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用. 教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:如图,BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么?cb二、进行新课1.例1 已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗?让学生写出说理过程,师生共同评价三种不同的说理. 2.实践与探究(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F通过上述实践,试猜想∠B 、∠F 、∠C 之间的关系,写出这种关系,试加以说明.E D C B AFECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导:①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.FEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行).所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式. 师生共同分析上述四个命题的题设和结论,重点分析第②、③语句. 第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设, “结果仍是等式”是结论。

新人教版初中七年级数学下册《平行线》教案

新人教版初中七年级数学下册《平行线》教案

平行线教学目标1.经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念.2.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论.3.会用符号语方表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线.重点:探索和掌握平行公理及其推论.难点:对平行线本质属性的理解,用几何语言描述图形的性质.教学过程一、创设问题情境1.复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?学生回答后,教师把教具中木条b与c重合在一起,转动木条a确认学生的回答.教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗?2.教师演示教具.顺时针转动木条b两圈,让学生思考:把a、b想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?3.教师组织学生交流并形成共识.转动b 时,直线b 与c 的交点从在直线a 上A 点向左边距离A 点很远的点逐步接近A 点,并垂合于A 点,然后交点变为在A 点的右边,逐步远离A 点.继续转动下去,b 与a 的交点就会从A 点的左边又转动A 点的左边……可以想象一定存在一个直线b 的位置,它与直线a 左右两旁都没有交点.二、平行线定义表示法1.结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a 与直线b 不相交的位置,这时直线a 与b 互相平行.换言之,同一平面内,不相交的两条直线叫做平行线.直线a 与b 是平行线,记作“∥”,这里“∥”是平行符号.教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设有交点的两条直线.2.同一平面内,两条直线的位置关系教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系.在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一.即两条直线不相交就是平行,或者不平行就是相交.三、画图、观察、归纳概括平行公理及平行公理推论1.在转动教具木条b 的过程中,有几个位置能使b 与a 平行?cb ac ba C 本问题是学生直觉直线b 绕直线a 外一点B 转动时,有并且只有一个位置使a 与b 平行.2.用直线和三角尺画平行线.已知:直线a,点B,点C.(1)过点B 画直线a 的平行线,能画几条?(2)过点C 画直线a 的平行线,它与过点B 的平行线平行吗?3.通过观察画图、归纳平行公理及推论.(1)由学生对照垂线的第一性质说出画图所得的结论.(2)在学生充分交流后,教师板书.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(3)比较平行公理和垂线的第一条性质.共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的.不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外.4.归纳平行公理推论.(1)学生直观判定过B 点、C 点的a 的平行线b 、c 是互相平行.(2)从直线b 、c 产生的过程说明直线b∥直线c.(3)学生用三角尺与直尺用平推方验证b∥c.(4)师生用数学语言表达这个结论,教师板书.结果两条直线都与第三条直线平行,那么这条直线也互相平行. 结合图形,教师引导学生用符号语言表达平行公理推论: c b a如果b∥a,c∥a,那么b∥c.(5)简单应用.练习:如果多于两条直线,比如三条直线a、b、c与直线L都平行,那么这三条直线互相平行吗?请说明理由.本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范.四、作业:课本P19.7,P20.11.。

人教版七年级数学下册第五章5.2.2平行线的判定优秀教学案例

人教版七年级数学下册第五章5.2.2平行线的判定优秀教学案例
3.鼓励学生自我评价,培养学生的自我认知能力,激发学生内在的学习动力。
五、案例亮点
1.生活实例导入:通过墙壁上的电线、操场上的跑道等生活实例导入新课,使学生能够直观地感受到平行线的特征,激发学生的学习兴趣,提高学生的空间想象能力。
2.启发式教学:在讲授新知过程中,教师引导学生思考如何判断两条直线是否平行,让学生带着问题学习判定定理。通过提问和思考,激发学生深入思考问题,提高学生的逻辑思维能力。
二、教学目标
(一)知识与技能
1.让学生掌握平行线的判定方法,能够运用判定定理准确判断两条直线是否平行。
2.通过平行线的判定,培养学生对几何图形的观察、分析、推理能力,提高空间想象能力。
3.使学生能够运用平行线的知识解决实际问题,培养运用数学知识解决生活问题的能力。
(二)过程与方法
1.采用启发式教学,引导学生从生活实例中发现平行线的判定方法,培养学生主动探究、积极思考的能力。
2.分配学习任务,每组探究一条判定定理,通过合作交流,共同完成学习任务。
3.组织小组汇报,让组长汇报本组的学习成果,其他组成员补充发言,形成互动交流的氛围。
4.教师巡回指导,针对不同小组的问题,给予解答和指导,促进学生的共同进步。
(ห้องสมุดไป่ตู้)总结归纳
1.让学生总结本节课所学知识,反思自己在学习过程中的优点和不足,明确今后的学习方向。
四、教学内容与过程
(一)导入新课
1.利用生活实例导入,如墙壁上的电线、操场上的跑道等,让学生观察并描述其中的平行线,引出本节课的主题。
2.设计动画演示,如两条直线在平面内运动,让学生直观地感受平行线的特征,为后续判定打下基础。
3.创设实践操作环节,让学生用硬纸板自己动手制作平行线,增强学生对平行线概念的理解。

