一元三次函数的图象和性质-三次函数的性质

合集下载

三次函数的图象与性质教学设计与实践①.pdf

三次函数的图象与性质教学设计与实践①.pdf
你猜测将 f (x) 因式分解的结果将会是怎样的?
设计意图 引导学生明确研究对象和研究方法,学会将零点个数的研究转化为函数的极 值或解析式结构形式的研究,并在尝试中猜测、归纳三次函数有不同零点个数时的图象所具 有的基本特征,探究不同零点个数的函数解析式的系数应满足的关系,进一步巩固用导数研
3
究函数性质的方法.
设计意图 本题研究系数 a , b , c , d 对三次函数的单调性的影响.在学生确定研究
对象和研究方法,并认识到函数的单调性有多种情形下,引导学生明晰研究的思路,并正确 进行分类讨论:一要关注分类的标准,二要选择分类的方法,三要注意分类的原则.
5.3 借助探究,拓展应用
问题 3 你能得出函数 f (x) ax3 bx2 cx d(a 0) 只有一个零点时系数应该满足
对函数单调性的影响让我们眼花缭乱,为了简化研究,我们可以选择什么方法?
(3)用图形计算器单独验证系数 a 对三次函数 f (x) 的单调性的影响,你得到什么结
论?你想怎样继续研究函数的单调性? (4)在用图形计算器画不同单调性的图象时,你想过如何界定“不同单调性”吗?用什
么标准对“不同单调性”进行划分?你能借助导数写出不同单调性的情形下,各系数应满足的 关系式吗?
设计意图 迁移本课的研究思路和方法.
5. 已知 n R ,函数 f (x) x2 (x 3) n . (Ⅰ)若曲线 y f (x) 的切线中,斜率最小的切线 l 经过点 A(3,0) ,求 n 值; (Ⅱ)若经过点 A(3,0) 可作曲线 y f (x) 的三条切线,求 n 的取值范围.
2 目标和目标解析
本课是为了进一步掌握用导数研究函数性质的方法,感受导数在解决问题中的作用,体 会导数的思想及其丰富内涵,同时扩展学生的数学视野,发展学生独立获取数学知识的能力, 提高学生应用所学知识解决问题的能力.具体目标是:

4导数研究三次函数的性质

4导数研究三次函数的性质

4导数研究三次函数的性质复习目标:掌握三次函数的图象和性质,尤其是利用导数研究单调性、极值情况,以及三次函数的零点。

复习重点难点:(1)三次函数的图象的四种情况;(2)三次函数的极值情况;【典型例题】题型一:三次函数单调性的讨论例1.已知函数32()2f x ax x x =++在R 上恒为增函数,求实数a 的取值范围.例2.已知函数f (x )=-x 3+3x 2+9x +a ,(I )求f (x )的单调递减区间;(II )若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值.题型二:三次函数极值,最值的讨论例3. 已知a 是实数,函数2()()f x x x a =-;(1)若'(1)3f =,求a 的值及曲线()y f x =在点(1,(1))f 处的切线方程;(2)求()f x 在区间[]2,0上的最大值.例4.已知函数()f x 的导数2()33,f x x ax '=-(0).f b =,a b 为实数,12a <<.(1)若()f x 在区间[1, 1]-上的最小值、最大值分别为2-、1,求a 、b 的值;(2)设函数2()(()61)x F x f x x e '=++⋅,试判断函数()F x 的极值点个数.【课后作业】1.过曲线y =x 3+x-2上的点P 0的切线平行于直线y =4x-1,则切点P 0的坐标为2.已知向量a =(x 2,x +1),b =(1-x ,t ).若函数f (x )=a·b 在区间(-1,1)上是增函数,求t 的取值范围.3.函数f (x )=x 3+x 2-x 在区间[-2,1]上的最大值和最小值分别是4.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为31812343y x x =-+-,则使该生产厂家获得最大年利润的年产量为5.设函数b x a ax x x f +-+-=2233231)( (0<a <1). (1)求函数)(x f 的单调区间; (2)当x ∈[]2,1++a a 时,不等式|()x f/ |≤a ,求a 的取值范围.6.已知函数3221()21(0)32a f x x x a x a =--+> (1)求函数()f x 的极值;(2)若函数()y f x =的图象与值线0y =恰有三个交点,求实数a 的取值范围;(3)已知不等式2'()1f x x x <-+对任意(1,)a ∈+∞都成立,求实数x 的取值范围.7.已知函数()()a x x f -=2()x b -,b a ,为常数,(1)若a b ≠,求证:函数()x f 存在极大值和极小值(2)设()x f 取得极大值、极小值时自变量分别为12,x x ,令点A 11(,()x f x ),B 22(,()x f x ),若a >b ,直线AB 的斜率为12-,求函数()x f 和/()f x 的公共递减区间的长度.答案:【典型例题】1. 61≥a . 2.(I ) 0)(,963)(2<'++-='x f x x x f 令,解得x <-1或x >3所以函数f (x )的单调递减区间为(-∞,-1),(3,+∞).(II ))}2(),2(max{)(,5)1()(,3212m ax m in f f x f a f x f -=+-=-=∴<<-<-)2()2(,22)2(,2)2(->∴+=+=-f f a f a f 于是有 22+a =20,解得 a =-2.故f (x )=-x 3+3x 2+9x -2,因此f (-1)=-7,即函数f (x )在区间[-2,2]上的最小值为-7.3. 解析:(1)2'()32f x x ax =-.因为'(1)323f a =-=,所以0a =.又当0a =时,(1)1,'(1)3f f ==,所以曲线()(1,(1))y f x f =在处的切线方程为3x y --2=0.(2)令'()0f x =,解得1220,3a x x ==. 当203a ≤,即a ≤0时,()f x 在[0,2]上单调递增,从而max (2)84f f a ==-. 当223a ≥时,即a ≥3时,()f x 在[0,2]上单调递减,从而max (0)0f f ==. 当2023a <<,即03a <<,()f x 在20,3a ⎡⎤⎢⎥⎣⎦上单调递减,在2,23a ⎡⎤⎢⎥⎣⎦上单调递增,从而max 84,0 2.0,2 3.a a f a -<≤⎧⎪=⎨<<⎪⎩综上所述,max 84, 2.0, 2.a a f a -≤⎧⎪=⎨>⎪⎩4.解(Ⅰ)由已知得,323()2f x x ax b =-+; 由()0f x '=,得10x =,2x a =. ∵[1, 1]x ∈-,12a <<,∴ 当[1, 0)x ∈-时,()0f x '>,()f x 递增;当(0, 1]x ∈时,()0f x '<,()f x 递减.∴ ()f x 在区间[1, 1]-上的最大值为(0)f b =,∴1b =. 又33(1)11222f a a =-+=-,33(1)1122f a a -=--+=-,∴ (1)(1)f f -<. 由题意得(1)2f -=-,即322a -=-,得43a =.故43a =,1b =为所求. (Ⅱ) 2222()(3361)33(2)1x x F x x ax x e x a x e ⎡⎤=-++⋅=--+⋅⎣⎦. ∴ []222()63(2)233(2)1x x F x x a e x a x e '⎡⎤=--⋅+--+⋅⎣⎦22[66(3)83]x x a x a e =--+-⋅.二次函数266(3)83y x a x a =--+-的判别式为22236(3)24(83)12(31211)123(2)1a a a a a ⎡⎤∆=---=-+=--⎣⎦,令0∆≤,得:21(2),22333a a -≤-≤≤+令0∆>,得2,233a a <->+或 ∵20x e >,12a <<,∴当22a ≤<时,()0F x '≥,函数()F x 为单调递增,极值点个数为0;当12a <<()0F x '=有两个不相等的实数根,根据极值点的定义,可知函数()F x 有两个极值点.【课后作业】1.(1,0)或(-1,-4)2.解:f (x )=a·b =x 2(1-x )+t (x +1)=-x 3+x 2+tx +t ,……4分∴f ′(x )=-3x 2+2x +t . …………7分∵f (x )在(-1,1)上是增函数,∴-3x 2+2x +t ≥0在x ∈(-1,1)上恒成立.∴t ≥3x 2-2x , ……………11分令g (x )=3x 2-2x ,x ∈(-1,1).∴g (x )∈⎣⎡⎭⎫-13,5,∴t ≥5. ……………15分3. f (x )max =1,f (x )min =-2。

高中数学常见幂函数、二次函数、三次函数的图象及其性质

高中数学常见幂函数、二次函数、三次函数的图象及其性质
(2)当 时, 在 上单调递增,所以函数 的最大值为 ,最小值为 ;
(3)当 时, 在 上单调递减,在 上单调递增,所以函数 的最大值为 或 ,最小值为 .
(1)当 时, 在 上单调递增,所以函数 的最大值为 ,最小值为 ;
(2)当 时, 在 上单调递减,所以函数 的最大值为 ,最小值为 ;
(3)当 时, 在 上单调递增,在 上单调递减,所以函数 的最大值为 ,最小值为 或 .
单调增区间为: 和 ;
单调减区间为:
在R上单调递增
单调增区间为:
单调减区间为: 和
在R上单调递减
三次函数的图象和性质
定 义
我们把形如 的函数,称为三次函数.
导 数
判别式
我们把 叫做三次函数的导函数 的判别式.
极值点
当 时,导函数 有两个零点,原函数 有两个极值点,不妨记为 、 ,且 .
拐 点
令三次函数 的二阶导数 ,即 ,解得 ,我们把点 叫做三次函数的拐点.
图 象
定义域
R
值 域
R
对称中心
单调性
高中常见幂函数的图象和性质
定义
形如 的函数(其中 是常数, 是自变量)称为二次函数.
常见的五种幂函数图象
性质
(1)当幂指数 为奇数时,幂函数为奇函数;当幂指数 为偶数时,幂函数为偶函数.
(2)当 时,幂函数的图象都过 、 点,且在 上单调递增;
(3)当 时,幂函数的图象都过 点,不过 点,且在 上单调递减;
(4)在直线 的右侧,幂指数 越大,图象越高.
幂函数
定义域
单调增区间
单调减区间





二次函数的图象和性质

3.4 一元二次函数的图象与性质课件-2023届广东省高职高考数学第一轮复习第三章函数

3.4 一元二次函数的图象与性质课件-2023届广东省高职高考数学第一轮复习第三章函数
3.4 一元二次函数的图象与性质
知识点1 知识点2 知识点3 知识点4 知识点5
1.一元二次函数的定义 形如y=ax2+bx+c(a≠0)的函数叫做一元二次函数.它的定义域是 R,图象是一条抛物线.
知识点1 知识点2 知识点3 知识点4 知识点5
2.二次函数y=ax2+bx+c(a≠0)的性质
y=ax2+bx+c
【解析】
(1) 依 题 意 : 抛 物 线 开 口 向 下 , 对 称 轴 为
x

m+n 2

-2+t2-2-t=-2,如图观察得知:f(-1)>f(1).
(2)依题意得对称轴为 x=m+2 n=-12+7=3,则x1+2 x2=3,从而求得
两根之和为 6.
例5 分别求满足下列条件的二次函数y=f(x)的解析式. (1)图象过点(-1,-22),(0,-8),(2,8); (2)顶点为(-1,-8),且过点(0,-6); (3)过点(1,-8),函数与x轴的两个交点坐标分别为(5,0),(-1, 0). 【分析】 本题考查一元二次函数的三种解析式的求法.一般式:y
=ax2+bx+c;顶点式:y=a(x-m)2+n;交点式:y=a(x-x1)(x-x2).
【解】 (1)设二次函数 f(x)=ax2+bx+c,将点(-1,-22),(0,-
8),(2,8)代入解析式:
a-b+c=-22
c=-8
,解得 a=-2,b=12,c=-8,
4a+2b+c=8
所以函数解析式为 f(x)=-2x2+12x-8.
例4 (1)如果函数f(x)=x2+bx+c对任意实数t,都有f(3+t)=f(3
-t),则(
)
A.f(3)<f(1)<f(4) B.f(1)<f(3)<f(4)

