直线与圆专题训练

合集下载

直线与圆练习题(附答案)

直线与圆练习题(附答案)

直线与圆一、填空题1.若函数1()ax f x e b=-的图象在x =0处的切线l 与圆C:221x y +=相离,则P(a ,b)与圆C 的位置关系是2.实数x 、y 满足不等式组⎪⎩⎪⎨⎧≥-≥≥001y x y x ,则W=x y 1-的取值范围是_____________.3.已知x ,y 满足⎪⎩⎪⎨⎧≤++≤+≥041c by ax y x x 且目标函数y x z +=2的最大值为7,最小值为1,则=++a c b a_____________.4.已知点A (3,2),B (-2,7),若直线y=ax-3与线段AB 的交点P 分有向线段AB 的比为4:1,则a 的值为5.设E 为平面上以 (4,1),(1,6),(3,2)A B C ---为顶点的三角形区域(包括边界 ),则Z =4x -3y 的最大值和最小值分别为_____________.6.实数y x z y x y x y x y x -=⎪⎩⎪⎨⎧≥≥≥+-≤-+则满足条件,0,0,022,04,的最大值为_____________.7.由直线1y x =+上的点向圆22(3)(2)1x y -++= 引切线,则切线长的最小值为_____________. 8.圆()2211y x +=-被直线0x y -=分成两段圆弧,则较短弧长与较长弧长之比为_____________.9.设定点A (0,1),动点(),P x y 的坐标满足条件0,,x y x ≥⎧⎨≤⎩则PA 的最小值是_____________.10.直线2)1(0122=+-=++y x y x 与圆的位置关系是_____________.11.设实数y x ,满足线性约束条件⎪⎩⎪⎨⎧≥≥-≤+013y y x y x ,则目标函数y x z +=2的最大值为 _____________.12.直线()23--=x y 截圆422=+y x 所得的劣弧所对的圆心角为_____________.13.已知点()y x P ,在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-0220102y x y x 表示的平面区域内运动,则y x z -=的取值范围是_____________. /的值是_____________.二、解答题:1.求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.2. 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?3.已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.4.求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程5. 已知圆0622=+-++m y x y x 与直线032=-+y x 相交于P 、Q 两点,O 为原点,且OQ OP ⊥,求实数m 的值.6. 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程参考答案1.在圆内2.[-1,1)3.-24.-95.14 , -186.47.8.1∶39.根号2/2 10.相切 11.612.π/3 13.[]2,1-14.2或-2设圆的标准方程为222)()(rb y a x =-+-.∵圆心在0=y 上,故0=b . ∴圆的方程为222)(ry a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(r a r a解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x .16.符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设所求直线为043=++m y x ,则1431122=++=m d ,∴511±=+m ,即6-=m ,或16-=m ,也即6431=-+y x l :,或016432=-+y x l :.设圆9)3()3(221=-+-y x O :的圆心到直线1l 、2l 的距离为1d 、2d ,则 34363433221=+-⨯+⨯=d ,143163433222=+-⨯+⨯=d .∴1l与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个.17.∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y根据r d =∴21422=++-kk解得43=k所以()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .4.则题意,设所求圆的方程为圆222)()(rb y a x C =-+-:.圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C .又已知圆42422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3.若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x5.由直线方程可得y x 23+=,代入圆的方程0622=+-++m y x y x ,有)2(9)6)(2(31222=++-+++y x m y x y x y x ,整理,得0)274()3(4)12(22=-+-++y m xy m x m . 由于0≠x ,故可得12)3(4))(274(2=++-+-m x ym x y m .∴OPk ,OQk 是上述方程两根.故1-=⋅OQ OP k k .得127412-=-+m m ,解得3=m .经检验可知3=m 为所求.6.设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D .∴方程)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程.又过A 、B 两点的直线是唯一的. ∴两圆1C 、2C 的公共弦AB 所在直线的方程为)()(212121=-+-+-F F y E E x D D。

高考数学复习专题训练—直线与圆(含答案及解析)

高考数学复习专题训练—直线与圆(含答案及解析)

高考数学复习专题训练—直线与圆一、单项选择题1.(2021·全国甲,文5)点(3,0)到双曲线x 216−y29=1的一条渐近线的距离为()A.95B.85C.65D.452.(2021·湖南湘潭模拟)已知半径为r(r>0)的圆被直线y=-2x和y=-2x+5所截得的弦长均为2,则r的值为()A.54B.√2C.32D.√33.(2021·北京清华附中月考)已知点P与点(3,4)的距离不大于1,则点P到直线3x+4y+5=0的距离的最小值为()A.4B.5C.6D.74.(2021·江西鹰潭一中月考)已知点M,N分别在圆C1:(x-1)2+(y-2)2=9与圆C2:(x-2)2+(y-8)2=64上,则|MN|的最大值为()A.√7+11B.17C.√37+11D.155.(2021·湖北黄冈中学三模)已知直线l:mx+y+√3m-1=0与圆x2+y2=4交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=()A.2B.4√33C.2√3D.46.(2021·重庆八中月考)已知圆C:x2+y2-4x-2y+1=0及直线l:y=kx-k+2(k∈R),设直线l与圆C相交所得的最长弦为MN,最短弦为PQ,则四边形PMQN的面积为()A.4√2B.2√2C.8D.8√27.(2021·山西临汾适应性训练)直线x+y+4=0分别与x轴、y轴交于A,B两点,点P在圆(x-4)2+y2=2上,则△ABP面积的取值范围是()A.[8,12]B.[8√2,12√2]C.[12,20]D.[12√2,20√2]8.(2021·山东青岛三模)已知直线l:3x+my+3=0,曲线C:x2+y2+4x+2my+5=0,则下列说法正确的是()A.“m>1”是曲线C表示圆的充要条件B.当m=3√3时,直线l与曲线C表示的圆相交所得的弦长为1C.“m=-3”是直线l与曲线C表示的圆相切的充分不必要条件D.当m=-2时,曲线C与圆x2+y2=1有两个公共点9.(2021·河北邢台模拟)已知圆M:(x-2)2+(y-1)2=1,圆N:(x+2)2+(y+1)2=1,则下列不是M,N 两圆公切线的直线方程为()A.y=0B.4x-3y=0C.x-2y+√5=0D.x+2y-√5=0二、多项选择题10.(2021·广东潮州二模)已知圆C:x2-2ax+y2+a2-1=0与圆D:x2+y2=4有且仅有两条公共切线,则实数a的取值可以是()A.-3B.3C.2D.-211.(2021·海南三亚模拟)已知圆O1:x2+y2-2x-3=0和圆O2:x2+y2-2y-1=0的交点为A,B,则()A.圆O1和圆O2有两条公切线B.直线AB的方程为x-y+1=0C.圆O2上存在两点P和Q,使得|PQ|>|AB|D.圆O1上的点到直线AB的最大距离为2+√2三、填空题12.(2021·辽宁营口期末)若直线l1:y=kx+4与直线l2关于点M(1,2)对称,则当l2经过点N(0,-1)时,点M到直线l2的距离为.13.(2021·山东滨州检测)已知圆M:x2+y2-12x-14y+60=0,圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,则圆N的标准方程为.14.(2021·山东烟台二模)已知两条直线l1:y=2x+m,l2:y=2x+n与圆C:(x-1)2+(y-1)2=4交于A,B,C,D四点,且构成正方形ABCD,则|m-n|的值为.15.(2021·河北沧州模拟)已知圆C:x2+y2-4x+2my+1=0(m>0),直线l:y=kx+m与直线x+√3y+1=0垂直,则k=,直线l与圆C的位置关系为.答案及解析1.A 解析 由题意,双曲线的一条渐近线方程为y=34x ,即3x-4y=0,点(3,0)到该渐近线的距离为√32+(−4)2=95.故选A . 2.C 解析 直线y=-2x 和y=-2x+5截圆所得弦长相等,且两直线平行,则圆心到两条直线的距离相等且为两条平行直线间距离的一半,故圆心到直线y=-2x 的距离d=12×√4+1=√52,2√r2-d 2=2√r 2-54=2,解得r=32.3.B 解析 设点P (x ,y ),则(x-3)2+(y-4)2≤1,圆心(3,4)到3x+4y+5=0的距离为d=√32+42=6,则点P 到直线3x+4y+5=0的距离的最小值为6-1=5. 4.C 解析 依题意,圆C 1:(x-1)2+(y-2)2=9,圆心C 1(1,2),半径r 1=3.圆C 2:(x-2)2+(y-8)2=64,圆心C 2(2,8),半径r 2=8, 故|MN|max =|C 1C 2|+r 1+r 2=√37+11.5.B 解析 直线过定点(-√3,1),该点在圆上.圆半径为r=2,且|AB|=2,所以△OAB 是等边三角形,圆心O 到直线AB 的距离为√3,所以√3m-1|√1+m 2=√3,m=-√33,直线斜率为k=-m=√33,倾斜角为θ=π6, 所以|CD|=|AB|cosθ=2cosπ6=4√33. 6.A 解析 将圆C 的方程整理为(x-2)2+(y-1)2=4,则圆心C (2,1),半径r=2.将直线l 的方程整理为y=k (x-1)+2,则直线l 恒过定点(1,2),且(1,2)在圆C 内. 最长弦MN 为过(1,2)的圆的直径,则|MN|=4,最短弦PQ 为过(1,2),且与最长弦MN 垂直的弦,∵k MN =2−11−2=-1,∴k PQ =1.直线PQ 方程为y-2=x-1,即x-y+1=0. 圆心C 到直线PQ 的距离为d=√2=√2,|PQ|=2√r 2-d 2=2√4−2=2√2.四边形PMQN 的面积S=12|MN|·|PQ|=12×4×2√2=4√2.7.C 解析 直线x+y+4=0分别与x 轴、y 轴交于A ,B 两点,A (-4,0),B (0,-4),故|AB|=4√2.设圆心(4,0)到直线x+y+4=0的距离为d ,则d=√1+1=4√2.设点P 到直线x+y+4=0的距离为h ,故h max =d+r=4√2+√2=5√2,h min =d-r=4√2−√2=3√2,故h 的取值范围为[3√2,5√2],即△ABP 的高的取值范围是[3√2,5√2],又△ABP 的面积为12·|AB|·h ,所以△ABP 面积的取值范围为[12,20].8.C 解析 对于A,曲线C :x 2+y 2+4x+2my+5=0整理为(x+2)2+(y+m )2=m 2-1,曲线C 要表示圆,则m 2-1>0,解得m<-1或m>1,所以“m>1”是曲线C 表示圆的充分不必要条件,故A 错误;对于B,m=3√3时,直线l :x+√3y+1=0,曲线C :(x+2)2+(y+3√3)2=26, 圆心到直线l 的距离d=√3×(−3√3)+1|√1+3=5,所以弦长=2√r 2-d 2=2√26−25=2,故B错误;对于C,若直线l 与圆相切,圆心到直线l 的距离d=2√9+m 2=√m 2-1,解得m=±3,所以“m=-3”是直线l 与曲线C 表示的圆相切的充分不必要条件,C 正确;对于D,当m=-2时,曲线C :(x+2)2+(y-2)2=3,其圆心坐标为(-2,2),r=√3,曲线C 与圆x 2+y 2=1两圆圆心距离为√(-2-0)2+(2−0)2=2√2>√3+1,故两圆相离,不会有两个公共点,D 错误.9.D 解析 由题意,圆M :(x-2)2+(y-1)2=1的圆心坐标为M (2,1),半径为r 1=1,圆N :(x+2)2+(y+1)2=1的圆心坐标为N (-2,-1),半径为r 2=1.如图所示,两圆相离,有四条公切线.两圆心坐标关于原点O 对称,则有两条切线过原点O , 设切线l :y=kx ,则圆心M 到直线l 的距离为√1+k 2=1,解得k=0或k=43.故此时切线方程为y=0或4x-3y=0.另两条切线与直线MN 平行且相距为1,又由l MN :y=12x , 设切线l':y=12x+b ,则√1+14=1,解得b=±√52, 此时切线方程为x-2y+√5=0或x-2y-√5=0. 结合选项,可得D 不正确.10.CD 解析 圆C 方程可化为(x-a )2+y 2=1,则圆心C (a ,0),半径r 1=1;由圆D 方程知圆心D (0,0),半径r 2=2.因为圆C 与圆D 有且仅有两条公切线,所以两圆相交.又两圆圆心距d=|a|,有2-1<|a|<2+1,即1<|a|<3,解得-3<a<-1或1<a<3.观察4个选项,可知C,D两项中的a的取值满足题意.11.ABD解析对于A,因为两个圆相交,所以有两条公切线,故A正确;对于B,将两圆方程作差可得-2x+2y-2=0,即得公共弦AB的方程为x-y+1=0,故B正确;对于C,直线AB经过圆O2的圆心(0,1),所以线段AB是圆O2的直径,故圆O2中不存在比AB长的弦,故C错误;对于D,圆O1的圆心坐标为(1,0),半径为2,圆心到直线AB:x-y+1=0的距离为√2=√2,所以圆O1上的点到直线AB的最大距离为2+√2,D正确.12.√5解析因为直线l1:y=kx+4恒过定点P(0,4),所以P(0,4)关于点M(1,2)对称,所以P(0,4)关于点M(1,2)的对称点为(2,0),此时(2,0)和N(0,-1)都在直线l2上,可得直线l2的方程y-0-1-0=x-20−2,即x-2y-2=0,所以点M到直线l2的距离为d=√1+4=√5.13.(x-6)2+(y-1)2=1解析圆的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,于是圆N的半径为y0,从而7-y0=5+y0,解得y0=1.因此,圆N的标准方程为(x-6)2+(y-1)2=1.14.2√10解析由题设知:l1∥l2,要使A,B,C,D四点构成正方形ABCD,正方形的边长等于.直线l1,l2之间的距离d,则d=√5若圆的半径为r,由正方形的性质知d=√2r=2√2,故=2√2,即有|m-n|=2√10.√515.√3相离解析x2+y2-4x+2my+1=0,即(x-2)2+(y+m)2=m2+3,圆心C(2,-m),半径r=√m2+3,)=-1,解得k=√3.因为直线l:y=kx+m与直线x+√3y+1=0垂直,所以k·√3=√3+m.直线l:y=√3x+m.因为m>0,所以圆心到直线l的距离d=√3+m+m|√3+1因为d2=m2+2√3m+3>m2+3=r2,所以d>r.所以直线l与圆C的位置关系是相离.。

