设计性实验(MATLAB仿真实验)

合集下载

电力电子课程设计matlab仿真实验

电力电子课程设计matlab仿真实验

一.课程设计目的(1)通过matlab的simulink工具箱,掌握DC-DC、DC-AC、AC-DC电路的仿真。

通过设置元器件不同的参数,观察输出波形并进行比较,进一步理解电路的工作原理;(2)掌握焊接的技能,对照原理图,了解工作原理;(3)加深理解和掌握《电力电子技术》课程的基础知识,提高学生综合运用所学知识的能力;二.课程设计内容第一部分:simulink电力电子仿真/版本matlab7.0(1)DC-DC电路仿真(升降压(Buck-Boost)变换器)仿真电路参数:直流电压20V、开关管为MOSFET(内阻为0.001欧)、开关频率20KHz、电感L为133uH、电容为1.67mF、负载为电阻负载(20欧)、二极管导通压降0.7V(内阻为0.001欧)、占空比40%。

仿真时间0.3s,仿真算法为ode23tb。

图1-1占空比为40%的,降压后为12.12V。

触发脉冲、电感电流、开关管电流、二极管电流、负载电流、输出电压的波形。

图1-2占空比为60%的,升压后为28.25V。

触发脉冲、电感电流、开关管电流、二极管电流、负载电流、输出电压的波形。

图1-3•图1-4升降压变换电路(又称Buck-boost电路)的输出电压平均值可以大于或小于输入直流电压,输出电压与输入电压极性相反,其电路原理图如图1-4(a)所示。

它主要用于要求输出与输入电压反相,其值可大于或小于输入电压的直流稳压电源工作原理:①T导通,ton期间,二极管D反偏而关断,电感L储能,滤波电容C向负载提供能量。

②T关断,toff期间,当感应电动势大小超过输出电压U0时,二极管D导通,电感L经D向C和RL反向放电,使输出电压的极性与输入电压在ton期间电感电流的增加量等于toff期间的减少量,得:由的关系,求出输出电压的平均值为:上式中,D为占空比,负号表示输出与输入电压反相;当D=0.5时,U0=Ud;当0.5<D<1时,U0>Ud,为升压变换;当0≤D<0.5时,U0<Ud,为降压变换。

matlab软件仿真实验(信号与系统)(1)

matlab软件仿真实验(信号与系统)(1)

matlab软件仿真实验(信号与系统)(1)《信号与系统实验报告》学院:信息科学与⼯程学院专业:物联⽹⼯程姓名:学号:⽬录实验⼀、MATLAB 基本应⽤实验⼆信号的时域表⽰实验三、连续信号卷积实验四、典型周期信号的频谱表⽰实验五、傅⽴叶变换性质研究实验六、抽样定理与信号恢复实验⼀MATLAB 基本应⽤⼀、实验⽬的:学习MATLAB的基本⽤法,了解 MATLAB 的⽬录结构和基本功能以及MATLAB在信号与系统中的应⽤。

⼆、实验内容:例⼀已知x的取值范围,画出y=sin(x)的图型。

x=0:0.05:4*pi;y=sin(x);plot(y)例⼆计算y=sin(π/5)+4cos(π/4)例三已知z 取值范围,x=sin(z);y=cos(z);画三维图形。

z=0:pi/50:10*pi;x=sin(z);y=cos(z);plot3(x,y,z)xlabel('x')ylabel('y')zlabel('z')例四已知x的取值范围,⽤subplot函数绘图。

参考程序:x=0:0.05:7;y1=sin(x);y2=1.5*cos(x);y3=sin(2*x);y4=5*cos(2*x);subplot(2,2,1),plot(x,y1),title('sin(x)')subplot(2,2,2),plot(x,y2),title('1.5*cos(x)')subplot(2,2,3),plot(x,y3),title('sin(2*x)')subplot(2,2,4),plot(x,y4),title('5*cos(2*x)')连续信号的MATLAB表⽰1、指数信号:指数信号Ae at在MATLAB中可⽤exp函数表⽰,其调⽤形式为:y=A*exp(a*t) (例取 A=1,a=-0.4)参考程序:A=1;a=-0.4;t=0:0.01:10;ft=A*exp(a*t);plot(t,ft);grid on;2、正弦信号:正弦信号Acos(w0t+?)和Asin(w0t+?)分别由函数cos和sin表⽰,其调⽤形式为:A*cos(w0t+phi) ;A*sin(w0t+phi) (例取A=1,w0=2π,?=π/6) 参考程序:A=1;w0=2*pi; phi=pi/6; t=0:0.001:8;ft=A*sin(w0*t+phi);plot(t,ft);grid on ;3、抽样函数:抽样函数Sa(t)在MATLAB中⽤sinc函数表⽰,其定义为:sinc(t)=sin(πt)/( πt)其调⽤形式为:y=sinc(t)参考程序:t=-3*pi:pi/100:3*pi;ft=sinc(t/pi);plot(t,ft);grid on;4、矩形脉冲信号:在MATLAB中⽤rectpuls函数来表⽰,其调⽤形式为:y=rectpuls(t,width),⽤以产⽣⼀个幅值为1,宽度为width,相对于t=0点左右对称的矩形波信号,该函数的横坐标范围由向量t决定,是以t=0为中⼼向左右各展开width/2的范围,width的默认值为1。

自动实验一——典型环节的MATLAB仿真 报告

自动实验一——典型环节的MATLAB仿真 报告

班级 姓名 学号XXXXXX 电子与信息工程学院实验报告册课程名称:自动控制原理 实验地点: 实验时间同组实验人: 实验题目: 典型环节的MATLAB 仿真一、实验目的:1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、实验原理及SIMULINK 图形:1.比例环节的传递函数为 221211()2100,200Z R G s R K R K Z R =-=-=-==其对应的模拟电路及SIMULINK 图形如图1-3所示。

2.惯性环节的传递函数为2211211212()100,200,110.21R Z R G s R K R K C uf Z R C s =-=-=-===++其对应的模拟电路及SIMULINK 图形如图1-4所示。

3.积分环节(I)的传递函数为uf C K R s s C R Z Z s G 1,1001.011)(111112==-=-=-=其对应的模拟电路及SIMULINK 图形如图1-5所示。