4.3 一次函数的图象(第1课时)正比例函数的图象和性质课件(31张PPT) 北师大版八年级数学上册

4.3 一次函数的图象(第1课时)正比例函数的图象和性质课件(31张PPT) 北师大版八年级数学上册
列表、描点、连线。
y = -3x
y
4
3
2
1
-5 -4 -3 -2 -1 O
-1
-2
-3
-4
y = 2x
这两个函数图
象有什么共同
特征?
1 2 3 4 5 x
归纳总结
y = kx (k 是常数,k≠0)的图象是一条经过原点的直线
y = kx (k≠0)
经过的象限
k>0
第一、三象限
k<0
两点
作图法
第二、四象限
15 x
,即
解:
(1) y 5
100
(2)列表 x
0
y
0
描点
连线
(3)当 x = 220 时,
.
4
3
y/元
6
5
4
3
2
1
(元). O
1 2 34 56 7
答:该汽车行驶 220 km 所需油费是 165 元.
x/km
画正比例函数图象的一般
步骤:列表、描点、连线
正比例函
数的图象
和性质
图象:经过原点的直线.
(x2,y2),若 x1<x2 ,则 y1 > y2.
2. 正比例函数 y = k1x 和 y = k2x 的图象如图,则 k1 和 k2
y y = k1x
的大小关系是( A )
y = k2x
A. k1>k2
B. k1 = k2
o
x
C. k1<k2
D. 不能确定
例3 已知正比例函数 y = mx 的图象经过点 (m,4),且
y 的值随着 x 值的增大而减小,求 m 的值.
解:∵正比例函数 y = mx 的图象经过点(m,4),

考点03 一次函数的图像与性质(解析版)

考点03 一次函数的图像与性质(解析版)

考点三一次函数的图像与性质知识点整合一、正比例函数的概念一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做正比例系数.二、一次函数1.一次函数的定义一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做x的一次函数.特别地,当一次函数y=kx+b中的b=0时,y=kx(k是常数,k≠0).这时,y叫做x的正比例函数.2.一次函数的一般形式一次函数的一般形式为y=kx+b,其中k,b为常数,k≠0.一次函数的一般形式的结构特征:(1)k≠0,(2)x的次数是1;(3)常数b可以为任意实数.3.注意(1)正比例函数是一次函数,但一次函数不一定是正比例函数.(2)一般情况下,一次函数的自变量的取值范围是全体实数.(3)如果一个函数是一次函数,则含有自变量x的式子是一次的,系数k不等于0,而b可以为任意实数.(4)判断一个函数是不是一次函数,就是判断它是否能化成y=kx+b(k≠0)的形式.(5)一次函数的一般形式可以转化为含x、y的二元一次方程.三、一次函数的图象及性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线.k的符号函数图象图象的位置性质k>0图象经过第一、三象限y随x的增大而增大k<0图象经过第二、四象限y随x的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象一次函数的图象一次函数y=kx+b(k≠0)的图象是经过点(0,b)和(-b k,0)的一条直线图象关系一次函数y=kx+b(k≠0)的图象可由正比例函数y=kx(k≠0)的图象平移得到;b>0,向上平移b个单位长度;b<0,向下平移|b|个单位长度图象确定因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两点即可(2)一次函数的性质函数字母取值图象经过的象限函数性质y=kx+b(k≠0)k>0,b>0一、二、三y随x的增大而增大k>0,b<0一、三、四y=kx+b(k≠0)k<0,b>0一、二、四y随x的增大而减小k<0,b<0二、三、四3.k,b的符号与直线y=kx+b(k≠0)的关系在直线y=kx+b(k≠0)中,令y=0,则x=-bk,即直线y=kx+b与x轴交于(–bk,0).①当–bk>0时,即k,b异号时,直线与x轴交于正半轴.②当–bk=0,即b=0时,直线经过原点.③当–bk<0,即k,b同号时,直线与x轴交于负半轴.4.两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:①当k1=k2,b1≠b2,两直线平行;②当k1=k2,b1=b2,两直线重合;③当k1≠k2,b1=b2,两直线交于y轴上一点;④当k1·k2=–1时,两直线垂直.四、待定系数法1.定义:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而得出函数解析式的方法叫做待定系数法.2.待定系数法求正比例函数解析式的一般步骤(1)设含有待定系数的函数解析式为y=kx(k≠0).(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k的一元一次方程.(3)解方程,求出待定系数k.(4)将求得的待定系数k的值代入解析式.3.待定系数法求一次函数解析式的一般步骤(1)设出含有待定系数k、b的函数解析式y=kx+b.(2)把两个已知条件(自变量与函数的对应值)代入解析式,得到关于系数k,b的二元一次方程组.(3)解二元一次方程组,求出k,b.(4)将求得的k,b的值代入解析式.五、一次函数与正比例函数的区别与联系正比例函数一次函数区别一般形式y=kx+b(k是常数,且k≠0)y=kx+b(k,b是常数,且k≠0)图象经过原点的一条直线一条直线k,b符号的作用k的符号决定其增减性,同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k,b的符号共同决定直线经过的象限求解析式的条件只需要一对x,y的对应值或一个点的坐标需要两对x,y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样,都是过两点画直线,但画一次函数的图象需取两个不同的点,而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y 轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时,y的值随x值的增大而增大;b.当k<0时,y的值随x值的增大而减小.六、一次函数与方程(组)、不等式1.一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k,b为常数,且k≠0)的形式.从函数的角度来看,解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑,解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.2.一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a,b为常数,且a≠0)的形式.从函数的角度看,解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.3.一次函数与二元一次方程组一般地,二元一次方程mx+ny=p(m,n,p是常数,且m≠0,n≠0)都能写成y=ax+b(a,b为常数,且a≠0)的形式.因此,一个二元一次方程对应一个一次函数,又因为一个一次函数对应一条直线,所以一个二元一次方程也对应一条直线.进一步可知,一个二元一次方程对应两个一次函数,因而也对应两条直线.从数的角度看,解二元一次方程组相当于考虑自变量为何值时,两个函数的值相等,以及这两个函数值是何值;从形的角度看,解二元一次方程组相当于确定两条直线的交点坐标,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.考向一一次函数和正比例函数的定义1.正比例函数是特殊的一次函数.2.正比例函数解析式y=kx(k≠0)的结构特征:①k≠0;②x的次数是1.典例引领二、填空题变式拓展6.已知y 与1x +成正比,当1x =时,2y =.考向二一次函数的图象及性质1.通常画正比例函数y=kx(k≠0)的图象时只需取一点(1,k),然后过原点和这一点画直线.2.当k>0时,函数y=kx(k≠0)的图象从左向右,呈上升趋势;当k<0时,函数y=kx(k≠0)的图象从左向右,呈下降趋势.3.正比例函数y=kx中,|k|越大,直线y=kx越靠近y轴;|k|越小,直线y=kx越靠近x轴.4.一次函数图象的位置和函数值y的增减性完全由b和比例系数k的符号决定.典例引领【答案】A【分析】本题考查的是一次函数的性质.根据一次函数的性质以及图像上点的坐标特征对各选项进行逐一判断即可.【详解】解:A 、当0x =时,2y =,图象必经过点()0,2,故本选项符合题意;B 、∵10k =-<,20b =>,∴图象经过第一、二、四象限,故本选项不符合题意;C 、∵10k =-<,∴y 随x 的增大而减小,故本选项不符合题意;D 、∵y 随x 的增大而减小,当2x =-时,0y =,∴当2x >时,0y <,故本选项不符合题意;故选:A .4.若一次函数21y x =-+的图象经过点()13,y -,()24,y ,则1y 与2y 的大小关系()A .12y y <B .12y y >C .12y y ≤D .12y y ≥【答案】B【分析】本题主要考查了比较一次函数值的大小,根据函数解析式得到y 随x 增大而减小,据此可得答案.【详解】解:∵一次函数解析式为21y x =-+,20-<,∴y 随x 增大而减小,∵一次函数21y x =-+的图象经过点()13,y -,()24,y ,34-<,∴12y y >,故选:B .5.已知一次函数(2)=-+y k x k ,且y 随x 的增大而减小,则k 的取值范围是()A .2k >B .0k <C .2k <D .2k ≤【答案】C【分析】此题主要考查一次函数的性质,根据一次函数的增减性即在y kx b =+中,k >0时y 随x 的增大而增大;k <0时,y 随x 的增大而减小即可求解.【详解】依题意得20k -<,解得2k <故选C .变式拓展三、解答题9.已知一次函数(2)312y k x k =--+.(1)k 为何值时,函数图象经过点(0,9)?(2)若一次函数(2)312y k x k =--+的函数值y 随x 的增大而减小,求k 的取值范围.【答案】(1)1(2)2k <【分析】(1)将点(0,9)代入一次函数(2)312y k x k =--+,可得关于k 的一元一次方程,求解即可获得答案;(2)根据该函数的增减性,可得20k -<,求解即可获得答案.【详解】(1)解:将点(0,9)代入一次函数(2)312y k x k =--+,可得3129k -+=,解得1k =,∴当1k =时,函数图象经过点(0,9);(2)若一次函数(2)312y k x k =--+的函数值y 随x 的增大而减小,则有20k -<,解得2k <,∴k 的取值范围为2k <.【点睛】本题主要考查了求一次函数解析式、根据一次函数的增减性求参数、解一元一次方程和解一元一次不等式等知识,熟练掌握一次函数的图象与性质是解题关键.10.已知2y -与x 成正比,且当2x =-时,8y =.(1)求y 与x 的函数关系式;(2)当x 取什么范围时,4y >-.【答案】(1)32y x =-+(2)2x <【分析】本题考查待定系数法求解析式,一次函数图象及性质.(1)设y 与x 的函数关系式为2y kx -=,再待定系数法求解即可;(2)利用一次函数图象及性质,代入4y =-后即可得到本题答案.【详解】(1)解:设y 与x 的函数关系式为2y kx -=,将当2x =-时,8y =代入2y kx -=中得:822k -=-,即:3k =-,∴32y x =-+;(2)解:∵32y x =-+,∴30k =-<,y 随x 增大而减小,当4y =-时,432x -=-+,即:2x =,∴4y >-时,2x <,综上所述:当2x <时,4y >-.考向三用待定系数法确定一次函数的解析式运用待定系数法求一次函数解析式的步骤可简单记为:一设,二代,三解,四回代.典例引领1.《国务院关于印发全民健身计划(2021-2025年)的通知》文件提出,加大全民健身场地设施供给,建立健全场馆运营管理机制,提升场馆使用效益.某健身中心为答谢新老顾客,举行大型回馈活动,特推出两种“冬季唤醒计划”活动方案.方案1:顾客不购买会员卡,每次健身收费30元.方案2:顾客花200元购买会员卡,每张会员卡仅限本人使用一年,每次健身收费10元.设王彬一年内来此健身中心健身的次数为x (次),选择方案1的费用为1y (元),选择方案2的费用为2y (元).(1)分别写出1y ,2y 与x 之间的函数关系式;(2)在如图的平面直角坐标系中分别画出它们的函数图象;(3)预计王彬一年内能来此健身中心12次,选择哪种方案比较合算?并说明理由.【答案】(1)130y x =,210200y x =+(2)见解析(3)他选择方案二比较合算,理由见解析【分析】(1)本题主要考查了列函数关系式,根据两种方案分别列出函数关系式即可,理解题意是解题的关键;(2)本题主要考查了画函数图像,分别确定两个函数图像上的两个点,然后连接即可;理解函数图像上的点满足函数解析式是解题的关键;(2)本题主要考查了不等式的应用,解不等式3010200x x <+,即可确定来此健身中心12次费用较小的方案.正确求解不等式是解题的关键.【详解】(1)解:根据题意得:130y x =,210200y x =+;所以12y y ,与x 之间的函数表达式分别为130y x =,210200y x =+.(2)解:当0x =时,10y =,2200y =;当4x =时,1120y =,2240y =.据此描点、连线画出函数图像如下:(3)解:王斌择方案二比较合算,理由如下:解不等式3010200x x >+,解得:10x >,所以当10x >时,方案二优惠,因为1210>,王斌择方案二比较合算.2.已知4y +与3x -成正比例,且1x =时,0y =(1)求y 与x 的函数表达式;(2)点(1,2)M m m +在该函数图象上,求点M 的坐标.【答案】(1)22y x =-+(2)点M 的坐标为(1,0)【分析】(1)利用正比例函数的定义,设4y +=(3)k x -,然后把已知的对应值代入求出k 即可;(2)把(1,2)M m m +代入(1)中的解析式得到关于m 的方程,然后解方程即可.【详解】(1)设y 与x 的表达式为4(3)y k x +=-,把1x =时,0y =代入4(3)y k x +=-得24k -=,解得2k =-,由题意,得52024x x ≥⎧⎨-≥⎩,解这个不等式组,得58x ≤≤,因为x 为整数,所以x 的值为5,6,7,8.所以安排方案有4种:方案一:装运食品5辆、药品10辆,生活用品5辆;方案二:装运食品6辆、药品8辆,生活用品6辆;方案三:装运食品7辆、药品6辆,生活用品7辆;方案四:装运食品8辆、药品4辆,生活用品8辆.【点睛】本题考查了列出实际问题中的函数关系式和一元一次不等式组的应用,正确理解题意、列出函数关系式和不等式组是解题的关键.5.习主席在二十大报告中提到“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对甲、乙两个水稻品种进行种植对比实验研究.去年甲、乙两个品种各种植了100亩,收获后甲、乙两个品种的售价均为2.8元/千克,且甲的平均亩产量比乙的平均亩产量低100千克,甲、乙两个品种全部售出后总收入为644000元.(1)请求出甲、乙两个品种去年平均亩产量分别是多少;(2)今年,科技小组加大了水稻种植的科研力度,在甲、乙种植亩数不变的情况下,预计甲、乙两个品种平均亩产量将在去年的基础上分别增加20x 千克和10x 千克.由于甲品种深受市场的欢迎,预计售价将在去年的基础上每千克上涨0.05x 元,而乙品种的售价将在去年的基础上每千克下降0.1x 元.若甲、乙两个品种全部售出后总收入为y 元,请写出y 与x 的关系式;若今年甲、乙两个品种全部售出后总收入比去年增加9500元,水x 的值.【答案】(1)甲水稻品种去年平均亩产量是1100千克,乙水稻品种去年平均亩产量是1200千克(2)x 的值为5【分析】(1)设甲水稻品种去年平均亩产量是m 千克,乙水稻品种去年平均亩产量是n 千克,根据:甲的平均亩产量比乙的平均亩产量低100千克,甲、乙两个品种全部售出后总收入为644000元,即可求解;(2)根据总收入等于甲乙两个品种的收入之和即可列出y 与x 的关系式,进而得到关于x 的方程,解方程即得答案.【详解】(1)设甲水稻品种去年平均亩产量是m 千克,乙水稻品种去年平均亩产量是n 千克,根据题意得1002.8100 2.8100644000n m m n -=⎧⎨⨯+⨯=⎩,解得m 11001200n =⎧⎨=⎩.答:甲水稻品种去年平均亩产量是1100千克,乙水稻品种去年平均亩产量是1200千克.(2)根据题意得:()()()()2.80.0510******* 2.80.1100120010y x x x x =+⨯++-⨯+,整理得1900644000y x =+,∴y 与x 的关系式1900644000y x =+.∵今年甲、乙两个品种全部售出后总收入比去年增加9500元,可得6440095001900644000x +=+,解得5x =.答:x 的值为5.【点睛】本题考查了二元一次方程组的应用,列出实际问题中的函数关系式,正确理解题意、找准相等关系是解题的关键.变式拓展c<时,如图2.②当0综上所述,d的取值范围是t≥时:当x t=时,①当0之间的关系如图所示.(1)求出图中a 、b 、c 的值;(2)在乙出发多少秒后,甲、乙两人相距60米?【答案】(1)8a =,92b =,123c =;(2)乙出发68秒或者108秒后,甲、乙两人相距60米.【分析】(1)由函数图象可以分别求出甲的速度为4米/秒,乙的速度为5米/秒,就可以求出乙追上甲的时间a 的值,b 表示甲跑完全程时甲、乙之间的距离,c 表示乙出发后多少时间,甲走完全程就用甲走完全程的时间−2就可以得出结论;(2)分别求出8秒到100秒和100秒到123秒的解析式,再把60y =代入即可解出x 值.【详解】(1)解:由题意及函数图象可以得出:甲的速度为:824÷=(米/秒),乙的速度为:500÷100=5(米/秒),8548a ÷-=()=(秒);500410292b -⨯==(米),50042123c ÷-==(秒),所以8,92,123a b c ===.(2)设8~100秒和100~123秒的解析式分别为11y k x b =+和22y k x b =+,把()()8010092,、,代入11y k x b =+得11110892100k b k b =+⎧⎨=+⎩解得1118k b =⎧⎨=-⎩,把()()123010092,、,代入22y k x b =+得2222012392100k b k b =+⎧⎨=+⎩解得224492k b =-⎧⎨=⎩,8~100秒解析式:8y x =-,100~123秒的解析式4492y x =-+,当60y =时,则68108x =或者,所以在乙出发68秒或者108秒后,甲、乙两人相距60米∵0<x ≤1000,∴860≤x ≤1000.故答案为:y 1=0.5x ;y 2=0.3x +40;0<x ≤200;200≤x ≤860;860≤x ≤1000.(2)根据题意可得,推出优惠活动后,y 1=0.5a +0.25(x ﹣a )=0.25x +0.25a ,则有,0.257000.250.3700400.258600.250.386040a a ⎧⨯+≥⨯+⎨⨯+≤⨯+⎩解得300≤a ≤332.∴此时a 的取值范围为:300≤a ≤332.【点睛】本题主要考查了一元一次不等式组的应用,明确题意,列出不等式组是解题的关键.考向四一次函数与方程、不等式1.方程ax +b =k (a ≠0)的解⇔函数y =ax +b (a ≠0)中,y =k 时x 的值.2.方程ax +b =k (a ≠0)的解⇔函数y =ax +b (a ≠0)的图象与直线y =k 的交点的横坐标.3.一次函数y =ax +b (a ≠0)与一元一次不等式ax +b >0(或ax +b <0)的关系:ax +b >0的解集⇔y =ax +b 中,y >0时x 的取值范围,即直线y =ax +b 在x 轴上方部分图象对应的x 的取值范围;4.ax +b <0的解集⇔y =ax +b 中,y <0时x 的取值范围,即直线y =ax +b 在x 轴下方部分图象对应的x 的取值范围.5.二元一次方程kx -y +b =0(k ≠0)的解与一次函数y =kx +b (k ≠0)的图象上的点的坐标是一一对应的.6.两个一次函数图象的交点坐标,就是相应二元一次方程组的解,体现了数形结合的思想方法.典例引领1.直线1l :1y kx b =+过点()0,4A 和()1,3D ,直线2l :225y x =-和y 轴交于点B 和直线1l 交于C 点.(1)求两条直线交点C 的坐标及ABC 的面积;(2)x 取何值时,120y y >>.∵()0,4A ,()0,5B -,()3,1C ,∴9AB =,3CN =,∴112793222ABC S AB CN =⋅=⨯⨯= .(2)∵14y x =-+,225y x =-,∴当120y y >>时,4250x x -+>->,解得:532x <<.2.已知直线443y x =-+与x 轴,y 轴分别交于点且把AOB 分成两部分.(1)若AOB 被分成的两部分面积相等,求k 与b ;⎩3.如图,在平面直角坐标系中,直线轴于点C和点D,两条直线交于点(1)求点A的坐标;(2)在直线CD上求点M【答案】(1)点A的坐标为(2)点M的坐标为44⎛∵3ABC MAB S S = ,∴23MBC ABC S S =△△,∵12ABC A S BC y =⋅△,121∵3ABC MAB S S = ,∴43MBC ABC S S =△△,(1)求点C的坐标;(2)求AOB的面积;(3)点D在直线122y x =+求点D的坐标.变式拓展(1)求点A,B,C的坐标.(2)若点P在直线1l上,且(3)根据图象,直接写出当【答案】(1)48, A⎛-(1)直接写出点A的坐标为。

