2017-2018年中考数学专题复习题 尺规作图(含解析)

合集下载

2018年中考数学真题分类汇编(第三期)专题35尺规作图试题(含解析)

2018年中考数学真题分类汇编(第三期)专题35尺规作图试题(含解析)

尺规作图一.填空题.(·辽宁省葫芦岛市) 如图,平分∠,是边上一点,以点为圆心、大于点到的距离为半径作弧,交于点,再分别以点为圆心,大于的长为半径作弧,两弧交于点.作直线分别交、于点.若∠°,,则.【解答】解:由作法得⊥于,∴∠°.∵平分∠,∴∠∠×°°.在△中,.在△中,∠°,∴.故答案为:..(·辽宁省抚顺市)(分)如图,▱中,,,连接,分别以点和点为圆心,大于的长为半径作弧,两弧相交于点,,作直线,交于点,连接,则△的周长是.【分析】根据平行四边形的性质可知,,再由垂直平分线的性质得出,据此可得出结论【解答】解:∵四边形是平行四边形,,,∴,.∵由作图可知,是线段的垂直平分线,∴,∴△的周长().故答案为:.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键..(·吉林长春·分)如图,在△中,.以点为圆心,以长为半径作圆弧,交的延长线于点,连结.若∠°,则∠的大小为度.【分析】根据等腰三角形的性质以及三角形内角和定理在△中可求得∠∠°,根据等腰三角形的性质以及三角形外角的性质在△中可求得∠∠∠°.【解答】解:∵,∠°,∴∠∠°,又∵,∴∠∠∠°.故答案为:.【点评】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.二.解答题. (·湖北江汉·分)图①、图②都是由边长为的小菱形构成的网格,每个小菱形的顶点称为格点.点,,,,均在格点上,请仅用无刻度直尺在网格中完成下列画图.()在图①中,画出∠的平分线;()在图②中,画一个△,使点在格点上.【分析】()构造全等三角形,利用全等三角形的性质即可解决问题;()利用菱形以及平行线的性质即可解决问题;【解答】解:()如图所示,射线即为所求.()如图所示,点即为所求;.(·湖北咸宁·分)已知:∠.求作:∠''',使∠'′'∠()如图,以点为圆心,任意长为半径画弧,分别交,于点;()如图,画一条射线′′,以点′为圆心,长为半径间弧,交′′于点′;()以点′为圆心,长为半径画弧,与第步中所而的弧交于点′;()过点′画射线′',则∠'''∠.根据以上作图步骤,请你证明∠''′∠.【答案】证明见解析.【解析】【分析】由基本作图得到′′′′,′′,则根据““可证明△≌△′′′,然后利用全等三角形的性质可得到∠''′∠.【详解】由作法得′′′′,′′,在△和△′′′中,∴△≌△′′′,∴∠∠′′′,即∠''′∠.【点睛】本题考查了基本作图——作一个角等于已知角,全等三角形的判定与性质,熟练掌握基本作图的基本方法以及利用判定三角形全等的方法是解题的关键..(·江苏常州·分)()如图,已知垂直平分,垂足为,与相交于点,连接.求证:∠∠.()如图,在△中,∠°,为的中点.①用直尺和圆规在边上求作点,使得∠∠(保留作图痕迹,不要求写作法);②在①的条件下,如果∠°,那么是的中点吗?为什么?【分析】()只要证明即可解决问题;()①作点关于的对称点′,连接′交于,连接,点即为所求.②结论:是的中点.想办法证明∠∠°,∠∠°,可得,;【解答】()证明:如图中,∵垂直平分线段,∴,∴∠∠,∵∠∠,∴∠∠.()①作点关于的对称点′,连接′交于,连接,点即为所求.②结论:是的中点.理由:设′交于.∵∠°,∠°,∴∠°,∵⊥,∴′,∴′,∴∠′∠′,∵∠∠′∠′°,∴∠′°,∴∠∠°,∠∠°,∴,,∴,∴是的中点.【点评】本题考查作图﹣复杂作图、线段的垂直平分线的性质、直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。

精品-2018年中考数学真题分类汇编第一期专题35尺规作图试题含解析

精品-2018年中考数学真题分类汇编第一期专题35尺规作图试题含解析

尺规作图一、选择题1.(2018年湖北省宜昌市3分)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.【分析】根据过直线外一点向直线作垂线即可.【解答】已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选:B.【点评】此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.2.(2018·山东潍坊·3分)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是()A.∠CBD=30°B.S△BDC=AB2C.点C是△ABD的外心D.sin2A+cos2D=l【分析】根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;【解答】解:由作图可知:AC=AB=BC,∴△ABC是等边三角形,由作图可知:CB=CA=CD,∴点C是△ABD的外心,∠ABD=90°,BD=AB,∴S△ABD=AB2,∵AC=CD,∴S△BDC=AB2,故A、B、C正确,故选:D.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,三角形的外心等知识,直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3. (2018·台湾·分)如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P点,则P即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】甲:根据作图可得AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=180°,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180°.【解答】解:甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=180°∴∠BPC+∠ACP=180°,∴甲错误;乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.【点评】本题考查了垂线的定义、四边形的内角和定理、等腰三角形的性质,正确的理解题意是解题的关键.4.(2018•河南•3分)如图,已知AOBC的顶点O(0,0),A(-1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E 为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G.则点G的坐标为()A.(-1,2)B.(,2)C.(3-,-2)D.(-2,2)5.(2018·浙江舟山·3分)用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()A.B. C.D.【考点】平行四边形的性质,菱形的判定,作图—尺规作图的定义【分析】首先要理解每个图的作法,作的辅助线所具有的性质,再根据平行四边形的性质和菱形的判定定理判定【解答】解:A、作的辅助线AC是BD的垂直平分线,由平行四边形中心对称图形的性质可得AC与BD互相平分且垂直,则四边形ABCD是菱形,故A不符合题意;B、由辅助线可得AD=AB=BC,由平行四边形的性质可得AD//BC,则四边形ABCD是菱形,故B不符合题意;C、辅助线AB、CD分别是原平行四边形一组对角的角平分线,只能说明四边形ABCD是平行四边形,故C符合题意;D、此题的作法是:连接AC,分别作两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,由AD//BC,得∠BAD+∠ABC=180°,∠BAC=∠DAC=∠ACB=∠ACD,则AB=BC,AD =CD,∠BAD=∠BCD,则∠BCD+∠ABC=180°,则AB//CD,则四边形ABCD是菱形故D不符合题意;故答案为C【点评】本题考查了根据平行四边形的性质和菱形的判定定理判定尺规作图正确与否的能力6. (2018•河北•3分)尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-ⅢB.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ二.1. (2018•安徽•分)如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.2. (2018•甘肃白银,定西,武威)如图,在中,.(1)作的平分线交边于点,再以点为圆心,的长为半径作;(要求:不写作法,保留作图痕迹)(2)判断(1)中与的位置关系,直接写出结果.【答案】(1)作图见解析;(2)AC与⊙O相切.【解析】【分析】(1)根据角平分线的作法求出角平分线CO;(2)过O作OD⊥AC交AC 于点D,先根据角平分线的性质求出DO=BO,再根据切线的判定定理即可得出答案.【解答】(1)如图,作出角平分线CO;作出⊙O.(2)AC与⊙O相切.【点评】考查作图—复杂作图,直线与圆的位置关系,熟练掌握角平分线的作法是解题的关键.3.(2018•北京•5分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点.求作:,使得.作法:如图,①在直线上取一点,作射线,以点为圆心,长为半径画弧,交的延长线于点;②在直线上取一点(不与点重合),作射线,以点为圆心,长为半径画弧,交的延长线于点;③作直线.所以直线就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵_______,_______,∴(____________)(填推理的依据).【解析】(1)尺规作图如下图所示:(2),,三角形中位线平行于三角形的第三边.【考点】尺规作图,三角形中位线定理3. (2018·四川自贡·10分)如图,在△ABC中,∠ACB=90°.(1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4;求DE的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)【分析】(1)作∠ABC的角平分线交AC于E,作EO⊥AC交AB于点O,以O为圆心,OB为半径画圆即可解决问题;(2)作OH⊥BC于H.首先求出OH、EC、BE,利用△BCE∽△BED,可得=,解决问题;【解答】解:(1)⊙O如图所示;(2)作OH⊥BC于H.∵AC是⊙O的切线,∴OE⊥AC,∴∠C=∠CEO=∠OHC=90°,∴四边形ECHO是矩形,∴OE=CH=,BH=BC﹣CH=,在Rt△OBH中,OH==2,∴EC=OH=2,BE==2,∵∠EBC=∠EBD,∠BED=∠C=90°,∴△BCE∽△BED,∴=,∴=,∴DE=.【点评】本题考查作图﹣复杂作图,切线的判定和性质,相似三角形的判定和性质、勾股定理、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.(2018·浙江宁波·8分)在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD∥AC,其中D是格点;(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.【分析】(1)将线段AC沿着AB方向平移2个单位,即可得到线段BD;(2)利用2×3的长方形的对角线,即可得到线段BE⊥AC.【考点】作图、平行四边形的性质【解答】解:(1)如图所示,线段BD即为所求;(2)如图所示,线段BE即为所求.【点评】本题主要考查了作图以及平行四边形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.5.(2018·广东广州·12分)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法)(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值。

2018年中考数学复习试题汇编----尺规作图(含答案)

2018年中考数学复习试题汇编----尺规作图(含答案)