图1-5 积分环节的模拟电路及及SIMULINK 图形 图1-4 惯性环节的模拟电路及SIMULINK 图形4.微分环节(D)的传递函数为uf C K R s s C R Z Z s G 10,100)(111112==-=-=-= uf C C 01.012=<<其对应的模拟电路及SIMULINK 图形如图1-6所示。

5.比例+微分环节(PD )的传递函数为)11.0()1()(111212+-=+-=-=s s C R R R Z Z s G uf C C uf C K R R 01.010,10012121=<<=== 其对应的模拟电路及SIMULINK 图形如图1-7所示。

6.比例+积分环节(PI )的传递函数为)11(1)(11212s R s C R Z Z s G +-=+-=-= uf C K R R 10,100121===其对应的模拟电路及SIMULINK 图形如图1-8所示。

程序设计实验报告(matlab)

程序设计实验报告(matlab)

程序设计实验报告(matlab)实验一: 程序设计基础实验目的:初步掌握机器人编程语言Matlab。

实验内容:运用Matlab进行简单的程序设计。

实验方法:基于Matlab环境下的简单程序设计。

实验结果:成功掌握简单的程序设计和Matlab基本编程语法。

实验二:多项式拟合与插值实验目的:学习多项式拟合和插值的方法,并能进行相关计算。

实验内容:在Matlab环境下进行多项式拟合和插值的计算。

实验方法:结合Matlab的插值工具箱,进行相关的计算。

实验结果:深入理解多项式拟合和插值的实现原理,成功掌握Matlab的插值工具箱。

实验三:最小二乘法实验目的:了解最小二乘法的基本原理和算法,并能够通过Matlab进行计算。

实验内容:利用Matlab进行最小二乘法计算。

实验方法:基于Matlab的线性代数计算库,进行最小二乘法的计算。

实验结果:成功掌握最小二乘法的计算方法,并了解其在实际应用中的作用。

实验六:常微分方程实验目的:了解ODE的基本概念和解法,并通过Matlab进行计算。

实验内容:利用Matlab求解ODE的一阶微分方程组、变系数ODE、高阶ODE等问题。

实验方法:基于Matlab的ODE工具箱,进行ODE求解。

实验结果:深入理解ODE的基本概念和解法,掌握多种ODE求解方法,熟练掌握Matlab的ODE求解工具箱的使用方法。

总结在Matlab环境下进行程序设计实验,使我对Matlab有了更深刻的认识和了解,也使我对计算机科学在实践中的应用有了更加深入的了解。

通过这些实验的学习,我能够灵活应用Matlab进行各种计算和数值分析,同时也能够深入理解相关的数学原理和算法。

这些知识和技能对我未来的学习和工作都将有着重要的帮助。

如何利用Matlab进行模拟和仿真实验

如何利用Matlab进行模拟和仿真实验

如何利用Matlab进行模拟和仿真实验Matlab是一种功能强大的数学计算和数据可视化软件。

它不仅可以进行数学模拟和仿真实验,还可以处理数据、绘制图表和实施算法。

在工程、物理学、生物学等领域,Matlab被广泛用于解决各种实际问题。

本文将介绍如何利用Matlab进行模拟和仿真实验,并探讨其在实验设计和结果分析中的应用。

一. Matlab的基本功能Matlab具有很多基本功能,如矩阵操作、数值计算、符号计算等。

这些功能使得Matlab成为进行模拟和仿真实验的理想选择。

在Matlab中,可以定义和操作矩阵,进行线性代数运算,如求解方程组、矩阵求逆等。

此外,Matlab还提供了许多内置函数,可以进行数值计算和符号计算,如求解微分方程、积分、数值优化等。

二. 模拟实验的设计在进行模拟实验之前,首先需要设计实验方案。

实验设计包括选择合适的模型和参数设置,确定实验变量和观测指标等。

在Matlab中,可以使用函数或脚本来定义模型和参数,通过修改参数值来观察实验结果的变化。

比如,可以使用Matlab的模型库来选择合适的模型,然后使用函数传入参数值进行求解。

此外,Matlab还提供了绘图功能,可以绘制实验结果的图表,以便更直观地分析数据。

三. 仿真实验的实施在设计好实验方案后,就可以开始进行仿真实验了。

在Matlab中,可以使用已定义的模型和参数进行仿真计算。

可以通过Matlab的编程功能来实现计算过程的自动化。

比如,可以使用循环语句来迭代计算,以观察参数变化对结果的影响。

此外,Matlab还提供了随机数生成和统计分析函数,可以用于生成随机变量和分析实验数据。

四. 实验结果的分析在完成仿真实验后,需要对实验结果进行分析。

Matlab提供了丰富的数据处理和分析工具,可以对实验数据进行统计分析、绘图和可视化展示。

可以使用Matlab的数据处理函数来计算均值、标准差、相关系数等统计指标。

此外,Matlab还可以通过绘图函数来绘制直方图、散点图、线图等图形,以便更好地理解和展示数据。

matlab仿真实验报告

matlab仿真实验报告

matlab仿真实验报告Matlab仿真实验报告引言:Matlab是一种广泛应用于科学和工程领域的数值计算软件,它提供了强大的数学和图形处理功能,可用于解决各种实际问题。

本文将通过一个具体的Matlab 仿真实验来展示其在工程领域中的应用。

实验背景:本次实验的目标是通过Matlab仿真分析一个电路的性能。

该电路是一个简单的放大器电路,由一个输入电阻、一个输出电阻和一个放大倍数组成。

我们将通过Matlab对该电路进行仿真,以了解其放大性能。

实验步骤:1. 定义电路参数:首先,我们需要定义电路的各个参数,包括输入电阻、输出电阻和放大倍数。

这些参数将作为Matlab仿真的输入。

2. 构建电路模型:接下来,我们需要在Matlab中构建电路模型。

可以使用电路元件的模型来表示电路的行为,并使用Matlab的电路分析工具进行仿真。

3. 仿真分析:在电路模型构建完成后,我们可以通过Matlab进行仿真分析。

可以通过输入不同的信号波形,观察电路的输出响应,并计算放大倍数。

4. 结果可视化:为了更直观地观察仿真结果,我们可以使用Matlab的图形处理功能将仿真结果可视化。

可以绘制输入信号波形、输出信号波形和放大倍数的变化曲线图。

实验结果:通过仿真分析,我们得到了以下实验结果:1. 输入信号波形与输出信号波形的对比图:通过绘制输入信号波形和输出信号波形的变化曲线,我们可以观察到电路的放大效果。