四种常见函数的图象和性质总结

四种常见函数的图象和性质总结

一、内容综述:四种常见函数的图象和性质总结图象特殊点性质一次函数与x轴交点与y轴交点(0,b)(1)当k>0时,y随x的增大而增大;(2)当k<0时,y随x的增大而减小.正比例函数与x、y轴交点是原点(0,0)。

(1)当k>0时,y随x的增大而增大,且直线经过第一、三象限;(2)当k<0时,y随x的增大而减小,且直线经过第二、四象限反比例函数与坐标轴没有交点,但与坐标轴无限靠近。

(1)当k>0时,双曲线经过第一、三象限,在每个象限内,y随x的增大而减小;(2) 当k<0时,双曲线经过第二、四象限,在每个象限内,y随x的增大而增大。

二次函数与x轴交点或,其中是方程的解,与y轴交点,顶点坐标是(-,)。

(1)当a>0时,抛物线开口向上,并向上无限延伸;对称轴是直线x=-, y最小值=。

(2)当a<0时,抛物线开口向下,并向下无限延伸;对称轴是直线x=-, y最大值=注意事项总结:1.关于点的坐标的求法:方法有两种,一种是直接利用定义,结合几何直观图形,先求出有关垂线段的长,再根据该点的位置,明确其纵、横坐标的符号,并注意线段与坐标的转化,线段转换为坐标看象限加符号,坐标转换为线段加绝对值;另一种是根据该点纵、横坐标满足的条件确定,例如直线y=2x和y=-x-3的交点坐标,只需解方程组就可以了。

2.对解析式中常数的认识:一次函数y=kx+b (k≠0)、二次函数y=ax2+bx+c(a≠0)及其它形式、反比例函数y=(k≠0),不同常数对图像位置的影响各不相同,它们所起的作用,一般是按其正、零、负三种情况来考虑的,一定要建立起图像位置和常数的对应关系。

3.对于二次函数解析式,除了掌握一般式即:y=ax2+bx+c((a≠0)之外,还应掌握“顶点式”y=a(x-h)2+ k及“两根式”y=a(x-x1)(x-x2),(其中x1,x2即为图象与x轴两个交点的横坐标)。