直线与圆的综合运用练习题

直线与圆的综合运用练习题

直线与圆的综合运用练习题直线与圆的关系是数学中的基础知识点,不仅在几何学中有广泛应用,而且在实际问题中也能发挥重要作用。

本文将给出一些直线与圆综合运用的练习题,帮助读者巩固和应用所学知识。

问题一:已知直线与圆的交点坐标,求直线方程和圆的方程。

解析:设已知直线方程为y = kx + b,圆的方程为(x - m)² + (y - n)² = r²。

设交点坐标为(x₁, y₁),代入直线方程得y₁ = kx₁ + b,代入圆的方程得(x₁ - m)² + (kx₁ + b - n)² = r²。

化简后即可得到直线方程和圆的方程。

问题二:已知直线与圆的交点坐标,求该直线过圆心的垂线方程。

解析:设已知直线方程为y = kx + b,圆心坐标为(m, n)。

由于直线过圆心的垂线与直线的斜率为k的负倒数,故直线过圆心的垂线的斜率为-1/k。

设垂线方程为y = mkx + c,代入圆心坐标(m, n)得c = n -k*m。

因此,该直线过圆心的垂线方程为y = -x/k + (n - k*m)。

问题三:已知直线与圆的交点坐标,求直线与圆的切线方程。

解析:设已知直线方程为y = kx + b,圆的方程为(x - m)² + (y - n)² = r²。

通过求导可得直线的斜率为k。

根据切线的性质,直线与圆的切线垂直于通过切点与圆心的半径。

设直线与圆的切点坐标为(x₁, y₁),圆心坐标为(m, n),切线方程为y = mx + c。

由于切线垂直于半径,故直线与切线的斜率乘积为-1,即k * m = -1。

代入切点坐标(x₁, y₁)和圆心坐标(m, n)可得c = y₁ - m*x₁。

因此,直线与圆的切线方程为y = -1/k * x + (y₁ - m*x₁)。

问题四:已知圆的半径和切点坐标,求切线方程。

解析:设圆的方程为(x - m)² + (y - n)² = r²,切点坐标为(x₁, y₁)。

完整版)直线与圆综合练习题含答案

完整版)直线与圆综合练习题含答案

完整版)直线与圆综合练习题含答案直线与圆的方程训练题1.选择题:1.直线x=1的倾斜角和斜率分别是()A。

45,1B。

不存在C。

不存在D。

-12.设直线ax+by+c=0的倾斜角为α,且sinα+cosα=√2/2,则a,b满足()A。

a+b=1B。

a-b=1C。

a+b=√2D。

a-b=√23.过点P(-1,3)且垂直于直线x-2y+3=0的直线方程为()A。

2x+y-1=0B。

2x+y-5=0C。

x+2y-5=0D。

x-2y+7=04.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()A。

4x+2y=5B。

4x-2y=5C。

x+2y=5D。

x-2y=55.直线xcosθ+ysinθ+a=0与xsinθ-ycosθ+b=0的位置关系是()θ的值有关A。

平行B。

垂直C。

斜交D。

与a,b,θ的值有关6.两直线3x+y-3=0与6x+my+1=0平行,则它们之间的距离为()A。

4B。

13√10C。

26√5D。

207.如果直线l沿x轴负方向平移3个单位再沿y轴正方向平移1个单位后,又回到原来的位置,那么直线l的斜率是()A。

-1/3B。

-3C。

1D。

38.直线l与两直线y=1和x-y-7=0分别交于A,B两点,若线段AB的中点为M(1,-1),则直线l的斜率为()A。

2/3B。

-3/2C。

-2D。

-39.若动点P到点F(1,1)和直线3x+y-4=0的距离相等,则点P的轨迹方程为()A。

3x+y-6=0B。

x-3y+2=0C。

x+3y-2=0D。

3x-y+2=010.若P(2,-1)为(x-1)+y^2=25圆的弦AB的中点,则直线AB的方程是()A。

x-y-3=0B。

2x+y-3=0C。

x+y-1=0D。

2x-y-5=011.圆x^2+y^2-2x-2y+1=0上的点到直线x-y=2的距离最大值是()A。

2B。

1+√2C。

1+2√2D。

1+2√512.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A。

直线与圆的位置关系练习题及参考答案

直线与圆的位置关系练习题及参考答案

直线与圆的位置关系练习题及参考答案一、选择题1. 在平面上,已知点A(4,-2),圆心O(1,3),半径R=5. 则点A与圆的位置关系是:A. A在圆内B. A在圆上C. A在圆外答案: A. A在圆内2. 已知直线L的方程为2x - 3y = 6,圆C的方程为x^2 + y^2 = 25.则直线L与圆C的位置关系是:A. 直线L与圆C相切B. 直线L与圆C相交于两点C. 直线L与圆C不相交答案: B. 直线L与圆C相交于两点3. 在平面上,已知两个圆C1与C2,圆C1的半径为3,圆心坐标为(1,1),圆C2的半径为2,圆心坐标为(-2,-3). 则两个圆的位置关系是:A. 两个圆相交于两点B. 两个圆内切C. 两个圆相离答案: C. 两个圆相离二、填空题1. 已知圆C的半径为2,圆心坐标为(3,5). 则圆心到原点的距离是______.答案: sqrt(3^2 + 5^2) = sqrt(34)2. 在平面上,已知直线L的方程为y = 2x + 1,圆C的半径为4,圆心坐标为(-1,2). 则直线L与圆C的位置关系可以表示为______.答案: (x+1)^2 + (y-2)^2 = 16三、解答题1. 如图所示,在平面上有一个圆C,其圆心坐标为(2,3),半径为4. 请写出圆C的方程,并确定点A(-3,4)与圆C的位置关系。