可以看到输出信号的幅度大于输入信号,说明电路具有放大功能。

2. 放大倍数的计算结果:通过对输出信号和输入信号的幅度进行计算,我们可以得到电路的放大倍数。

通过比较不同输入信号幅度下的输出信号幅度,可以得到放大倍数的变化情况。

讨论与分析:通过对实验结果的讨论和分析,我们可以得出以下结论:1. 电路的放大性能:根据实验结果,我们可以评估电路的放大性能。

通过观察输出信号的幅度和输入信号的幅度之间的比值,可以判断电路的放大效果是否符合设计要求。

《MATLAB与控制系统仿真》实验报告

《MATLAB与控制系统仿真》实验报告

《MATLAB与控制系统仿真》实验报告一、实验目的本实验旨在通过MATLAB软件进行控制系统的仿真,并通过仿真结果分析控制系统的性能。

二、实验器材1.计算机2.MATLAB软件三、实验内容1.搭建控制系统模型在MATLAB软件中,通过使用控制系统工具箱,我们可以搭建不同类型的控制系统模型。

本实验中我们选择了一个简单的比例控制系统模型。

2.设定输入信号我们需要为控制系统提供输入信号进行仿真。

在MATLAB中,我们可以使用信号工具箱来产生不同类型的信号。

本实验中,我们选择了一个阶跃信号作为输入信号。

3.运行仿真通过设置模型参数、输入信号以及仿真时间等相关参数后,我们可以运行仿真。

MATLAB会根据系统模型和输入信号产生输出信号,并显示在仿真界面上。

4.分析控制系统性能根据仿真结果,我们可以对控制系统的性能进行分析。

常见的性能指标包括系统的稳态误差、超调量、响应时间等。

四、实验步骤1. 打开MATLAB软件,并在命令窗口中输入“controlSystemDesigner”命令,打开控制系统工具箱。

2.在控制系统工具箱中选择比例控制器模型,并设置相应的增益参数。

3.在信号工具箱中选择阶跃信号,并设置相应的幅值和起始时间。

4.在仿真界面中设置仿真时间,并点击运行按钮,开始仿真。

5.根据仿真结果,分析控制系统的性能指标,并记录下相应的数值,并根据数值进行分析和讨论。

五、实验结果与分析根据运行仿真获得的结果,我们可以得到控制系统的输出信号曲线。

通过观察输出信号的稳态值、超调量、响应时间等性能指标,我们可以对控制系统的性能进行分析和评价。

六、实验总结通过本次实验,我们学习了如何使用MATLAB软件进行控制系统仿真,并提取控制系统的性能指标。

通过实验,我们可以更加直观地理解控制系统的工作原理,为控制系统设计和分析提供了重要的工具和思路。

七、实验心得通过本次实验,我深刻理解了控制系统仿真的重要性和必要性。

MATLAB软件提供了强大的仿真工具和功能,能够帮助我们更好地理解和分析控制系统的性能。

基于MATLAB控制系统仿真实验报告

基于MATLAB控制系统仿真实验报告

tf 4
y0

0 1
6、求出 G1(s)
2 (s2 2s 1) 与 G2 (s)
1 (2s3

3s2
1)
的单位阶跃响应,并分别
求出状态空间模型。
解:(1) G1(s) 2 (s2 2s 1) 的状态空间模型求解如下:
function shiyan2 b1=[2];
D(z)

0.62(1 0.136z 1)(1 0.183z (1 0.045z 1)(1 0.53z 1)
1 )
分别用仿真算法得到系统在单位阶跃输入作用下的响应,系统在单位速度输
入是的输出响应。
解:(1)首先将 W1(s)转换为 W1(z),采样周期 T=0.2s,程序清单如下: function shiyan42 num=[10];den=[0.005 0.15 1 0]; ts=0.2;[nc,dc]=c2dm(num,den,ts)
INTRO(注意:intro 为一个用 MATLAB 语言编写的幻灯片程序,主要演示
常用的 MATLAB 语句运行结果。)
然后,根据现实出来的幻灯片右面按钮进行操作,可按 START——NEXT—
—NEXT 按钮一步步运行,观察。
3、自编程序并完成上机编辑,调试,运行,存盘:
(1)用 MATLAB 命令完成矩阵的各种运算,例如:
5、利用 ode23 或 ode45 求解线性时不变系统微分方程 y(t) Ay(t) ,并绘制出 y(t)
曲线,式中
A

0.5

1
1 0.5
t t0 t 如下: function xdot=fun21(t,x) A=[-0.5 1;-1 -0.5]; xdot=A*x; function fzsy22 t0=0;tf=4;tol=1e-6; x0=[0;1];trace=1; [t,x]=ode23('fun21',t0,tf,x0,tol,trace); plot(t,x) 得到的实验结果如下图所示:

基于MATLAB的控制系统设计与仿真实践

基于MATLAB的控制系统设计与仿真实践

基于MATLAB的控制系统设计与仿真实践控制系统设计是现代工程领域中至关重要的一部分,它涉及到对系统动态特性的分析、建模、控制器设计以及性能评估等方面。

MATLAB作为一种强大的工程计算软件,在控制系统设计与仿真方面有着广泛的应用。

本文将介绍基于MATLAB的控制系统设计与仿真实践,包括系统建模、控制器设计、性能评估等内容。

1. 控制系统设计概述控制系统是通过对被控对象施加某种影响,使其按照既定要求或规律运动的系统。

在控制系统设计中,首先需要对被控对象进行建模,以便进行后续的分析和设计。

MATLAB提供了丰富的工具和函数,可以帮助工程师快速准确地建立系统模型。

2. 系统建模与仿真在MATLAB中,可以利用Simulink工具进行系统建模和仿真。

Simulink是MATLAB中用于多域仿真和建模的工具,用户可以通过拖拽图形化组件来搭建整个系统模型。

同时,Simulink还提供了各种信号源、传感器、执行器等组件,方便用户快速搭建复杂的控制系统模型。

3. 控制器设计控制器是控制系统中至关重要的一部分,它根据系统反馈信息对输出信号进行调节,以使系统输出达到期望值。

在MATLAB中,可以利用Control System Toolbox进行各种类型的控制器设计,包括PID控制器、根轨迹设计、频域设计等。

工程师可以根据系统需求选择合适的控制器类型,并通过MATLAB进行参数调节和性能优化。

4. 性能评估与优化在控制系统设计过程中,性能评估是必不可少的一环。

MATLAB提供了丰富的工具和函数,可以帮助工程师对系统进行性能评估,并进行优化改进。

通过仿真实验和数据分析,工程师可以评估系统的稳定性、鲁棒性、响应速度等指标,并针对性地进行调整和改进。

5. 实例演示为了更好地说明基于MATLAB的控制系统设计与仿真实践,我们将以一个简单的直流电机速度控制系统为例进行演示。

首先我们将建立电机数学模型,并设计PID速度控制器;然后利用Simulink搭建整个闭环控制系统,并进行仿真实验;最后通过MATLAB对系统性能进行评估和优化。

自动控制原理MATLAB分析与设计仿真实验报告(最终版)

自动控制原理MATLAB分析与设计仿真实验报告(最终版)

兰州理工大学《自动控制原理》MATLAB分析与设计仿真实验报告学院:电气工程与信息工程学院专业班级: 13级自动化3班姓名:学号:时间: 2015年12月Step ResponseTime (seconds)A m p l i t u d e1234567891000.511.5System: sys1Rise time (seconds): 1.17System: sys1P eak amplitude: 1.41Overshoot (%): 40.6At time (seconds): 2.86System: sys1Final value: 1第三章 线性系统的时域分析法一、教材第三章习题3.5设单位反馈系统的开环传递函数为G(s)=0.41(0.6)s s s ++(1)试求系统在单位阶跃输入下的动态性能。

(2)忽略闭环零点的系统在单位阶跃输入下的动态性能。

(3)对(1) 和(2)的动态性能进行比较并分析仿真结果。

(1)A :程序如下。

B :系统响应曲线如下图。

Step Response Time (seconds)A m p l i t u d e01234567891000.20.40.60.811.21.4System: sys1Final value: 1System: sys1Settling time (seconds): 8.08System: sys1P eak amplitude: 1.16Overshoot (%): 16.3At time (seconds): 3.63System: sys1Rise time (seconds): 1.64(2)A :程序如下。

B :系统响应曲线如下图。

(3) A :程序如下。

B 响应曲线如下图。

阶跃响应t (sec)c (t )0123456789100.20.40.60.811.21.4System: sysRise Time (sec): 1.46System: sys1Rise Time (sec): 1.64System: sys1P eak amplitude: 1.16Overshoot (%): 16.3At time (sec): 3.63System: sys P eak amplitude: 1.18Overshoot (%): 18At time (sec): 3.16System: sys1Final Value: 1System: sys1Settling Time (sec): 8.08System: sysSettling Time (sec): 7.74120,0.1ττ==120.1,0ττ==分析:忽略闭环零点时,系统的峰值时间,调节时间,上升时间均为增大的,而超调量减小。

自动实验一——典型环节的MATLAB仿真报告

自动实验一——典型环节的MATLAB仿真报告

自动实验一——典型环节的MATLAB仿真报告引言:典型环节的MATLAB仿真是一种常见的模拟实验方法,通过使用MATLAB软件进行建模和仿真,可以有效地研究和分析各种复杂的物理系统和控制系统。

本报告将介绍一个典型环节的MATLAB仿真实验,包括实验目的、实验原理、实验步骤、实验结果和讨论等内容。

一、实验目的本实验旨在通过MATLAB仿真实验,研究和分析一个典型环节的动态特性,深入了解其响应规律和控制方法,为实际系统的设计和优化提供理论支持。

二、实验原理典型环节是控制系统中的重要组成部分,一般包括惯性环节、惯性耦合和纯滞后等。

在本实验中,我们将重点研究一个惯性环节。

惯性环节是一种常见的动态系统,其特点是系统具有自身的动态惯性,对输入信号的响应具有一定的滞后效应,并且在输入信号发生变化时有一定的惯性。

三、实验步骤1.建立典型环节的数学模型。

根据实际情况,我们可以选择不同的数学模型描述典型环节的动态特性。

在本实验中,我们选择使用一阶惯性环节的传递函数模型进行仿真。

2.编写MATLAB程序进行仿真。

利用MATLAB软件的控制系统工具箱,我们可以方便地建立惯性环节的模型,并利用系统仿真和分析工具进行仿真实验和结果分析。

3.进行仿真实验。

选择合适的输入信号和参数设置,进行仿真实验,并记录仿真结果。

4.分析实验结果。

根据仿真结果,可以分析典型环节的动态响应特性,比较不同输入信号和控制方法对系统响应的影响。

四、实验结果和讨论通过以上步骤,我们成功地完成了典型环节的MATLAB仿真实验,并获得了仿真结果。

通过对仿真结果的分析,我们可以得到以下结论:1.惯性环节的响应规律。

惯性环节的响应具有一定的滞后效应,并且对输入信号的变化具有一定的惯性。

随着输入信号的变化速度增加,惯性环节的响应时间呈指数级减小。

2.稳态误差与控制增益的关系。

控制增益对稳态误差有重要影响,适当调整控制增益可以减小稳态误差。

3.不同输入信号的影响。

自动控制原理MATLAB分析与设计-仿真实验报告

自动控制原理MATLAB分析与设计-仿真实验报告

兰州理工大学《自动控制原理》MATLAB分析与设计仿真实验报告院系:电气工程与信息工程学院班级:电气工程及其自动化四班姓名:学号:时间:年月日电气工程与信息工程学院《自动控制原理》MATLAB 分析与设计仿真实验任务书(2014) 一、仿真实验内容及要求 1.MATLAB 软件要求学生通过课余时间自学掌握MATLAB 软件的基本数值运算、基本符号运算、基本程序设计方法及常用的图形命令操作;熟悉MATLAB 仿真集成环境Simulink 的使用。