一元三次函数的图象和性质

一元三次函数的图象和性质

2007.10教与学科学思想方法!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!A.抛物线B.椭圆C.双曲线D.线段失误分析:学生凭猜想选A,但稍一细想,就觉不对.因为这不是同一平面内到定点和定直线的距离相等,必须转化到同一平面内来研究.解:过点M在底面上的射影N作NQ⊥AC于Q,连接MQ,则MQ⊥AC.如图5.在直角三角形MNQ中,∠MQN为二面角P-AC-B的平面角,MN∶MQ=sin∠MQN.因MP=MN,所以MP∶MQ=sin∠MQN(常数),即点M到定点P和定直线AC的距离之比等于定值,且定值在0和1之间.故点M的轨迹是椭圆的一段.空间轨迹问题分两大类,一类是利用基本轨迹,另一类是利用转化思想进行化归.基本轨迹有:(1)到定点的距离等于定长的点的轨迹是球面;(2)到定直线的距离等于定长的点的轨迹是圆柱面;(3)到一个定平面的距离等于定长的点的轨迹是到这个平面的距离等于该定长的两个平行平面;(4)到两定点的距离相等的点的轨迹是这两点连线段的垂直平分面;(5)到两相交平面距离相等的点的轨迹是两组二面角的平分面;(6)与两定点连线段的夹角等于定值的点的轨迹是两个球冠.所谓转化化归就是利用基本轨迹及交轨的方法(如例1和例2)或利用立体几何知识把空间问题平面化来解决(如例3).图4图5在高中阶段,一元二次函数一直是函数部分教学的重点和难点,在教学中对这部分内容相当重视,因此,学生对一元二次函数的图象及性质比较熟悉.随着导数的引入,由于一元三次函数的导数是一元二次函数,因此,在综合性考试中,常见一元三次函数和一元二次函数综合考查的题目.学生应掌握一元三次函数的图象和性质.下面,讨论一下一元三次函数的图象和性质.性质1:对函数f(x)=ax3+bx2+cx+d(a≠0),若a>0,则当x→+∞时,f(x)→+∞,当x→-∞时,f(x)→-∞;若a<0,则当x→+∞时,f(x)→-∞,当x→-∞时,f(x)→+∞.一元三次函数的图象和性质□河北邢台市第八中学袁胜新452007.10教与学证明:f(x)=ax3+bx2+cx+d=x(ax2+bx+c)+d.若a>0,当x→+∞时,ax2+bx+c→+∞,x(ax2+bx+c)→+∞,∴f(x)=ax3+bx2+cx+d→+∞.当x→-∞时,ax2+bx+c→+∞,x(ax2+bx+c)→-∞,∴f(x)=ax3+bx2+cx+d→-∞.同理可证当a<0时的情况.由此可知,在画f(x)=ax3+bx2+cx+d的图象时,若a>0,左侧应从下逐渐上升,右侧自右至左应从上逐渐下降.若a<0,左侧应从上逐渐下降,右侧自右至左应从下逐渐上升.性质2:对函数f(x)=ax3+bx2+cx+d(a≠0),其导函数为一元二次函数f′(x)=3ax2+2bx+c,它的!=(2b)2-4×(3a)c=4(b2-3ac).当!=4(b2-3ac)≤0时,函数f(x)=ax3+bx2+cx+d(a≠0)在R上为单调函数.若a>0,导函数y=f′(x)≥0恒成立,函数f(x)为增函数;若a<0,导函数y=f′(x)≤0恒成立,函数f(x)为减函数.当!=4(b2-3ac)>0时,导函数f′(x)=3ax2+2bx+c=0有两个相异实数根x1,x2且x1<x2,因此,若a>0,导函数f′(x)在(-∞,x1)和(x2,+∞)上恒正,故函数f(x)在(-∞,x1)和(x2,+∞)上为增函数;导函数f′(x)在(x1,x2)上恒负,所以函数f(x)在(x1,x2)上为减函数;同样可得,若a<0,函数f(x)在(-∞,x1)和(x2,+∞)上为减函数,在(x1,x2)上为增函数.性质3:对函数f(x)=ax3+bx2+cx+d(a≠0),其导函数为一元二次函数f′(x)=3ax2+2bx+c,它的!=(2b)2-4×(3a)c=4(b2-3ac).由性质2可得当!=4(b2-3ac)≤0时,函数f(x)=ax3+bx2+cx+d(a≠0)不存在极值.当!=4(b2-3ac)>0时,函数y=f(x)在x=x1和x=x2处取极值,若a>0,函数f(x)在x1处取极大值f(x1),在x2处取极小值f(x2).若a<0,函数f(x)在x1处取极小值f(x1),在x2处取极大值f(x2).性质4:对函数f(x)=ax3+bx2+cx+d(a≠0),其导函数为一元二次函数f′(x)=3ax2+2bx+c,!=(2b)2-4×(3a)c=4(b2-3ac).当!=4(b2-3ac)≤0时,方程ax3+bx2+cx+d=0有且只有一个实数根.当!=4(b2-3ac)>0时,函数y=f(x)在x=x1和x=x2处分别取极值f(x1),f(x2),当函数f(x)的极大值小于0或极小值大于0时,方程ax3+bx2+cx+d=0有且只有一个实数根;当函数f(x)的极大值等于0或极小值等于0时,方程ax3+bx2+cx+d=0有且只有两个实数根;当函数f(x)的极大值大于0且极小值小于0时,方程ax3+bx2+cx+d=0有且只有三个实数根.性质5:函数f(x)=ax3+bx2+cx+d(a≠0)关于(-b3a,f(-b3a))呈中心对称图形.例题(2005年全国统考卷II(文))22.设a为实数,函数f(x)=x3-x2-x+a.(1)求f(x)的极值;科学思想方法462007.10教与学!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!随着信息社会的迅猛发展,多媒体教学正逐步融入我们的课堂,它以特有的功能,弥补了传统教学方式在直观性、主体性和动态感等方面的不足,使一些抽象难懂的内容,变得易于理解和掌握,能取得传统教学方法无法取得的效果.在教学中,教师应结合数学学科内容和学生年龄小的特点,合理地运用电教媒体,发挥电教媒体教学的功能优势,激发学习兴趣,从而达到优化数学课堂教学,提高效率的目的.下面就如何合理运用电教媒体谈一些体会.一、运用电教媒体,激发学习兴趣兴趣是学生学习的最佳动力,是发展智力的基础.在目标教学的前提测评环节中,我充分利用电教媒体的直观性与可操作性强等特点,结合教材内容,或以鲜艳的图片刺激学生的感官,或以有趣的情境激发学生的兴趣,或以直观演示展现新旧知识的矛盾点,激发学生的探究欲.例如,在讲“平行四边形面积的计算”时,我首先出示一张投影,通过数方格的方法求出投影上所画的平行四边形的面积,然后启发学生思考:如果一块地或一个操场是平行四边形,能用数方格的方法求出面积吗?不用数方格的方法,又怎样计算平行四边形的面积呢?通过设问,学生感到有趣,急于知晓计算平行四边形面积的方法.二、运用电教媒体,培养创新能力从发展的求异思维入手,培养和训练学生敏锐的洞察力和迅捷的判断力,鼓励学生大胆质疑,标新立异,沿着不同的方向去思考,以求获得尽可能多的解决问题的方法,从而培养学生的创新能力.运用电教媒体,可化静为动,化抽象为具体,展现给学生一个丰富多彩的世界.在这种极富创新的空间中,学生也会不知制作运用电教媒体提高数学教学效率□河南临颍县北街学校丁书贞(2)当a在什么范围内取值时,曲线y=f(x)与x轴有且只有一个交点.解:(1)三次项系数=1>0,!=(-1)2-3×1×(-1)=4>0,故函数y=f(x)存在极值.y=f(x)的导函数为f′(x)=3x2-2x-1,令f′(x)=3x2-2x-1=0,解得x1=-13和x2=1.所以函数y=f(x)在x1=-13处取极大值f(-13)=a-727,函数y=f(x)在x2=1处取极小值f(1)=a-1.(2)要使曲线y=f(x)与x轴有且只有一个交点,即f(x)=0有且只有一个实根,只需极大值f(-13)=a-727<0或极小值f(1)=a-1>0,解得a<727或a>1.现代教育技术47。

函数与方程思想解决一元三次函数零点问题

函数与方程思想解决一元三次函数零点问题

函数与方程思想解决一元三次函数零点问题方程的根与函数的零点将方程与函数紧密联系在一起,他告诉我们求方程的根可以通过求函数的零点产生,当然,求函数的零点也可以通过求方程的根产生。

二分法是通过函数的零点求方程的近似解的一种方法,在用二分法求方程的近似解中均蕴涵了“函数与方程的思想”和“数形结合的思想”。

函数零点的概念是在分析了众多图像的基础上,由图像与x 轴的位置关系得到的一个形象的概念,准确认识零点的概念要注意以下几点:(1)函数的零点是实数,是函数的图像与x轴交点的横坐标,而不是一个点;(2)函数y=f(x)的零点也是方程f(x)=0的实数解;(3)并非所有的函数都有零点。

判断函数零点个数的方法:(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。

令f(x)=0直接求出方程的解,有几个解函数就有几个零点,这里涉及到解方程的问题数零点就是函数的图像与x轴的交点的横坐标就是对应方程的根,函数有几个零点对应方程就有几个根。

对于二次函数的零点非常有研究的价值:它涉及判别式、韦达定理、二次函数的图像等重要知识点。

研究二次函数的零点有利于培养学生综合运用数形结合思想、函数与方程思想、分类讨论思想等多种数学思想方法(2)如果函数y=f(x)在[a,b]上图象是连续的,并且在闭区间的两个端点上的函数值互异即f(a)f(b)0,且是单调函数,那么,这个函数在(a,b)内必有惟一的一个零点。

利用零点存在定理结合函数图像与性质(如单调性、奇偶性)确定函数零点的个数;(3)通过函数图像与x轴的交点个数,或将其转化为两函数的图像交点的个数来确定函数零点的个数,体现数形结合思想的应用。