2018年中考数学复习试题汇编----尺规作图1.阅读以下作图过程:第一步:在数轴上,点O 表示数0,点A 表示数1,点B 表示数5,以AB 为直径作半圆; 第二步:以B 点为圆心,1为半径作弧交半圆于点C (如图); 第三步:以A 点为圆心,AC 为半径作弧交数轴的正半轴于点M .请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M 表示的数为________.151 (作图正确1分.答案正确1分)2. 下面是“作已知圆的内接正方形”的尺规作图过程 .请回答:该尺规作图的依据是______________________________________________.到线段两端距离相等的点在这条线段的中垂线上;两点确定一条直线;互相垂直的直径将圆四等分;(圆内接正多边形定义)3. 下面是“作顶角为120°的等腰三角形的外接圆”的尺规作图过程.已知:⊙O .求作:⊙O 的内接正方形. 作法:如图,(1)作⊙O 的直径AB ;(2)分别以点A ,点B 为圆心,大于12AB 的长为 半径作弧,两弧分别相交于M 、N 两点; (3)作直线MN 与⊙O 交于C 、D 两点, 顺次连接A 、C 、B 、D .即四边形ACBD 为所求作的圆内接正方形.请回答:该尺规作图的依据是_____________________________________________.4. 石景山区八角北路有一块三角形空地(如图1)准备绿化,拟从点A 出发,将△ABC 分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).请回答,C AC C AC ABC S S S 2211∆∆∆==成立的理由是:① ; ② .16.①两条直线被一组平行线所截,所得的对应线段成比例; ②等底同高的三角形面积相等作法:(1)作射线BM ;(2)在射线BM 上顺次截取BB 1=B 1B 2=B 2B 3; (3)连接B 3C ,分别过B 1、B 2作B 1C 1∥B 2C 2∥B 3C , 交BC 于点C 1、C 2;(4)连接AC 1、AC 2.则C AC C AC ABC S S S 2211∆∆∆==.已知:△ABC ,AB =AC ,∠A =120°. 求作:△ABC 的外接圆. 作法:(1)分别以点B 和点C 为圆心,AB 的长为半径作弧,两弧的一个交点为O ; (2)连接BO ;(3)以O 为圆心,BO 为半径作⊙O .⊙O 即为所求作的圆.16.在数学课上,老师提出利用尺规作图完成下面问题:小路的作法如下:n④在弧 ACB 上取一点 P ,连结 AP ,BP . m所以∠ APB= ∠ ACB .老师说:“小路的作法正确.”请回答:(1)点 O 为△ ABC 外接圆圆心(即 OA=OB=OC )的依据是;(2)∠ APB= ∠ ACB 的依据是.16. (1)线段垂直平分线上的点与这条线段两个端点的距离相等;(2)同弧所对的圆周角相等.6.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:小明的作法如下:请回答:这样做的依据是 .16.圆的定义,直径的定义,直径所对的圆周角为90°,到线段两端点距离相等的点在线段的垂直平分线上,经过半径的外端并且垂直于这条半径的直线是圆的切线.7. 下面是“过圆外一点作圆的切线”的尺规作图过程.请回答以下问题:(1)连接OA ,OB ,可证∠OAP =∠OBP = 90°,理由是 ; (2)直线P A ,PB 是⊙O 的切线,依据是 .16.直径所对的圆周角是直角;经过半径的外端,并且垂直于这条半径的直线是圆的切线.8. 下面是“作出所在的圆”的尺规作图过程.已知:⊙O 和⊙O 外一点P .求作:过点P 的⊙O 的切线. 作法:如图, (1)连接OP ;(2)分别以点O 和点P 为圆心,大于 12OP 的长为 半径作弧,两弧相交于M ,N 两点; (3)作直线MN ,交OP 于点C ;(4)以点C 为圆心,CO 的长为半径作圆,交⊙O 于A ,B 两点; (5)作直线P A ,PB .直线P A ,PB 即为所求作⊙O 的切线.如图,①取线段OB 的中点M ;以M 为圆心,MO 为 半径作⊙M ,与边AB 交于点C ; ②以O 为圆心,OC 为半径作⊙O ; 所以,⊙O 就是所求作的圆.请回答:该尺规作图的依据是 .16. 不在同一直线上的三个点确定一个圆;圆是到定点的距离等于定长的点的集合;线段垂直平分线上的点到线段两个端点的距离相等.9. 16. 阅读下面材料:在数学课上,老师提出如下问题:小霞的作法如下:(1)如图,在平面内任取一点O ; (2)以点O 为圆心,AO 为半径作圆,交射线AB 于点D ,交射线AC 于点E ; (3)连接DE ,过点O 作射线OP 垂直线段DE ,交⊙O 于点P ; (4)连接AP .所以射线AP 为所求.尺规作图:作已知角的角平分线. 已知:如图,已知BAC ∠.求作: BAC ∠的角平分线AP .已知:.求作:所在的圆. 作法:如图,(1)在上任取三个点D ,C ,E ;(2)连接DC ,EC ;(3)分别作DC 和EC 的垂直平分线,两垂直平分线的交点为点O. (4)以 O 为圆心,OC 长为半径作圆,所以⊙O 即为所求作的所在的圆..老师说:“小霞的作法正确.”请回答:小霞的作图依据是.10.下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作法:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD.∠DAB即为所求的角.请回答:该尺规作图的依据是.16.三条边相等的三角形是等边三角形,等边三角形的三个内角都是60°,一条弧所对的圆周角是它所对圆心角的一半;或:直径所对的圆周角为直角,三条边相等的三角形是等边三角形,等边三角形的三个内角都是60°,直角三角形两个锐角互余;或:直径所对的圆周角为直角,1sin2A=,A∠为锐角,30A∠=︒.11.尺规作图:如图,AC为⊙O的直径.(1)求作:⊙O的内接正方形ABCD.(要求:不写作法,保留作图痕迹);(2)当直径AC=4时,求这个正方形的边长.21.(1)如图所示…………………… 2分(2)解:∵ 直径AC =4,∴OA =OB =2. ……………………… 3分∵正方形ABCD 为⊙O 的内接正方形, ∴∠AOB=90°,……………………… 4分∴2222AB OA OB =+=…………………… 5分.。

2018年中考数学专题复习训练:尺规作图

2018年中考数学专题复习训练:尺规作图

中考复习训练尺规作图一、选择题1.下列关于画图的语句正确的是()A. 画直线AB=8cmB. 画射线OA=8cmC. 已知A,B,C三点,过这三点画一条直线D. 过直线AB外一点画一直线与AB平行2.下列各条件中,不能作出唯一三角形的是()A. 已知两边和夹角B. 已知两边和其中一边的对角C. 已知两角和夹边D. 已知三边3.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A. 线段CD的中点B. OA与OB的中垂线的交点C. OA与CD的中垂线的交点D. CD与∠AOB的平分线的交点4.如图,在▱ABCD中,AB>2BC,观察图中尺规作图的痕迹,则下列结论错误的是()A. BG平分∠ABCB. BE=BFC. AD=CHD. CH=DH5.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A. 同位角相等,两直线平行B. 内错角相等,两直线平行C. 两直线平行,同位角相等D. 两直线平行,内错角相等6.用三角尺可以按照下面的方法画∠AOB的角平分线:在OA、OB上分别取点M、N,使OM=ON;再分别过点M、N画OA、OB的垂线,这两条垂线相交于点P,画射线OP(如图),则射线OP平分∠AOB,以上画角平分线时,用到的三角形全等的判定方法是()A. SSSB. SASC. HLD. ASA7. 用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A. 一组邻边相等的四边形是菱形B. 四边相等的四边形是菱形C. 对角线互相垂直的平行四边形是菱形D. 每条对角线平分一组对角的平行四边形是菱形8.如图,根据尺规作图的痕迹,判断下列说法不正确的是()A. AE、BF是△ABC的内角平分线B. CG也是△ABC的一条内角平分线C. 点O到△ABC三边的距离相等D. AO=BO=CO9.如图,已知△ABC中,AC=3,BC=5,AB=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A. 2条B. 3条C. 4条D. 5条10.小明同学画角平分,作法如下:①以O为圆心,适当长为半径作弧,交两边于D、E②分别以C、D为圆心,相同的长度为半径作弧,两弧交于E,③则射线OE就是∠AOB的平分线.小明这样做的依据是()A. SASB. ASAC. AASD. SSS11.如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M、N重合,过角尺顶点C的射线OC便是∠AOB的平分线OC,这一做法用到三角形全等的判定方法是()A. SSSB. SASC. ASAD. HL12.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题13.利用直尺和圆规作出一个角的角平分线的作法,其理论依据是全等三角形判定方法________ .14.下列语句是有关几何作图的叙述.①以O为圆心作弧;②延长射线AB到点C;③作∠AOB ,使∠AOB=∠1;④作直线AB ,使AB=a;⑤过三角形ABC的顶点C作它的对边AB的平行线.其中正确的有________15.已知一条线段作等边三角形,使其边长等于已知线段,则作图的依据是________.16.(2014•河南)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为________.17.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB= ________18.已知△ABC,小明利用下述方法作出了△ABC的一条角平分线.小明的作法:(i)过点B作与AC平行的射线BM;(边AC与射线BM位于边BC的异侧)(ii)在射线BM上取一点D,使得BD=BA;(iii)连结AD,交BC于点E.线段AE即为所求.小明的作法所蕴含的数学道理为________.19. 下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是________20.如图,点D是直线l外一点,在l上去两点A、B,连接AD,分别以点B、D为圆心,AD、AB的长尾半径画弧,两弧交于点C,连接CD、BC,则四边形ABCD是平行四边形,理由是________.21. 如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为________.三、解答题22.已知:在△ABC中,AB=AC.(1)尺规作图:作AD⊥BC于点D.(不要求写作法,保留作图痕迹)(2)延长AD至E点,使得DE=AD.求证:四边形ABEC是菱形.23.利用直尺或圆规画图(不写画法、保留作图痕迹,以答卷上的图为准)(1)利用图a中的网格,过P点画直线AB的平行线;(2)已知:如图b,线段a,b;请按下列步骤画图;①画线段BC,使得BC=a﹣b;②在直线BC外取一点A,使线段BA=a﹣b,画线段AB和射线AC.24. 如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.(Ⅰ)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(Ⅱ)若菱形ABEF的周长为16,AE=4 ,求∠C的大小.参考答案一、选择题D B D D A C B D C D A C二、填空题13. SSS14.③⑤15.SSS16.105°17.125°18.等边对等角;两直线平行,内错角相等19.到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上)20.两组对边分别相等的四边形是平行四边形21.20°三、解答题22.解:(1)如图所示:(2)证明:如图所示:∵AB=AC,AD⊥BC,∴CD=BD,∵AD=DE,∴四边形ABEC是平行四边形,又∵AD⊥BC,∴四边形ABEC是菱形.23.解:(1)如图a所示.(2)请按下列步骤画图:①画线段BC,使得BC=a﹣b;②在直线BC外任取一点A,使线段BA=a﹣b,画直线AB和射线AC.24.解:(Ⅰ)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴四边形ABEF是菱形;(Ⅱ)如图,连结BF,交AE于G.∵菱形ABEF的周长为16,AE=4 ,∴AB=BE=EF=AF=4,AG= AE=2 ,∠BAF=2∠BAE,AE⊥BF.在直角△ABG中,∵∠AGB=90°,∴cos∠BAG= = = ,∴∠BAG=30°,∴∠BAF=2∠BAE=60°.∵四边形ABCD是平行四边形,∴∠C=∠BAF=60°.。