2.各章节实验内容及要求1)第三章 线性系统的时域分析法∙ 对教材第三章习题3-5系统进行动态性能仿真,并与忽略闭环零点的系统动态性能进行比较,分析仿真结果;∙ 对教材第三章习题3-9系统的动态性能及稳态性能通过仿真进行分析,说明不同控制器的作用;∙ 在MATLAB 环境下选择完成教材第三章习题3-30,并对结果进行分析; ∙ 在MATLAB 环境下完成英文讲义P153.E3.3;∙ 对英文讲义中的循序渐进实例“Disk Drive Read System”,在100=a K 时,试采用微分反馈控制方法,并通过控制器参数的优化,使系统性能满足%5%,σ<3250,510s ss t ms d -≤<⨯等指标。

2)第四章 线性系统的根轨迹法∙ 在MATLAB 环境下完成英文讲义P157.E4.5; ∙ 利用MATLAB 绘制教材第四章习题4-5;∙ 在MATLAB 环境下选择完成教材第四章习题4-10及4-17,并对结果进行分析;∙ 在MATLAB 环境下选择完成教材第四章习题4-23,并对结果进行分析。

3)第五章 线性系统的频域分析法∙ 利用MATLAB 绘制本章作业中任意2个习题的频域特性曲线;4)第六章 线性系统的校正∙ 利用MATLAB 选择设计本章作业中至少2个习题的控制器,并利用系统的单位阶跃响应说明所设计控制器的功能;∙ 利用MATLAB 完成教材第六章习题6-22控制器的设计及验证;∙ 对英文讲义中的循序渐进实例“Disk Drive Read System”,试采用PD控制并优化控制器参数,使系统性能满足给定的设计指标ms t s 150%,5%<<σ。

实验六抽样定理的MATLAB仿真设计

实验六抽样定理的MATLAB仿真设计

综合性、设计性实验报告贺鹤学号8专业通信工程班级2013级1班实验课程名称抽样定理的MATLAB仿真指导教师及职称玲香讲师开课学期 2014 至 2015 学年第二学期上课时间 2015年 6 月 17、27日科技学院教务处编印(2) 编程步骤(仿真实验)①确定f(t)的最高频率fm。

对于无限带宽信号,确定最高频率fm的方法:设其频谱的模降到10-5左右时的频率为fm。

②确定Nyquist抽样间隔TN 。

选定两个抽样时间:TS<TN,TS>TN。

③滤波器的截止频率确定:ωm <ωC <ωS -ωm 。

④采样信号f(nTs )根据MATLAB计算表达式的向量表示。

⑤重建信号f(t) 的MATLAB中的计算机公式向量表示。

根据原理和公式,MATLAB计算为:ft=fs*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); (3)电路连接原理(硬件实验)5.实验数据处理方法①自定义输入信号:f1=cos(2*pi*80*t)+2*sin(2*pi*30*t)+cos(2*pi*40*t-pi/3)②改变抽样频率,实现欠抽样、临界抽样和过抽样,调试结果分析:(1)频率sf<max2fm时,为原信号的欠采样信号和恢复,采样频率不满足时域采样定理,那么频移后的各相临频谱会发生相互重叠,这样就无法将他们分开,因而也不能再恢复原信号。

频谱重叠的现象被称为混叠现象。

如图1所示图1.fs=140Hz恢复后信号波形及频谱(2)频率sf=max2fm时,为原信号的临界采样信号和恢复,从下图2恢复后信号和原信号先对比可知,只恢复了低频信号,高频信号未能恢复。

如图2所示图2.fs=160Hz恢复后信号波形及频谱(3)频率sf>max2fm时,此时的采样是成功的,它能够恢复原信号,从时域波形可看出,比上面采样所得的冲激脉冲串包含的细节要多,在频域中也没出现频谱的交叠,这样我们可以利用低通滤波器得到无失真的重建。

matlab 仿真实验报告

matlab 仿真实验报告

matlab 仿真实验报告Matlab 仿真实验报告引言:在科学研究和工程应用中,仿真实验是一种非常重要的手段。

通过在计算机上建立数学模型和进行仿真实验,我们可以更好地理解和预测现实世界中的各种现象和问题。

Matlab作为一种强大的科学计算软件,被广泛应用于各个领域的仿真实验中。

本文将介绍我进行的一次基于Matlab的仿真实验,并对实验结果进行分析和讨论。

实验背景:在电子通信领域中,信号的传输和接收是一个重要的研究方向。

而在进行信号传输时,会受到各种信道的影响,如噪声、衰落等。

为了更好地理解信道的特性和优化信号传输方案,我进行了一次关于信道传输的仿真实验。

实验目的:本次实验的目的是通过Matlab仿真,研究不同信道条件下信号传输的性能,并对比分析不同传输方案的优劣。

实验步骤:1. 信道建模:首先,我需要建立信道的数学模型。

根据实际情况,我选择了常见的高斯信道模型作为仿真对象。

通过Matlab提供的函数,我可以很方便地生成高斯噪声,并将其加入到信号中。

2. 信号传输方案设计:接下来,我需要设计不同的信号传输方案。

在实验中,我选择了两种常见的调制方式:频移键控(FSK)和相移键控(PSK)。

通过调整不同的调制参数,我可以模拟不同的传输效果。

3. 信号传输仿真:在信道模型和传输方案设计完成后,我开始进行信号传输的仿真实验。

通过Matlab提供的信号处理函数,我可以很方便地生成调制后的信号,并将其传输到信道中。

4. 信号接收和解调:在信号传输完成后,我需要进行信号接收和解调。

通过Matlab提供的信号处理函数,我可以很方便地对接收到的信号进行解调,并还原出原始的信息信号。

5. 仿真结果分析:最后,我对仿真结果进行分析和讨论。

通过对比不同信道条件下的传输性能,我可以评估不同传输方案的优劣,并得出一些有价值的结论。

实验结果与讨论:通过对不同信道条件下的信号传输仿真实验,我得到了一些有价值的结果。

首先,我观察到在高斯噪声较大的信道条件下,PSK调制比FSK调制具有更好的抗干扰性能。

计算机仿真实验报告

计算机仿真实验报告

目录实验一Matlab语言编程 (1)一.实验目的 (1)二.具体实验内容、步骤、要求: (1)实验二数值积分算法及函数调用练习 (3)一.实验目的 (3)二.实验实例介绍: (3)实验三控制工具箱与SIMULINK软件应用 (9)一.实验目的 (9)二.实验预习要求: (9)三.学会调出、运行已由SIMULINK建立的仿真模型。