数形结合是一个重要的数学思想,就是使抽象思维和形象思维相互作用,实现数量关系与图形性质的相互转化,将抽象的数量关系和直观的图形结合起来研究数学问题。

三次函数的图象和性质

三次函数的图象和性质

三次函数的图象和性质曹一洪【期刊名称】《中学数学月刊》【年(卷),期】2016(000)007【总页数】3页(P57-59)【作者】曹一洪【作者单位】广东省中山市中山纪念中学 528454【正文语种】中文二次函数由顶点坐标、对称轴、开口方向(即凸凹)可以比较准确地作出它的图象.对于三次函数,它的导函数是二次函数,利用其导函数性质可以比较准确地作出三次函数的图象.下面着重研究当a>0时,函数f(x)=ax3+bx2+cx+d的图象和性质,对于a<0的图象和性质可以由函数y=f(x)与y=-f(x)的图象关于x轴对称而得到.三次函数f(x)=ax3+bx2+cx+d(a>0)的导函数是二次函数,导函数f′(x)的对称轴,导数的几何意义是切线斜率,所以函数y=f(x)图象上的切线斜率的最小值是).因为3a>0,二次函数f′(x)在区间上是减函数,所以函数f(x)的图象在区间上是凸的;导函数f′(x)在区间上是增函数,所以函数f(x)图象在区间上是凹的;在处导数取最小值的点是函数f(x)图象的拐点(如图1).三次函数的图象是关于这个拐点成中心对称图形的.证明如下:设点P(x0,y0)是f(x)图象上任意一点,所以,设点P关于点M的对称点为P1(x1,y1),由中点坐标公式有⟹又,所以).下面我们证明点P1(x1,y1)在函数f(x)的图象上.因为,所以).将(1)式代入得,由(2)式得f(x1)=y1,所以点P1(x1,y1)在函数f(x)的图象上.因此,f(x)图象上任意一点P(x0,y0)关于点的对称点P1(x1,y1)也在f(x)的图象上,所以函数f(x)的图象关于它的拐点是成中心对称图形的,图象在其对称中心两侧,一侧是凸,另一侧是凹.设函数f(x)在处的切线为l,由(*)式可知直线l过点,斜率为,直线l的方程设为y=k0x+n0.设g(x)=f(x)-k0x-n0.由于g′(x)=f′(x)-k0≥0,所以g(x)在(-∞,+∞)上是增函数,又点是直线l和f(x)公共点,,所以当时,g(x)在上是增函数,故.所以f(x)-(k0x+n0)<0,即f(x)<k0x+n0.所以在区间上,直线l在函数f(x)图象的上方.当时,g(x)在上是增函数,所以.故f(x)-(k0x+n0)>0,即f(x)>k0x+n0,所以在区间上,直线l在函数f(x)图象的下方.当时,也是导函数二次式f′(x)=3ax2+2bx+c的判别式Δ=4b2-12ac≤0时,f′(x)≥0,函数f(x)在(-∞,+∞)上是增函数,没有极值点.当Δ>0时,f′(x)=0有两根x1,x2(x1<x2),则f′(x)=3a(x-x1)(x-x2),又3a>0,当x<x1或x>x2时,f′(x)>0,函数f(x)在(-∞,x1)∪(x2,+∞)上都是增函数;当x1<x<x2时,f′(x)<0,函数f(x)在(x1,x2)上是减函数,f(x1)是f(x)的极大值,f(x2)是f(x)的极小值,两极值点的中点,也就是拐点的横坐标.综合以上对三次函数图象性质的研究,我们可以像作二次函数图象一样,利用函数图象特征量,比较准确地作出三次函数的图象.例1 作出函数的图象.解因为f′(x)=x2-2x+2=(x-1)2+1>0,所以函数f(x)在(-∞,+∞)上是增函数.当x=1时,切线斜率的最小值是k0=f′(1)=1,此处切线的倾斜角取最小值,过点作出斜率为k0=1的直线l.当x<1时,函数f(x)的图象在直线l的下方,且上凸;当x>1时,函数f(x)的图象在直线l的上方,且下凹.参考f(0)=1和点(0,1)关于拐点的对称点,可以作出f(x)的图象(图2).例2 作出函数的图象.解因为f′(x)=x2-2x+1=(x-1)2≥0,当x=1时,f′(x)的最小值为0,此处切线倾斜角取最小值为0°,又,过点作斜率为0的直线l.当x<1时,图象在直线l下方,且上凸;当x>1时,图象在直线l上方,下凹,参考f(0)=2和点(0,2)关于拐点的对称点,可以作出函数f(x)的图象(图3).例3 作出函数的图象.解因为f′(x)=x2-2x=x(x-2)=(x-1)2-1,所以当x=1时,f′(x)的最小值为-1,即f(x)在x=1处的切线l斜率的最小值为-1.当x<0或x>2时,f′(x)>0,f(x)的增区间是(-∞,0)∪(2,+∞);当0<x<2时,f′(x)<0,f(x)的减区间是(0,2).所以当x=0时,f(x)有极大值f(0)=1;当x=2时,f(x)有极小值,又,从而可以作出f(x)的图象(图4). 所以作三次函数f(x)=ax3+bx2+cx+d(a>0)的图象时,先求出f′(x),它是二次函数,求出它的最小值点,得到拐点的横坐标和拐点处的切线斜率,从而作出这条切线l,当判别式Δ≤0时,函数f(x)在(-∞,+∞)上是增函数,在切线的左、右两侧图象分别上凸下凹作出图象,适当取两个关于拐点的对称点,作图可以更准确.当导函数f′(x)的判别式Δ>0时,方程f′(x)=0的两根x1,x2(x1<x2)分别是f(x)的极大值点和极小值点,利用f(x)在(-∞,x1)∪(x2,+∞)上是增函数,在(x1,x2)上是减函数作出图象,描出两个极值点和注意拐点处切线两侧图象分别上凸下凹,作图可以更准确.以上三个例子分别代表了三次函数图象的三种情况,即其导函数的二次式的判别式小于零、等于零、大于零.当a>0,x→+∞时,f(x)的值与ax3同号,值都趋向于正无穷大;当a>0,x→-∞时,f(x)的值与ax3同号,值都趋向于负无穷大.设E(m,n)是平面内任一点,过点E的直线与f(x)的图象相切于点H(x0,f(x0)),所以切线方程为,点E(m,n)在切线上,点E(m,n)的坐标代入上式,得,整理得,所以过点E有几条切线等价于这个方程有几个根,也等价于函数g(x)=2ax3+(b-3am)x2-2bmx+n-d-cm有几个零点,由前面三次函数的图象和性质可知,g(x)至少有一个零点,最多有三个.例4 设函数f(x)=x3-x,过点(1,b)有三条直线与曲线y=f(x)相切,求b的取值范围. 解因为f′(x)=3x2-1,设切点为(x0,f(x0)),所以切线方程为y-f(x0)=f′(x0)·(x-x0).即).点(1,b)代入上式,得.设g(x)=2x3-3x2+1+b. 因为过点(1,b)与曲线y=f(x)相切的直线有三条⟹方程g(x)=0有三个实根⟹函数g(x)有三个零点.g′(x)=6x2-6x=6x(x-1).令g′(x)=0得x=0或x=1.当x∈(-∞,0)∪(1,+∞)时,g′(x)>0,所以g(x)是增函数;当x∈(0,1)时,g′(x)<0,所以g(x)是减函数.g(0)和g(1)分别是g(x)的极大值和极小值,g(x)的大致图象如图5所示,常数b决定了g(x)图象的上下平移量.当g(0)=1+b>0且g(1)=b<0时,即当-1<b<0时,此时有g(-1)=-4+b<0,g(2)=5+b>0,从而g(x)有三个零点.因此,当-1<b<0时,过点(1,b)有三条直线与曲线y=f(x)相切.三次函数f(x)=ax3+bx2+cx+d(a>0)的图象有对称中心,它的导函数f′(x)=3ax2+2bx+c是有对称轴的二次函数.这个二次函数的导函数f″(x)=6ax+2b的图象有对称中心.而这个一次函数的导函数f‴(x)=6a是有对称轴的常函数.。

2016高中数学人教B版必修2三次函数的图象和性质青年教师参赛教学设计.docx

2016高中数学人教B版必修2三次函数的图象和性质青年教师参赛教学设计.docx

文档来源为 :从网络收集整理.word 版本可编辑 .欢迎下载支持.《三次函数》教学设计一.教学内容解析三次函数是中学数学利用导数研究函数的一个重要载体,是应用二次函数图象和性质的好素材 . 本节课是在复习了函数(二次函数)和导数的基础上的一节高三复习探究课. 通过本节课的学习,有助于学生对导数知识的进一步理解和掌握.二.教学目标设置通过本节的学习,达到以下三个目标:1. 知识与技能(1)用函数的观点系统梳理三次函数的概念、图象等有关性质。

(2)利用三次函数的导数 ( 二次函数 ) 进一步研究三次函数的图象特征, 并准确记忆三次函数的图象及性质 .(3)掌握与三次函数有关的常见问题及解决办法,以及在此过程中所渗透的转化,分类讨论,数形结合等数学思想.2.过程与方法利用导数及二次函数的知识去研究三次函数的图象,进一步利用导函数与原函数图象间的关系来解决函数单调性、极值、最值、方程根的个数(图象的交点个数)、和恒成立问题.3. 情感态度价值观让学生经历从特殊到一般的认识事物和发现规律的过程,体会事物之间的内在联系.三.学生学情分析本节课是在学生学习了二次函数以及导数的基础上进行的扩展探究,是对导数知识的拔高训练,虽有一定的知识储备,但是仍有一定的理解难度.四.教学策略分析利用学生已有的知识去探究其未了解的知识,一切以学生的认知结构为出发点,去设置问题和选题 . 层层递进,由浅入深,引导并鼓励学生自己发现并解决问题.五.教学过程1.知识梳理定义 :形如 f ( x)ax 3bx 2cx d( a0) 的函数叫做三次函数.定义域R,值域 R.f '( x)3ax22bx c ,其中4(b23ac)a 000y y导函数图x1 Ox2 x O x0x yO x0x1原函 数图 象单调( , x 1 ),( x 2 ,) 单增区间(, )单增( x 1 , x 2 )单减极大值 f ( x 1 )极值无极值极小值 f ( x 2 )问题 1: 三次函数的导数与原函数图象特征的对应关系是什么 ?预设结果 :① 在 (a,b) 上 , f '( x)0 , 则 f ( x) 在 ( a, b) 上单调递增 ;f '( x) 0, 则 f ( x) 在 (a,b) 上单调递减 ;②当0 时 , 原函数都是单调的且无极值点 , 而 0 时 , 原函数都是有三个单调区间且有两个极值点 . 设计意图 : 是让学生更深刻的理解记忆二次导函数图象与原函数图象的关系.2. 基本应用例 1. 设函数 f ( x)x 3 2x 2 x 1, x R .( 1)求函数 f ( x) 的单调区间和极值 ;( 2)求函数 f ( x) 在 0,3 上的最大值 .解: f '( x) 3x 2 4x 1 ( x 1)(3x 1) 由导数图知 , x( , 1(1,) , f '(x) 0 , f ( x) 单增 ,) 或 x(13x ,1) , f '( x)0 , f ( x) 单减 ,3f ( x) 的单调递增区间为 (,1) , (1,) , 单调递减区间为 ( 1,1) .3 3又 f (1) 31 , f (1) 1.327131f ( x) 的极大值为f (f (1) 1 .), 极小值为3 27(2) 当 x(0, 1) , f '( x) 0 , f (x) 单增 ,3当 x(1,1) , f '( x) 0 , f ( x) 单减 ,3当 x(1,3) , f '( x)0 , f (x) 单增 ,f ( 1) 31 , f (3) 13 , f ( x)max f (3) 13.3 27设计意图 : 利用基本问题 , 巩固基本方法 .变式(1) 题干条件不变,分别讨论a 的取值范围 , 使得关于 x 的方程 f ( x) a有一个 , 两个,三个实根?(2) 若关于 x 的不等式 f ( x) a 在 0,3 上恒成立 , 求 a 的取值范围 .解:(1) 当 a 311 时 , 方程 f ( x)a 有一个根 ;或 a27当 a 31或 a 1 时 , 方程 f ( x) a 有两个根 ;27 31当 1 a方程 f ( x) a 有三个根 ;时 ,27(2)a f ( x)af ( x)max , 即 a 13 .问题 2:(1)请同学们总结求函数单调区间,极值,最大(小)值的一般处理方法 .①求单调区间a. 求 f '( x) ( 定义域 )b. 解不等式 f '( x)0, f '( x)c. 对应的解集为单调增减区间.②求极值a. 求 f '(x) ( 定义域 )b. 解方程 f '( x) 0c. 判断根两侧导数值符号 ③求函数最大 ( 小 ) 值 a. 求 f '(x) ( 定义域 )b.研究 f '( x) 在给定区间上图象情况,进而还原原函数图象c.找到最大 (小 ) 值(2)总结求方程根的个数问题的一般处理方法. 转化为直线与图象的交点问题 .(3)总结恒成立问题的一般处理方法.转化为求最值问题.设计意图 : 通过变式进一步巩固基本方法, 学生自己解决, 获得成就感 .3.拓展升华例 2. 已知函数 f ( x) x3ax2x 1,a R .( 1)讨论函数 f ( x) 的单调区间;(2)设函数 f ( x) 在区间 2 ,1内是减函数,求 a 的取值范围.33问题 3: 该题目与例 1 有什么不同之处 ?如何转化求解 ?预设结果 : 例 2 系数中不含参数 , 本题含参 , 导致含参 , 使得f( x) 图象与 x 轴位置不确定 , 要通过讨论使之确定. 而第 (2) 问则要去限制二次导函数的图象, 用到一元二次方程根的分布 .设计意图 : 鼓励学生对含参问题进行研究, 深化学生的知识结构 .分析 : (1) f ( x)x 3ax 2x 1 ,则 f( x)3x 22ax 1 ,= 4a212中含参,则f(x) 图象与 x 轴位置不确定,则要对来分类讨论 .( 2)需要限制二次导函数的图象 .解:①当0 ,3a 3 , f ' (x)0, f ( x) 单调增函数,单调增区间为 (,)②当0 令f ( x)0 ,此时x1a a 23x2a a 23显然 x2x1,由33导函数图象知,得出三次函数单调性.所以函数 f ( x) 的单调递增区间为(,aa23) 和(a a23 ,)单33调递减区间为 (a a 23,a a2 3 )33 (2)法一 :Q f ( x) 在区间 ( 2 ,1) 内是减函数,33文档来源为 :从网络收集整理 .word 版本可编辑 .欢迎下载支持 .f '( x)0 在 ( 2 ,1) 恒成立 .3 3由导函数图象知 ,f '( 2 ) 0a734 a2,1f '( 0a2)3a 2 .法二 : f '( x) 3x22ax 10 在 ( 2 ,1) 上恒成立 ,33即 a3x 21 1(3 x 1 )令 g( x) 3x1 , 由对勾函数图象2x2xx得 ,g ( 2)7 , g( 1)4 , g(3)23,4 g( x) 2 3 ,323331g( x) 2 ,a 22例 3已知函数 f ( x)ax 33 x 21, x R . a0 , 若在区间11 上,22, 2f ( x) 0 恒成立 , 求 a 的取值范围 .问题 4: 函数 f ( x) 在区间1 1 上单调性如何 ?讨论的标准是什么 ?2, 2预设结果 : 同样都是含参的问题, 而此函数的导函数图象随着a 的确定基本可以确定 ,有两个不等实根 , 我们只需讨论区间端点与极值点的大小关系. 亦或者使参数分离转而求函数的最值 .设计意图 : 更深层的考查学生对知识的掌握情况 , 提高学生的转化问题应变能力 .解:法一:f ( x) ax 33x 21,x R , f ' ( x) 3ax 23x ,2a0. f '( x) 3ax( x1), 如图.11aⅰ ),即0 a 2 ,a2x1,0 , f ' ( x) 0, f ( x)单增 ,2x0, 1, f ' ( x) 0, f ( x)单减 .2f ( 1 ) 025 a 5,0 a 2 .f ( 1)2ⅱ )1 1,即 a 2 ,a 2x1,0 , f ' ( x)0, f ( x)单增 ,2x0,1, f ' ( x)0, f ( x)单减 ,ax1 , 1, f ' ( x) 0, f ( x)单增 ,a 2f ( 1 ) 021 2a5 ,2 a5 .2) 0f (a综上 , 0 a 5 .法二 :ax33 x 2 1 0 对于任意的 x [ 1,1]恒成立 .2 2 2当 x 0 时 , a R ;当 x (0, 1 ] 时 , a 3 1 ;2 2x x 3当 x [ 1 时 , a 3 1,0) 2x x 3 ;1 23t令 t , t ( , 2] U [2, ) , g(t )t 3 ,x3 , 2g '(t)3t 22当 t [2, ) 时 , g '( t) 0, g(t ) 单调递减 ,g (t )max g(2) 5, a 5 ;当 t (, 2] 时, g '( t) 0, g(t) 单调递减 ,g(t )ming( 2) 5, a5 ;5 a 5 . 又 Q a 0, 0 a 54. 梳理总结问题 5: 本节课你的收获有哪些?请你从知识、经验、问题、方法等方面进行总结.1、利用导数研究三次函数的图象和性质;2、利用图象与性质解决三次函数的几类问题:①单调性、极值、最值问题;②讨论三次方程根的问题;③恒成立问题.3、思想方法:数形结合 , 函数与方程,分类讨论,转化思想。