中考数学真题分类汇编第一期专题5尺规作图试题含解析7

中考数学真题分类汇编第一期专题5尺规作图试题含解析7

尺规作图一、选择题1.(2018年湖北省宜昌市3分)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.【分析】根据过直线外一点向直线作垂线即可.【解答】已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选:B.【点评】此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.2.(2018·山东潍坊·3分)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是()A.∠CBD=30°B.S△BDC=AB2C.点C是△ABD的外心D.sin2A+cos2D=l【分析】根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;【解答】解:由作图可知:AC=AB=BC,∴△ABC是等边三角形,由作图可知:CB=CA=CD,∴点C是△ABD的外心,∠ABD=90°,BD=AB,∴S△ABD=AB2,∵AC=CD,∴S△BDC=AB2,故A、B、C正确,故选:D.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,三角形的外心等知识,直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3. (2018·台湾·分)如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P点,则P即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】甲:根据作图可得AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=180°,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180°.【解答】解:甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=180°∴∠BPC+∠ACP=180°,∴甲错误;乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.【点评】本题考查了垂线的定义、四边形的内角和定理、等腰三角形的性质,正确的理解题意是解题的关键.4. (2018•河南•3分)如图,已知Y AOBC 的顶点O (0,0),A (-1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于21DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为( )A.,2)B.2)C.(-2)D.-2,2)5.(2018·浙江舟山·3分)用尺规在一个平行四边形内作菱形ABCD ,下列作法中错误的是( )A.B.C.D.【考点】平行四边形的性质,菱形的判定,作图—尺规作图的定义【分析】首先要理解每个图的作法,作的辅助线所具有的性质,再根据平行四边形的性质和菱形的判定定理判定【解答】解:A、作的辅助线AC是BD的垂直平分线,由平行四边形中心对称图形的性质可得AC与BD互相平分且垂直,则四边形ABCD是菱形,故A不符合题意;B、由辅助线可得AD=AB=BC,由平行四边形的性质可得AD//BC,则四边形ABCD是菱形,故B不符合题意;C、辅助线AB、CD分别是原平行四边形一组对角的角平分线,只能说明四边形ABCD是平行四边形,故C符合题意;D、此题的作法是:连接AC,分别作两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,由AD//BC,得∠BAD+∠ABC=180°,∠BAC=∠DAC=∠ACB=∠ACD,则AB=BC,AD =CD,∠BAD=∠BCD,则∠BCD+∠ABC=180°,则AB//CD,则四边形ABCD是菱形故D不符合题意;故答案为C【点评】本题考查了根据平行四边形的性质和菱形的判定定理判定尺规作图正确与否的能力6. (2018•河北•3分)尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ二.1. (2018•安徽•分)如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.2. (2018•甘肃白银,定西,武威)如图,在中,.(1)作的平分线交边于点,再以点为圆心,的长为半径作;(要求:不写作法,保留作图痕迹)(2)判断(1)中与的位置关系,直接写出结果.【答案】(1)作图见解析;(2)AC与⊙O相切.【解析】【分析】(1)根据角平分线的作法求出角平分线CO;(2)过O作OD⊥AC交AC于点D,先根据角平分线的性质求出DO=BO,再根据切线的判定定理即可得出答案.【解答】(1)如图,作出角平分线CO;作出⊙O.(2)AC 与⊙O 相切.【点评】考查作图—复杂作图,直线与圆的位置关系,熟练掌握角平分线的作法是解题的关键.3.(2018•北京•5分) 下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P .lP求作:PQ ,使得PQ l ∥. 作法:如图,BCA Pl①在直线上取一点A ,作射线PA ,以点A 为圆心,AP 长为半径画弧,交PA 的延长线于点B ;②在直线上取一点C (不与点A 重合),作射线BC ,以点C 为圆心,CB 长为半径画弧,交BC 的延长线于点Q ; ③作直线PQ .所以直线PQ 就是所求作的直线. 根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:∵AB =_______,CB =_______,∴PQ l ∥(____________)(填推理的依据).【解析】(1)尺规作图如下图所示:QlPA CB(2)PA ,CQ ,三角形中位线平行于三角形的第三边.【考点】尺规作图,三角形中位线定理3. (2018·四川自贡·10分)如图,在△ABC 中,∠ACB=90°.(1)作出经过点B ,圆心O 在斜边AB 上且与边AC 相切于点E 的⊙O (要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)设(1)中所作的⊙O 与边AB 交于异于点B的另外一点D ,若⊙O 的直径为5,BC=4;求DE 的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)【分析】(1)作∠ABC 的角平分线交AC 于E ,作EO ⊥AC 交AB 于点O ,以O 为圆心,OB 为半径画圆即可解决问题;(2)作OH ⊥BC 于H .首先求出OH 、EC 、BE ,利用△BCE ∽△BED ,可得=,解决问题;【解答】解:(1)⊙O 如图所示;(2)作OH ⊥BC 于H .∵AC 是⊙O 的切线, ∴OE ⊥AC ,∴∠C=∠CEO=∠OHC=90°,∴四边形ECHO是矩形,∴OE=CH=,BH=BC﹣CH=,在Rt△OBH中,OH==2,∴EC=OH=2,BE==2,∵∠EBC=∠EBD,∠BED=∠C=90°,∴△BCE∽△BED,∴=,∴=,∴DE=.【点评】本题考查作图﹣复杂作图,切线的判定和性质,相似三角形的判定和性质、勾股定理、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.(2018·浙江宁波·8分)在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD∥AC,其中D是格点;(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.【分析】(1)将线段AC沿着AB方向平移2个单位,即可得到线段BD;(2)利用2×3的长方形的对角线,即可得到线段BE⊥AC.【考点】作图、平行四边形的性质【解答】解:(1)如图所示,线段BD即为所求;(2)如图所示,线段BE即为所求.【点评】本题主要考查了作图以及平行四边形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.5.(2018·广东广州·12分)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法)(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值。

尺规作图(解析版)2018年数学全国中考真题-2

尺规作图(解析版)2018年数学全国中考真题-2

2018年数学全国中考真题尺规作图(试题二)解析版一、选择题1.(2018浙江嘉兴,8,3)用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()【答案】C 【解析】根据尺规作图以及菱形的判定方法.二、填空题△中,用直尺和圆规作AB、AC的垂直平分线,分1.(2018年江苏省南京市,14,2分).如图,在ABCBC=,则DE=cm.别交AB、AC于点D、E,连接DE.若10cm【答案】5【解析】∵用直尺和圆规作AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=BC=5cm.故答案为:5.【知识点】线段垂直平分线中位线2.(2018吉林省,11, 2分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为__________【答案】(-1,0)【解析】由题意知,OA=4,OB=3,∴AC=AB=5,则OC=1.则点C坐标为(-1,0)【知识点】尺规作图,实数与数轴的一一对应关系3.(2018山西省,14题,3分)如图,直线MN∥PQ.直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ 于点F.若AB=2.∠ABP =60°则线段AF 的长为 .【答案】2√3【解析】解:过点A 作AG ⊥PQ 交PQ 与点G由作图可知,AF 平分∠NAB∵ MN ∥PQ ;AF 平分∠NAB ;∠ABP =60°∴ ∠AFG =30°在Rt △ABG 中,∠ABP =60°,AB=2;∴ AG =√3在Rt △AFG 中,∠AFG =30°,AG =√3;∴ AF =2√3【知识点】角平分线、特殊角三角函数4. (2018内蒙古通辽,16,3分)如图,在△ABC 中,按以下步骤作图:①分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M 、N 两点;②作直线MN 交BC 于点D ,连接A D .若AB =BD ,AB =6,∠C =30°,则△ACD 的面积为 .【答案】93【解析】依题意MN 是AC 的垂直平分线,所以∠C =∠DAC =30°,所以∠ADB =∠C +∠DAC =60°,又AB =BD ,所以△ABD 为等边三角形,∠BAD =60°,所以∠BAC =∠DAC +∠BAD =90°,因为AB =6,所以AC =63,所以△ABC 的面积为12×6×63=183.又BD =AD =DC ,所以S △ACD =12S △ABC =93,故应填:93.5. (2018辽宁省抚顺市,题号16,分值3)如图,ABCD 中,AB=7,BC=3,连接AC ,分别以点A 和点C 为圆PP【答案】10【解析】由题可知,直线MN 是线段AC 的垂直平分线,∴AE=EC.∵在ABCD 中DE+EC=CD=AB=7,AD=BC=3,∴△AED 的周长为AD+DE+AE=BC+DE+EC=BC+CD=10.【知识点】用尺规作垂直平分线,垂直平分线的性质.三、解答题1. (2018广东省,题号,分值) 如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.【思路分析】(1)根据尺规作图步骤作垂直平分线,保留痕迹即可;(2)先利用菱形性质求得∠DBA 的度数,再利用垂直平分线性质求得∠ABF 的度数,进而求得∠DBF 的度数.【解题过程】(1)如图直线MN 为所求(2)解:∵四边形ABCD 是菱形∴AD =AB ,AD ∥AB ,∵∠DBC =75°,∴∠ADB =75°,CA∴∠ABD =75°∴∠A =30°∵EF 为AB 的垂直平分线∴∠A =∠FBE =30°,∴∠DBE =45°【知识点】菱形性质;线段垂直平分线性质;尺规作图2. (2018甘肃省兰州市,20,6分)如图,在Rt △ABC 中.(1)利用尺度作图,在BC 边上求作一点P ,使得点P 到AB 的距离(PD 的长)等于PC 的长;(2)利用尺规作图,作出(1)中的线段PD .(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【思路分析】PC ⊥AC ,要使P 到AB 的距离(PD 的长)等于PC 的长,即求∠A 的角平分线与BC 的交点.【解题过程】(1)作∠A 的平分线AD ,交BC 于P ;(2)过点P 作直线AB 的垂线,垂中为D 。【知识点】尺规作图19题答案图2FE C DA BMN C A B第20题图3. (2018湖北省江汉油田潜江天门仙桃市,18,5分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O ,M ,N ,A ,B 均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON 的平分线OP ;(2)在图②中,画一个Rt △ABC ,使点C 在格点上.【思路分析】(1)在只能用直尺画角平分线的情况下,就设法将∠MON 放置在能画出角平分线的图形中,如菱形.(2)原图是由全等的小菱形组成的,∴要想找到直角就要从菱形的对角线方面入手考虑.设法找让三角形中的一个顶点处在两个菱形的对角线交点位置,并且在格点上.【解题过程】解:(1)如图①,将∠MON 放在菱形AOBC 中,连接对角线OC ,并取格点P ,OP 即为所求. 2分 如图②所示,△ABC 或△ABC 1均可.4. (湖北省咸宁市,18,7)已知:AOB ∠.求作:,'''B O A ∠使'''AO B AOB ∠=∠ 作法:(1)如图1,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)如图2,画一条射线''A O ,以点'O 为圆心OC 长为半径画弧,交于点''A O 于点'C ;(3)以点'C 为圆心,D C ,长为半径画弧,与第2 步中所画的弧交于点'D ;(4)过点 'D 画射线'OB ,则 '''AO B AOB ∠=∠. 根据以上作图步骤,请你证明AOB B O A ∠=∠'''.(第18题图) 图①图② BAO N M第18题答图 P A 图① ON MB C C 1 C图②B A【思路分析】由画一条射线''A O ,以点'O为圆心OC 长为半径画弧,交于点''A O 于点'C 可得OC =O′C′,由以点'C 为圆心,D C ,长为半径画弧,与第 2 步中所画的弧交于点'D 可得OD =O′D′,CD =C′D′,从而'''.COD C O D ∆≅∆【解题过程】证明:由作图步骤可知,在COD ∆和'''D O C ∆中,''''''OC O C OD O D CD C D ⎧=⎪=⎨⎪=⎩,'''().COD C O D SSS ∴∆≅∆COD D O C ∠=∠∴'''.即AOB B O A ∠=∠'''.【知识点】三角形全等;尺规作图5. (2018广西贵港,20,5分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a ,求作:△ABC ,使∠A =∠α,∠C =90°,AB =a .【思路分析】先作∠A 等于已知角∠α,再在角的一边上截取线段AB =a ,再过B 点作角的另一边的垂线,垂足为C ,则△ABC 即为所求.【解答过程】所作图形如下a A6.(2018江苏常州,27,10)(本小题满分10分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD;(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法).②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?【解答过程】(1)∵EK垂直平分BC,点F在EK上,∴FC=FB,且∠CFD=∠BFD ∵∠AFE=∠BFD,∴∠AFE=∠CFD(2)如图所示,点Q为所求作的点.(3)Q是GN的中点。