人教版七年级数学下册5.3.1 平行线的性质 教学设计

人教版七年级数学下册5.3.1 平行线的性质 教学设计

人教版七年级数学下册5.3.1 平行线的性质【学习目标】1使学生掌握平行线的三个性质,并能应用它们进行简单的推理论证;2使学生经过对比后,理解平行线的性质和判定的区别和联系.【学习重点】平行线的三个性质及其应用.【学习难点】正确理解性质与判定的区别和联系,并正确运用它们去推理证明.【学习过程】一、学前准备二、探索思考探索一:请同学们仔细阅读课本P19页,完成课本上的探究.根据探究内容,我们可以得到平行线的性质,如图,将下列空白补充完整(填1种就可以)性质1(性质公理) 几何语言表述为:∵ AB ∥CD ∴ ∠___=∠___由性质1,结合对顶角的性质,我们可以得到:性质2(性质定理)几何语言表述为:∵ AB ∥CD ∴ ∠___=∠___ 由性质1,结合邻补角的性质,我们可以得到:性质3(性质定理)几何语言表述为:∵ AB ∥CD ∴ ∠___+∠___=练习一: 1. 根据右图将下列几何语言补充完整 (1)∵AD ∥ (已知) ∴∠A+∠ABC=180°( ) (2)∵AB ∥ (已知)∴∠4=∠ ( )∠ABC=∠ ( )2. 如右图所示,BE 平分∠ABC ,DE ∥ BC ,图中相等的角共有( )A. 3对B. 4对C. 5对D. 6对3、如图,AB ∥CD,∠1=45°,∠D=∠C,求∠D 、∠C 、∠B 的度数.探索二:用三角尺和直尺画平行线,做成一张5×5个格子的方格纸.观察做出的方格纸的一部分(如图),线段11C B 、22C B 、…、55C B 都与两条平行的横线51B A 和52C A 垂直吗?它们的长度相等吗?像这样,同时垂直于两条平行直线,并且夹在这两条平行线间的线段的长度相等,叫做这两条平行线间的距离,即平行线间的距离处处相等.练习二:1.如图所示,已知直线AB ∥CD ,且被直线EF 所截,若∠1=50°,则∠2=____,•∠3=______. C 1 2 3 4 5B A DE D C B A 1A 2A 1B 2B 3B 4B 5B 1C 2C 3C 5C4C(1题) (2题) (3题) 2.如图所示,AB∥CD,AF交CD于E,若∠CEF=60°,则∠A=______.3.如图所示,已知AB∥CD,BC∥DE,∠1=120°,则∠2=______.三、当堂反馈1.如图所示,如果AB∥CD,那么().A.∠1=∠4,∠2=∠5 B.∠2=∠3,∠4=∠5C.∠1=∠4,∠5=∠7 D.∠2=∠3,∠6=∠8(1题) (2题) (3题) 2.如图所示,DE∥BC,EF∥AB,则图中和∠BFE互补的角有().A.3个 B.2个 C.5个 D.4个3.如图所示,已知∠1=72°,∠2=108°,∠3=69°,求∠4的度数.四、学习反思本节课你有哪些收获?。

平行线的性质初中数学教案

平行线的性质初中数学教案

平行线的性质初中数学教案一、教学目标1. 知识与技能:(1)能够识别同位角、内错角和同旁内角;(2)理解平行线的性质,包括同位角相等、内错角相等和同旁内角互补;(3)学会使用量角器测量角度。

2. 过程与方法:(1)通过观察实际情境,培养学生的观察能力和思维能力;(2)通过画图和实验,培养学生的动手操作能力;(3)通过小组讨论,培养学生的合作能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神;(3)培养学生合作、交流的良好习惯。