高二年级数学 《三次函数的图象与性质》教学设计

高二年级数学      《三次函数的图象与性质》教学设计
3、思想方法: 数形结合 分类讨论 转化与化归 函数与方程
五、布置作业
1、已知函数 f (x) x3 bx2 cx d ( b,c, d 为常数),当 k (,0) (5, ) 时, f (x) k 0 只 有一个实数根;当 k (0,5) 时, f (x) k 0有 3 个相异实根,现给出下列 4 个命题:
a0
a0
0
图象 =0
0
三次函数的单调性、极值、最值

三次函数 f (x) ax3 bx2 cx d (a 0;a,b, c, d是常数)

b2 3ac 0
b2 3ac 0
f (x)
f (x)


x1
x2
极 值
极大值f (x1),极小值f (x2 )
单 调
增区间:, x1 和 x2, +
人民教育出版社高中数学选修1-1第三章导数及其应用
三次函数的图象和性质
高二 文数 专题课
一、问题情景、引入课题
问题:请你画出下列函数的大致图像
1、f (x) x3 3x 2、f (x) 2x3 5 x2 x 1
2 3、f (x) 2x3 5 x2 x 3
2 4、f (x) x3 3x2 3x 1
二、自主探索,总结规律
1.类比二次函数,三次函数一般式是怎样?
形如:y ax3 bx2 cx d (a 0)
2.我们如何研究三次函数的图象和性质?
f (x) 3ax2 2bx c 4b2 12ac 4(b2 3ac)
二、自主探索,总结规律
函数
二次函数 y ax2 bx c(a 0;a,b,c是常数)
【变 1】已知函数 f x x3 3x ⑴求函数 f x 的单调区间及极值;⑵求 f x 在0,3 上的最值.