中考数学试题分类汇总《尺规作图》练习题

中考数学试题分类汇总《尺规作图》练习题

中考数学试题分类汇总《尺规作图》练习题(含答案)作角平分线1.如图,在△ABC中,∠B=30°,∠C=50°,通过观察尺规作图的痕迹,∠DAE的度数是35°.【分析】由线段垂直平分线的性质和等腰三角形的性质求得∠BAD=30°,结合三角形内角和定理求出∠CAD,根据角平分线的定义即可求出∠DAE的度数.【解答】解:∵DF垂直平分线段AB,∴DA=DB,∴∠BAD=∠B=30°,∵∠B=30°,∠C=50°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣30°﹣50°=100°,∴∠CAD=∠BAC﹣∠BAD=100°﹣30°=70°,∵AE平分∠CAD,∴∠DAE=∠CAD=×70°=35°,2.如图,在△ABC中,∠ABC>∠ACB.(1)尺规作图:在∠ABC的内部作射线BD,交AC于E,使得∠ABE=∠ACB;(不写作法,保留作图痕迹)(2)若(1)中AB=7,AC=13,求AE的长.【解答】解:(1)如图,射线BE即为所求作.(2)∵∠A=∠A,∠ABE=∠C,∴△ABE∽△ACB,∴=,∴=,∴AE=.3.如图,在△ABC中,∠C=90°.(1)求作:射线AD,使它平分∠BAC交BC于点D(请用尺规作图,保留作图痕迹,不写作法);(2)若BD:DC=2:1,BC=7.8cm,求点D到AB的距离.【分析】(1)是基本作图,利用直尺和圆规即可作出;(2)过点D作DE⊥AB于E.根据BD:DC=2:1,BC=7.8cm,可得DC,进而即可求点D到边AB的距离.【解答】解:(1)如图所示:(2)过点D作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴CD=DE,∵BD:DC=2:1,BC=7.8cm,∴DC=7.8÷(2+1)=7.8÷3=2.6cm.∴DE=DC=2.6cm.∴点D到AB的距离为2.6cm.4.如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连接EF,BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,AC=2.判断△BEF的形状,并说明理由,再求出其面积.【解答】解:(1)如图所示:∠CAD的平分线AF即为所求;(2)△BEF是等边三角形;理由如下:∵∠BAD=45°,且∠CAD=2∠BAC,∴∠BAC=∠F AC=∠DAF=15°,∴∠BAF=30°,∵AC=AD,AF是∠CAD的平分线,∴AF⊥CD,∵点E是AC的中点,∴EF=AC=1,∵∠ABC=90°,∴BE=AC=1,∴BE=EF,∠BEC=∠BAE+∠ABE=2∠BAE=30°,∠FEC=∠F AE+∠AFE=2∠F AE=30°,∴∠BEF=60°,∴△BEF是等边三角形;S△BEF=×12=.5.如图,在Rt△ABC中,∠C=90°.(1)尺规作图:作∠A的角平分线AP交BC于点P;(保留作图痕迹,不写作法)(2)在(1)所作的图中,若AC=5,BC=12,求CP的长.【解答】解:(1)如图,AP即为所求;(2)在Rt△ABC中,∠C=90°.∵AC=5,BC=12,∴AB==13,过点P作PD⊥AB于点D,∵AP是∠CAB的平分线,PC⊥AC,PD⊥AB,∴PC=PD,在Rt△APC和Rt△APD中,,∴Rt△APC≌Rt△APD(HL),∴AC=AD=5,∴BD=AB﹣AD=13﹣5=8,∵BP=BC﹣CP=12﹣CP,在Rt△PBD中,根据勾股定理得PB2=PD2+BD2,∴(12﹣CP)2=CP2+82,∴CP=.作一个角等于另一个角6.如图,在△ABC中,∠ABC>∠C.(1)用直尺和圆规在∠ABC的内部作射线BM,使∠ABM=∠ACB(不要求写作法,保留作图痕迹);(2)若(1)中的射线BM交AC于D,AB=4,AC=6,求CD长.【分析】(1)利用基本作图(作一个角等于已知角)作∠ABM=∠ACB即可;(2)先证明△ABD∽△ACB,利用相似比求出AD,然后计算AC﹣AD即可.【解答】解:(1)如图,BM为所作;(2)∵∠ABD=∠C,∠BAD=∠CAB,∴△ABD∽△ACB,∴AB:AC=AD:AB,即4:6=AD:4,∴AD=,∴CD=AC﹣AD=6﹣=.7.观察用直尺和圆规作一个角等于已知角的示意图,能得出∠CPD=∠AOB的依据是()A.由“等边对等角”可得∠CPD=∠AOBB.由SSS可得△OGH≌△PMN,进而可证∠CPD=∠AOBC.由SAS可得△OGH≌△PMN,进而可证∠CPD=∠AOBD.由ASA可得△OGH≌△PMN,进而可证∠CPD=∠AOB【解答】解:由作法得OG=OH=PM=PN,GH=MN,根据“SSS”可判断△OGH≌△PMN,所以∠CPD=∠AOB.尺规作高、作垂线8.如图,已知钝角△ABC.(1)过钝角顶点B作BD⊥AC,交AC于点D(使用直尺和圆规,不写作法,保留作图痕迹);(2)若BC=8,∠C=30°,,求AB的长.【分析】(1)利用尺规作出BD⊥AC,垂足为D即可.(2)在Rt△BCD中求出BD,再在Rt△ABD中,求出AB即可.【解答】解:(1)如图,线段BD即为所求.(2)解:在Rt△BCD中,∵BC=8,∠C=30°∴BD=BC•sin30°=4,在Rt△ABD中,AB===10.作线段的垂直平分线9.如图,在▱ABCD中,AD>AB.(1)尺规作图:作DC边的中垂线MN,交AD边于点E(要求:保留作图痕迹,不写作法);(2)连接EC,若∠BAD=130°,求∠AEC的度数.【解答】解:(1)如图,直线MN,点E即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A+∠D=180°,∵∠A=130°,∴∠D=50°∵MN垂直平分线段CD,∴ED=EC,∴∠D=∠ECD=50°,∴∠AEC=∠D+∠ECD=100°.10.(2022·广州从化区一摸)已知,如图,在Rt△ABC中,∠C=90°,AD平分∠CAB.(1)按要求尺规作图:作AD的垂直平分线(保留作图痕迹);【解答】解:(1)如图:分别以A、D为圆心,大于AD的长为半径作弧,两弧交于M、N,作直线MN,则直线MN即为AD的垂直平分线;11.如图,在△ABC中,AB=9,BC=6.(1)在AB上求作点E,使得EA=EC;(不写作法,保留作图痕迹)(2)若∠ACB=2∠A,求AE的长.【分析】(1)作线段AC的垂直平分线交AB于点E,连接EC即可;(2)证明△BCE∽△BAC,推出BC2=BE•BA,求出BE,可得结论.【解答】解:(1)如图,点E即为所求;(2)∵EA=EC,∴∠A=∠ECA,∵∠ACB=2∠A,∴∠BCE=∠A,∵∠B=∠B,∴△BCE∽△BAC,∴BC2=BE•BA,∴BE==4,∴AE=AB=EB=9﹣4=5.12.如图,在△ABC中,按以下步骤作图:①分别以点A,B为圆心,大于AB长为半径作弧,两弧交于M,N两点;②作直线MN交AC于点D,连接BD.若BD=BC,∠A=36°,则∠C的度数为()A.72°B.68°C.75°D.80°【解答】解:由作法可得MN垂直平分AB,∴DA=DB,∴∠DBA=∠A=36°,∵∠BDC=∠A+∠DBC,∴∠BDC=72°,∵BD=BC,∴∠C=∠BDC=72°,即∠C的度数为72°.13.如图,在△ABC中,分别以A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点,直线PQ 交BC于点D,连接AD;再分别以A、C为圆心,大于AC的长为半径画弧,两弧交于M,N两点,直线MN交BC于点E,连接AE.若CD=11,△ADE的周长为17,则BD的长为6.【解答】解:由作法得PQ垂直平分AB,MN垂直平分AC,∴DA=DB,EA=EC,∵△ADE的周长为17,∴DA+EA+DE=17,∴DB+DE+EC=17,即BC=17,∴BD=BC﹣CD=17﹣11=6.14.如图,已知∠BAC=60°,AD是角平分线且AD=10,作AD的垂直平分线交AC于点F,作DE⊥AC,则△DEF周长为5+5.【解答】解:∵AD的垂直平分线交AC于点F,∴F A=FD,∵AD平分∠BAC,∠BAC=60°,∴∠DAE=30°,∴DE=AD=5,∴AE===5,∴△DEF周长=DE+DF+EF=DE+F A+EF=DE+AE=5+5,复杂作图15.如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC.求证:PD∥AB.【分析】(1)尺规作图作出∠APD=∠ABP,即可得到∠DPC=∠P AB,从而得到△PCD∽△ABP;(2)根据题意得到∠DPC=∠ABC,根据平行线的判定即可证得结论.【解答】解:(1)如图:作出∠APD=∠ABP,即可得到△PCD∽△ABP;(2)证明:如图,∵∠APC=2∠ABC,∠APD=∠ABC,∴∠DPC=∠ABC,∴PD∥AB.16.如图1,在△ABC中,D是AB边上的一点,小明用尺规作图,做法如下:如图2,①以B为圆心,任意长为半径作弧,交BA于F、交BC于G;②以D为圆心,BF为半径作弧,交DA于M;③以M为圆心,FG为半径作弧,两弧相交于N;④过点D作射线DN交AC于点E.若∠ADE=52°,∠C=78°,则∠A 的度数是50度.【解答】解:由作图可知DE∥BC,∴∠AED=∠C=78°,∴∠A=180°﹣∠ADE﹣∠AED=180°﹣52°﹣78°=50°,。

中考数学尺规作图专题复习(含答案)

中考数学尺规作图专题复习(含答案)

中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。

1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。

5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。

【推荐精选】2018年中考数学考点总动员系列 专题29 尺规作图(含解析)

【推荐精选】2018年中考数学考点总动员系列 专题29 尺规作图(含解析)

考点二十九:尺规作图聚焦考点☆温习理解1.尺规作图的作图工具限定只用圆规和没有刻度的直尺2.基本作图(1)作一条线段等于已知线段,以及线段的和﹑差;(2)作一个角等于已知角,以及角的和﹑差;(3)作角的平分线;(4)作线段的垂直平分线;(5)过一点作已知直线的垂线.3.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.4.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆);(2)作三角形的内切圆;(3)作圆的内接正方形和正六边形.5.有关中心对称或轴对称的作图以及设计图案是中考的常见类型6.作图的一般步骤尺规作图的基本步骤:(1)已知:写出已知的线段和角,画出图形;(2)求作:求作什么图形,它符合什么条件,一一具体化;(3)作法:应用“五种基本作图”,叙述时不需重述基本作图的过程,但图中必须保留基本作图的痕迹;(4)证明:为了验证所作图形的正确性,把图作出后,必须再根据已知的定义、公理、定理等,结合作法来证明所作出的图形完全符合题设条件;(5)讨论:研究是不是在任何已知的条件下都能作出图形;在哪些情况下,问题有一个解、多个解或者没有(6)结论:对所作图形下结论.名师点睛☆典例分类考点典例一、应用角平分线、线段的垂直平分线性质画图【例1】(2017四川自贡第22题)两个城镇A,B与一条公路CD,一条河流CE的位置如图所示,某人要修建一避暑山庄,要求该山庄到A,B的距离必须相等,到CD和CE的距离也必须相等,且在∠DCE的内部,请画出该山庄的位置P.(不要求写作法,保留作图痕迹.)【答案】作图见解析.【解析】试题分析:根据角平分线的性质可知:到CD和CE的距离相等的点在∠DCE的角平分线上,所以第一步作:∠ECD的平分线CF;根据中垂线的性质可得:到A、B的距离相等的点在AB的垂直平分线上,所以第二步作线段AB的垂直平分线MN,其交点就是P点.试题解析:作法:①作∠ECD的平分线CF,②作线段AB的中垂线MN,③MN与CF交于点P,则P就是山庄的位置.考点:作图设计.【点睛】本题借助实际场景,考查了几何基本作图的能力,考查了线段垂直平分线和角平分线的性质及应【举一反三】A B C为某公园的三个景点,景点A和景点B之间有一条笔直的小路,(2017黑龙江绥化第22题)如图,,,现要在小路上建一个凉亭P,使景点B、景点C到凉亭P的距离之和等于景点B到景点A的距离.请用直尺和圆规在所给的图中作出点P.(不写作法和证明,只保留作图痕迹)【答案】作图见解析.【解析】考点:作图—应用与设计作图.考点典例二、画已知直线的平行线,垂线【例2】(北京市燕山区2017届九年级一模)下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.请回答:该作图依据是__________________________________________________.【答案】四边相等的四边形是菱形,菱形对边平行,两点确定一条直线【解析】四边相等的四边形是菱形,菱形对边平行,两点确定一条直线。