二、教学内容1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。

2. 同位角:两条平行线被第三条直线所截,截得的同侧内角叫做同位角。

3. 内错角:两条平行线被第三条直线所截,截得的同侧外角叫做内错角。

4. 同旁内角:两条平行线被第三条直线所截,截得的非同侧内角叫做同旁内角。

5. 平行线的性质:同位角相等、内错角相等、同旁内角互补。

三、教学重点与难点1. 教学重点:平行线的性质,包括同位角相等、内错角相等和同旁内角互补。

2. 教学难点:如何理解和证明同位角相等、内错角相等和同旁内角互补的性质。

四、教学方法1. 观察法:通过观察实际情境,引导学生发现平行线的性质。

2. 画图法:通过画图和实验,让学生直观地理解平行线的性质。

3. 小组讨论法:通过小组讨论,培养学生的合作能力和口头表达能力。

五、教学过程1. 导入新课:通过展示实际情境,引导学生发现平行线的性质。

2. 讲解与演示:讲解平行线的定义,并通过画图和实验演示同位角、内错角和同旁内角的含义。

3. 练习与巩固:让学生进行课堂练习,巩固所学知识。

4. 小组讨论:让学生分组讨论,探索平行线的性质。

5. 总结与拓展:总结本节课所学内容,并引导学生思考如何应用平行线的性质解决实际问题。

6. 布置作业:布置适量作业,让学生巩固所学知识。

六、教学评价1. 课堂讲解:评价学生在课堂上的参与程度、理解程度和回答问题的准确性。

七年级数学下《平行线及其判定》教案

七年级数学下《平行线及其判定》教案

七年级数学下《平行线及其判定》教案
一、教学目标
1.知识与技能:学生掌握平行线的概念,理解平行线的判定定理,能够应用这些
定理解决一些实际问题。

2.过程与方法:通过观察、实验和推理论证,培养学生的几何思维能力和探究能
力。

3.情感态度与价值观:激发学生对几何的兴趣,培养他们主动探究、合作学习的
精神。

二、教学内容与过程
1.导入:通过实物展示和情境创设,引入平行线的概念,引导学生观察平行线的
特点。

2.知识讲解:详细讲解平行线的判定定理,包括同位角相等、内错角相等、同旁
内角互补等,结合实例进行解释。

3.探究活动:设计探究活动,让学生自己动手操作,观察平行线的判定定理,并
进行小组讨论,总结规律。

4.应用实践:设计实际问题,让学生运用所学知识解决,如判断两条直线是否平
行、计算平行线的距离等。

5.总结与提升:总结平行线的主要知识点,强调重点和难点。

通过综合性题目,
提升学生运用知识解决实际问题的能力。

三、教学方法与手段
1.教学方法:采用启发式、探究式和合作学习的方法,引导学生主动探索和思考。

2.教学手段:利用实物模型、PPT演示、几何画板等辅助教学工具,帮助学生更
好地理解平行线的判定定理。

四、教学评价与反馈
1.课堂互动:通过课堂提问、小组讨论等方式,及时了解学生的学习情况,调整
教学策略。

2.作业评价:布置相关练习题,要求学生按时完成,并进行批改和反馈,帮助学
生巩固所学知识。

3.测试与反馈:组织阶段性测试,检测学生对平行线知识的掌握程度,及时发现
问题并进行针对性辅导。

《平行线的性质》数学教案

《平行线的性质》数学教案

《平行线的性质》数学教案
标题:《平行线的性质》
一、教学目标
1. 让学生理解并掌握平行线的基本概念。

2. 通过实例让学生熟练掌握平行线的性质。

3. 培养学生的空间观念和逻辑思维能力。

二、教学重点与难点
1. 教学重点:平行线的基本概念及性质。

2. 教学难点:如何理解和应用平行线的性质。

三、教学过程
1. 导入新课:
- 创设情境,引发学生对平行线的好奇心。

- 提出问题,引导学生思考平行线的相关知识。

2. 新知探索:
- 平行线的基本概念:在同一平面上,不相交的两条直线叫做平行线。

- 平行线的性质:
- 同位角相等
- 内错角相等
- 同旁内角互补
3. 实例解析:
- 通过具体实例,让学生直观感受平行线的性质。

- 鼓励学生动手操作,亲自验证平行线的性质。

4. 练习巩固:
- 设计一些题目,让学生运用所学知识解决实际问题。

- 对学生的解答进行点评,帮助他们改正错误,加深理解。

5. 小结与反思:
- 引导学生总结本节课的学习内容。

- 鼓励学生分享自己的学习心得,提出疑问或困惑。

四、作业布置
- 安排一些练习题,让学生在课后进一步巩固所学知识。

五、教学反思
- 反思本节课的教学效果,评估学生的学习情况。

- 思考如何改进教学方法,提高教学质量。

2023-2024人教版七年级数学下册课件:5.3.1 平行线的性质第1课时 两直线平行,同位角相等

2023-2024人教版七年级数学下册课件:5.3.1 平行线的性质第1课时 两直线平行,同位角相等
2.在解题过程中,首先要根据所给图形正确判断截线与被截线,才
能准确地得到角与角之间的关系,从而正确地作出解答.
轻松达标
1.如图5.3-2,//.∠1 = 58∘ ,则∠2的度数为( A ) .
图5.3-2
A.58∘
B.112∘
C.120∘
D.132∘
2.如图5.3-3所示,直角三角尺的直角顶点放在直线
图5.3-6
6.如图5.3-7,已知//,直线分别交,于,,平分∠,
若∠1 = 62∘ ,求∠2的度数.
解:∵ //,
∴ ∠1 + ∠ = 180∘ .
又∵ ∠1 = 62∘ ,
∴ ∠ = 118∘ .
∵ 平分∠,
∴ ∠ = 59∘ .
人教版七年级数学下册课件
第五章 相交线与平行线
5.3.1 平行线的性质
(3课时)
第1课时 两直线平行,同位角相等
自主学习
自主导学
同位角
平行线的性质1:两条平行线被第三条直线所截,________相等.
简单说成:两直线平行,同位角相等.
典例分享
例 如图5.3-1所示,在三角形中,∠ = 70∘ ,
图5.3-4
4.如图5.3-5,若∠1 = ∠3,则下列结论一定成立的是( C ) .
图5.3-5
A.∠1 = ∠4
B.∠3 = ∠4
C.∠1 + ∠2 = 180∘
D.∠2 + ∠4 = 180∘
5.如图5.3-6,直线,被直线所截,已知//,
50 ∘ .
∠1 = 130∘ ,则∠2 =____
∴ ∠2 =
180∘
− ∠ =
180∘

35∘

(完整版)七年级数学下册平行线的性质教案新人教版

(完整版)七年级数学下册平行线的性质教案新人教版
所以梯形的另外 两个角分别是80°, 65°.
巩固提高
如图所示,平行四边形ABCD,已知∠A=60°.求∠C多少度?
解:∵ABCD是平行四边形,
∴AB//CD,AD//BC.
∵AB//CD,
∴∠A+∠D=180°.(两直线平 行,同旁内角互补。)
同理AD//CB,
∴∠C+∠D=180°(两直线平行,同旁内角互补。)
5.两直线平行,内错角相等是平行线的性质.
二、比一比,谁的速度快。
1. 直线a//b,∠1=110 °,∠5的度数是.
2. 直线a//b,∠1=110°,∠6的度数是
3. 直线a//b,∠1=110°,∠7的度数是 .
4. 直线a//b,∠1=110°, ∠8的度数是.
5.直线a//b,∠4+∠7=.
如图是残余梯形铁片,量得∠A=100°,∠B=115°,梯形的另外两个角分别是多少度?
解:因为梯形上、下两底AB与DC互相平行,
根据“两直线平行,同旁内角互补”,可得
∠A与∠D互补,∠B与∠C互补.
于是
∠D=180°-∠A=180°-100°=80°,
∠C=180°-∠B=180°-115°=65°.
又∵∠1 = ∠3(对顶角相等)
∴∠3 = ∠5(等量代换)
得证。
性质2 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
板书:∵直线a//b,∴∠3 = ∠5.
类似的请同学们根据性质一推导:两直线平行,同旁内角互补.
板书:
已知直线a//b,请推理说明∠4 = ∠5
证明:因为a//b,
同位角:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8

《平行线的性质》说课稿

《平行线的性质》说课稿

《平行线的性质》(第一课时)说课稿今天我说课的内容是人教版义务教育课程标准实验教科书《数学》七年级下册第五章的5.3节《平行线的性质》(第一课时).下面我就从教材分析;学生情况分析;教学目标的确定;教学重点、教学难点的分析;教法与学法;教学过程设计这几个方面把我的理解和认识作一个说明.一、说课标新课程标准对本课的要求是学生在教师的引导讲解下知道两直线平行同位角相等,进而自主探索平行线的其他性质。

在教学活动中,新课标要求应该注重所学内容与现实生活的联系,注重使学生经历观察、操作、推理、想像等探索过程;注重对平行线性质推导和探索本身的理解,而不是追求探索的数量和技巧。