高考数学专题复习:三次函数图像与性质及其应用

高考数学专题复习:三次函数图像与性质及其应用

三次函数的图像与性质及应用一. 基本命题原理对于三次函数而言,其导函数为一个二次函数,那么根据其导函数的基本性质,可将三次函数的图象和性质梳理如下: 1.根的个数(0>a ).对于三次函数,其导函数为二次函数:,二次函数的判别式化简为:△=, (1)若,则恰有一个实根;(2)若,且,则0)(=x f 恰有一个实根; (3)若,且,则0)(=x f 有两个不相等的实根; (4)若,且,则0)(=x f 有三个不相等的实根.注:由图像可知:①0)(=x f 含有一个实根的充要条件是曲线)(x f y =与x 轴只相交一次, 即)(x f 在R 上为单调函数(或两极值同号),所以032≤−ac b (或032>−ac b ,且0)()(21>⋅x f x f ).②0)(=x f 有两个相异实根的充要条件是曲线)(x f y =与x 轴有两个公共点且其中之一 为切点,所以032>−ac b ,且0)()(21=⋅x f x f .③0)(=x f 有三个不相等的实根的充要条件是曲线)(x f y =与x 轴有三个公共点,即)(x f 有一个极大值,一个极小值,且两极值异号.故032>−ac b 且0)()(21<⋅x f x f .)0()(23≠+++=a d cx bx ax x f )0(23)(2'≠++=a c bx ax x f ()0f x =d cx bx ax x f +++=23)()0(23)('2≠++=a c bx ax x f )3(412422ac b ac b −=−032≤−ac b 0)(=x f 032>−ac b 0)()(21>⋅x f x f 032>−ac b 0)()(21=⋅x f x f 032>−ac b 0)()(21<⋅x f xf2.极值情况:三次函数(0>a ),导函数为二次函数,二次函数的判别式化简为:△=, (1) 若,则)(x f 在),(+∞−∞上为增函数;(2)若,则)(x f 在和上为增函数,)(x f 在),(21x x 上为减函数,其中. 证明:c bx ax x f ++=23)('2, △=)3(412422ac b ac b −=−,(1) 当0≤∆ 即032≤−ac b 时,0)('≥x f 在 R 上恒成立, 即)(x f 在),(+∞−∞为 增函数.(2) 当0>∆ 即032>−ac b 时,解方程0)('=x f ,得由0)('>x f 得1x x <或2x x >,)(x f 在),(1x −∞和),(2+∞x 上为增函数.由0)('<x f 得21x x x <<,)(x f 在),(21x x 上为减函数.总结以上得到结论:三次函数d cx bx ax x f +++=23)((0>a ) (1)若032≤−ac b ,则)(x f 在R 上无极值;(2)若032>−ac b ,则)(x f 在R 上有两个极值;且)(x f 在1x x =处取得极大值,在2x x =处取得极小值.d cx bx ax x f +++=23)()0(23)(2'>++=a c bx ax x f )3(412422ac b ac b −=−032≤−ac b 032>−ac b ),(1x −∞),(2+∞x aacb b x a ac b b x 33,332221−+−=−−−=aacb b x a ac b b x 33,332221−+−=−−−=3.对称中心三次函数)0()(23≠+++=a d cx bx ax x f 的对称中心为点))3(,3(abf a b f −−,该点是三 次函数的拐点,此点的横坐标也是二阶导数的零点.4.三次方程根与系数得关系(1)已知实系数多项式32()x ax bx cx d ϕ=+++有三个根,设为123,,.x x x123122331123,,.b c dx x x x x x x x x x x x a a a++=−++==−(2)由三次方程根与系数的关系:32()()()()().x a x b x c x a b c x ab bc ca x abc +++=+++++++5.对称中心处的切线拐点是函数凸凹性发生转换的点,即由凸转凹,或者由凹转凸,即0)(0''=x f ,当0x x <时,0)(''<x f 或0)(''>x f ,当0x x >时,0)(''>x f 或0)(''<x f .如图,点A 为函数)(x f 的拐点,做点A 处的切线,可以看到,具有单个拐点的函数)(x f y =可以看作是1个凸函数和1个凹函数通过拐点进行缝合,它们在缝合点处具有相同的切线l ,这条切线l 将平面分别两个半平面,一半包含一个凸函数,另一半包含一个凹函数二.典例应用★应用1.函数的性质考察.例 2.已知曲线3()3f x x x λ=−+在点(,())A m f m 处的切线与曲线的另外一个交点为,B P 为线段AB 的中点,O 为坐标原点.(1)求()f x 的极小值并讨论()f x 的奇偶性.(2)当函数()f x 为奇函数时,直线OP 的斜率记为k ,若34k −,求实数m 的取值范围. 解析:(1)2()333(1)(1)f x x x x '=−=+−,当11x −<<时,()0f x '<;当1x >时,()0f x '>.当0λ=时3()3f x x x =−,显然3()3()f x x x f x −=−+=−,所以()f x 为奇函数.当0λ≠时(1)2,(1)2f f λλ−=+=−+,显然(1)(1)f f −≠. 且(1)(1)20f f λ−+=≠,所以()f x 为非奇非偶函数.(2)2()33f x x '=−,所以曲线在点(,())A m f m 处的切线方程为()()32333()y m m m x m λ−−+=−−,其与原曲线方程33y x x λ=−+,联立化简得:2()(2)0x m x m −+=.从而()32,86(0)B m m m m λ−−++≠.所以3732,22m m m P λ⎛⎫−++− ⎪⎝⎭,3732m m k m λ−−=.由于(0,2),18m k ∀∈; 即当(0,2)m ∈时,都有32721m m λ−.令3()721h m m m =−,则2()212121(1)(1)h m m m m '=−=+−,易知当01m <<时,()0h m '<;当12m <<时,()0h m '>.即()h m 在(0,1)上递减,在(1,2)上递增,所以当(0,2)m ∈时,min ()(1)14h m h ==−,所以2147λλ−⇔−,从而实数λ的取值范国为(,7]−∞−. 注:可以看到,切点的横坐标恰好便是方程①的二重根.例3.(切割线定理)如果我们将上述的内容再结合三次函数韦达定理,就可以得到更多有趣的结论.如图,过切点A ))(,(A A x f x 的切线与三次函数)(x f y =的图象交于B 点,同时,过))(,(00x f x 的割线AD 与三次函数)(x f y =的图象交于C A D ,,三点. 我们有以下结论:三次函数切割线定理. (1)abx x B A −=+2; (2)D C B A x x x x +=+; (3)A F E x x x 2=+.证明:显然,方程①整理可得:0)())((000'23=+−−+++x f x x x f d cx bx ax .结合上述重根个数定理以及韦达定理可得:abx x B A −=+2,结论(1)证毕. (2)设直线AD 的方程为m kx y +=,代入)(x f y =的表达式结合韦达定理可得:abx x x D C A −=++,再联立a b x x B A −=+2,可证得:D C B A x x x x +=+.(3)同理,如图a bx x x E E B −=++,再联立a b x x B A −=+2,可得:A F E x x x 2=+.练习1.(2016年天津卷)设函数R b a b ax x x f ∈−−−=,,)1()(3. (1)求)(x f 的单调区间;(2)若)(x f 存在极值点0x x =,且)()(10x f x f =,其中10x x ≠,求证:3201=+x x . 解析:(2)过极值点0x x =做函数)(x f 图象的切线)(0x f y =,其与)(x f y =交点横坐标为1x x =. 将函数b ax x x f −−−=3)1()(展开可得:)1()3(3)(23+−−+−=b x a x x x f 由上述切割线定理可知:3201=+x x ,证毕.练习2. 下列关于三次函数32()(0)()f x ax bx cx d a x R =+++≠∈叙述正确的是( ) ①函数()f x 的图象一定是中心对称图形; ②函数()f x 可能只有一个极值点; ③当03bx a≠−时,()f x 在0x x =处的切线与函数()y f x =的图象有且仅有两个交点; ④当03bx a≠−时,则过点()()00,x f x 的切线可能有一条或者三条. A .①③B .②③C .①④D .②④由上述结论易得:A.★应用2.三次函数的切线个数例4.已知函数()33f x x x =−.(1)求()f x 在区间[]()0,0m m >上的最大值和最小值; (2)在曲线2yx 上是否存在点P ,使得过点P 可作三条直线与曲线()y f x =相切?若存在,求出其横坐标的取值范围;若不存在,请说明理由. 解析:(2)假设存在符合条件的点()2,P a a,切点设为()300,3x xx −.所以,根据导数几何意义可得:()2300200333a x x x a x −−=−−即322002330x ax a a −++=①故问题转化为关于0x 的方程①存在三个不同实根.令()322233g x x ax a a =−++,则()()2666g x x ax x x a '=−=−;当0a =时,()260g x x ='≥,()g x 单调递增,不合题意;当0a >时,易知()g x 在(),0−∞单调递增,在()0,a 单调递减,在(),a +∞单调递增,从而()()000g g a ⎧>⎪⎨<⎪⎩,即2323030a a a a a ⎧+>⎨−++<⎩解得:a >0a <时,易知()g x 在(),a −∞单调递增,在(),0a 单调递减,在()0,+∞单调递增从而()()000g a g ⎧>⎪⎨<⎪⎩,即3223030a a a a a ⎧−++>⎨+<⎩解得:3a −<<,综上,存在符合条件的点()2,P a a,其横坐标的取值范围为⎛⎫−⋃+∞ ⎪ ⎪⎝⎭⎝⎭. 注.三次函数的切线条数是三次函数中典型应用之一,其实质就是在讨论三次方程根的个数,是一类非常典型的函数与方程综合问题,颇受命题人青睐.★应用3.三次方程的根与韦达定理同样是2020年全国三卷23题,不等式选做题,依然以三次方程根与系数的关系命制而 成,下面予以分析,希望各位读者在高三备考时重视对三次方程根与系数关系的认识程度, 有备无患!例5.设直线y t =与曲线()23C y x x =−:的三个交点分别为()()()A a t B b t C c t ,,,,,,且a b c <<.现给出如下结论:①abc 的取值范围是()04,;②222a b c ++为定值;③6a b c ++=. 其中正确结论的为解析:设()()232369y f x x x x x x ==−=−+,则()23129f x x x '=+-,令()0f x '=,解得:1x =或3x =;当1x <或3x >时,0fx,当13x <<时,()0f x '<;∴()f x 在)1,(−∞上是增函数,在(1,3)上是减函数,在(3,+∞)上是增函数;当1x =时,()f x 取得极大值()14f =,当3x =时,()f x 取得极小值()30f =;作出函数()f x 的图象如图所示:∵直线y t =与曲线()23C y x x =−:有三个交点,由图象知04t <<. 令()()232369g x x x t x x x t =−=+---,则a b c ,,是()0g x =的三个实根.∴()()()3269x x x t x a x b x c +=-----,即()()323269x x x t x a b c x ab ac bc x abc −+−=−+++++−,∴6a b c ++=,9ab bc ac ++=,abc t =,①③正确;∴()()2222218a b c a b c ab bc ac ++=++++=-,∴②正确;综上,正确的命题序号是①②③.故答案为:①②③.★应用4.三次方程根的分布下面这道题目是2020年三卷的导数压轴题,其实质考察了三次函数的零点分布.但其却 具有非常丰厚的数学背景,即三次方程根的三角形式,也是此题的命题原理.为此,此题 先用函数思想求解,再给出其命题背景.例6.(2020全国3卷)设函数c bx x x f ++=3)(,曲线)(x f y =在点))21(,21(f 处的切线与y 轴垂直. (1)求b ;(2)若)(x f 有一个绝对值不大于1的零点,证明:)(x f 所有的零点的绝对值都不大于1.解析:(1)因为'2()3f x x b =+,由题意,'1()02f =,即21302b ⎛⎫⨯+= ⎪⎝⎭,则34b =−.(2)由(1)可得33()4f x x x c =−+,故'2311()33()()422f x x x x =−=+−,令'()0f x >,得12x >或12x <−;令'()0f x <,得1122x −<<,所以()f x 在11(,)22−上单调递减,在1(,)2−∞−,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c −=−−=+=−=+,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f −>或(1)0f <,即14c >或14c <−.当14c >时,111111(1)0,()0,()0,(1)0424244f c f c f c f c −=−>−=+>=−>=+>,又32(4)6434(116)0f c c c c c c −=−++=−<,由零点存在性定理知()f x 在(4,1)c −−上存在唯一一个零点0x ,即()f x 在(,1)−∞−上存在唯一一个零点,在(1,)−+∞上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c <−时,111111(1)0,()0,()0,(1)0424244f c f c f c f c −=−<−=+<=−<=+<,又32(4)6434(116)0f c c c c c c −=++=−>,由零点存在性定理知()f x 在(1,4)c −上存在唯一一个零点0'x ,即()f x 在(1,)+∞上存在唯一一个零点,在(,1)−∞上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1.应用5.三次函数的拐点切线 例7.已知函数()321132f x x ax bx =++在区间[)(]1,1,1,3−内各有一个极值点. (1)求24a b −的最大值;(2)当248a b −=时,设函数()y f x =在点()()1,1A f 处的切线为l ,若在点A 处穿过()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式. 解析:(1)因为函数()321132f x x ax bx =++在区间[)(]1,1,1,3−内分别有一个极值点, 所以b ax x x f ++='2)(在区间[)(]1,1,1,3−内分别有一个实根,设两实根为1x ,2x (1x <2x ),则b a x x 4212−=−,且4012≤−<x x ,于是4402≤−<b a ,16402≤−<b a ,且当11−=x ,32=x ,即2−=a ,3−=b 时等号成立,故24a b −的最大值是16(2)由b a f ++='1)1(知)(x f 在点()()1,1A f 处的切线l 的方程是)1)(1()1(−'=−x f f y ,即a x b a y 2132)1(−−++=,因为切线l 在点A 处穿过()y f x =的图象所以]2132)1[()()(a x b a x f x g −−++−=在1=x 两边附近的函数值异号,则1=x 不是)(x g 的极值点,而a x b a bx ax x x g 2132)1(2131)(23++++−++=,且)1)(1(1)1()(22a x x a ax xb a b ax x x g ++−=−−+=++−++=',若a −−≠11,则1=x 和a x −−=1都是)(x g 的极值点,所以a −−=11,即2−=a ,又由248a b −=得1−=b ,故x x x x f −−=2331)(.五.习题演练习题1.已知函数()()23f x x x =−,若()()()f a f b f c ==,其中a b c <<,则( )A .12a <<B .6a b c ++=C .2a b +>D .abc 的取值范围是()0,4 解析:因为()()23f x x x =−,所以()231293(3)(1)f x x x x x =−=−−'+,令()0f x '=,解得:1x =或3x =,当0f x 时,3x >或1x <,所以()f x 单调递增区间为(),1−∞和()3,+∞;当()0f x '<时,13x <<,所以()f x 单调递减区间为()1,3;且(3)0f =,(1)(4)4f f ==,如图:设()()()f a f b f c t ===,则04t <<,0134a b c <<<<<<,故选项A 错误; 又()()()()f x t x a x b x b −=−−−,所以()23()()()x x t x a x b x c −−=−−−,即323269()()x x x t x a b c x ab ac bc x abc −+−=−+++++−,对照系数得6a b c ++=,故选项B 正确;(0,4)abc t =∈,故选项D 正确;因为34c <<,所以36()4a b <−+<,解得23a b <+<,故选项C 正确,综上,正确的选项为BCD.故选:BCD习题2.已知函数()313f x x tx t =++. (1)讨论函数()f x 的单调区间;(2)若函数()f x 有三个不同的零点1x 、2x 、3x ,求t 的取值范围,并证明:123x x x ++<解析:(1)2()f x x t =+'①当0t 时,()0f x ',则()f x 在R 上单调递增,无递减区间;②当0t <时, ()f x 在(上单调递减,在(,)∞∞−+上单调递增(2)由(1)知函数f (x )有三个零点,则0t <∵()f x 在(上单调递减,在(,)∞∞−+上单调递增∴()f x 的极大值为2(3f t =−且极大值大于0,极小值为23f t =+∵()f x 有三个不同的零点123,,x x x ,∴203f t =+< 解得94t <−,故t 的取值范围为9,4⎛⎫−∞− ⎪⎝⎭. 又∵(0)0f t =<,当x →+∞时,有()f x →+∞,当x →−∞时,有()f x →−∞.∴设123x x x <<,由零点存在性定理知1230x x x <<<. ∴12x x +<又∵31233f t t t =++=−(0f => 3x <<因此123x x x ++习题3已知函数()3134f x x ax =−+,()lng x x =−. (1)讨论函数()f x 的单调性;(2)用{}min ,m n 表示,m n 中较小者,记函数()()(){}min ,h x f x g x =,(0x >).若函数()h x 在0,上恰有3个零点,求实数a 的取值范围.解析:(1)()3134f x x ax =−+,x ∈R ,()233f x x a '=−当0a ≤时,0f x ,()f x 在R 上为单调递增,当0a >时,()(3f x x x '=,令0f x ,得x <x ()f x 单调递增令0f x ,得x <()f x 单调递减,综上:当0a ≤时,()f x 在(),−∞+∞为增函数当0a >时,()f x 在(,−∞和)+∞为增函数,在(为减函数 (2)当(1,)x ∈+∞时,()ln 0g x x =−<,从而()min{(),()}()0h x f x g x g x =≤<,∴()h x 在(1,+∞)无零点.当x =1时,若512a ≤,则5(1)304f a =−≥,(1)min{(1),(1)}(1)0h f g g ===,故x =1是()h x 的零点;若512a >,则5(1)304f a =−<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =−>,所以只需考虑()f x 在)1,0(的零点个数.(ⅰ)若0a ≤或1a ≥,则()2()3f x x a '=−在)1,0(无零点,故()f x 在)1,0(单调,而1(0)4f =,5(1)34f a =−,所以当1a ≥时,()f x 在)1,0(有一个零点;当0a ≤时,()f x 在)1,0(无零点.(ⅱ)若01a <<,则()f x 在)单调递减,在单调递增,故当x ,()f x 取的最小值,最小值为124f =−.①若f >0,即0<a <14,()f x 在)1,0(无零点.②若f =0,即14a =,则()f x 在)1,0(有唯一零点;③若f <0,即114a <<,由于1(0)4f =,5(1)34f a =−,所以当15412a <<时,()f x 在)1,0(有两个零点;当5112a <<时,()f x 在)1,0(有一个零点. 综上,当14a <或512a >时,()h x 由一个零点;当14a =或512a =时,()h x 有两个零点;当15412a <<时,()h x 有三个零点. 所以a 的取值范围是15,412⎛⎫ ⎪⎝⎭习题4.已知函数()()()32111032f x x a x ax a =+−−>. (1)求函数f (x )的极值;(2)当a >1时,记f (x )在区间[-1,2]的最大值为M ,最小值为m .已知12,33M m ⎛⎫ ⎪⎝+⎭∈.设f (x )的三个零点为x 1,x 2,x 3,求()122331f x x x x x x ++的取值范围. 解析:(1)()()()()211f x x a x a x x a '=+−−=−+,令0f x ,解得x a <−或1x >,令()0f x '<,解得1a x −<<,所以()f x 在(),a −∞−,()1,+∞上单调递增,在(),1a −上单调递减,当x a =−时取得极大值,()3322321111132262f f a a a a a a a =−=−+−+=+极大值, 当1x =时取得极小值,()11111132262f f a a a ==+−−=−−极小值,所以()f x 的极大值为321162a a +,极小值为1162a −−. (2)因为1a >,所以()f x 在()1,1−上单调递减,()1,2上单调递增,()11162m f a ==−−, 因为()3521263f a −=−>,()222233f a =−<,所以()35126M f a =−=−, 111352362263a a <−−+−<,解得4533a <<,设123x x x <<,令()()2111032f x x x a x a ⎡⎤=+−−=⎢⎥⎣⎦,所以20x =,313x x a =−,()()3212233193322f x x x x x x f a a a ++=−=−−, 329322y a a =−−在45,33⎛⎫ ⎪⎝⎭上单调递减,当32934025,223a a ⎛⎫−−∈−− ⎪⎝⎭,所以()122331f x x x x x x ++的取值范围为4025,3⎛⎫−− ⎪⎝⎭.。