中考数学专题复习导学案《尺规作图》含答案

中考数学专题复习导学案《尺规作图》含答案

中考数学专题练习尺规作图知识归纳一尺规作图1.定义只用没有刻度的和作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三基本作图的应用1.利用基本作图作三角形1已知三边作三角形;2已知两边及其夹角作三角形;3已知两角及其夹边作三角形;4已知底边及底边上的高作等腰三角形;5已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图1过不在同一直线上的三点作圆即三角形的外接圆.2作三角形的内切圆.基础检测1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为2a ,b +1,则a 与b 的数量关系为A .a =bB .2a +b =﹣1C .2a ﹣b =1D .2a +b =12.如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A ,点D 在BC 异侧,连结AD ,量一量线段AD 的长,约为A .2.5cmB .3.0cmC .3.5cmD .4.0cm3.如图,已知△ABC,∠BAC=90°,请用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形保留作图痕迹,不写作法4.如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A4,3、B4,1,把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C .1画出△A 1B 1C,直接写出点A 1、B 1的坐标;2求在旋转过程中,△ABC 所扫过的面积.5.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB 与BC,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .1试在图中标出点D,并画出该四边形的另两条边;2将四边形ABCD 向下平移5个单位,画出平移后得到的四边形A′B′C′D′.6.已知:线段a 及∠ACB.求作:⊙O,使⊙O 在∠ACB 的内部,CO=a,且⊙O 与∠ACB 的两边分别相切.7.如图,OA=2,以点A 为圆心,1为半径画⊙A 与OA 的延长线交于点C,过点A 画OA 的垂线,垂线与⊙A 的一个交点为B,连接BC1线段BC 的长等于 ; 2请在图中按下列要求逐一操作,并回答问题:①以点 为圆心,以线段的长为半径画弧,与射线BA 交于点D,使线段OD 的长等于A B C②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.达标检测一、选择题1.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为A.65° B.60° C.55° D.45°2.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧错误!;步骤2:以B为圆心,BA为半径画弧错误!,将弧错误!于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是第10题图A.BH垂直分分线段AD B.AC平分∠BAD=BC·AH D.AB=ADC.S△ABC二、填空题3.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB= .4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的是 ;①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.三、解答题5.12分图1是某公交公司1路车从起点站A站途经B站和C站,最终到达终点站D站的格点站路线图.8×8的格点图是由边长为1的小正方形组成1求1路车从A站到D站所走的路程精确到;2在图2、图3和图4的网格中各画出一种从A站到D站的路线图.要求:①与图1路线不同、路程相同;②途中必须经过两个格点站;③所画路线图不重复6.7分图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上.1如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;2在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.7.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形保留作图痕迹,不写作法8.如图,已知BD是矩形ABCD的对角线.1用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F保留作图痕迹,不写作法和证明.2连结BE,DF,问四边形BEDF是什么四边形请说明理由.9.如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.1画出将△ABC向右平移2个单位得到△A1B1C1;2画出将△ABC绕点O顺时针方向旋转90°得到的△A2B2C2;3求△A1B1C1与△A2B2C2重合部分的面积.知识归纳答案一尺规作图1.定义只用没有刻度的直尺和圆规作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三基本作图的应用1.利用基本作图作三角形1已知三边作三角形;2已知两边及其夹角作三角形;3已知两角及其夹边作三角形;4已知底边及底边上的高作等腰三角形;5已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图1过不在同一直线上的三点作圆即三角形的外接圆.2作三角形的内切圆.基础检测答案1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为2a ,b +1,则a 与b 的数量关系为A .a =bB .2a +b =﹣1C .2a ﹣b =1D .2a +b =1解析作图—基本作图;坐标与图形性质;角平分线的性质.根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a |=|b +1|,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 与b 的数量关系.解答解:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,故2a +b +1=0,整理得:2a +b =﹣1,故选:B .点评此题主要考查了每个象限内点的坐标特点,以及角平分线的性质,关键是掌握各象限角平分线上的点的坐标特点|横坐标|=|纵坐标|.2.如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A ,点D 在BC 异侧,连结AD ,量一量线段AD 的长,约为A .2.5cmB .3.0cmC .3.5cmD .4.0cm答案B解析首先根据题意画出图形,由“两组对边分别相等的四边形是平行四边形”,可A B C知四边形ABCD是平行四边形,再根据平行四边形的性质对角线相等,得出AD=BC.最后利用刻度尺进行测量即可.方法指导此题主要考查了复杂作图以及平行四边形的判定和性质,关键是正确理解题意,画出图形.3.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形保留作图痕迹,不写作法考点作图—相似变换.分析过点A作AD⊥BC于D,利用等角的余角相等可得到∠BAD=∠C,则可判断△ABD与△CAD相似.解答解:如图,AD为所作.4. 8分如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A4,3、B4,1,把△ABC绕点C逆时针旋转90°后得到△A1B1C.1画出△A1B1C,直接写出点A1、B1的坐标;2求在旋转过程中,△ABC所扫过的面积.考点作图-旋转变换;扇形面积的计算.分析1根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可,根据A、B的坐标建立坐标系,据此写出点A1、B1的坐标;2利用勾股定理求出AC的长,根据△ABC扫过的面积等于扇形CAA1的面积与△ABC的面积和,然后列式进行计算即可.解答解:1所求作△A1B1C如图所示:由A4,3、B4,1可建立如图所示坐标系,则点A1的坐标为﹣1,4,点B1的坐标为1,4;2∵AC===,∠ACA1=90°∴在旋转过程中,△ABC所扫过的面积为:S扇形CAA1+S△ABC=+×3×2=+3.5.8分如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.1试在图中标出点D,并画出该四边形的另两条边;2将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.考点作图-平移变换.分析1画出点B关于直线AC的对称点D即可解决问题.2将四边形ABCD各个点向下平移5个单位即可得到四边形A′B′C′D′.解答解:1点D以及四边形ABCD另两条边如图所示.2得到的四边形A′B′C′D′如图所示.6.2016.山东省青岛市,4分已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.考点作图—复杂作图.分析首先作出∠ACB的平分线CD,再截取CO=a得出圆心O,作OE⊥CA,由角平分线的性质和切线的判定作出圆即可.解答解:①作∠ACB的平分线CD,②在CD上截取CO=a,③作OE⊥CA于E,以O我圆心,OE长为半径作圆;如图所示:⊙O即为所求.7.如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA的垂线,垂线与⊙A 的一个交点为B,连接BC1线段BC的长等于;2请在图中按下列要求逐一操作,并回答问题:①以点 A 为圆心,以线段BC 的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.考点作图—复杂作图.分析1由圆的半径为1,可得出AB=AC=1,结合勾股定理即可得出结论;2①结合勾股定理求出AD的长度,从而找出点D的位置,根据画图的步骤,完成图形即可;②根据线段的三等分点的画法,结合OA=2AC,即可得出结论.解答解:1在Rt△BAC中,AB=AC=1,∠BAC=90°,∴BC==.故答案为:.2①在Rt△OAD中,OA=2,OD=,∠OAD=90°,∴AD===BC.∴以点A为圆心,以线段BC的长为半径画弧,与射线BA交于点D,使线段OD的长等于.依此画出图形,如图1所示.故答案为:A;BC.②∵OD=,OP=,OC=OA+AC=3,OA=2,∴.故作法如下:连接CD,过点A作AP∥CD交OD于点P,P点即是所要找的点.依此画出图形,如图2所示.达标检测答案一、选择题1.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为A.65° B.60° C.55° D.45°考点线段垂直平分线的性质.分析根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.解答解:由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠CAD=65°,故选A.点评此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.2.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧错误!;步骤2:以B为圆心,BA为半径画弧错误!,将弧错误!于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是第10题图A.BH垂直分分线段AD B.AC平分∠BAD=BC·AH D.AB=ADC.S△ABC答案:A解析:AD相当于一个弦,BH、CH⊥AD;B、D两项不一定;C项面积应除以2;知识点:尺规作图二、填空题3.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB= 5 .考点作图—基本作图;线段垂直平分线的性质.分析根据线段垂直平分线的作法可知直线CD是线段AB的垂直平分线,利用线段垂直平分线性质即可解决问题.解答解:由题意直线CD是线段AB的垂直平分线,∵点F在直线CD上,∴FA=FB,∵FA=5,∴FB=5.故答案为5.4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的是 ;①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.解析①根据作图的过程可以判定AD是∠BAC的角平分线;②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的中垂线上;④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.解答解:①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②如图,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,即∠ADC=60°.故②正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④∵如图,在直角△ACD中,∠2=30°,∴CD=AD,∴BC=CD+BD=AD+AD=AD,S△DAC=ACCD=ACAD.∴S△ABC=ACBC=ACAD=ACAD,∴S△DAC:S△ABC=ACAD: ACAD=1:3.故④正确.综上所述,正确的结论是:①②③④.点评本题考查了角平分线的性质、线段垂直平分线的性质以及作图﹣基本作图.解题时,需要熟悉等腰三角形的判定与性质.三、解答题5.12分图1是某公交公司1路车从起点站A站途经B站和C站,最终到达终点站D站的格点站路线图.8×8的格点图是由边长为1的小正方形组成1求1路车从A站到D站所走的路程精确到;2在图2、图3和图4的网格中各画出一种从A站到D站的路线图.要求:①与图1路线不同、路程相同;②途中必须经过两个格点站;③所画路线图不重复考点作图—应用与设计作图;勾股定理的应用.分析1先根据网格求得AB、BC、CD三条线段的长,再相加求得所走的路程的近似值;2根据轴对称、平移或中心对称等图形的变换进行作图即可.解答解:1根据图1可得:,,CD=3∴A站到B站的路程=≈;2从A站到D站的路线图如下:6.7分图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上.1如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;2在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.考点作图-轴对称变换.分析1直接利用网格结合勾股定理得出符合题意的答案;2直接利用网格结合矩形的性质以及勾股定理得出答案.解答解:1如图1所示:四边形AQCP即为所求,它的周长为:4×=4;2如图2所示:四边形ABCD即为所求.7.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形保留作图痕迹,不写作法考点作图—相似变换.分析过点A作AD⊥BC于D,利用等角的余角相等可得到∠BAD=∠C,则可判断△ABD与△CAD相似.解答解:如图,AD为所作.8.如图,已知BD是矩形ABCD的对角线.1用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F保留作图痕迹,不写作法和证明.2连结BE,DF,问四边形BEDF是什么四边形请说明理由.考点矩形的性质;作图—基本作图.分析1分别以B、D为圆心,比BD的一半长为半径画弧,交于两点,确定出垂直平分线即可;2连接BE,DF,四边形BEDF为菱形,理由为:由EF垂直平分BD,得到BE=DE,∠DEF=∠BEF,再由AD与BC平行,得到一对内错角相等,等量代换及等角对等边得到BE=BF,再由BF=DF,等量代换得到四条边相等,即可得证.解答解:1如图所示,EF为所求直线;2四边形BEDF为菱形,理由为:证明:∵EF垂直平分BD,∴BE=DE,∠DEF=∠BEF,∵AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,∵BF=DF,∴BE=ED=DF=BF,∴四边形BEDF为菱形.9.如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.1画出将△ABC向右平移2个单位得到△A1B1C1;2画出将△ABC绕点O顺时针方向旋转90°得到的△A2B2C2;3求△A1B1C1与△A2B2C2重合部分的面积.考点作图-旋转变换;作图-平移变换.分析1将△ABC向右平移2个单位即可得到△A1B1C1.2将△ABC绕点O顺时针方向旋转90°即可得到的△A2B2C2.3B2C2与A1B1相交于点E,B2A2与A1B1相交于点F,如图,求出直线A1B1,B2C2,A2B2,列出方程组求出点E、F 坐标即可解决问题.解答解:1如图,△A1B1C1为所作;2如图,△A2B2C2为所作;3B2C2与A1B1相交于点E,B2A2与A1B1相交于点F,如图,∵B20,1,C22,3,B11,0,A12,5,A25,0,∴直线A1B1为y=5x﹣5,直线B2C2为y=x+1,直线A2B2为y=﹣x+1,由解得,∴点E,,由解得,∴点F,.∴S△BEF=1509676.∴△A1B1C1与△A2B2C2重合部分的面积为.。