二、说教材《平行线的性质》是新人教版七年级数学下册第五章第三小节的内容,本节课是在学生已经学习了同位角、内错角、同旁内角和平行线的判定的基础上进行教学的。

这节课是空间与图形领域的基础知识,在以后的学习中经常要用到。

它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。

在这节课的学习中,我先组织学生利用手中的量角器对“两直线平行,同位角相等”这一性质进行验证,再通过课件的演示对学生进行讲解,使学生加深对这一知识点的理解。

在这一性质的基础上经过简单的推理,得到平行线的另外两个性质。

三、说学情在本节课学习之前,学生已经了解了平行线的概念,经历了两条直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补,可以判定两条直线平行,那么两条平行线被第三条直线所截,同位角、内错角、同旁内角之间会有什么关系呢?学生有进一步探究的愿望和能力。

所以本节课的内容对学生来说并不是非常难学。

四、说教学目标根据数学课程标准的要求和教学内容的特点,以及学生的认知水平,确定本节课的教学目标如下:(1)知识与技能目标:探索平行线的性质,并掌握它们的图形语言、文字语言、符号语言;了解平行线的性质和判定的区别。

(2)过程与方法目标:通过学生动手操作、实验、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。

初中数学教案平行线的性质与判定

初中数学教案平行线的性质与判定

初中数学教案平行线的性质与判定一、教学目标:1.理解平行线的定义和性质。

2.学会用角度判定平行线的方法。

3.能够应用平行线的性质解决实际问题。

二、教学重点:1.平行线的定义和性质。

2.角度判定平行线的方法。

三、教学难点:1.角度判定平行线的方法。

四、教学过程:步骤一:引入教师通过引入的方式激发学生对平行线的概念的兴趣。

比如,假设学生们把铅笔搁在桌子上,并画两条笔尖重叠的直线,问学生们这两条直线有什么特点?步骤二:平行线的定义和性质1.教师给出平行线的定义:如果两条直线在同一平面上,且它们没有交点,那么这两条直线就是平行线。

2.教师介绍平行线的性质:a.平行线上任意两点之间的距离相等。

b.平行线上任意一点到另一条平行线的距离相等。

c.平行线夹角相等。

d.平行线的对应角相等。

e.平行线与横截线之间的对应角相等。

步骤三:角度判定平行线的方法1.教师向学生介绍角度判定平行线的方法:a.同位角相等判定法:如果两条直线被直线交分成两对同位角,而且同位角相等,则这两条直线是平行线。

b.内错角相等判定法:如果两条直线被直线交分成两对内错角,而且内错角相等,则这两条直线是平行线。

c.对顶角相等判定法:如果两条直线被一条直线交分成两对对顶角,而且对顶角相等,则这两条直线是平行线。

2.教师通过示例向学生演示如何应用角度判定平行线的方法。

步骤四:解决实际问题1.教师通过实际生活中的例子,向学生展示如何应用平行线的性质解决问题。

比如:条铁轨与水平线成一定角度,问列车在走过相同距离后会不会偏离原方向?2.学生分组完成练习题,巩固所学知识。

步骤五:拓展应用教师选取一些拓展性的问题,让学生运用所学知识解决。

五、教学反思通过引入生活实例的方式,激发了学生对平行线概念的兴趣,培养了学生对平行线的观察和思考能力。

通过示例的演示,让学生亲自操作,理解了角度判定平行线的方法。

通过解决实际问题的训练,培养了学生应用所学知识解决问题的能力。

人教版数学七年级下册教案5.3.1《 平行线的性质》

人教版数学七年级下册教案5.3.1《 平行线的性质》

人教版数学七年级下册教案5.3.1《平行线的性质》一. 教材分析《平行线的性质》是人教版数学七年级下册第5章第3节的内容,本节课主要让学生掌握平行线的性质。

教材通过实例引入平行线的性质,然后引导学生通过观察、猜想、证明等过程,掌握平行线的性质。

教材内容紧密联系学生的生活实际,激发学生的学习兴趣,培养学生观察、思考、动手操作的能力。

二. 学情分析学生在学习本节课之前,已经学习了直线、射线、线段的概念,掌握了直线和射线的性质,能熟练画直线和射线。

但学生对平行线的性质认识不足,需要通过实例来引导他们观察、思考、总结平行线的性质。

三. 教学目标1.知识与技能:让学生掌握平行线的性质,能运用平行线的性质解决实际问题。

2.过程与方法:培养学生观察、思考、动手操作的能力,提高学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。

四. 教学重难点1.重点:平行线的性质。

2.难点:如何引导学生观察、思考、总结平行线的性质。

五. 教学方法1.采用问题驱动法,引导学生观察、思考、总结平行线的性质。

2.利用小组合作学习,培养学生团队协作精神,提高学生解决问题的能力。

3.通过实例讲解,使学生能将所学知识应用于实际问题中。

六. 教学准备1.准备相关课件,展示平行线的性质。

2.准备实例,让学生观察、思考、总结平行线的性质。

3.准备练习题,巩固所学知识。

七. 教学过程导入(5分钟)教师通过展示实际生活中的平行线例子,如教室里的黑板、书桌、地板等,引导学生观察并提问:“你们能发现这些平行线有什么特点吗?”学生通过观察,激发学习兴趣,发现问题。

呈现(10分钟)教师展示课件,呈现平行线的性质,引导学生猜想并提问:“你们认为平行线有哪些性质呢?”学生通过观察、思考,提出猜想。

操练(15分钟)教师引导学生进行小组合作学习,让学生通过实际操作,证明平行线的性质。

教师巡回指导,解答学生疑问。

巩固(10分钟)教师呈现练习题,让学生运用所学知识解决问题。

平行线的性质(教案)

平行线的性质(教案)