(9)四.实验设计题目与要求: (10)实验一 Matlab 语言编程一. 实验目的熟悉Matlab 语言及其编程环境,掌握编程方法 要求认真听取实验指导老师讲解与演示二. 具体实验内容、步骤、要求:1.运行交互式学习软件,学习Matlab 语言2.在Matlab 的命令窗口下输入如下命令:INTRO,然后根据显示出来的幻灯片右面按钮进行操作,可按START —>NEXT —>NEXT 按钮,一步步运行,观察。

3.自编程序并完成上机编辑、调试、运行,存盘。

(1). 用Matlab 命令完成矩阵的各种运算,例如:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=44434241343332312423222114131211A 求出下列运算结果,并上机验证。

A(:,1),A(2,:),A(1:2,2:3),A(2:3,2:3),A(:,1:2),A(2:3), A(:),A(:,:),ones(2,2), eye(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=41312111A(:,1)[]24232221:)A(2,=⎥⎦⎤⎢⎣⎡=232213123):2,2:A(1 ⎥⎦⎤⎢⎣⎡=333223223):3,2:A(2⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=42413231222112112):A(:,1[]31213):A(2=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=44342414433323134232221241312111A(:)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=44434241343332312423222114131211:)A(:,⎥⎦⎤⎢⎣⎡=1111)2,2(ones ⎥⎦⎤⎢⎣⎡=1001)2(eye(2). 绘制数学函数图形t=0:0.1:8;y=1-2*t.*sin(t); plot(t,y)12345678-15-10-551015时间t输出y绘制数学函数图形4.理解命令文件和函数文件的区别,并自编函数文件并调用。

如何利用Matlab技术进行模拟实验

如何利用Matlab技术进行模拟实验

如何利用Matlab技术进行模拟实验引言:模拟实验是一种基于计算机仿真的方法,通过对系统的数学建模及仿真模拟,来了解和研究实际问题。

MATLAB作为一种功能强大的数学软件,提供了丰富的工具和函数,可以用于各种领域的模拟实验。

本文将介绍如何利用MATLAB技术进行模拟实验,并分析其优势和应用案例。

一、使用MATLAB进行数学建模数学建模是模拟实验的基础,通过数学模型的建立,可以将实际问题转化为数学表达式,进而进行仿真模拟分析。

在MATLAB中,有一些常用的数学建模工具和函数可以帮助我们完成这个过程。

1.符号计算工具包(Symbolic Math Toolbox):该工具包提供了符号化数学计算的功能,可以进行符号运算、求解方程、求导、积分等操作。

通过符号计算,可以将数学问题抽象为符号表达式,方便后续的建模和仿真。

2.方程求解器(Solver):MATLAB中内置了多种求解方程的算法和函数,可以快速准确地求解各种数学模型中的方程。

例如,可以使用fsolve函数来求解非线性方程组,使用ode45函数来求解常微分方程等。

3.优化工具箱(Optimization Toolbox):该工具箱提供了多种优化算法和函数,可以用于求解最优化问题。

例如,使用fmincon函数可以进行约束最优化,使用linprog函数可以进行线性规划等。

二、MATLAB的仿真建模功能MATLAB不仅可以进行数学建模,还提供了强大的仿真建模功能,可以根据建立的数学模型进行仿真实验,并得到模拟结果。

1.图形化建模界面(Simulink):MATLAB中的Simulink是一个图形化建模和仿真环境,可以用于构建动态系统的模型。

用户可以通过将各种功能块组合在一起,建立整个系统的模型。

Simulink支持各种类型的信号和系统,包括连续时间、离散时间、混合时间等。

通过Simulink可以直观地展示系统的动态行为,并进行仿真和分析。

2.系统动态仿真:MATLAB提供了一系列用于系统动态仿真的函数和工具箱。

Matlab程序设计仿真训练实验报告

Matlab程序设计仿真训练实验报告

Matlab程序设计仿真训练实验报告设计题目:物体碰撞运动建模专业;通信工程班级:三班姓名:张乐学号:201100805524报告时间:2012.06指导老师:蔡益红实验目的:了解matlab的基本特点与功能,基本掌握matlab的功能解决数学物理的相关问题。

实验环境MATLAB 7.9I、题目:质量为m的小球以速度正面碰撞质量为M的静止小球,假设碰撞是完全弹性的,即没有能量损失,求碰撞后两球的速度,及它们与两球质量比K =M/m的关系并对结果进行分析。

II、程序简介根据小球碰撞过程中的机械能守恒和动量守恒,写出两个方程,然后解出两个小球各自的速度表达式,再把已知参量代入到速度表达式即可求的小球完全弹性碰撞后的速度;其中,跟据两个小球的质量关系K=M/m,可以分析两个小球的质量跟碰撞后的速度u和v的方向和大小关系。