(完整版)中考数学尺规作图专题复习(含答案)

(完整版)中考数学尺规作图专题复习(含答案)

中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。

1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。

5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。

中考数学《尺规作图》专题复习试卷含试卷分析

中考数学《尺规作图》专题复习试卷含试卷分析

初三数学专题复习尺规作图一、单选题1.用尺规作图,不能作出唯一直角三角形的是()A. 已知两条直角边B. 已知两个锐角C. 已知一直角边和直角边所对的一锐角D. 已知斜边和一直角边2.根据已知条件作符合条件的三角形,在作图过程中,主要依据是()A. 用尺规作一条线段等于已知线段B. 用尺规作一个角等于已知角C. 用尺规作一条线段等于已知线段和作一个角等于已知角D. 不能确定3.用尺规作图,下列条件中可能作出两个不同的三角形的是()A. 已知三边B. 已知两角及夹边C. 已知两边及夹角D. 已知两边及其中一边的对角4.尺规作图是指()A. 用直尺规范作图B. 用刻度尺和圆规作图C. 用没有刻度的直尺和圆规作图D. 直尺和圆规是作图工具5.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A. 以点C为圆心,OD为半径的弧B. 以点C为圆心,DM为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DM为半径的弧6. 如图,用尺规作出∠OBF=∠AOB,作图痕迹是()A. 以点B为圆心,OD为半径的圆B. 以点B为圆心,DC为半径的圆C. 以点E为圆心,OD为半径的圆D. 以点E为圆心,DC为半径的圆7.如图,下面是利用尺规作∠AOB的角平分线OC的作法:①以点O为圆心,任意长为半径作弧,交OA、OB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内部交于点C;③作射线OC,则射线OC就是∠AOB的平分线.以上用尺规作角平分线时,用到的三角形全等的判定方法是()A. SSSB. SASC. ASAD. AAS8.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,由作法可得△OCP≌△ODP,判定这两个三角形全等的根据是()A. SASB. ASAC. AASD. SSS9.下列作图语句中,不准确的是()A. 过点A、B作直线ABB. 以O为圆心作弧C. 在射线AM上截取AB=aD. 延长线段AB到D ,使DB=AB10.如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,是()A. 以点C为圆心,OD为半径的弧B. 以点C为圆心,DM为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DM为半径的弧11.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.点P关于x轴的对称点P′的坐标为(a,b),则a与b的数量关系为()A. a+b=0B. a+b>0C. a﹣b=0D. a﹣b>012.如图所示的作图痕迹作的是()A. 线段的垂直平分线B. 过一点作已知直线的垂线C. 一个角的平分线D. 作一个角等于已知角13.下列作图语句正确的是()A. 作射线AB,使AB=aB. 作∠AOB=∠aC. 延长直线AB到点C,使AC=BCD. 以点O为圆心作弧14.某探究性学习小组仅利用一副三角板不能完成的操作是()A. 作已知直线的平行线B. 作已知角的平分线C. 测量钢球的直径D. 作已知三角形的中位线15.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(m,n﹣3),则m与n的数量关系为()A. m﹣n=﹣3B. m+n=﹣3C. m﹣n=3D. m+n=316.小明用尺规作图作△ABC边AC上的高BH,作法如下:①分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于F;②作射线BF,交边AC于点H;③以B为圆心,BK长为半径作弧,交直线AC于点D和E;④取一点K,使K和B在AC的两侧;所以,BH就是所求作的高.其中顺序正确的作图步骤是()A. ①②③④B. ④③②①C. ②④③①D. ④③①②17.已知∠AOB ,求作射线OC ,使OC平分∠AOB作法的合理顺序是()①作射线OC;②在OA和OB上分别截取OD ,OE ,使OD=OE;③分别以D ,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C .A. ①②③B. ②①③C. ②③①D. ③②①二、填空题18.画线段AB;延长线段AB到点C,使BC=2AB;反向延长AB到点D,使AD=AC,则线段CD=________AB.19.已知,∠AOB .求作:∠A′O′B′,使∠A′O′B′=∠AOB .作法:①以________为圆心,________为半径画弧.分别交OA ,OB于点C ,D .②画一条射线O′A′,以________为圆心,________长为半径画弧,交O′A′于点C′,③以点________为圆心________长为半径画弧,与第2步中所画的弧交于点D′.④过点________画射线O′B′,则∠A′O′B′=∠AOB .20.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线AP,交CD于点M.若∠ACD=120°,则∠MAB 的度数为________ .21.已知△ABC,小明利用下述方法作出了△ABC的一条角平分线.小明的作法:(i)过点B作与AC平行的射线BM;(边AC与射线BM位于边BC的异侧)(ii)在射线BM上取一点D,使得BD=BA;(iii)连结AD,交BC于点E.线段AE即为所求.小明的作法所蕴含的数学道理为________.22.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,(1)连接OP,作线段OP的垂直平分线MN交OP于点C;(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;(3)作直线PA,PB.所以直线PA,PB就是所求作的切线.老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是________ ;由此可证明直线PA,PB都是⊙O 的切线,其依据是________三、解答题23.如图所示,作△ABC关于直线l的对称.24.在△ABC中,F是BC上一点,FG⊥AB,垂足为G.(1)过C点画CD⊥AB,垂足为D;(2)过D点画DE//BC,交AC于E;(3)说明∠EDC=∠GFB的理由.25.如图,△ABC,用尺规作图作角平分线CD.(保留作图痕迹,不要求写作法)四、综合题26.看图、回答问题(1)已知线段m和n,请用直尺和圆规作出等腰△ABC,使得AB=AC,BC=m,∠A的平分线等于n.(只保留作图痕迹,不写作法)(2)若①中m=12,n=8;请求出腰AB边上的高.27.如图,平面内有A、B、C、D四点,按照下列要求画图:(1)顺次连接A、B、C、D四点,画出四边形ABCD;(2)连接AC、BD相交于点O;(3)分别延长线段AD、BC相交于点P;(4)以点C为一个端点的线段有________条;(5)在线段BC上截取线段BM=AD+CD,保留作图痕迹.28.已知不在同一条直线上的三点P,M,N(1)画射线NP;再画直线MP;(2)连接MN并延长MN至点R,使NR=MN;(保留作图痕迹,不写作图过程)(3)若∠PNR比∠PNM大100°,求∠PNR的度数.答案解析部分一、单选题1.【答案】B2.【答案】C3.【答案】D4.【答案】C5.【答案】D6.【答案】D7.【答案】A8.【答案】D9.【答案】B10.【答案】D11.【答案】C12.【答案】B13.【答案】B14.【答案】C15.【答案】D16.【答案】D17.【答案】C二、填空题18.【答案】619.【答案】O;任意长;O′;OC;C ;CD;D′20.【答案】30°21.【答案】等边对等角;两直线平行,内错角相等22.【答案】直径所对的圆周角是90°;经过半径外端,且与半径垂直的直线是圆的切线三、解答题23.【答案】解答:解:如图所示:24.【答案】(1)(2)(3)解:因为DE//BC,所以∠EDC=∠BCD,因为FG⊥AB,CD⊥AB,所以CD//FG,所以∠BCD=∠GFB,所以∠EDC=∠GFB。

2018年 中考数学专题之尺规作图分类总结

2018年 中考数学专题之尺规作图分类总结

专题二尺规作图类型一角平分线尺规作图题型一:如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.变式一:如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30°(1)利用尺规作∠ABC的平分线BD,交AC于点E,交⊙O于点D,连接CD(保留作图痕迹,不写作法)(2)在(1)所作的图形中,求△ABE与△CDE的面积之比.变式二:如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=.类型二垂直平分线(即中垂线)尺规作图题型一:如图,在△ABC中,∠C=60°,∠A=40°.(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);(2)求证:BD平分∠CBA.变式一:如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);(2)求证:DE=BF.变式二:如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.类型三角平分线与中垂线尺规作图题型一:某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)变式一:如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)变式二:如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)(1)作∠DAC的平分线AM;(2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE,CF.猜想并证明:判断四边形AECF的形状并加以证明.类型四垂线尺规作图题型一:如图,AE∥BF,AC平分∠BAE,交BF于C.(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.变式一:根据要求画图,并回答问题.已知:直线AB、CD相交于点O,且OE⊥AB(1)过点O画直线MN⊥CD;(2)若点F是(1)所画直线MN上任意一点(O点除外),且∠AOC=34°,求∠EOF的度数.变式二:如图,△ABC是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母.(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求的长.类型五作角相等尺规作图题型一:已知:∠AOB求作:∠A′O′B′使∠A′O′B′=∠AOB(不写作法,保留作图痕迹)变式一:如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)变式二:已知∠BAD,C是AD边上一点,按要求画图,并保留作图痕迹(1)用尺规作图法在AD的右侧以C为顶点作∠DCP=∠DAB;(2)在射线CP上取一点E,使CE=AB,连接BE,AE;(3)画出△ABE的边BE上的高AF和AB边上的高EG.中考真题(2017广东)20.(7分)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.(2016广东)19.(6分)如图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连接DE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE=4,求BC的长.(2015广东)19.(6分)如图,已知锐角△ABC.(1)过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,若BC=5,AD=4,tan∠BAD=,求DC的长.。

中考数学尺规作图专题复习(含答案)

中考数学尺规作图专题复习(含答案)