人教版七年级数学(下册)第五章相交线与平行线5.3.1 平行线的性质(教案设计)信阳市罗山县第四中学【教学目标】1、知识与技能:使学生熟练掌握两条平行线具有的性质,并根据直线的平行关系得到角之间的关系;2、过程与方法:引导学生通过动手实践、观察、发现,学会逆向思考,掌握两条直线平行时同位角、内错角和同旁内角的特点,并初步学会对照着图形,说明几何推理过程.3、情感态度与价值观:培养学生的探索精神和动手能力,提高学习数学的兴趣.【教学重难点】重点:引导学生通过动手实践、观察、发现平行线的性质并掌握两条直线平行时同位角、内错角和同旁内角的特点;难点:培养学生初步掌握几何推理的能力.【教学方法】启发式教学、多媒体辅助教学【教学过程】一、回顾与思考平行线的判定方法:思考:反过来,如果两条直线平行, 同位角、内错角、同旁内角各有什么关系呢?二、合作交流,探索发现合作交流11、画一画:学生利用坐标纸上的直线,或者用直尺和三角板画两条平行线a//b,再画一条截线c与a、b相交,标出如图所示的角.2、猜一猜:观察∠1~ ∠8中,哪些是同位角?它们的大小有什么关系?说出你的猜想:两条平行线被第三条直线所截,同位角。

3、量一量;学生使用量角器测量每一组同位角的度数并做好记录:。

1.同位角相等2.内错角相等3.同旁内角互补两直线平行(或剪一剪、拼一拼,看每组同位角是否能完全重合)4、验一验:教师通过几何画板任意改变截线c的位置,并演示对应的每组同位角均相等。

5、得出结论:,简单说成:;几何语言:6、典例示范:例1、如图,D是AB上一点,E是AC上一点,∠ADE=60°,∠B=60°,∠AED=40°.(1)DE和BC平行吗?为什么?(2)∠C是多少度?为什么?合作交流21、思考:若两直线平行,内错角之间又有怎样的数量关系?,你能运用所学知识证明你的猜想吗?如图,已知a//b,那么∠2与∠3相等吗?为什么? 2、得出结论:,简单说成:;几何语言:3、典例示范:例2、如图所示,AC∥BD,∠A=70°,∠C=50°,求∠1,∠2,∠3的度数.合作交流31、思考:类似地,已知两直线平行,同旁内角之间的数量关系是什么?2、验证猜想如图,已知a//b,那么∠2与∠4有什么关系呢?为什么?3、得出结论:,简单说成:;几何语言:4、典例示范:例3、如图,是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角的度数分别是多少?【知识小结】平行线的性质:(利用动画游戏的方式检验和加深学生对平行线性质的掌握)三、当堂检测(一)头脑风暴,砸蛋有奖1、判断:若一条直线垂直两条平行线中的一条,则它也垂直另一条。

人教版数学七年级下册教案5.3.1平行线及性质

人教版数学七年级下册教案5.3.1平行线及性质
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平行线及其性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永不相交的情况?”(如铁轨、黑板的边缘等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用直尺和量角器在纸上画出平行线,观察并记录相关性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
(3)实际问题的解决:学生在解决涉及平行线性质的实际问题时,可能不知道如何入手。
-教师应展示解题步骤,指导学生如何从问题中提取信息,如何将问题转化为数学模型,以及如何应用平行线性质进行计算。
(4)证明平行线的方法:学生可能不熟悉使用几何证明的方法来证明两条直线平行。角等方法来证明直线之间的平行关系。
3.能够运用平行线的性质解决实际问题,培养学生数学运算和问题解决的能力。
4.在小组合作交流中,培养学生团队合作意识,提高表达与交流的能力。
5.引导学生体会数学与现实生活的联系,增强数学应用意识,培养数学素养。
三、教学难点与重点
1.教学重点
本节课的核心内容包括:
(1)平行线的定义:理解并掌握在同一平面内,两条不相交的直线称为平行线。
在实践活动环节,学生分组讨论和实验操作的效果还不错,但我发现有些小组在分享成果时表达不够清晰。在以后的教学中,我要加强学生的表达和交流能力的培养,鼓励他们大胆地说出自己的想法。

人教版七年级数学下册教案 平行线的性质(一)

人教版七年级数学下册教案 平行线的性质(一)

5. 3平行线的性质(一)教学目标1.使学生理解平行线的性质和判定的区别.2.使学生掌握平行线的三个性质,并能运用它们作简单的推理.重点难点重点:平行线的三个性质.难点:平行线的三个性质和怎样区分性质和判定.关键:能结合图形用符号语言表示平行线的三条性质.教学过程一、复习1.如何用同位角、内错角、同旁内角来判定两条直线是否平行?2.把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗?二、新授1.实验观察,发现平行线第一个性质请学生画出下图进行实验观察.设l1∥l2,l3与它们相交,请度量∠1和∠2的大小,你能发现什么关系?请同学们再作出直线l4,再度量一下∠3和∠4的大小,你还能发现它们有什么关系?平行线性质1(公理):两直线平行,同位角相等.2.演绎推理,发现平行线的其它性质(1)已知:如图,直线AB,CD被直线EF所截,AB∥CD.求证:∠1= ∠2.(2)已知:如图2-64,直线AB,CD被直线EF所截,AB∥CD.求证:∠1+∠2=180°.在此基础上指出:“平行线的性质 2 (定理)”和“平行线的性质 3 (定理)”.3.平行线判定与性质的区别与联系投影:将判定与性质各三条全部打出.(1)性质:根据两条直线平行,去证角的相等或互补.(2)判定:根据两角相等或互补,去证两条直线平行.联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的.三、例题例2如图所示,AB ∥CD ,AC ∥BD .找出图中相等的角与互补的角.87654132此题一定要强调,哪两条直线被哪一条直线所截.答:相等的角为:∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8.互补的角为:∠BAC +∠ACD =180°,∠ABD +∠CDB =180°,∠CAB +∠DBA =180°,∠ACD +∠BDC =180°.相等的角还有:∠ACD =∠ABD ,∠BAC =∠BDC .(同角的补角相等) 例3如图所示.已知:AD ∥BC ,∠AEF =∠B ,求证:AD ∥EF . 分析:(执果索因)从图直观分析,欲证AD ∥EF ,只需∠A +∠AEF =180°,(由因求果)因为AD ∥BC ,所以∠A +∠B =180°,又∠B =∠AEF ,所以∠A +∠AEF =180°成立.于是得证.证明:因为 AD ∥BC ,(已知)所以 ∠A +∠B =180°.(两直线平行,同旁内角互补)FED CB A A B CD因为 ∠AEF =∠B ,(已知)所以 ∠A +∠AEF =180°,(等量代换)所以 AD ∥EF .(同旁内角互补,两条直线平行) 四、练习:1.如图所示,已知:AE 平分∠BAC ,CE 平分∠ACD ,且AB ∥CD . 求证:∠1+∠2=90°. 证明:因为 AB ∥CD , 所以 ∠BAC +∠ACD =180°,又因为 AE 平分∠BAC ,CE 平分∠ACD , 所以112BAC ∠=∠,122ACD ∠=∠,故001112()1809022BAC ACD ∠+∠=∠+∠=⨯=.即 ∠1+∠2=90°. (理由略)2.如图所示,已知:∠1=∠2, 求证:∠3+∠4=180°. 分析:(让学生自己分析) 证明:(学生板书) 小结我们是如何得到平行线的性质定理?通过度量,运用从特殊到一般的思维方式发现性质1(公理),然后由公理通过演绎证明得到后面两个性质定理.从因果关系和所起的作用来看性质定理和判定定理的区别与联系.作业:1.如图,AB∥CD,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠1、∠3、∠C、∠BAC+∠B+∠C 各是多少度,为什么?3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由.。