解答:圆C的方程为:(x-2)^2 + (y-3)^2 = 16点A(-3,4)与圆C的位置关系可以通过计算点A到圆心的距离来判断。

点A到圆心的距离为:distance = sqrt((-3-2)^2 + (4-3)^2) = sqrt(25) = 5比较点A到圆C的距离与圆的半径的关系:若 distance < 4,则点A在圆内;若 distance = 4,则点A在圆上;若 distance > 4,则点A在圆外。

因为 distance = 5 > 4,所以点A在圆外。

初中直线与圆的位置关系经典练习题

初中直线与圆的位置关系经典练习题

圆与直线的基本性质一、定义[例1]在ABCRt∆中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何位置关系?为什么?(1)r=2cm;(2)r=2.4cm;(3)r=3cm。

[例2]在ABC∆中,BC=6cm,∠B=30°,∠C=45°,以A为圆心,当半径r多长时所作的⊙A与直线BC相切?相交?相离?[变式题]已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是【】A.相切B.相离C.相离或相切D.相切或相交二、性质例1:如图,AB是⊙O的直径,C.D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于【】A.40°B.50°C.60°D.70°变式1:如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠ACP=【】A.30B.45C.60D.67.5例3:如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠P=40°,则∠ACB的度数是【】A.80° B.110°C.120° D.140°变式2:如图,圆周角∠BAC=55°,分别过B,C两点作⊙O的切线,两切线相交与点P,则∠BPC =°.1 / 4例5:如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是.变式3:如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若AB的长为8cm,则图中阴影部分的面积为cm2.例7:如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.(1)求证:OM=AN;(2)若⊙O的半径R=3,PA=9,求OM的长.变式4:如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF 于点H,交⊙O于点C,连接BD.(1)求证:BD平分∠ABH;(2)如果AB=12,BC=8,求圆心O到BC的距离.2 / 4三、切线的判定定理:例1:如图,AB是⊙O的直径,AC和BD是它的两条切线,CO平分∠ACD.(1)求证:CD是⊙O的切线;(2)若AC=2,BC=3,求AB的长.例2:如图,已知AB=AC,∠BAC=120º,在BC上取一点O,以O 为圆心OB为半径作圆,①且⊙O过A点,过A作AD∥BC交⊙O于D,求证:(1)AC是⊙O的切线;(2)四边形BOAD是菱形。

高中直线与圆练习题

高中直线与圆练习题

高中直线与圆练习题一、选择题1. 在平面直角坐标系中,直线l的方程为y = 2x + 1,圆C的方程为(x 1)² + (y + 2)² = 16,则直线l与圆C的位置关系是:A. 相离B. 相切C. 相交D. 无法确定2. 已知直线y = kx + b与圆(x 2)² + (y + 3)² = 1相交于A、B两点,若|AB| = 2,则k的值为:A. 0B. 1C. 2D. 33. 直线y = 3x 2与圆x² + y² = 9的位置关系是:A. 相离B. 相切C. 相交D. 无法确定二、填空题1. 已知直线l:2x 3y + 6 = 0,圆C:(x 1)² + (y + 2)² = 25,则直线l与圆C的交点坐标为______。

2. 圆(x 3)² + (y + 4)² = 16的圆心坐标为______,半径为______。

3. 若直线y = kx + 1与圆x² + y² = 4相交,则k的取值范围是______。

三、解答题1. 已知直线l:x + 2y 5 = 0,圆C:(x 2)² + (y + 3)² = 16,求直线l与圆C的交点坐标。

2. 设直线l的方程为y = kx + b,圆C的方程为(x 1)² + (y +2)² = 9,若直线l与圆C相切,求k和b的值。

3. 已知直线l:y = 2x + 3,圆C:(x 2)² + (y + 1)² = 25,求直线l与圆C的公共弦长。

4. 在平面直角坐标系中,直线l的方程为y = kx + 1,圆C的方程为(x 3)² + (y + 4)² = 16,若直线l与圆C相交,求k的取值范围。

5. 已知直线l:2x y + 3 = 0,圆C:(x 2)² + (y + 1)² = 9,求直线l与圆C的交点坐标及弦心距。

(完整版)直线与圆综合练习题含答案

(完整版)直线与圆综合练习题含答案

直线与圆的方程训练题一、选择题:1.直线1x =的倾斜角和斜率分别是( )A .B .C . ,不存在D . ,不存在 2.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a3.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 5.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( )A .平行B .垂直C .斜交D .与的值有关 6.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4 BCD7.如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( )A .-13B .3-C .13D .38.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23 B .32 C .32- D . 23-9.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( ) A .360x y +-= B .320x y -+= C .320x y +-= D .320x y -+=10.若 为 圆的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB. 032=-+y xC. 01=-+y x D . 052=--y x11.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .221+D .221+ 12.在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( )0135,1-045,10900180,,a b θ(2,1)P -22(1)25x y -+=A .1条B .2条C .3条D .4条 13.圆0422=-+x y x 在点)3,1(P 处的切线方程为( )A .023=-+y xB .043=-+y xC .043=+-y xD .023=+-y x14.直线032=--y x 与圆9)3()2(22=++-y x 交于,E F 两点,则∆EOF (O 是原点)的面积为( ) A.23 B.43C.52 D.55615.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y x B .0422=++x y xC .03222=-++x y xD .0422=-+x y x16.若过定点)0,1(-M 且斜率为k 的直线与圆05422=-++y x x 在第一象限内的部分有交点,则k 的取值范围是( )A. 50<<k B. 05<<-k C. 130<<k D. 50<<k 17.圆:06422=+-+y x y x 和圆:0622=-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是( ) A.30x y ++= B .250x y --= C .390x y --= D .4370x y -+=18.入射光线在直线1:23l x y -=上,经过x 轴反射到直线2l 上,再经过y 轴反射到直线3l 上,若点P是1l 上某一点,则点P 到3l 的距离为( )A .6 B .3 C D 二、填空题:19.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________; 若3l 与1l 关于x 轴对称,则3l 的方程为_________; 若4l 与1l 关于x y =对称,则4l 的方程为___________;20.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________.21.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。

九年级数学直线与圆的位置关系练习题及答案

九年级数学直线与圆的位置关系练习题及答案

九年级数学直线与圆的位置关系练习题及答案一、单选题1. 给定直线l :3x-4y=12,圆C:(x-1)^2+(y+3)^2=25,则l与C的位置关系是:A. 相切B. 相离C. 相交于两点D. 相交于一个点2. 若直线l的方程为x-2y+1=0,圆C的方程为(x-3)^2+(y+4)^2=16,则l与C的位置关系是:A. 相切B. 相离C. 相交于两点D. 相交于一个点3. 在直角坐标系中,直线l:y=2x+1与圆C:(x-4)^2+(y+2)^2=36的位置关系是:A. 相切B. 相离C. 相交于两点D. 相交于一个点二、填空题1. 直线y=3x+2与圆(x-1)^2+(y-3)^2=16的位置关系可以用___________表示。