中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。

1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。

5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。

中考数学复习《尺规作图》练习题真题含答案

中考数学复习《尺规作图》练习题真题含答案

第七单元图形的变化第29课时尺规作图1. (2017随州)如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()第1题图A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧2. (2017衢州)下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A. ①B. ②C. ③D. ④3. (2017河北)如图,依据尺规作图的痕迹,计算∠α=________°.第3题图 第4题图 第5题图4. (2017邵阳)如图所示,已知∠AOB =40°,现按照以下步骤作图:①在OA ,OB 上分别截取线段OD ,OE ,使OD =OE ;②分别以D ,E 为圆心,以大于12DE 的长为半径画弧,在∠AOB 内两弧交于点C ;③作射线OC .则∠AOC 的大小为________.5. (2017成都)如图,在▱ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交AB ,AD 于点M ,N ;②分别以M ,N 为圆心,以大于12MN的长为半径作弧,两弧相交于点P ; ③作射线AP ,交边CD 于点Q ,若DQ =2QC ,BC =3,则▱ABCD 的周长为__________.6. (8分)(2017泰州)如图,△ABC 中,∠ACB >∠ABC.(1)用直尺和圆规在∠ACB 的内部作射线CM ,使∠ACM =∠ABC ;(不要求写作法,保留作图痕迹)(2)若(1)中的射线CM 交AB 于点D ,AB =9,AC =6,求AD 的长.第6题图7. (8分)(2017广东)如图,在△ABC 中,∠A >∠B .(1)作边AB 的垂直平分线DE ,与AB 、BC 分别相交于点D 、E (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE ,若∠B =50°,求∠AEC 的度数.第7题图8. (9分)(2017南京)“直角”在初中几何学习中无处不在.如图①,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).小丽的方法如图②,在OA、OB上分别取点C、D,以C为圆心,CD长为半径画弧,交OB的反向延长线于点E.若OE=OD.则∠AOB=90°.第8题图①第8题图②答案1.D【解析】设弧①与弧②的交点为点G,由解图可知,当△EOG≌△EOF 时,∠AOC=∠AOB,要使△EOG≌△EOF,则EG=EF,∴以点E为圆心,EF长为半径画弧可使得EG=EF,∴第二步的作图痕迹的作法是以点E为圆心,EF 长为半径画弧.2. C 【解析】③根据其作法确定的点只有一个,而必须是两点才能确定一条直线,因此③是错误的.3. 56 【解析】如解图,由作图痕迹可知,AG 是∠CAD 的平分线,EF 是AC 的垂直平分线,点I 为AG 与EF 的交点,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠CAD =∠ACB =68°,∵AG 是∠CAD 的平分线,∴∠CAG =12∠CAD =34°,∵EF 是AC 的垂直平分线,∴∠AHE =90°,∴∠α=∠AIH =90°-∠CAG =56°.4. 20° 【解析】根据作图步骤可知,射线OC 为∠AOB 的平分线,则∠AOC =12∠AOB =20°. 5. 15 【解析】由题意可知,AQ 平分∠DAB ,即∠DAQ =∠BAQ ,∵四边形ABCD 是平行四边形,∴AD =BC ,DC =AB ,DC ∥AB ,∴∠DQA =∠BAQ =∠DAQ ,∴DQ =AD ,∵BC =3,∴DQ =AD =BC =3,∵DQ =2QC ,∴QC =1.5,∴CD =DQ +QC =4.5,∴平行四边形ABCD 的周长为2(AD +CD )=2×(3+4.5)=15.6. 解:(1)如解图所示,CM 即为所求;(2)在△ACD 和△ABC 中,⎩⎨⎧∠ACM =∠ABC ∠A =∠A, ∴△ACD ∽△ABC , ∴AD AC =AC AB ,∵AB =9,AC =6,∴AD =4.7. 解:(1)如解图,DE 是边AB 的垂直平分线;(2)如解图,连接AE ,∵DE 是AB 的垂直平分线,∴AE =BE ,∴∠BAE =∠B =50°,∵∠AEC 是△ABE 的外角,∴∠AEC =∠BAE +∠B =100°.8. 解:方法一:如解图①,在OA、OB上分别截取OC=4,OD=3,若CD=5,则∠AOB=90°.方法二:如解图②,在OA、OB上分别取点C、D,以CD为直径画圆.若点O在圆上,则∠AOB=90°.。

中考数学专题练习:尺规作图(含答案)

中考数学专题练习:尺规作图(含答案)

中考数学专题练习:尺规作图(含答案)1.(·随州)如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是( )A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧2.(·河北) 尺规作图要求,Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.做线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线.Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A.①—Ⅳ,②—Ⅱ,③—Ⅰ,④—ⅢB.①—Ⅳ,②—Ⅲ,③—Ⅱ,④—ⅠC.①—Ⅱ,②—Ⅳ,③—Ⅲ,④—ⅠD.①—Ⅳ,②—Ⅰ,③—Ⅱ,④—Ⅲ3.(·潍坊) 如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是( ) A. ∠CBD=30°B. S △BDC =34AB 2 C. 点C 是△ABD 的外心 D. sin 2A +cos 2D =14. (·湖州) 尺规作图特有魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r 的⊙O 六等分,依次得到A 、B 、C 、D 、E 、F 六个分点; ②分别以A ,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点; ③连接OG.问:OG 的长是多少?大臣给出的正确答案应是( ) 3rB. (1+22)r C. (1+32)rD. 2r5. (·河南) 如图,已知▱AOBC 的顶点O(0,0),A(-1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G.则点G 的坐标为( )A.(5-1,2) B. (5,2)C.(3-5,-2) D. (5-2,2)6.(·南通) 如图,Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,按下列步骤作图.步骤1:分别以点C和点D为圆心,大于12CD的长为半径作弧,两弧相交于M,N两点;步骤2:作直线MN,分别交AC,BC于点E,F;步骤3:连接DE,DF.若AC=4,BC=2,则线段DE的长为( )A. 53B.32C. 2D.437.(·南京) 如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10 cm,则DE=________cm.8.(·山西) 如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD长为半径作弧,两弧在∠NA B内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为______.9.(·创新) 下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作图:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD,∠DAB即为所求的角.请回答:该尺规作图的依据是__________________________________________________________________________________________________________.10.(·广东) 如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.11.(·福建)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A′B′,∠A′(∠A′=∠A).以线段A′B′为一边,在给出的图形上用尺规作出△A′B′C′,使得:△A′B′C′∽△ABC.不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.12.(·北京) 下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P.求作:PQ,使得PQ∥l.作法:如图,①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.∴直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=________,CB=________,∴PQ∥l(____________________________________)(填推理的依据).13.(·绥化) 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,D、E分别是斜边AB、直角边BC上的点,把△ABC沿着直线DE折叠.(1)如图1,当折叠后点B和点A重合时,用直尺和圆规作出直线DE (不写作法和证明,保留作图痕迹).(2)如图2,当折叠后点B落在AC边上点P处,且四边形PEBD是菱形时,求折痕DE的长.参考答案【基础训练】1.D 2.D 3.D 4.D 5.A 6.D7.5 8.2 39.直径所对的圆周角是直角,等边三角形的每个内角为60°,直角三角形两锐角互余等10.解:(1)如解图所示;(2)∵菱形ABCD,∠CBD=75°,∴CD=CB,∠CBD=∠CDB=75°,∴∠C=180°-∠CBD-∠CDB=180°-75°-75°=30°,∴∠A=∠C=30°,∵EF是AB的垂直平分线,∴∠A=∠FBA=30°,∵∠ABD=∠CBD=75°,∴∠DBF=∠ABD-∠FBA=75°-30°=45°.11.解:①如解图,△A′B′C′即为所求作的三角形.②已知:△A′B′C′∽△ABC,CD和C′E分别为AB和A′B′边上的中线,求证:CDC′E=BCB′C′.证明:∵C D和C′E分别为AB和A′B′边上的中线,∴BD=12AB,B′E=12A′B′,∴BDAB=B′EA′B′=12,∴BDB′E=ABA′B′,∵△A′B′C′∽△ABC,∴∠CBA=∠C′B′A′,BCB′C′=ABA′B′,∴BDB′E=BCB′C′,∴△B′C′E∽△BCD,∴CDC′E=BCB′C′.12.解:(1)尺规作图如解图所示:(2)PA,CQ,三角形中位线平行于三角形的第三边.13.解:(1)如解图1,DE为所求作的直线.(2)如解图2,连接BP,∵四边形PEBD是菱形,∴PE=BE,设CE=x,则BE=PE=4-x,∵PE∥AB,∴△PCE∽△ACB,∴CECB=PEAB,∴x4=4-x5,∴x=169,∴CE=169,∴BE=PE=209,在Rt△PCE中,∵PE=209,CE=169,∴PC=43在Rt△PCB中,∵PC=43,BC=4,∴BP=4310,又∵S菱形PEBD =BE·PC=12DE·BP,∴12×4310DE=209×43,∴DE=4910.。

2017全国中考数学真题 尺规作图(选择题+填空题+解答题)解析版

2017全国中考数学真题 尺规作图(选择题+填空题+解答题)解析版

2017全国中考数学真题知识点45尺规作图(选择题+填空题+解答题)解析版一、选择题1.(2017浙江衢州,7,3分)下列四种基本尺规作图分别表示①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点作已知直线的垂线.则对应选项中作法错误..的是()①②③④A.①B.②C.③D.④答案:C,解析:①利用有三条边对应相等的两个三角形全等及全等三角形对应角相等可作一个角等于已知角;②利用有三条边对应相等的两个三角形全等及全等三角形对应角相等可作一个角的平分线;③根据到线段两端点距离相等的点在线段的垂直平分线上及两点确定一条直线可作已知线段的垂直平分线,但是这里只确定了一个点,不能确定直线,③错误;④根据到线段两端点距离相等的点在线段的垂直平分线上及两点确定一条直线可过直线外一点作已知直线的垂线.2. 8.(2017浙江义乌,8,4分)在探索“尺规三等分角”这个数学名题的过程中,曾利用了下图,该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA,若∠ACB=21°,则∠ECD的度数是AA.7°B.21°C.23°D.24°答案:C,解析:设∠E=x°,则∠FAE=∠FEA=x°,∠ACF=∠AFC=∠FAE+∠FEA=2x°.∵四边形ABCD 是矩形,∴AB∥DC,∴∠DCE=∠E=x°.∵∠BCD=90°,∴∠ACB+∠ACF+∠ECD=90°,即21°+2x°+x°=90°,∴x=23,∴∠ECD=23°.3. 8.(2017湖北宜昌,3分)如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于12EF的长为半径作弧,两弧相交于G、H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EFC.GH垂直平分EF D.GH平分AF答案:C,解析:根据尺规作图方法和痕迹可知GH是线段EF的垂直平分线,故选C.4.(2017湖北随州,6,3分)如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径,那么第二步的作图痕迹②的作法是()画弧①,分别交OA、OB于点E、FC.以点E为圆心,OE长为半径画弧D.以点E为圆心,EF长为半径画弧答案:D,解析:作一个角等于已知角,依据是用“SSS”说明三角形全等,显然图中已满足“OE=OE,OF =OG”,只要添加“EF=EG”,故作图痕迹②的圆心是点E,半径是EF长.G5.8.(2017浙江绍兴,4分)在探索“尺规三等分角”这个数学名题的过程中,曾利用了下图,该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB =21°,则∠ECD的度数是A.7°B.21°C.23°D.24°【答案】C.【解析】CxECDBECDxxxAEFACFACBBABCDxACFAFCACFxAFCFEAFAExAEF故选又,是矩形,四边形设,23,//,2390221,9090,2,,2,,︒==∠∴︒=∴︒=++︒∴︒=∠+∠+∠∴︒=∠∴=∠∴∠=∠=∠∴∠=∠=∠6.(2017湖北襄阳,9,3分)如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,.以点C为圆心,CB 长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于12BD的长为半径作弧,两弧相交于点E;作射线CE交AB于点F.则AF的长为()A.5 B.6 C.7 D.8答案:B,解析:在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AC==tan3BCA∠43.由作图可知,CF⊥AB,∴AF=AC·cos30°=43×23=6.7.(2017山东东营,7,3分)如图,在□ABC D中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.12【答案】B【解析】连接EF,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∵AE平分∠BAD,∴∠FAE=∠EAB,∴∠EAB =∠AEB,∴AB=EB,由作图可得,AB=AF,∴EB=AF,又∵AD∥BC,∴四边形ABEF是平行四边形,再由AB=AF,可得□AB EF是菱形。