人教版七年级下5.3平行线的性质教学设计(3课时)

人教版七年级下5.3平行线的性质教学设计(3课时)

第1课时平行线的性质【教学过程】一、创设实验情境,引发学生学习兴趣,引入本节课要研究的内容.试验1:教师以窗格为例,已知窗户的横格是平行的,用三角尺进行检验,发现同位角相等.这个结论是否具有一般性呢?试验2:学生试验(发印制好的平行线纸单). (1)要求学生任意画一条直线c 与直线a 、b 相交; (2)选一对同位角来度量,看看这对同位角是否相等. 学生归纳:两条平行线被第三条直线所截,同位角相等.二、主体探究,引导学生探索平行线的其他性质以及对命题有一个初步的认识. 活动1 问题讨论:我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角.我们已经知道“两条平行线被第三条直线所截,同位角相等”.那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系?(分组讨论,每一小组推荐一位同学回答).教师活动设计:引导学生讨论并回答.学生口答,教师板书,并要求学生学习推理的书写格式. 活动2总结平行线的性质.性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.性质3:两条平行直线被第三条直线所截,同旁内角互补. 简单说成:两直线平行,同旁内角互补. 活动3如何理解并记忆性质2、3,谈谈你的看法! (1)性质2、3分别已知什么?得出什么? (2)它与前面学习的平行线的判定有什么区别? (3)性质2、3的应用格式. ∵a //b (已知)∴∠3=∠2(两直线平行,内错角相等). ∵ a //b (已知)∴∠2+∠4=180°(两直线平行,同旁内角互补).三、拓展创新、应用提高,引导学生运用知识解决问题,培养学生思维的灵活性和深刻ab3 c124性活动4解决问题.问题1:如图是举世闻名的三星堆考古中发掘出的一个梯形残缺玉片,工作人员从玉片上已经量得∠A=115°,∠D=100°.请你求出另外两个角的度数.(梯形的两底是互相平行的)学生活动设计:学生思考后请学生回答,注意启发学生回答为什么,进一步细化为较为详细的推理,并书写出.〔解答〕因为ABCD是梯形.所以AD//BC.所以∠A+∠B=180°,∠D+∠C=180°.又∠A=115°,∠D=100°.所以∠B=65°,∠C=80°.问题2:如图,一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角∠B等于142°,第二次拐的角∠C是多少度?为什么?学生活动设计:学生根据拐弯前后的两条路互相平行容易得到∠B和∠C相等,于是得到∠C=142°问题3:如图,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4.(1)∠1、∠3的大小有什么关系?∠2与∠4呢?(2)反射光线BC与EF也平行吗?BCA DB C学生活动设计:从图中可以看出:∠1与∠3是同位角,因为AB 与DE 是平行的,所以∠1=∠3.又因为∠1=∠2,∠3=∠4,所以可得出∠2=∠4.又因为∠2与∠4是同位角,所以BC ∥EF .教师活动设计:这个问题是平行线的特征与直线平行的条件的综合应用.由两直线平行,得到角的关系用到的是平行线的特征;反过来,由角的关系得到两直线平行,用到的是直线平行的条件.同学们要弄清这两者的区别.〔解答〕略. 问题4:如图,若AB //CD ,你能确定∠B 、∠D 与∠BED 的大小关系吗?说说你的看法.学生活动设计:由于有平行线,所以要用平行的知识,而∠B 、∠D 与∠DEB 这三个角不是三类角中的任何一类,因此要考虑构造图形,若过点E 作EF //AB ,则由AB //CD 得到EF //CD ,于是图中出现三条平行线,同时出现了三类角,根据平行线的性质可以得到:∠B =∠BEF 、∠D =∠DEF ,因此∠B +∠D =∠BEF +∠DEF =∠DEB .教师活动设计:在学生探索的过程中,特别是构造图形这个环节,适当引导,让学生养成“缺什么补什么”的意识,培养学生的逻辑推理能力.〔解答〕过点E 作EF //AB . 所以∠B =∠BEF . 因为AB //CD . 所以EF //CD . 所以∠D =∠DEF .所以∠B +∠D =∠BEF +∠DEF =∠DEB .即∠B +∠D =∠DEB . 变式思考:如图,AB //CD ,探索∠B 、∠D 与∠BED 的大小关系(∠B +∠D +∠DEB =360°).四、小结与作业.FBDCEAEDCB A小结:1.平行线的三个性质:两直线平行,同位角相等.两直线平行,内错角相等.两直线平行,同旁内角互补.2.平行线的性质与平行线的判定有什么区别?判定:已知角的关系得平行的关系.证平行,用判定.性质:已知平行的关系得角的关系.知平行,用性质.作业:习题5.3.第2课时平行线的性质与判定及其综合运用一、教学目标1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.2.会用平行线的性质进行推理和计算.3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.二、学法引导1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.三、重点·难点解决办法(一)重点平行线的性质公理及平行线性质定理的推导.(二)难点平行线性质与判定的区别及推导过程.(三)解决办法1.通过教师创设情境,学生积极思维,解决重点.2.通过学生自己推理及教师指导,解决难点.3.通过学生讨论,归纳小结.四、课时安排1课时五、教具学具准备投影仪、三角板、自制投影片.六、师生互动活动设计1.通过引例创设情境,引入课题.2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.3.通过学生讨论,完成课堂小结.七、教学步骤(一)明确目标掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.(二)整体感知以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习巩固新知.(三)教学过程创设情境,复习导入师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题(出示投影片1).1.如图1,(1)∵(已知),∴().(2)∵(已知),∴().(3)∵(已知),∴().2.如图2,(1)已知,则与有什么关系?为什么?(2)已知,则与有什么关系?为什么?图2 图33.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?学生活动:学生口答第1、2题.师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.