2. 若直线l :2x+3y=6与圆C:(x-2)^2+(y-3)^2=9相交于点A(1,2),则点A到直线l的距离为_________。

三、解答题1. 已知直线l的方程为y=2x-1,圆C的方程为(x-2)^2+(y-1)^2=r^2,求当r=3时,l与C的位置关系。

2. 某圆C的圆心坐标为(3,-2),半径为4,直线l的方程为2x-y=5,则求l与C的位置关系并证明。

答案:一、单选题1. C2. A3. D二、填空题1. 相交于两点2. 3三、解答题1. 当r=3时,圆C的方程为(x-2)^2+(y-1)^2=9。

将直线l的方程代入圆C的方程,得到4x^2-4x+1+4x-4+y^2-2y+1=9,简化后为4x^2+y^2-2y-3=0。

该方程与圆C相交于两个点,故位置关系为相交于两点。

2. 圆C的圆心坐标为(3,-2),半径为4。

直线l的斜率为2,l的方程可以改写为y=2x-5,将直线l的方程代入圆C的方程,得到(x-3)^2+(2x-5+2)^2=16。

化简后得到5x^2-35x+60=0,解得x=2和x=6。

将x的值代入直线l的方程,得到相应的y值,分别为y=-1和y=7。

新教材人教A版高中数学选择性必修第一册专题训练:直线与圆综合大题 分层练习题含答案解析

新教材人教A版高中数学选择性必修第一册专题训练:直线与圆综合大题 分层练习题含答案解析

8.直线与圆综合大题基础过关练 ....................................................................................................................... 1 能力提升练 ....................................................................................................................... 9 培优拔尖练 (16)基础过关练1.由动点P 向圆221x y +=引两条切线PA 、PB 切点分别为A 、B ,若120APB ∠=︒,则动点P 的轨迹方程为__________.【答案】2243x y +=【详解】∵120APB ∠=︒,180120302BAP ︒-︒∠==︒,903060OAB ∠=︒-︒=︒,∵1OA OB r ===,∴OAB 是等边三角形,cos30r OP ==︒为定值,∴P 点轨迹方程为22243x y +==⎝⎭. 2.在平面直角坐标系xOy 中,点Q 为圆M :22(1)(1)1x y -+-=上一动点,过圆M 外一点P向圆M 引-条切线,切点为A ,若|P A |=|PO |,则||PQ 的最小值为( )A 1B 1C 1D 1 【答案】C【分析】利用|P A |=|PO |,两点间距离公式,以及勾股定理得出=可得点P 在直线2210x y +-= 上,将||PQ 的最小值转化为圆心到直线的距离减去半径求解.【详解】设()00,P x y =所以00221x y +=,设圆心到直线2x +2y =1的距离为d ,4d == ,则有PQ 1d r ≥-.故选:C 3.已知圆C 过点P (1,1),且与圆M :2(2)x ++22(y )+=2r (r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ MQ ⋅取得最小值时点Q 的坐标;(3)过点P 作两条相异直线分别与圆C 相交于A ,B ,且直线P A 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由. 【答案】(1)222x y +=;(2)(11)Q --,;(3)平行,理由见解析.【分析】(1)利用对称性,求出圆心坐标,即可求出圆C 的方程;(2)用坐标表示两个向量的数量积,化简后再利用三角函数知识即可求出向量的最小值,进而求得点Q 的坐标;(3)设出直线PA 和PB 的方程,将它们分别与圆C 的方程联立,得到A 点和B 点的坐标,得到AB k ,再与OP k 进行对比,即可得出结论.【详解】(1)设圆心()C a b ,,由题意得222022212a b b a --⎧++=⎪⎪⎨+⎪=⎪+⎩,解得00a b =⎧⎨=⎩ 则圆C 的方程为222x y r +=,将点1(1)P ,代入方程得:2=2r ∴圆C 的方程为222x y += (2)设()Q x y ,,则222x y +=22(11)(22)42PQ MQ x y x y x y x y x y ⋅=--⋅++=+++-=+-,,令x θ,y θ=∴2cos 22sin()24PQ MQ πθθθ⋅=+-=+-∴当2,42k k Z ππθπ+=-∈时,2sin()24πθ+=-,即PQ MQ ⋅取得最小值4-∴1x =-,1y =-∴()11Q --,(3)由题意,直线PA 和PB 的斜率存在且互为相反数故可设PA :1(x 1)y k -=-,PB :1(1)y k x -=--由221(1)2y k x x y -=-⎧⎨+=⎩得222(1)2(1)(1)20k x k k x k ++-+--=点P 的横坐标一定是该方程的解 ∴22211A k k x k --=+,同理22211B k k x k +-=+(1)(1)2()1B A B A B A AB B A B A B Ay y k x k x k k xx k x x x x x x ------+====---1OP k =∴AB OP k k =∴直线AB 和OP 一定平行.4.如图,在平面直角坐标系xOy 中,已知圆221:(1)1C x y ++=,圆222:(3)(4) 1.C x y -+-=设动圆C 同时平分圆1C 、圆2C 的周长.(1)求证:动圆圆心C 在一条定直线上运动.(2)动圆C 是否经过定点⋅若经过,求出定点的坐标;若不经过,请说明理由.【答案】(1)证明见解析(2)过定点,定点的坐标为1222⎛-- ⎝⎭和1222⎛++ ⎝⎭ 【分析】(1)由题意,圆心C 到1C 、2C 两点的距离相等,由此结合两点间的距离公式建立关系式,化简整理得30x y +-=,即为所求定直线方程;(2)根据题意设(,3)C m m -,得到圆C 方程关于参数m 的一般方程形式,利用恒过点,即可得到动圆C 经过的定点坐标.(1)解:设圆心(,)C x y ,由题意,得12CC CC =化简得30x y +-=,即动圆圆心C 在定直线30x y +-=上运动.(2)解:圆C 过定点,设(,3)C m m -,则动圆C=于是动圆C 的方程为2222()(3)1(1)(3)x m y m m m -+-+=+++-,整理得22622(1)0x y y m x y +----+=.联立方程组2210620x y x y y -+=⎧⎨+--=⎩,解得12x y ⎧=⎪⎪⎨⎪=⎪⎩12x y ⎧=⎪⎪⎨⎪=⎪⎩所以动圆C过定点,定点的坐标为1222⎛-- ⎝⎭,和1222⎛++ ⎝⎭. 5.在平面直角坐标系xOy 中,已知直线:20l x y ++=和圆22:1O x y +=,P 是直线l 上一点,过点P 作圆C 的两条切线,切点分别为A ,B . (1)若PA PB ⊥,求点P 的坐标;(2)设线段AB 的中点为Q ,是否存在点T ,使得线段TQ 长为定值?若有在,求出点T ;若不存在,请说明理由.【答案】(1)()1,1--(2)存在11,44T ⎛⎫-- ⎪⎝⎭,使得线段TQ 长为定值.【分析】(1)求得OP ,由此求得P 的坐标.(2)求得Q 点坐标,判断出Q 点的轨迹,由此求得T 点坐标. (1)圆O 的圆心为()0,0O ,半径为1r =.当PA PB ⊥时,OPA 是等腰直角三角形,且2PAO π∠=,所以OP ==而原点()0,0O 到直线:20l x y ++=的距离d =直线l 的斜率为1-,所以直线OP 的斜率为1,直线OP 的方程为y x =,由()1,120y xP x y =⎧⇒--⎨++=⎩. (2)设(),2P t t --,对于直线OP ,()()2020t y x t t x ty t --=≠⇒++=,0=t 上式也符合.所以直线OP 的方程为()20t x ty ++=.22221243PA OP t t =-=++,所以以P 为圆心,PA 为半径的圆的方程为()()2222243x t y t t t -+++=++,化简得()2222210x y tx t y +-+++=,由()22222221010x y tx t y x y ⎧+-+++=⎨+-=⎩,两式相减并化简得直线AB 的方程为()210tx t y -+-=, 由()()222102,20244244tx t y t t Q t x ty t t t t ⎧-+-=--⎪⎛⎫⇒⎨ ⎪++=++++⎝⎭⎪⎩,由于22221211244424448t t t t t t --⎛⎫⎛⎫+++= ⎪ ⎪++++⎝⎭⎝⎭,所以Q 点的轨迹方程为22111448x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,即Q 点在以11,44⎛⎫-- ⎪⎝⎭为圆心,半径为==.所以存在11,44T ⎛⎫-- ⎪⎝⎭,使TQ . 6.已知1,04A ⎛⎫⎪⎝⎭,点B 是y 轴上的动点,过B 作AB 的垂线l 交x 轴于点Q ,若()2,4,0AP AQ AB M +=uu u r uuu r uu u r.(1)求点P 的轨迹方程;(2)是否存在定直线x a =,以PM 为直径的圆与直线x a =的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由. 【答案】(1)2y x =(2) 存在定直线154x =,以PM 为直径的圆与直线154x =【分析】(1)设()0,B t ,根据直角三角形中的关系可得()24,0Q t -,再设(),P x y ,根据2AP AQ AB +=uu u r uuu r uu u r 列式可得24,2x t y t ==,进而得到方程即可;(2)设()2,P p p ,求得以PM 为直径的圆的方程,再代入x a =可得弦长的表达式2p 的系数为0求解即可【详解】(1)设()0,B t ,(),0Q m ,根据直角三角形中的关系有214t m =,因为0m ≤故24m t =-,故()24,0Q t -,设(),P x y ,则1,4AP x y ⎛⎫=- ⎪⎝⎭uu u r ,214,04AQ t ⎛⎫=-- ⎪⎝⎭uuur ,12,22AB t ⎛⎫=- ⎪⎝⎭uu u r ,2AP AQ AB +=uu u r uuu r uu u r ,故2111,4,0,2442x y t t ⎛⎫⎛⎫⎛⎫-+--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故24,2x t y t ==,故点P 的轨迹方程为2y x =(2)由(1),点P 的轨迹方程是2y x =;设()2,P p p ,因为()4,0M ,则以PM 为直径的圆的方程为()()()240y p y x px -+--=,当x a =时,()()2240ypy a p a -+--=,设以PM 为直径的圆与直线x a =的交点为()()120,,0,y y ,则以PM 为直径的圆与直线x a =的相交弦长为12y y -=154a =时相交弦长为定值故存在定直线154x =,以PM 为直径的圆与直线154x =的相交弦长为7.已知圆C 过坐标原点O 和点(A ,且圆心C 在x 轴上. (1)求圆C 的方程: (2)设点()10,0M -.①过点M 的直线l 与圆C 相交于P ,Q 两点,求当PCQ △的面积最大时直线l 的方程; ②若点T 是圆C 上任意一点,试问:在平面上是否存在点N ,使得32TM TN =.若存在,求出点N 的坐标,若不存在,请说明理由.【答案】(1)22(4)16x y -+=;(2)①1002x y ++=或100x y +=;②不存在,理由见解析.【分析】(1)设圆心(,0)C a a ,进而得到圆的方程;(2)①利用三角形的面积结合基本不等式,可知PCQ △的面积最大时,圆心到直线的距离为d ,设直线l 方程,利用点到线的距离公式求解即可; ②假设存在(,)N m n ,由32TM TN =,结合点(,)T x y 在圆上,可得到方程22(1840)18994000m x ny m n ++--+=,利用待定系数法求解,m n ,即可判断.(1)因为圆C 过坐标原点()0,0O 和点(A ,且圆心C 在x 轴上,设圆心(,0)C a =4a =所以圆心(4,0)C ,半径4r =故圆C 的方程为22(4)16x y -+=(2)①设圆心到直线的距离为d ,则PQ ==22116822PCQd d SPQ d -+∴=⋅⋅=≤=,当且仅当2216d d -=,即d =等号成立,设直线l 的方程为10x my =-,则圆心到直线的距离d ==m =所以直线l 的方程为10x y =-,即1002x y ++=或100x y += ②假设存在(,)N m n ,(,)T x y ,由32TM TN =,知2294TM TN =代入得22229(10)()()4x y x m y n ⎡⎤++=-+-⎣⎦ 化简整理得222255(1880)18994000x y m x ny m n +-+-++-=又点T 在圆上,2280x x y ∴-+=,则22(1840)18994000m x ny m n ++--+=所以2218400180994000m n m n +=⎧⎪=⎨⎪--+=⎩解得0n =,但m 无解,所以不存在点N ,使得32TM TN =8.圆C :22(3)1x y +-=,点(,0)P t 为x 轴上一动点,过点P 引圆C 的两条切线,切点分别为M ,N .(1)若1t =,求切线方程;(2)若两条切线PM ,PN 与直线1y =分别交于A ,B 两点,求ABC 面积的最小值. 【答案】(1)4340x y +-=或1x =;(2)2. 【分析】(1)设切线方程,利用圆心到切线距离等于半径求得斜率即可得解;(2)利用(1)的方法,当切线斜率都存在时,设出直线方程,利用点到直线的距离公式可得到k 的二次方程,结合根与系数关系,用含k 的式子去表示|AB |,可得最值,当切线斜率有一个不存在是,也可求出|AB |,综合可得|AB |的最小值,进而可得ABC 面积的最小值. 【详解】解:(1)当切线斜率存在时,可设切线方程为y =k (x -1),即kx -y -k =0, 则圆心C到切线的距离1d =,解得43k =-,当切线斜率不存在时,直线1x =也符合题意 故所求切线方程为()413y x =--或1x =, 即4340x y +-=或1x =;(2)当两条切线斜率都存在,即1t ≠±时,设切线方程为(),0y k x t k =-≠,即kx -y -kt =0,PM ,PN 的斜率为12,k k , 故圆心C到切线的距离1d ==,得()221680t k kt -++=,∴12122268,11t k k k k t t +=-=--, 在切线方程中令y =1可得1x t k=+, 故1212122111AB x x t t k k t ⎛⎫⎛⎫=-=+-+=== ⎪ ⎪⎝⎭⎝⎭-。