III、程序依据(机械能守恒)0.5*m*V^2-0.5*m*u^2-0.5*M*v^2=0(动量守恒)m*V-m*u-M*v=0求解方程的:u=V*(m-M)/(m+M);v=2*V*m/(m+M);代入K=M/m得:u=V*(1-k)/(1+k);v=2*V/(1+k);IV、程序代码syms u v;>>[x,y]=solve('0.5*m*V^2-0.5*m*u^2-0.5*M*v^2=0','m*V-m*u-M*v=0'); >> x=vpa(x,4);>> y=vpa(y,4);>>>> clear>> syms u v;>>[x,y]=solve('0.5*m*V^2-0.5*m*u^2-0.5*M*v^2=0','m*V-m*u-M*v=0'); >> x=vpa(x,4)x =V-(1.0*(M*V - 1.0*V*m))/(M + m)>> y=vpa(y,4)y =(2.0*V*m)/(M + m)当以K=M/m计算时:syms u v;>> [u,v]=solve('V-u-K*v=0','V^2-u^2-K*v^2=0');>> u=vpa(u,4)u =V(V - 1.0*K*V)/(K + 1.0)>> v=vpa(v,4)v =(2.0*V)/(K + 1.0)VI、函数图象x=0.1:0.1:10;>> y=2./(1+x)-1;>> z=2-2./(1+x);>>plot(x,y,x,z)V、数据分析当K=1时,两小球的质量相等,由公式的V1=0,V2=V0,即碰撞后质量为m的小球静止,质量为M的小球以速度大小V0,方向不变往前运动;当K>1时,碰后由速度表达式的V1为负,即速度反向,V2沿速度V0的方向运动;当K<1时,碰后由速度表达式得,两个小球均沿V0的方向运动,且V1的速度小于V2的速度。

自动控制原理MATLAB仿真实验指导书(4个实验)

自动控制原理MATLAB仿真实验指导书(4个实验)

自动控制原理MATLAB仿真实验实验指导书电子信息工程教研室实验一典型环节的MA TLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、SIMULINK的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。

利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。

1.运行MA TLAB软件,在命令窗口栏“>>”提示符下键入simulink命令,按Enter键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。

2.选择File菜单下New下的Model命令,新建一个simulink仿真环境常规模板。

图1-1 SIMULINK仿真界面图1-2 系统方框图3.在simulink仿真环境下,创建所需要的系统。

以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。

点击simulink下的“Continuous”,再将右边窗口中“Transfer Fen”的图标用左键拖至新建的“untitled”窗口。

2)改变模块参数。

在simulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。

其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。

3)建立其它传递函数模块。

按照上述方法,在不同的simulink的模块库中,建立系统所需的传递函数模块。

例:比例环节用“Math”右边窗口“Gain”的图标。

4)选取阶跃信号输入函数。

用鼠标点击simulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计性实验(MATLA仿真实验)3.1 MATALAB语言概述3.1.1 MATALAB 语言的发展MATALAB 是一种科学计算软件,主要适用于矩阵运算及控制和信息处理领域的分析设计。

它使用方便,输入简洁,运算高效,内容丰富,并且很容易由用户自行扩展,因此,当前已成为美国和其他发达国家大学教学和科学研究中最常用而必不可少的工具。

MATLAB 是由美国Mathworks 公司与 1 984年正式推出的,从那时到现在已升级到7.x 版本。

随着版本的升级,内容不断扩充,功能更强大。

特别是在系统仿真和实时运行等方面,有很多新进展,更扩大了它的应用前景。

MATLAB 是“矩阵实验室”( MATrix Laboratoy )的缩写,它是一种以矩阵运算为基础的交互式程序语言,专门针对科学、工程计算及绘图的需求。

它用解释方式工作,键入程序立即得出结果,人机交互性能好,适应于多种平台。

MATLAB 语言在国外的大学工学院中,特别是数值计算用的最频繁的电子信息类学科中,已成为每个学生都掌握的工具了。

它大大提高了课程教学、解题作业、分析研究的效率。

MATLAB 语言比较好学,因为它只有一种数据类型,一种标准的输入输出语句,不用“指针”,不需编译,比其他语言少了很多内容听三、四个小时课,上机练几个小时,就可入门了。

以后自学也十分方便,通过它的演示(dem0)和求助(help)命令,人们可以方便地在线学习各种函数的用法及其内涵MATLAB 语言的难点是函数较多,仅基本部分就有700多个,其中常用的有二三百个,要尽量多记少查,可以提高编程效率。

3.1.2MATLAB 语言的特点1.矩阵运算:每个变量代表一个矩阵,它以矩阵运算见长;每个元素都看作复数,所有的运算都对矩阵和复数有效。

(虚部符号可用i 或j) clear %清除内存变量format short %c1=1-2i,c2=3*(2-sqrt(-1)*3),c3=6+sin(.5)*1j c4=complex(1,2) %建立复数c1 =1.0000 -2.0000ic2 =6.0000 - 9.0000ic3 =6.0000 + 0.4794i c4 =1.0000 +2.0000ic1r二real(c1),c1i二imag(c1),abs_c1二abs(c1),a ngle_c仁a ngle(c1) 结果:" "c1r =1c1i =-2abs_c1 =2.2361an gle_c1 =-1.1071注意:(1)所有的标点符号必须是在英文状态下输入。

(2)各指令行可以用逗号或分号隔开,如用分号,则分号前的指令只执行,不显示结果。

⑶ 在命令窗口中输入指令后,必须按下[enter ]键,该指令才会被执行.(4) %为注释符,即%后面的内容为注释,对MATLA的计算不产生任何影响。

2.人机界面适合科技人员:其程序与科技人员的书写习惯相近,易写易读。

矩阵行数列数无需定义。

258键入算式即得结果,无需编译。

316的输入步骤9「14L7 (1)在键盘上输入下列内容A=[123;4,5,6;7,8,9]结果:例如:简单矩阵A =7 8 9⑵ 按[enter]键,指令执行。

注意:直接输入矩阵时,矩阵元素用空格或逗号”,”分隔,整个矩 阵放到方括号“[]”里。

标点符号一定要在英文状态下输入。

(3) 指令执行后,矩阵A 被保存在MATLA 的工作空间(Works pace ) 中。

如果用户不用clear 指令清除它,或对它重新赋值,那么该矩阵 会一直保存在工作空间中,直到本 MATLAB!令窗被关闭为止。

(4) MATLAB 区分大小写字母。

3•强大而简易的作图功能(1)(2) (3) (4) 如果数据齐全,通常只需要一条命令即可出图。

例:用图形表示离散函数y = |(n-6) n=(0:12); %产生一组自变量数据 y=1./abs( n-6); %计算相应点的函数值plot( n,y,'r*','MarkerSize',15) % 用红花标出数据点grid on %画坐标方格显示的图形:说明: ./表示点除,用于元素对元素的除法。