探究新知,讲授新课师:我们都知道平行线的画法,请同学们画出直线的平行线,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?学生活动:学生在练习本上画图并思考.学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线,使它截平行线与,得同位角、,利用量角器量一下;与有什么关系?学生活动:学生按老师的要求画出图形,并进行度量,回答出不论怎样画截线,所得的同位角都相等.根据学生的回答,教师肯定结论.师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.[板书]两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.学生活动:学生们思考,并相互讨论后,有的同学举手回答.【教法说明】在前面复习引入的第2题的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣.教师根据学生回答,给予肯定或指正的同时板书.[板书]∵(已知),∴(两条直线平行,同位角相等).∵(对项角相等),∴(等量代换).师:由此我们又得到了平行线有怎样的性质呢?学生活动:同学们积极举手回答问题.教师根据学生叙述,板书:[板书]两条平行经被第三条直线所截,内错角相等.简单说成:西直线平行,内错角相等.师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程和第三条性质,形成正确板书.[板书]∵(已知),∴(两直线平行,同位角相等).∵(邻补角定义),∴(等量代换).即:两条平行线被第三条直线所截,同旁内角互补.简单说成,两直线平行,同旁内角互补.师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵(已知见图6),∴(两直线平行,同位角相等).∵(已知),∴(两直线平行,内错角相等).∵(已知),∴.(两直线平行,同旁内角互补)(板书在三条性质对应位置上.)尝试反馈,巩固练习师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?学生活动:学生给出答案,并很快地说出理由.练习(出示投影片2):如图7,已知平行线、被直线所截:图7(1)从,可以知道是多少度?为什么?(2)从,可以知道是多少度?为什么?(3)从,可以知道是多少度,为什么?【教法说明】练习目的是巩固平行线的三条性质.变式训练,培养能力完成练习(出示投影片3).如图8是梯形有上底的一部分,已知量得,,梯形另外两个角各是多少度?图8学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.【教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找和的大小.这里学生能够自己解题,教师避免包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,规范学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的板书.[板书]解:∵(梯形定义),∴,(两直线平行,同旁内角互补).∴.∴.变式练习(出示投影片4)1.如图9,已知直线经过点,,,.(1)等于多少度?为什么?(2)等于多少度?为什么?(3)、各等于多少度?2.如图10,、、、在一条直线上,.(1)时,、各等于多少度?为什么?(2)时,、各等于多少度?为什么?学生活动:学生独立完成,把理由写成推理格式.【教学说明】题目中的为什么,可以用语言叙述,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,若学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.(四)总结、扩展(出示投影片1第1题和投影片5)完成并比较.如图11,(1)∵(已知),∴().(2)∵(已知),∴().(3)∵(已知),∴().学生活动:学生回答上述题目的同时,进行观察比较.师:它们有什么不同,同学们可以相互讨论一下.(出示投影6)学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质.【教法说明】通过有形的具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同.巩固练习(出示投影片7)1.如图12,已知是上的一点,是上的一点,,,.(1)和平行吗?为什么?图12(2)是多少度?为什么?学生活动:学生思考、口答.【教法说明】这个题目是为了巩固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.八、布置作业(一)必做题课本第99~100页A组第11、12题.(二)选做题课本第101页B组第2、3题.作业答案A组11.(1)两直线平行,内错角相等.(2)同位角相等,两直线平行.两直线平行,同旁内角互补.(3)两直线平行,同位角相等.对顶角相等.12.(1)∵(已知),∴(内错角相等,两直线平行).(2)∵(已知),∴(两直线平行,同位角相等),(两直线平行,同位角相等).B组2.∵(已知),∴(两直线平行,同位角相等),(两直线平行,内错角相等).∵(已知),∴(两直线平行,同位角相等),(同上).又∵(已证),∴.∴.又∵(平角定义),∴.3.平行线的判定与平行线的性质,它们的题设和结论正好相反.5.3.2 命题、定理、证明一、教学目标1.了解“证明”的必要性和推理过程中要步步有据.2.了解综合法证明的格式和步骤.3.通过一些简单命题的证明,初步训练学生的逻辑推理能力.4.通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语句正确画出几何图形的能力.5.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.二、学法引导1.教师教法:尝试指导,引导发现与讨论相结合.2.学生学法:在教师的指导下,积极思维,主动发现.三、重点·难点及解决办法(-)重点证明的步骤和格式是本节重点.(二)难点理解命题,分清其题设和结论,正确对照命题画出图形,写出已知、求证.(三)解决办法通过学生分组讨论,教师归纳得出证明的步骤和格式,再以练习加以巩固,解决重点、难点及疑点.四、课时安排l课时五、教具学具准备投影仪、三角板、自制胶片.六、师生互动活动设计1.通过引例创设情境,点题,引入新课.2.通过情境教学,学生分组讨论,归纳总结及练习巩固等手段完成新授.3.通过提问的形式完成小结.七、教学步骤(-)明确目标使学生严密推理过程,掌握推理格式,提高推理能力。