(完整版)直线与圆的方程测试题(含答案)

(完整版)直线与圆的方程测试题(含答案)

直线与圆的方程测试题(本试卷满分150分,考试时间120分钟)一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( )A.-9B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( )A.5B. -5C. 1D. -13. 直线的倾斜角是32π,则斜率是( ) A.3-3B.33C.3-D.34. 以下说法正确的是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,2π) D. 直线倾斜角的范围是(0,π)5. 经过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0B.2x-y-5=0C. 2x+y+5=0D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )A.x=0B.y=0C.x=2D.y=27. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是() A.x+2=0 B.x-2=0 C.y+2=0 D.y-2=08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+21=0与直线6x-2y+1=0之间的位置关系是( )A.平行B.重合C.相交不垂直D.相交且垂直10.下列命题错误..的是( )A. 斜率互为负倒数的两条直线一定互相垂直B. 互相垂直的两条直线的斜率一定互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0D.2x+y-2=012. 直线ax+y-3=0与直线y=21x-1垂直,则a=( )A.2B.-2C. 21D. 21-13. 直线x=2与直线x-y+2=0的夹角是( )A.30°B. 45°C. 60°D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是( )A.1B.511 C.53 D.3 15. 圆心在( -1,0),半径为5的圆的方程是( )A.(x+1)2+y 2=5B. (x+1)2+y 2=25C. (x-1)2+y 2=5D. (x-1)2+y 2=2516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交不过圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,则k 的取值范围是( )A.k<-1或k>4B. k=-1或k=4C. -1<k<4D. -1≤k ≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,则△ABC 的面积是( )A.4B.3C.2D.1二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。

九年级数学上册《直线和圆的位置关系》练习题

九年级数学上册《直线和圆的位置关系》练习题

《直线和圆的位置关系》练习题一、选择题:1.已知⊙O 的半径为10cm ,如果一条直线和圆心O 的距离为10cm ,那么这条直线和这个圆的位置关系为( )A. 相离B. 相切C. 相交D. 相交或相离2.如右图,A 、B 是⊙O 上的两点,AC 是⊙O 的切线,∠B=70°,则∠BAC 等于( )A. 70°B. 35°C. 20°D. 10°3.如图,PA 切⊙O 于A ,PB 切⊙O 于B ,OP 交⊙O 于C ,下列结论中,错误的是( )A. ∠1=∠2B. PA=PBC. AB ⊥OPD. 2PA PC ·PO4.如图,已知⊙O 的直径AB 与弦AC 的夹角为30°,过C 点的切线PC 与AB 的延长线交于P ,PC=5,则⊙O 的半径为( )A. 335B. 635C. 10D. 55.已知AB 是⊙O 的直径,弦AD 、BC 相交于点P ,那么CD ︰AB 等于∠BPD 的( )A. 正弦B. 余弦C. 正切D. 余切6.A 、B 、C 是⊙O 上三点,AB ⌒的度数是50°,∠OBC=40°,则∠OAC 等于( )A. 15°B. 25°C. 30°D. 40°7.AB 为⊙O 的一条固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C ,作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当C 点在半圆(不包括A 、B 两点)上移动时,点P ( )A. 到CD 的距离不变B. 位置不变C. 等分DB⌒ D. 随C 点的移动而移动第5题图 第6题图 第7题图(第3题图) (第4题图)8.在⊙O 中,直径AB 、CD 互相垂直,BE 切⊙O 于B ,且BE=BC ,CE 交AB 于F ,交⊙O 于M ,连结MO 并延长,交⊙O 于N ,则下列结论中,正确的是( )A. CF=FMB. OF=FBC. BM ⌒的度数是22.5°D. BC ∥MN 二、解答题:1、如图,AB 为⊙O 的直径,BC 切⊙O 于B ,AC 交⊙O 于P ,CE=BE ,E 在BC 上. 求证:PE 是⊙O 的切线.2、.点P 为圆外一点,M 、N 分别为AB ⌒、CD ⌒的中点,求证:∆PEF 是等腰三角形.3、如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过点B 的直线交OC 的延长线于点E ,当BE CE =时,直线BE 与⊙O 有怎样的位置关系?并证明你的结论.4、AB 是⊙O 的直径,D 是⊙O 上一动点,延长AD 到C 使CD AD =,连结BC BD ,.(1)证明:当D 点与A 点不重合时,总有AB BC =.(2)设⊙O 的半径为2,AD x =,BD y =,用含x 的式子表示y .(3)BC 与⊙O 是否有可能相切?若不可能相切,则说明理由;若能相切,则指出x 为何值时相切.O A B P E CA B D CM E PF NDCBA P。

直线与圆练习题

直线与圆练习题

直线与圆练习题一、选择题1. 点P在圆O上,PA和PB是圆的两条切线,PA和PB的长度相等,圆的半径为r。

则PA的长度是:A. rB. 2rC. r√2D. 2r√22. 直线l与圆O相切于点P,若OP=10,则直线l到圆心O的距离是:A. 10B. 5C. 20D. 不能确定3. 圆的圆心在原点,半径为5,直线y=3x+4与该圆的位置关系是:A. 相离B. 相切C. 相交D. 重合4. 圆的方程为(x-1)²+(y-2)²=9,直线方程为y=x+1,若直线与圆相交,则交点的个数是:A. 0B. 1C. 2D. 35. 圆的方程为x²+y²=16,点A(3,4)在圆上,PA是圆的切线,PA的斜率为1,则切点P的坐标是:A. (2,5)B. (3,3)C. (5,2)D. (4,3)二、填空题6. 若圆的方程为(x-3)²+(y+2)²=25,直线的方程为2x-3y+6=0,求直线与圆的交点坐标。

7. 已知点A(2,3),B(-1,-2),求经过点A和B的直线方程。

8. 若圆的方程为x²+y²=25,点P(4,3)在圆内,求点P到圆心的距离。

9. 已知圆的方程为(x-1)²+(y+1)²=10,直线的方程为3x+4y-12=0,求直线与圆的切点坐标。

10. 若圆的方程为x²+y²-4x-6y-11=0,求圆心坐标及半径。

三、解答题11. 已知圆的方程为(x-2)²+(y+3)²=100,直线l的方程为y=-x+5,求直线l被圆所截得的弦长。

12. 在平面直角坐标系中,圆C的方程为(x-3)²+(y-4)²=9,点M(1,0),求过点M的切线方程。

13. 已知直线l₁: y=2x+6与圆O: x²+y²=9相交于A、B两点,求AB的长度。

高考数学复习直线与圆专题过关训练100题(WORD版含答案)

高考数学复习直线与圆专题过关训练100题(WORD版含答案)

高考数学复习直线与圆专题过关训练100题(WORD 版含答案)一、选择题1.点M ,N 是圆22240x y kx y +++-=上的不同两点,且点M ,N 关于直线10x y -+=对称,则该圆的半径等于A ..3 2.我们把顶角为36°的等腰三角形称为黄金三角形.....。

其作法如下:①作一个正方形ABCD ;②以AD 的中点E 为圆心,以EC 长为半径作圆,交AD 延长线于F ;③以D 为圆心,以DF 长为半径作⊙D ;④以A 为圆心,以AD 长为半径作⊙A 交⊙D 于G ,则△ADG 为黄金三角形。