2017-2018年中考数学专题复习题:尺规作图(含答案)-精选学习文档

2017-2018年中考数学专题复习题:尺规作图(含答案)-精选学习文档

2019-2019年中考数学专题复习题:尺规作图一、选择题1.尺规作图是指A. 用直尺规范作图B. 用刻度尺和圆规作图C. 用没有刻度的直尺和圆规作图D. 直尺和圆规是作图工具2.利用尺规作图,作边上的高AD,正确的是A. B.C. D.3.如图,点C在的OB边上,用尺规作出了,作图痕迹中,弧FG是A. 以点C为圆心,OD为半径的弧B. 以点C为圆心,DM为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DM为半径的弧4.在平面直角坐标系xOy中,以原点O为圆心,任意长为半径作弧,分别交x轴的负半轴和y轴的正半轴于A点,B点分别以点A,点B为圆心,AB的长为半径作弧,两弧交于P点若点P的坐标为,则A. B. C. D.5.如图,在▱ABCD中,用直尺和圆规作的平分线AG交BC于点E,若,,则AE的长为A.B.C.D.6.经过平面内一点P,画两边垂线段画法正确的是A. B.C. D.7.郑萌用已知线段a,,且,根据下列步骤作,则郑萌所作的三角形是步骤:作线段;作线段AB的垂直平分线MN,交AB于点O;以点B为圆心,线段b的长为半径画弧,交于点C,连接BC,AC.A. 等腰三角形B. 等边三角形C. 直角三角形D. 钝角三角形8.如图,在中,,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法错误的是A.B. 点D到AB边的距离就等于线段CD的长C.D. AD垂直平分MN9.尺规作图作的平分线如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于长为半径画弧,两弧交于点P,作射线OP,连结CD,则下列结论一定正确的个数有个.;;;是线段CD的垂直平分线.A. 1B. 2C. 3D. 410.如图,以O为圆心,任意长为半径画弧,与射线OM相交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则的值等于A. B. C. D.11.如图,在余料ABCD中,,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于长为半径画弧,两弧在内部相交于点O,画射线BO,交AD于点若,则的度数为A.B.C.D.二、填空题12.如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为______.13.在中,分别以点A和点B为圆心,大于的长为半径画弧,两弧相交于M,N,作直线MN,交BC于点D,连接如果,,那么______.14.如图,在长方形ABCD中,点P、E分别是线段AC、AD上的动点,连接PE、PD,若使得的值最小,应如何确定点P和点E的位置?请你在图中画出点P和点E的位置,并简述画法.______.15.如图所示,在每个边长都为1的小正方形组成的网格中,点A、P分别为小正方形的中点,B为格点.线段AB的长度等于______;Ⅱ在线段AB上存在一个点Q,使得点Q满足,请你借助给定的网格,并利用不带刻度的直尺作出,并简要说明你是怎么找到点Q的:______.16.如图,在中,,,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心,大于的长为半径画弧,再画弧交于点P,连接AP并延长交BC于点D,则下列结论:是的平分线;;点D在AB的垂直平分线上;其中结论正确的序号为______ .17.已知和线段m,n,求作,使,,,作法的合理顺序为______ 填序号1,2等即可.在射线BD上截取线段;作一条线段;以B为顶点,以BC 为一边,作角;连接AC,就是所求作的三角形.18.下列语句表示的图形是只填序号过点O的三条直线与另条一直线分别相交于点B、C、D三点:______ .以直线AB上一点O为顶点,在直线AB的同侧画和:______ .过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D 三点:______ .19.如图,已知线段AB,分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,连接AC,BC,BD,其中,,则四边形ABCD的面积为______ .20.一位园艺设计师计划在一块形状为直角三角形且有一个内角为的绿化区域上种植四种不同的花卉,要求种植的四种花卉分别组成面积相等、形状完全相同的几何图形图案某同学为此提供了如图所示的4种设计方案,其中可以满足园艺设计师要求的有______ 种三、解答题21.尺规作图:画出图形,保留作图痕迹,不写作法,写出结论已知:,线段a、b.求作:,使,,.22.如图所示,在中,,.作的平分线BD,交AC于点用尺规作图法,保留作图痕迹,不要求写作法;在条件下,比较线段DA与BC的大小关系,请说明理由.23.如图,点M在的边OB上.过点M画线段,垂足是C;过点C作尺规作图,保留作图痕迹【答案】1. C2. B3. D4. D5. B6. B7. C8. C9. B10. C11. B12.13. 314. 作点D关于AC的对称点M,过点M作交AC于点P,15. ;构造正方形EFGP,连接PF交AB于点Q,点Q即为所求.16.17. 2,3,1,418. ;;19. 1020. 321. 解:22. 解:如图所示,BD为所作;.理由如下:,,平分,,,,,,,.23. 解:如图,MC为所作;如图,为所作.。

2017年中考数学真题分类解析 尺规作图

2017年中考数学真题分类解析   尺规作图

一、选择题1.(2017浙江衢州,7,3分)下列四种基本尺规作图分别表示①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点作已知直线的垂线.则对应选项中作法错误..的是()°3. 8.(2017湖北宜昌,3分)如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于12EF的长为半径作弧,两弧相交于G、H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EFC.GH垂直平分EF D.GH平分AF答案:C,解析:根据尺规作图方法和痕迹可知GH是线段EF的垂直平分线,故选C.4.(2017湖北随州,6,3分)如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半,那么第二步的作图痕迹②的作法是()径画弧①,分别交OA、OB于点E、FC.以点E为圆心,OE长为半径画弧D.以点E为圆心,EF长为半径画弧答案:D,解析:作一个角等于已知角,依据是用“SSS”说明三角形全等,显然图中已满足“OE=OE,OF=OG”,只要添加“EF=EG”,故作图痕迹②的圆心是点E,半径是EF长.G5.8.(2017浙江绍兴,4分)在探索“尺规三等分角”这个数学名题的过程中,曾利用了下图,该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠F AE=∠FEA.若∠ACB =21°,则∠ECD的度数是A.7°B.21°C.23°D.24°【答案】C.【解析】CxECDBECDxxxAEFACFACBBABCDxACFAFCACFxAFCFEAFAExAEF故选又,是矩形,四边形设,23,//,2390221,9090,2,,2,,︒==∠∴︒=∴︒=++︒∴︒=∠+∠+∠∴︒=∠∴=∠∴∠=∠=∠∴∠=∠=∠ΘΘΘ6.(2017湖北襄阳,9,3分)如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,.以点C为圆心,CB 长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于12BD的长为半径作弧,两弧相交于点E;作射线CE交AB于点F.则AF的长为()A.5 B.6 C.7 D.8答案:B,解析:在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AC=4=tan33BCA∠=43.由作图可知,CF⊥AB,∴AF=AC·cos30°=43×23=6.7.(2017山东东营,7,3分)如图,在□ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.12【答案】B【解析】连接EF,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠F AE=∠AEB,∵AE平分∠BAD,∴∠F AE=∠EAB,∴∠EAB =∠AEB,∴AB=EB,由作图可得,AB=AF,∴EB=AF,又∵AD∥BC,∴四边形ABEF是平行四边形,再由AB=AF,可得□ABEF是菱形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018年中考数学专题复习题:尺规作图
一、选择题
1.尺规作图是指
A. 用直尺规范作图
B. 用刻度尺和圆规作图
C. 用没有刻度的直尺和圆规作图
D. 直尺和圆规是作图工具
2.利用尺规作图,作边上的高AD,正确的是
A. B.
C. D.
3.如图,点C在的OB边上,用尺规作出了,作图痕迹中,弧FG

A. 以点C为圆心,OD为半径的弧
B. 以点C为圆心,DM为半径的弧
C. 以点E为圆心,OD为半径的弧
D. 以点E为圆心,DM为半径的弧
4.在平面直角坐标系xOy中,以原点O为圆心,任意长为半径作弧,分别交x轴的负
半轴和y轴的正半轴于A点,B点分别以点A,点B为圆心,AB的长为半径作弧,两弧交于P点若点P的坐标为,则
A. B. C. D.
5.如图,在▱ABCD中,用直尺和圆规作的平分线AG交BC
于点E,若,,则AE的长为
A.
B.
C.
D.
6.经过平面内一点P,画两边垂线段画法正确的是
A. B.
C. D.
7.郑萌用已知线段a,,且,根据下列步骤作,则郑萌所作的
三角形是
步骤:
作线段;
作线段AB的垂直平分线MN,交AB于点O;
以点B为圆心,线段b的长为半径画弧,交于点C,连接BC,AC.
A. 等腰三角形
B. 等边三角形
C. 直角三角形
D. 钝角三角形
8.如图,在中,,以A为圆心,任意长
为半径画弧分别交AB、AC于点M和N,再分别以M、N
为圆心,大于的长为半径画弧,两弧交于点P,
连结AP并延长交BC于点D,则下列说法错误的是
A.
B. 点D到AB边的距离就等于线段CD的长
C.
D. AD垂直平分MN
9.尺规作图作的平分线如下:以O为圆心,任意长为
半径画弧交OA、OB于C、D,再分别以点C、D为圆心,
以大于长为半径画弧,两弧交于点P,作射线OP,
连结CD,则下列结论一定正确的个数有个.
;;;是线段CD的垂直平分线.
A. 1
B. 2
C. 3
D. 4
10.如图,以O为圆心,任意长为半径画弧,与射线OM相
交于点A,再以点A为圆心,AO长为半径画弧,两弧交
于点B,画射线OB,则的值等于
A. B. C. D.
11.如图,在余料ABCD中,,现进行如下操作:以点B
为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再
分别以点G,H为圆心,大于长为半径画弧,两弧在
内部相交于点O,画射线BO,交AD于点若,则
的度数为
A.
B.
C.
D.
B.
二、填空题
12.如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,
CD长为半径画弧,两弧交于点F,则的长为______.
13.在中,分别以点A和点B为圆心,大于的长为半径画弧,两弧相交于M,
N ,作直线MN,交BC于点D,连接如果,,那么______.14.如图,在长方形ABCD中,点P、E分别是线段AC、AD上的动点,连接PE、PD,
若使得的值最小,应如何确定点P和点E的位置?请你在图中画出点P 和点E的位置,并简述画法.______.
15.如图所示,在每个边长都为1的小正方形组成的网格中,
点A、P分别为小正方形的中点,B为格点.
线段AB的长度等于______;
Ⅱ在线段AB上存在一个点Q,使得点Q满足
,请你借助给定的网格,并利用不带刻度的直尺作出,并简要说明你是怎么找到点Q的:______.
16.如图,在中,,,以点A
为圆心,任意长为半径画弧分别交AB,AC于点M
和N,再分别以点M,N为圆心,大于的长为
半径画弧,再画弧交于点P,连接AP并延长交BC于点D,则下列结论:是
的平分线;;点D在AB的垂直平分线上;其中结论正确的序号为______ .
17.已知和线段m,n,求作,使,,,作法的合理
顺序为______ 填序号1,2等即可.
在射线BD上截取线段;作一条线段;以B为顶点,以BC为一边,作角;连接AC,就是所求作的三角形.
18.下列语句表示的图形是只填序号
过点O的三条直线与另条一直线分别相交于点B、C、D三点:______ .
以直线AB上一点O为顶点,在直线AB的同侧画和:______ .
过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点:______ .
19.如图,已知线段AB,分别以点A,B为圆心,大于线段AB长度
一半的长为半径画弧,相交于点C,D,连接AC,BC,BD,其
中,,则四边形ABCD的面积为______ .
20.一位园艺设计师计划在一块形状为直角三角形且有一个内角为的绿化区域上种
植四种不同的花卉,要求种植的四种花卉分别组成面积相等、形状完全相同的几何图形图案某同学为此提供了如图所示的4种设计方案,其中可以满足园艺设计师要求的有______ 种
三、解答题
21.尺规作图:画出图形,保留作图痕迹,不写作法,写出结论
已知:,线段a、b.
求作:,使,,.
22.如图所示,在中,,.
作的平分线BD,交AC于点用尺规作图法,保留作图痕迹,不要求写作法;
在条件下,比较线段DA与BC的大小关系,请说明理由.
23.如图,点M在的边OB上.
过点M画线段,垂足是C;
过点C作尺规作图,保留作图痕迹
【答案】
1. C
2. B
3. D
4. D
5. B
6. B
7. C
8. C
9. B10. C11. B
12.
13. 3
14. 作点D关于AC的对称点M,过点M作交AC于点P,
15. ;构造正方形EFGP,连接PF交AB于点Q,点Q即为所求.
16.
17. 2,3,1,4
18. ;;
19. 10
20. 3
21. 解:
22. 解:如图所示,BD为所作;

理由如下:


平分,







23. 解:如图,MC为所作;
如图,为所作.。

相关文档
最新文档