人教版数学七年级下册第7课时《平行线的性质(一)》教学设计

人教版数学七年级下册第7课时《平行线的性质(一)》教学设计

人教版数学七年级下册第7课时《平行线的性质(一)》教学设计一. 教材分析《平行线的性质(一)》是人教版数学七年级下册的一个重要内容,主要让学生了解和掌握平行线的性质。

本节课的内容包括平行线的性质、平行线的判定以及平行线的应用。

教材通过生活中的实例引入平行线的概念,然后引导学生探究平行线的性质,最后通过练习题来巩固所学知识。

二. 学情分析七年级的学生已经学习了直线、射线、线段等基本概念,对图形的认知有一定的基础。

但是,对于平行线的性质和判定,学生可能还没有直观的认识。

因此,在教学过程中,教师需要通过生动的实例和直观的图形,帮助学生建立平行线的概念,并引导他们发现和总结平行线的性质。

三. 教学目标1.知识与技能:使学生了解平行线的性质,能够运用平行线的性质解决一些实际问题。

2.过程与方法:通过观察、操作、猜想、验证等过程,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的科学精神。

四. 教学重难点1.重点:平行线的性质。

2.难点:平行线的判定。

五. 教学方法1.情境教学法:通过生活中的实例引入平行线的概念,让学生在实际情境中感受和理解平行线的性质。

2.启发式教学法:引导学生观察、操作、猜想、验证,激发他们的思维,培养解决问题的能力。

3.小组合作学习:让学生在小组内讨论、交流,共同完成任务,提高合作能力。

六. 教学准备1.准备一些平行线的实例,如楼梯、操场等,用于导入新课。

2.准备一些平行线的图片,用于展示和引导学生发现平行线的性质。

3.准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师展示一些生活中的实例,如楼梯、操场等,引导学生观察并提问:“这些图中有什么共同的特点?”学生回答后,教师总结引入平行线的概念。

2.呈现(10分钟)教师展示一些平行线的图片,引导学生观察并提问:“你们能发现平行线之间有什么特殊的关系吗?”学生回答后,教师总结并板书平行线的性质。

平行线的性质说课稿

平行线的性质说课稿

平行线的性质说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《平行线的性质》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。

一、教材分析《平行线的性质》是人教版七年级数学下册第五章第三节的内容。

在此之前,学生已经学习了平行线的判定,这为过渡到本节内容的学习起到了铺垫作用。

本节课主要探究平行线的性质,是空间与图形领域的基础知识,它为今后学习三角形、四边形等几何知识奠定了基础。

二、学情分析七年级的学生已经具备了一定的观察、分析和推理能力,但他们的抽象思维能力和逻辑推理能力还比较有限。

在学习平行线的判定时,学生已经积累了一些关于平行线的经验,这为本节课的学习提供了有利条件。

然而,对于性质和判定的区别与联系,学生可能会存在混淆,需要在教学中加以引导。

三、教学目标1、知识与技能目标(1)理解平行线的性质,并能运用性质进行简单的推理和计算。

(2)能够区分平行线的性质和判定,会用平行线的性质解决实际问题。

2、过程与方法目标(1)经历观察、猜想、操作、推理、交流等活动,培养学生的观察能力、动手操作能力和逻辑推理能力。

(2)通过对平行线性质的探究,让学生体会从特殊到一般、转化等数学思想方法。

3、情感态度与价值观目标(1)通过小组合作探究,培养学生的合作意识和团队精神。

(2)让学生在探索中体验成功的喜悦,增强学习数学的兴趣和自信心。

四、教学重难点1、教学重点(1)平行线的三条性质。

(2)运用平行线的性质进行简单的推理和计算。

2、教学难点(1)区分平行线的性质和判定。

(2)综合运用平行线的性质和判定解决问题。

五、教法与学法1、教法(1)启发式教学法:通过创设问题情境,引导学生思考,激发学生的学习兴趣。

(2)探究式教学法:让学生通过自主探究、合作交流,发现问题、解决问题,培养学生的创新精神和实践能力。

2、学法(1)自主学习法:让学生自主预习,了解本节课的基本内容,为课堂学习做好准备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线的性质
课题 5.3.1 平行线的性质(1)课型新授
教学目标1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。

2.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.
教学重点探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算. 教学难点能区分平行线的性质和判定,平行线的性质与判定的混合应用.
教学设计
一、观察发现判定两直线平行的方法有哪些?
怎样用符号语言表述?学生口述,并根据图形说出几何语
言。

复习旧知识,便于本节课的使用
二、探究说理1.两条平行线a∥b,再画一条截线c与直线a、b相
交,标出所形成的八角
2.学生测量这些角的度数,把结果填入表内.
角∠1∠2∠3∠4
度数
角∠5∠6∠7∠8
度数
学生动手参与课堂学习,体现学生
的主导地位。

平行线具有性质:
1:
2:
3:
3.图中哪些角是同位角?它们具有怎样的数量关系? 图中哪些角是内错角?它们具有怎样的数量关系?
图中哪些角是同旁内角?它们具有怎样的数量关系?
4.能否将我们发现的结论给予较为准确的文字表述? 几何语言?
讨论这些性质与前面所学的判定有什么不同?
我们能否使用平行线的性质1说出性质2、3成立的道理呢?∵a∥b,
∴∠1=∠4( );又∠2= (对顶角相等) ∴∠2=∠4.
三、感悟深化1.一辆汽车在笔直的公路上行驶,在两次转弯后,
仍在原来的方向上平行前进,那么这两次转弯的角度
可以是()
A、先右转80o,再左转100 o
B、先左转80 o ,再右转80 o
C、先左转80 o ,再左转100 o
D、先右转80 o,再右转80
2.如图是一块梯形铁片的线全部分,量得∠A=100°,
∠B=115°, 梯形另外两个角分别是多少度?
学生先画图,然后根据图向其他同
学解释原因
运用所学的知识解决相关的问题。

四、巩固提高1.如图,BCD是一条直线,∠A=75°,
∠1=53°,∠2=75°,求∠B的度数.
E
2
1D
C
B
A。

相关文档
最新文档