根据上述作法,可以求出cos36°= A .415-B .415+ C .435+ D .435-3.已知实数a ,b 满足224a b +=,则ab 的取值范围是 A .[0,2]B .[-2,0]C .(-∞,-2]∪[2,+∞)D .[-2,2]4.双曲线C :22221(0,0)x y a b a b -=>>的离心率为2,其渐近线与圆()2234x a y -+=相切,则该双曲线的方程为( )A .2213y x -= B .22139x y -=C .22125x y -= D .221412x y -= 5.若直线与圆有公共点,则实数a 取值范围是( )A. [-3,-1]B. [-1,3]C. [-3,1]D. (-∞,-3]∪[1,+∞)6.直线20x y -与y 轴的交点为P ,点P 把圆()22136x y ++=的直径分为两段,则较长一段比上较短一段的值等于( ) A .2 B .3 C .4 D .57.已知圆...22:(3)(4)1C x y -+-=和两点...()()(,0),00A m Bm m ->,.若圆...C .上存在点....P .,使得...90APB ∠=︒,则..m .的最大值为.....(. ).A ...7B ....6C ....5D ....4.8.已知圆...22:(3)(4)1C x y -+-=和两点...()()(,0),,00A m B m m ->.. 若圆..C .上存在点....P .,使得... 90APB ∠=︒,则..m .的最大值为.....(. ). A ...7 B ....6 C ....5 D ....4.9.若函数1)(2+=x x f 的图象与曲线C :()01)(>+=a ae x g x存在公共切线,则实数a 的取值范围为 A .⎪⎭⎫⎢⎣⎡∞+,26e B .⎥⎦⎤ ⎝⎛28,0e C .⎪⎭⎫⎢⎣⎡∞+,22e D .⎥⎦⎤ ⎝⎛24,0e 10.已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,且||||-=+,其中O 为坐标原点,则实数a 的值为 A .2 B .±2 C .-2D .2±11.已知抛物线22(0)y px p =>上一点(5,)t 到焦点的距离为6,P 、Q 分别为抛物线与圆22(6)1x y -+=上的动点,则|PQ |的最小值为( )A 1B . 2C ..1函数()e cos xf x x =的图象在(0,f (0))处的切线倾斜角为( ) A. 0 B . 4π C. 1 D .2π 13.在平面直角坐标系xOy 中,已知两圆C 1:1222=+y x 和C 2:1422=+y x ,又A 点坐标为(3,-1),M ,N 是C 1上的动点,Q 为C 2上的动点,则四边形AMQN 能构成矩形的个数为( )A .0个B .2个C .4个D .无数个 14. 曲线11x y x +=-在点(2,3)处的切线与直线10ax y ++=平行,则a =( ) A .12B .12-C .-2D .215.已知过点A (a ,0)作曲线:xC y x e =⋅的切线有且仅有两条,则实数a 的取值范围是A .(-∞,-4)∪(0,+∞)B .(0,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,-1) 16.若点P (1,1)为圆2260x y x +-=的弦MN 的中点,则弦MN 所在直线方程为A .230x y +-=B .210x y -+=C .230x y +-=D .210x y --= 17.直线2x -y 与y 轴的交点为P ,点P 把圆22(1)36x y ++=的直径分为两段,则较长一段比上较短一段的值等于 A. 2B. 3C. 4D. 518.若函数1()(0,0)bxf x e a b a=->>的图象在0x =处的切线与圆221x y +=相切,则a b +的最大值是( )C.2D.中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆22(2)1x y -+=都相切,则双曲线C 的离心率是( )A .2B .220.中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆22(2)1x y -+=都相切,则双曲线C 的离心率是( )A .2B .221.若直线y x b =+与曲线096422=+--+y x y x 有公共点,则b 的取值范围是( )A. 1,1⎡-+⎣B. 1⎡-+⎣C. 1⎡⎤-⎣⎦D. 1⎡⎤-⎣⎦22.已知直线4x -3y +a =0与⊙C : x 2+y 2+4x =0相交于A 、B 两点,且∠AOB =120°,则实数a 的值为( )A .3B .10 C. 11或 21 D .3或13 23.过点(2,1)且与直线3x -2y =0垂直的直线方程为A .2x -3y -1=0B .2x +3y -7=0C .3x -2y -4=0D .3x +2y -8=0 24.若直线y =x +b 与曲线y =3b 的取值范围是A .[1,1-+B .[1-+C .[1-D .[1 25.已知动圆圆心在抛物线y 2=4x 上,且动圆恒与直线x=-1相切,则此动圆必过定点( )A. (2,0)B. (1,0)C. (0,1)D.(0,-1) 26.已知曲线421y x ax =++在点(-1,f (-1))处切线的斜率为8,则f (-1)= A .7B .-4C .-7D .427.已知点(1,2)P 和圆222:20C x y kx y k ++++=,过点P 作圆C 的切线有两条,则k 的取值范围是( )A .RB .(,)3-∞C .(33-D .(3- 28.已知倾斜角为θ的直线l 与直线230x y +-=垂直,则cos2θ的值为 ( ) A .35 B .35- C .15 D .15- 29.我国古代太极图是一种优美的对称图.如果一个函数的图像能够将圆的面积和周长分成两个相等的部分,我们称这样的函数为圆的“太极函数”.下列命题中错误..命题的个数是( ) P 1:对于任意一个圆其对应的太极函数不唯一;P 2:如果一个函数是两个圆的太极函数,那么这两个圆为同心圆; P 3:圆22(1)(1)4x y -+-=的一个太极函数为32()33f x x x x =-+; P 4:圆的太极函数均是中心对称图形; P 5:奇函数都是太极函数; P 6:偶函数不可能是太极函数. A. 2B. 3C.4D.530.在平面直角坐标系xOy 中,动点P 的坐标满足方程4)3()1(22=-+-y x ,则点P 的轨迹经过()A. 第一、二象限B.第二、三象限C. 第三、四象限D.第一、四象限 31.直线1-=x y 的倾斜角是()A.6π B.4π C. 2π D.43π32.已知圆221:1C x y +=,圆222:(3)(4)9C x y -+-=,则圆C 1与圆C 2的位置关系是()A.内含B.外离C.相交D.相切 33.在平面直角坐标系xOy 中,已知直线l 的方程为2y x =+,则原点O 到直线l 的距离是A.12D.234.过点()1,1P -作圆()()()22:21C x t y t t R -+-+=∈的切线,切点分别为A,B ,则PA PB ⋅的最小值为A. 103B. 403C. 214D.3 35.已知函数()ln ,f x x x =若直线l 过点(0,-1),且与曲线()y f x =相切,则直线l 的方程为 A.10x y +-= B.10x y ++= C.10x y --= D.10x y -+= 36.圆C :222x y +=,点P 为直线136x y+=上的一个动点,过点P 向圆C 作切线,切点分别为A 、B ,则直线AB 过定点( ) A .11(,)23B .21(,)33C .11(,)32D .12(,)3337.过双曲线221916x y -=的右支上一点P ,分别向圆C 1:22(5)4x y ++=和圆C 2:222(5)x y r -+=(0r >)作切线,切点分别为M ,N ,若22PM PN -的最小值为58,则r =( )A .1B .2 38.已知l 1,l 2分别是函数()|ln |f x x =图像上不同的两点P 1,P 2处的切线,l 1,l 2分别与y 轴交于点A ,B ,且l 1与l 2垂直相交于点P ,则△ABP 的面积的取值范围是( ) A .(0,1) B .(0,2) C. (0,+∞) D .(1,+∞) 39.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则△ABP 面积的取值范围是A .[2,6]B .[4,8]C .D .40.在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 (A )1(B )2(C )3 (D )441.若圆1C :2222()(2)410x m y n m n -+-=++(0mn >)始终平分圆2C :22(1)(1)2x y +++=的周长,则12m n+的最小值为( ) A .3 B .92C.6 D .9 42.函数()2ln (0,)f x x x bx a b a =+-+>∈R 的图像在点()(),b f b 处的切线斜率的最小值是( )A .BC .1D .243.己知直线1:sin 10l x y α+-=,直线212:3cos 10,sin 2=l x y l l αα-+=⊥若,则 A .23B .35±C .35-D .3544.若直线b x y +=与曲线243x x y --=有公共点,则b 的取值范围是( ) A .]221,221[+- B .]3,221[- C .]221,1[+- D .]3,221[- 45.已知点)3,1(A ,)33,1(-=B ,则直线AB 的倾斜角是( ) A .60° B .30° C .120° D .150°二、填空题46.若直线20l x y +=:与圆()()22:10C x a y b -+-=相切,且圆心C 在直线l 的上方,则ab 的最大值为___________. 47.在四边形ABCD 中,︒=∠90ABC ,2==BC AB ,△ACD 为等边三角形,则△ABC 的外接圆与△ACD 的内切圆的公共弦长=___________. 48.设圆O 1,圆O 2半径都为1,且相外切,其切点为P .点A ,B 分别在圆O 1,圆O 2上,则PA PB ⋅的最大值为 ▲ .49.已知直线10ax y +-=与圆()()22:11C x y a -++=相交于A ,B 两点,且△ABC 为等腰直角三角形,则实数a 的值为 ※※ . 50.已知a ,b 为正数,若直线022=-+by ax 被圆422=+y x 截得的弦长为32,则221b a +的最大值是 .51.已知抛物线()20y ax a =>的准线为l ,若l 与圆()22:31C x y -+=a = . 52.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 . 53.已知双曲线22221(0,0)x y a b a b-=>>的渐近线被圆22650x y x +-+=截得的弦长为2,则该双曲线的离心率为 . 54.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点.设顶点(),P x y 的轨迹方程是()y f x =,则对函数()y f x =有下列判断:①函数()y f x =是偶函数;②对任意的x ∈R ,都有()()22f x f x +=-;③函数()y f x =在区间[2,3]上单调递减;④函数()y f x =的值域是[]0,1;⑤()2π1d 2f x x +=⎰.其中判断正确的序号是__________.55.在平面直角坐标系xOy 中,已知圆1:22=+y x O ,直线a x y l +=:,过直线l 上点P 作圆O 的切线P A ,PB ,切点分别为A ,B ,若存在点P 使得23=+,则实数a 的取值范围是 . 56.已知函数a x y +=ln 的图象与直线1+=x y 相切,则实数a 的值为 . 57.函数()ln 1f x x =+在点(1,1)处的切线方程为 . 58.已知直线:1l mx y -=。