而 /表示矩阵除法。

还有 能根据输入数据自动确定坐标绘图。

能规定多种坐标系(极坐标,对数坐标等)。

能绘制三维坐标中的曲线和曲面。

可设置不同颜色、线型和视角等。

-J -4图 3-1 函数 y = (n -'*' ' A'及'*' 'A'。

4.智能化程度高( 1)绘图时自动选择最佳坐标。

( 2)做数值积分时,自动按精度选择步长。

( 3)自动检测和显示程序错误的能力强,易于调试。

5.功能丰富,可扩展性强MATLAB 软件包括基本部分和专业扩展两大部分。

基本部分包括:矩阵的运算和各种变换;代数和超越方程的求解,数据处理和傅里叶变换,数值积分等等。

扩展部分称为工具箱。

它实际上是用MATLAB 的基本语句编成的各种子程序集,用于解决某一方面的专门问题,或实现某一类的新算法。

现在已经有控制系统,信号处理、图像处理、系统辨识、模糊集合、神经元网络和小波分析等数十个工具箱,并且还在继续发展中。

MATLAB 的核心内容是它的基本部分,所有的工具箱子程序都是用它的基本语句编写的。

学好这部分内容是掌握MATLAB 的关键。

3.1.3M ATLAB 的工作环境MATLAB7.X的工作环境主要由命令窗(Comma nd Win dow)、图形窗(Figure Window)和文本编辑窗(File Editor)组成。

1. 命令窗( Command Window)Comma nd Window是MATLAB中最重要的部分,它是人机交互的主要环境,也是和编译器连接的主要窗口。

用户通过在提示符“>>”后直接输入各种命令并读出相应的结果。

命令窗见MATLAB 桌面系统的默认画面。

其左上视窗为当前目录(Current Directory),可切换为工作空间(Works pace);其左下视窗为历史命令(Comma nd History);右半个视窗则为命令窗(Comma nd Win dow)。

常用的窗口命令如下:clc:清除Comma nd Window里的内容;clear:清除内存变量;home:光标回到窗口的左上角;clf :清除当前Figure窗口的所有非隐藏对象;close:关闭当前Figure窗口;close all:关闭所有Figure 窗口工作空间有多种应用功能:内存变量的查阅、保存和编辑;在命令行下,可以用who , whos 查阅MATLAB 内存变量;who 用于检查现存 于工作空间(Workspac®的变量;whos 用于检查现存于工作空间的变 量的详细资料。

内存变量可以用 clear 命令清除。

如 clear %清除所有内存 变量a=(1:7)'>>a =1234567 who %显示内存变量名>>Your variables are:( 1)命令窗编辑功能:键入和修改程序的方法与通常的文字处理相仿。

特殊的功能键为ESC 恢复命令输入的空白状态(即作废命令)J 调出下一行命令f 调出上一行(历史)命令 whos >>%显示内存 变量名和尺寸、占用内存空 间、类型Name Size Bytes Class Attributesa 7x1 clear a %清除变量 a56 double键调出原命令做修改即可。

主菜单中的编辑( Edit )项功能:用它可以把屏幕上选中的文字 裁剪(Cut )或复制(Copy )下来,放到剪贴板上,然后粘贴(Paste )到任意其他视窗的任何位置上去。

这是 MATLAB!其他 软件(如Wore )交换文件、数据和图形的重要方法。

Debug 项是调试程序时使用的。

Desktop 项功能:用它可以改变屏幕上显示的视窗布局。

如显示 或隐藏命令窗、历史命令窗、工作空间、当前目录;最大化命令 窗等。

Help 项功能:展示详尽的帮助。

在命令行键入helP ,屏幕上将显示系统中已装入的函数库(即子 目录)的名称。

键入help 子目录名,女口 help elfun ,即得出elfun 库(初等数学函 数库)中各函数名。

键入help 函数名,如help eye,即得到eye 函数的意义和用法。

退出MATLAB 有两种方法。

一是键入 exit 或quit ,还有一种是 用鼠标双击左上角的小方块或单击右上角的X 号。

后一种情况属 非正常退出,该次进程的所有的命令将不纪录在“历史命令窗 中”,故应尽量避免使用。

2 .图形窗 通常,只要执行了任一种绘图命令,就会自动产生图形窗。

以后 的绘图都在这一个图形窗中进行。

如想再建一个或几个图形窗,则可 键入 figure ,MATLAB 会新建一个图形窗,并自动给它依次排序,如 果要人为规定新图为图3,则可键入figure (3)。

如要调看已经存在 的图形窗n ,也应键入fingure(n )。

3. 文本编辑窗( M 文件编辑窗)MATLAB 程序编制有两种方式。

一种称为命令方式,在命令窗中 的命令符“ >>”下一行一行地输入命令,计算机每次对一行命令做出 反应,像计算器那样;这只能编简单的程序,在入门时可以用这种方 式。

程序稍复杂一些,就应把程序写成一个有多行语句组成的文件, 即 M 文件,让 MATLAB 来执行这个文件;编写和修改这种文件程序 就要用到文本编辑器Editor 。

文本编辑器可以将程序像文本一样编辑, 如复制、粘贴等,非常方便。

一行中可以键入几个命令,用“;”或这个功能在程序调试时十分有用。

对于已执行过的命令,如要做些修改后重新执行,就不必重新键入,用f(2)x = -1.3000 1.7321 4.8000“, "隔开。

如用“;”则该函数的执行结果不显示(图形函数除 外);如用","则该函数的运行结果要显示。

命令窗上方最左边的按钮是用来打开文本编辑器空白页的。

左边 第 2个按钮是用来打开原有程序文件的。

3.2 基本语法3.2.1 变量及其赋值在MATLAB 内部所有变量均保存成double 的形式,即双精度(64 位)二进制。

这是为了简化编程,MATLAB 是变量名区分大小写。

变量名最多能包括 63个字符,其后的字符都被忽略。

变量名必须以一个字母开始,其后可以是任意数量的字母、数 字、下划线,字符中间不能留空格。

不允许出现标点符号,因为很多标点符号在 MATLAB 中有特殊 的意义。

MATLAB 中的 关键字(又称保留字)不能用作变量名。

相关文档
最新文档