直线与圆单元测试题及答案

直线与圆单元测试题及答案

直线与圆单元测试题及答案一、选择题(每题2分,共10分)1. 直线与圆相切时,直线与圆心的距离等于()。

A. 圆的半径B. 圆的直径C. 圆的周长D. 圆的面积2. 圆的方程为 \( (x-a)^2 + (y-b)^2 = r^2 \),其中 \( a \) 和\( b \) 分别代表()。

A. 圆的半径和直径B. 圆的中心坐标C. 圆的周长和面积D. 圆的直径和面积3. 如果直线 \( y = mx + c \) 与圆 \( (x-a)^2 + (y-b)^2 = r^2 \) 相切,则直线到圆心的距离是()。

A. \( \sqrt{m^2 + 1} \cdot r \)B. \( \frac{|ma - mb + c|}{\sqrt{m^2 + 1}} \)C. \( \frac{|ma + mb + c|}{\sqrt{m^2 + 1}} \)D. \( \frac{|ma - mb - c|}{\sqrt{m^2 + 1}} \)4. 直线 \( x = 3 \) 与圆 \( (x-2)^2 + (y-1)^2 = 5 \) 的位置关系是()。

A. 相切B. 相交C. 相离D. 无法确定5. 圆心在原点,半径为 \( \sqrt{5} \) 的圆的方程是()。

A. \( x^2 + y^2 = 5 \)B. \( x^2 + y^2 = 3 \)C. \( x^2 + y^2 = 4 \)D. \( x^2 + y^2 = 2 \)二、填空题(每题3分,共15分)6. 若直线 \( y = kx + 1 \) 与圆 \( x^2 + y^2 = 9 \) 相切,则\( k \) 的值为________。

7. 圆 \( x^2 + y^2 - 6x - 8y + 16 = 0 \) 的圆心坐标是________。

8. 若直线 \( x - 2y + 3 = 0 \) 与圆 \( x^2 + y^2 = 25 \) 相切,则圆心到直线的距离是________。

6.5 直线与圆的位置关系(同步练习)(解析版)

6.5 直线与圆的位置关系(同步练习)(解析版)

6.5 直线与圆的位置关系
同步练习
故C 到:3410l x y +-=的距离为22381
234+-=+,
故所求弦长为2223225-=.
故选:C
1.圆()2211x y ++=与直线230x y ++=的位置关系是( )
A .相交
B .相切
C .相离
D .不能确定
【答案】A
【分析】运用几何法d 与r 的关系判断圆与直线位置关系即可.
【详解】圆()2
211x y ++=的圆心为()0,1-,半径为1, 所以圆心到直线230x y ++=的距离22351512d -+=
=<+, 所以直线与圆的位置关系为相交.
故选:A.
2.直线33
y x =与圆22(1)1x y -+=的位置关系是( ) A .相交但直线不过圆心 B .相切
C .相离
D .相交且直线过圆心
【答案】A
【分析】要判断圆与直线的位置关系,方法是利用点到直线的距离公式求出圆心到此直线的距离d ,和圆的半径r 比较即可得到此圆与直线的位置关系.
【详解】由圆的方程得到圆心坐标为()1
0,,半径1r =,直线为30x y -=, ∴()1
0,到直线30x y -=的距离112
13d r ==<+, ∴圆与直线的位置关系为相交, 又圆心()1
0,不在直线33y x =上, 故选:A . 能力进阶。

直线与圆专题训练

直线与圆专题训练

直线与圆专题训练一:斜率、倾斜角与直线方程1.过点(3, 0)和点(4,3)的斜率是( )A .3B .-3C .33D . -332.过点(3, 0)和点(0, 3)的倾斜角是( )A .045B .-045C .0135D .- 01353.过点P(-2, m)和Q(m, 4)的直线斜率等于1,那么m 的值等于 ( ) A .1或3 B .4 C .1 D .1或4 4.在直角坐标系中,直线y= -3x+1的倾斜角为( )A .0120B .-030C .060D .- 0605.过点(-3, 0)和点(-4,3)的倾斜角是( )A .030 B .0150 C .060 D .0120 6.如图,直线l1、l2、l3的斜率分别是k1、k2、k3,则有( ) A .k1<k2<k3 B .k3<k1<k2 C .k3<k2<k1 D .k1<k3<k27.若两直线a,b 的倾斜角分别为21αα,,则下列四个命题中正确的是( ) A . 若21αα<, 则两直线斜率k1< k2 B . 若21αα=, 则两直线斜率k1= k2 C .若两直线斜率k1< k2, 则21αα< D .若两直线斜率k1= k2, 则21αα= 8.下列命题:(1)若点P (x1,y1),Q (x2,y2), 则直线PQ 的斜率为1212x x y y k --=;(2)任意一条直线都存在唯一的倾斜角,但不一定都存在斜率; (3)直线的斜率k 与倾斜角α之间满足αtan =k ;(4)与x 轴平行或重合的直线的倾斜角为00.以上正确的命题个数是( ) A .0个 B . 1个 C . 2个 D .3个9.若直线1x =的倾斜角为α,则α( )A .等于0B .等于4πC .等于2πD .不存在10.已知θ∈R,则直线sin 10x θ+=的倾斜角的取值范围是( )A .[0°,30°]B . [)150,180C .[0°,30°]∪[)150,180D .[30°,150°]12.如果ab>0,直线ax +by +c=0的倾斜角为α,且sin α2)A . 43 B . -43 C . ±43 D . ±34 13.直线0cos 20sin 2030x y +-=的倾斜角是( )A .200B .1600C .700D .1100 14.直线倾斜角α的取值范围是 .15.直线l 的倾斜角α=1200,则直线l 的斜率等于 __________.16.若直线的倾斜角α满足33<tan 3<α,则α的取值范围是______________.17.直线l 过点A(0, 1)和B(-2, -1),直线l 绕点A 逆时针旋转450得直线l ‘,那么l ’的斜率是 __________ .18.(1)当且仅当m 为何值时,经过两点A (-m ,6)、B (1,3m )的直线的斜率是12. (2)当且仅当m 为何值时,经过两点A (m ,2)、B (-m ,2m-1)的直线的倾斜角是600.19.(1)若三点(2,3),(3,a ),(4,b )在同一直线上,求a 、b 的关系;(2)已知三点A(a ,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a 的值.20.在直角坐标系中,ABC ∆三个顶点A (0,3)、B (3,3)、C (2,0),若直线x a =将ABC ∆分割成面积相等的两部分,求实数a 的值.21.已知两点A (3,2),B (-4,1),求过点C (0,-1)的直线l 与线段AB 有公共点求直线l 的斜率k 的取值范围.直线与圆专题训练二:直线方程与位置关系1.下列命题中正确的是( )A .平行的两条直线的斜率一定相等B .平行的两条直线的倾斜角相等C .斜率相等的两直线一定平行D .两直线平行则它们在y 轴上截距不相等2.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为31,则m,n 的值分别为( ) A .4和3 B .-4和3 C .-4和-3 D .4和-3 3.直线1 :kx+y+2=0和2 :x-2y-3=0, 若21|| ,则1 在两坐标轴上的截距的和( ) A .-1 B .-2 C .2 D .6 4.两条直线mx+y-n=0和x+my+1=0互相平行的条件是( )A. m=1 B .m=±1 C .⎩⎨⎧-≠=11n m D .⎩⎨⎧-≠-=11n m 或⎩⎨⎧≠=11n m5.如果直线ax+(1-b)y+5=0和(1+a)x-y-b=0同时平行于直线x-2y+3=0,则a 、b 的值为( )A .a=21, b=0B .a=2, b=0C .a=-21, b=0D . a=-21, b=2 6.若直线ax+2y+6=0与直线x+(a-1)y+(a2-1)=0平行但不重合,则a 等于( )A .-1或2B .-1C .2D .327.已知两点A (-2,0),B (0,4),则线段AB 的垂直平分线方程是( )A .2x+y=0B .2x-y+4=0C .x+2y-3=0D .x-2y+5=0 8.原点在直线 上的射影是P (-2,1),则直线 的方程为( )A .x+2y=0B .x+2y-4=0C .2x-y+5=0D .2x+y+3=0 9.两条直线x+3y+m=0和3x-y+n=0的位置关系是( )A .平行B .垂直C .相交但不垂直D .与m,n 的取值有关 10.方程x2-y2=1表示的图形是( )A .两条相交而不垂直的直线B .一个点C .两条垂直的直线D .两条平行直线11.已知直线ax -y +2a =0与直线(2a -1)x +ay +a =0互相垂直,则a 等于( ) A .1 B .0 C .1或0 D .1或-1 12.点(4,0)关于直线5x+4y+21=0对称的点是( )A .(-6,8)B .(-8,-6)C .(6,8)D .(-6,-8) 13.已知点P (a,b )和点Q(b-1,a+1)是关于直线 对称的两点,则直线 的方程为( ) A .x+y=0 B .x-y=0 C .x+y-1=0 D .x-y+1=014.过点M (3,-4)且与A (-1,3)、B (2,2)两点等距离的直线方程是__________________. 15.若两直线ax +by +4=0与(a -1)x +y +b =0垂直相交于点(0, m),则a +b +m 的值是_____________________. 16.若直线 1:2x-5y+20=0和直线 2:mx-2y-10=0与坐标轴围成的四边形有一个外接圆,则实数m 的值等于 ________. 17.已知点P 是直线 上一点,若直线 绕点P 沿逆时针方向旋转角α(00<α<900)所得的直线方程是x-y-2=0,若将它继续旋转900-α,所得的直线方程是2x+y-1=0, 则直线 的方程是___________.18.平行于直线2x+5y-1=0的直线 与坐标轴围成的三角形面积为5,求直线 的方程.19.若直线ax+y+1=0和直线4x+2y+b=0关于点(2,-1)对称,求a 、b 的值.20.已知三点A(1,0),B(-1,0),C(1,2),求经过点A 并且与直线BC 垂直的直线 的方程.21.已知定点A (-1,3),B (4,2),在x 轴上求点C ,使AC ⊥BC .直线与圆专题训练三:直线交点与平面距离1.两条直线A1x+B1y+C1=0与A2x+B2y+C2=0交点坐标就是方程组⎩⎨⎧=++=++00222111C y B x A C y B x A 的实数解,以下四个命题:(1)若方程组无解,则两直线平行 (2)若方程组只有一解,则两直线相交 (3)若方程组有两个解,则两直线重合 (4)若方程组有无数多解,则两直线重合。

直线与圆练习试题及答案

直线与圆练习试题及答案

直线与圆练习第Ⅰ卷 (选择题 共40分)一、选择题(10³4′=40′)1.直线l 与直线y =1、x-y -7=0分别交于P 、Q 两点,线段PQ 的中点为(1,-1),则直线l 的斜率为( ) A.23 B.32 C.-32 D.-23 2.点P 在直线2x +y +10=0上,P A 、PB 与圆422=+y x 分别相切于A 、B 两点,则四边形P AOB 面积的最小值为 ( )A.24B.16C.8D.43.已知直线1l :y =x ,2l :ax -y =0,其中a 为实数,当这两直线的夹角θ∈(0,12π)时,a 的取值范围为 ( )A.(0,1)B.(33,3)C.(33,1)∪(1,3)D.(1,3) 4.设a 、b 、k 、p 分别表示同一直线的横截距、纵截距、斜率和原点到直线的距离,则有( )A.)1(2222k p k a +=B.k =ab C.b a 11+=p D.a =-kb 5.已知直线x +3y -7=0,kx-y -2=0和x 轴、y 轴围成四边形有外接圆,则实数k 等于 ( )A.-3B.3C.-6D.66.若圆222r y x =+(r >0)上恰有相异两点到直线4x -3y +25=0的距离等于1,则r 的取值范围是( )A.[4,6]B.[4,6)C.(4,6]D.(4,6)7.直线1l :0=++c by ax ,2l :0=++p ny mx ,则bnam =-1是1l ⊥2l 的 ( ) A.充分而不必要条件 B.必要而不充分条件C.充要条件D.既不充分又不必要条件8.过圆422=+y x 外一点P(4,-1)引圆的两条切线,则经过两切点的直线方程为 ( )A.4x -y -4=0B.4x +y -4=0C.4x +y +4=0D.4x -y +4=09.倾斜角为60°,且过原点的直线被圆222)()(r b y a x =-+-(r >0)截得弦长恰好等于圆的半径,则a 、b 、r 满足的条件是 ( ) A.)3(|3|3a b b a r ≠-= B.)3(|3|23a b b a r ≠-= C.)3(|3|3a b b a r ≠+= D.)3(|3|23a b b a r ≠-=10.直线y =kx +1与圆0922=--++y kx y x 的两个交点关于y 轴对称,则k 为 ( )。

(完整版)直线与圆练习题(带答案解析)

(完整版)直线与圆练习题(带答案解析)

..直线方程、直线与圆练习1.如果两条直线l 1:260ax y ++=与l 2:(1)30x a y +-+=平行,那么a 等 A .1 B .-1 C .2 D .23【答案】B 【解析】试题分析:两条直线平行需满足12211221A B A B A C A C =⎧⎨≠⎩即122112211A B A B a AC A C =⎧⇒=-⎨≠⎩,故选择B考点:两条直线位置关系2. 已知点A (1,1),B (3,3),则线段AB 的垂直平分线的方程是 A .4y x =-+ B .y x = C .4y x =+ D .y x =- 【答案】A 【解析】试题分析:由题意可得:AB 中点C 坐标为()2,2,且31131AB k -==-,所以线段AB 的垂直平分线的斜率为-1,所以直线方程为:()244y x y x -=--⇒=-+,故选择A考点:求直线方程3.如图,定圆半径为a ,圆心为(,)b c ,则直线0ax by c ++=与直线10x y +-=的交点在A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D 【解析】试题分析:由图形可知0b a c >>>,由010ax by c x y ++=⎧⎨+-=⎩得0b c x b a a c y b a +⎧=>⎪⎪-⎨--⎪=<⎪-⎩所以交点在第四象限考点:圆的方程及直线的交点4.若点(,0)k 与(,0)b 的中点为(1,0)-,则直线y kx b =+必定经过点 A .(1,2)- B .(1,2) C .(1,2)- D .(1,2)-- 【答案】A 【解析】试卷第2页,总48页试题分析:由中点坐标公式可得2k b +=-,所以直线y kx b =+化为()212y kx k k x y =--∴-=+,令10,201,2x y x y -=+=∴==-,定点(1,2)-考点:1.中点坐标公式;2.直线方程5.过点(1,3)P -且平行于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x【答案】D 【解析】试题分析:设直线方程:02=+-c y x ,将点(1,3)P -代入方程,06-1-=+c ,解得7=c ,所以方程是072=+-y x ,故选D . 考点:直线方程 6.设(),P x y 是曲线2cos :sin x C y θθ=-+⎧⎨=⎩(θ为参数,02θπ≤<)上任意一点,则y x 的取值范围是()A .3,3⎡⎤-⎣⎦B .(),33,⎤⎡-∞-⋃+∞⎦⎣C .33,33⎡⎤-⎢⎥⎣⎦ D .33,,33⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭【答案】C 【解析】试题分析:曲线2cos :sin x C y θθ=-+⎧⎨=⎩(θ为参数,02θπ≤<)的普通方程为:()()2221,,x y P x y ++=是曲线()22:21C x y ++=上任意一点,则yx 的几何意义就是圆上的点与坐标原点连线的斜率, 如图:33,33y x ⎡⎤∈-⎢⎥⎣⎦.故选C .考点:1.直线与圆的位置关系;2.直线的斜率;3.圆的参数方程.7.设点(1,0)A ,(2,1)B ,如果直线1ax by +=与线段AB 有一个公共点,那么22a b +..(A )最小值为15 (B )最小值为55 (C )最大值为15 (D )最大值为55【答案】A【解析】试题分析:直线ax+by=1与线段AB 有一个公共点,则点A(1,0)B(2,1)应分布在直线ax+by-1=0两侧,将(1,0)与(2,1)代入,则(a-1)(2a+b-1)≤0,以a 为横坐标,b 为纵坐标画出区域如下图:则原点到区域内点的最近距离为OA ,即原点到直线2a+b-1=0的距离,OA=55,22a b +表示原点到区域内点的距离的平方,∴22a b +的最小值为15,故选A.考点:线性规划.8.点()11-,到直线10x y -+=的距离是( ). A .21 B .23 C .22D .223【答案】D【解析】试题分析:根据点到直线的距离公式,()221(1)132211d --+==+-,故选D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆专题训练
一、选择题
1.(2016·山东高考)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是22,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是( ) A.内切 B.相交 C.外切 D.相离
2.(2015·山东高考)一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为( )
A.-5
3
或-
3
5
B.-
3
2
或-
2
3
C.-
5
4
或-
4
5
D.-
4
3
或-
3
4
3.已知圆M的圆心在x轴上,且圆心在直线l1:x=-2的右侧,若圆M截直线l
1
所得的弦长为23,且与直线l2:2x-5y-4=0相切,则圆M的方程为( ) A.(x-1)2+y2=4 B.(x+1)2+y2=4
C.x2+(y-1)2=4 D.x2+(y+1)2=4
4.(2016·济南模拟)已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=( ) A.2 B.4 2 C.6 D.210
5.(2016·衡水一模)已知圆x2+y2+mx-1
4
=0与抛物线y=
1
4
x2的准线相切,则
m=( )
A.±2 2 B.± 3 C. 2 D. 3 6.(2016·长春一模)若动点A,B分别在直线l1:x+y-7=0和l2:x+y-5=0上运动,则AB的中点M到原点的距离最小值为( )
A. 2 B.2 2 C.3 2 D.4 2
7.与圆C1:x2+y2+2x-6y-26=0,C2:x2+y2-4x+2y+4=0都相切的直线有( )
A.1条B.2条 C.3条 D.4条8.(2016·湘潭二模)两圆x2+y2+2ax+a2-4=0和x2+y2-4by-1+4b2=0恰
有三条公切线,若a∈R,b∈R且ab≠0,则1
a2

1
b2
的最小值为( )
1
2
A .1
B .3 C.19 D.49
9.(2016·淄博模拟)已知△ABC 的三个顶点坐标分别为A (-2,3),B (-2,-1),C (6,-1),以原点为圆心的圆与此三角形有唯一的公共点,则该圆的方程为
( )
A .x 2+y 2=1
B .x 2+y 2=4
C .x 2+y 2=4
D .x 2+y 2=1或x 2+y 2=37
10.若直线l :ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0的周长,则(a -2)2+(b -2)2的最小值为( ) A. 5 B .5 C .2 5 D .10
11.命题p :4<r <7,命题q :圆(x -3)2+(y +5)2=r 2(r >0)上恰好有两个点到直线4x -3y =2的距离等于1,则p 是q 的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
12.(2016·兰州二模)已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两
点A ,B ,O 为坐标原点,且有|OA →+OB →
|≥33|AB →|,则k 的取值范围是( ) A .(3,2) B .[2,22) C .[2,62) D .[3,22)
二、填空题
13.(2015·全国卷Ⅰ)一个圆经过椭圆x 2
16+y 2
4=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为___________________.
14.(2014·山东高考)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为__________________.
15.(2016·黄山一模)已知圆C 关于y 轴对称,经过点A (1,0),且被x 轴分成的两段弧长之比为1∶2,则圆C 的方程为_________________.
16.(2016·郑州二模)已知⊙M 的圆心在第一象限,过原点O 被x 轴截得的弦长为6,且与直线3x +y =0相切,则圆M 的标准方程为__________________.
17.(2016·青岛一模)抛物线y 2=4x 与过其焦点且垂直于x 轴的直线相交于A ,B。

相关文档
最新文档