数学中考一轮复习专题13一次函数的图象及其性质课件

数学中考一轮复习专题13一次函数的图象及其性质课件

知识点2:一次函数的图象及其性质
典型例题
【例2】(3分)(202X•赤峰11/26)点P(a,b)在函数y =4x+3的图象上,则代数式
8a -2b +1的值等于( )
A.5
B.-5
C.7
D.-6
【分析】把点P的坐标代入一次函数解析式可以求得a、b间的数量关系,所以易求
代数式8a -2b +1的值.
地市以探究性问题的情 的近似解.
势考查.
思维导图
知识点1:一次函数的概念
知识点梳理
1. 一次函数的概念: 一般地,如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数. 结构特征:①k≠0;②x的次数是1;③常数项b可以是任意实数. 2. 正比例函数的概念: 特别地,当一次函数y=kx+b中的b为0时,y=kx(k为常数,k≠0).这时,y叫做x 的正比例函数. 结构特征:①k≠0;②x的次数是1;③常数项为0. 3. 一次函数与正比例函数的联系:正比例函数是一次函数的特殊情势.
关于x,y的二元一次方程组
kk12xx
b1 b2
y y
的解是直线y=k1x+b1和y=k2x+b2的交点坐标.
3. 一元一次不等式:
关于x的一元一次不等式kx+b>0(<0)的解集是以直线y=kx+b和x轴的交点为分界点,
x轴上(下)方的图象所对应的x的取值范围.
知识点3:一次函数与方程(组)、一元一次不等式
知识点2:一次函数的图象及其性质
典型例题
【例4】(3分)(202X•安徽7/23)已知一次函数y=kx+3的图象经过点A,且y随x的增
大而减小,则点A的坐标可以是( )

考点08 一次函数的图象与性质-备战2023届中考数学一轮复习考点梳理(解析版)

考点08 一次函数的图象与性质-备战2023届中考数学一轮复习考点梳理(解析版)

考点08 一次函数的图象和性质一次函数的图象与性质是中考数学中比较重要的一个考点,也是知识点牵涉比较多的考点。

各地对一次函数的图象与性质的考察也主要集中在一次函数表达式与平移、图象的性质、图象与方程不等式的关系以及一次函数图象与几何图形面积等五个方面。

也因为一次函数是一个结合型比较强的知识点,所以其图象和性质也是后续函数问题学习的一个基础。

故考生在复习这块知识点时,需要特别熟记对应考点的方法规律。

一、一次函数的图象与平移二、一次函数的性质三、待定系数法求解一次函数的表达式四、一次函数与方程、不等式的关系五、一次函数与三角形面积考向一:一次函数的图象与平移一.一次函数的图象二.一次函数图象的画法1.下列函数:①y =4x ;②y =﹣;③y =;④y =﹣4x +1,其中一次函数的个数是( )A .1B .2C .3D .4【分析】根据一次函数的定义条件进行逐一分析即可.【解答】解:y =﹣4x ,y =﹣,y =﹣4x +1都符合一次函数的定义,属于一次函数;y =是反比例函数,综上所述,其中y 是x 的一次函数的个数有3个.故选:C.一次函数的图象是经过点和点的一条直线2.如图,在平面直角坐标系中,函数y=k(x﹣1)(k>0)的图象大致是( )A.B.C.D.【分析】根据一次函数图象的特点对四个选项进行逐一分析即可.【解答】解:∵y=k(x﹣1)(k>0),∴一次函数图象过点(1,0),y随x的增大而增大,故选项B符合题意.故选:B.3.如图,同一直角坐标系中,能表示一次函数y=x+kb和y=kx+b(k、b为常数,且k≠0)的图象是( )A.B.C.D.【分析】根据一次函数的系数与图象的关系逐项分析即可.【解答】解:A、一次函数y=kx+b的图象经过第二、三、四象限,则k>0,b<0,则kb<0;而一次函数y=x+kb的图象与y轴交于正半轴,则kb>0,kb>0与kb<0相矛盾,不符合题意;B、一次函数y=kx+b的图象经过第一、三、四象限,则k>0,b<0,则kb<0;而一次函数y=x+kb的一次项系数为正,与题干图形相矛盾,不符合题意;C、一次函数y=kx+b的图象经过第一、二、四象限,则k<0,b>0,则kb<0;而一次函数y=x+kb的图象与y轴交于负半轴,则kb<0.kb<0与kb<0相一致,符合题意;D、一次函数y=kx+b的图象经过第二、三、四象限,则k<0,b<0,则kb>0;而一次函数y=x+kb的图象与y轴交于负半轴,则kb<0.kb>0与kb<0相矛盾,不符合题意;故选:C.4.在平面直角坐标系中,直线是函数y=6x﹣2的图象,将直线l平移后得到直线y=6x+2,则下列平移方式正确的是( )A.将1向右平移4个单位长度B.将1向左平移4个单位长度C.将1向上平移4个单位长度D.将1向下平移4个单位长度【分析】利用一次函数图象的平移规律,右加左减,上加下减,即可得出答案.【解答】解:设将直线y=6x﹣2向左平移a个单位后得到直线y=6x+2(a>0),∴6(x+a)﹣2=6x+2,解得:a=,故将直线y=6x﹣2向左平移个单位后得到直线y=6x+2,同理可得,将直线y=6x﹣2向上平移4个单位后得到直线y=6x+2,观察选项,只有选项C符合题意.故选:C.5.直线y=2x﹣4向上平移2个单位后所得的直线与x轴交点的坐标是 (1,0) .【分析】利用一次函数平移规律,上加下减进而得出平移后函数解析式,再求出图象与坐标轴交点即可.【解答】解:直线y=2x﹣4沿y轴向上平移2个单位,则平移后直线解析式为:y=2x﹣4+2=2x﹣2,当y=0时,则x=1,故平移后直线与x轴的交点坐标为:(1,0).故答案为:(1,0).6.如图,在同一平面直角坐标系中,一次函数y1=k1x+b1与y2=k2x+b2的图象分别为直线l1和直线l2,下列结论正确的是( )A.k1k2<0B.k1+k2<0C.b1﹣b2>0D.b1b2>0【分析】根据一次函数y=k1x+b1与y=k2x+b2的图象位置,可得k1<0,b1<0,k2<0,b2>0,然后逐一判断即可解答.【解答】解:∵一次函数y=k1x+b1的图象过四、二、三象限,∴k1<0,b1<0,∵一次函数y=k2x+b2的图象过一、二、四象限,∴k2<0,b2>0,∴A、k1•k2>0,故A不符合题意;B、k1+k2<0,故B符合题意;C、b1﹣b2<0,故C不符合题意;D、b1•b2<0,故D不符合题意;故选:B.考向二:一次函数的性质对于任意一次函数y=kx+b(k≠0),点A (x1,y1)B(x2,y2)在其图象上1.一次函数y=﹣3x+1的图象经过( )A.第一、二、四象限B.第一、三、四象限C.第一、二、三象限D.第二、三、四象限【分析】利用一次函数的性质即可确定直线经过的象限.【解答】解:∵y=﹣3x+1,∴k<0,b>0,故直线经过第一、二、四象限.故选:A.2.已知点A(﹣3,y1),B(﹣1,y2)都在直线y=(m2+1)x+m上,则y1,y2的大小关系是( )A.y1>y2B.y1<y2C.y1=y2D.大小不确定【分析】利用偶次方的非负性,可得出m2≥0,进而可得出k=m2+1>0,利用一次函数的性质,可得出y随x的增大而增大,结合﹣3<﹣1,可得出y1<y2.【解答】解:∵m2≥0,∴k=m2+1>0,∴y随x的增大而增大.又∵点A(﹣3,y1),B(﹣1,y2)都在直线y=(m2+1)x+m上,且﹣3<﹣1,∴y1<y2.故选:B.3.已知A(x1,y1),B(x2,y2)是关于x的函数y=(m﹣1)x图象上的两点,当x1<x2时,y1<y2,则m 的取值范围是( )A.m>0B.m<0C.m>1D.m<1【分析】由“当x1<x2时,y1<y2”,可得出y随x的增大而增大,结合一次函数的性质,可得出m﹣1>0,解之即可得出m的取值范围.【解答】解:∵当x1<x2时,y1<y2,∴y随x的增大而增大,∴m﹣1>0,解得:m>1,∴m的取值范围是m>1.故选:C.4.对于一次函数y=﹣2x+1的相关性质,下列描述错误的是( )A .函数图象经过第一、二、四象限B .图象与y 轴的交点坐标为(1,0)C .y 随x 的增大而减小D .图象与坐标轴调成三角形的面积为【分析】根据一次函数的性质分别判断后即可确定正确的选项.【解答】解:A .∵k =﹣2<0,b =1>0,∴函数图象经过第一、二、四象限,正确,不符合题意;B .当x =0时,y =1,∴函数图象与y 轴的交点坐标为(0,1),错误,符合题意;C .∵k =﹣2<0,∴y 的值随着x 增大而减小,正确,不符合题意;D .令y =0可得y =1,∴函数图象与坐标轴围成的三角形面积为:×1×=,故D 正确,不符合题意.故选:B .5.已知点(﹣2,y 1),(2,y 2)都在直线y =2x ﹣3上,则y 1 < y 2.(填“<”或“>”或“=”)【分析】由k =2>0,利用一次函数的性质可得出y 随x 的增大而增大,再结合﹣2<2即可得出y 1<y 2.【解答】解:∵k =2>0,∴y 随x 的增大而增大,又∵﹣2<2,∴y 1<y 2.故答案为:<.考向三:待定系数法求一次函数的解析式1.一个正比例函数的图象过点(﹣2,3),它的表达式为( )A.B.C.D.【分析】利用待定系数法即可求解.【解答】解:设函数的解析式是y=kx.根据题意得:﹣2k=3.解得:k=﹣.故函数的解析式是:y=﹣x.故选:A.2.已知一次函数y=mx﹣4m,当1≤x≤3时,2≤y≤6,则m的值为( )A.2B.﹣2C.2或﹣2D.m的值不存在【分析】结合一次函数的性质,对m分类讨论,当m>0时,一次函数y随x增大而增大,此时x=1,y =2且x=3,y=6;当m<0时,一次函数y随x增大而减小,此时x=1,y=6且x=3,y=2;最后利用待定系数法求解即可.【解答】解:当m>0时,一次函数y随x增大而增大,∴当x=1时,y=2且当x=3时,y=6,令x=1,y=2,解得m=,不符题意,令x=3,y=6,解得m=﹣6,不符题意,当m<0时,一次函数y随x增大而减小,∴当x=1时,y=6且当x=3时,y=2,令x=1,y=6,解得m=﹣2,令x=3,y=2,解得m=﹣2,符合题意,故选:B.3.已知y与x成正比例,且当x=2时,y=﹣3.则当x=﹣时,y= .【分析】设y=kx,把x=2,y=﹣3代入,求出k得到函数解析式,把x=﹣代入函数解析式,求出即可.【解答】解:根据题意,设y=kx,把x=2,y=﹣3代入得:﹣3=2k,解得:k=﹣,∴y与x的函数关系式为y=﹣x,把x=﹣代入y=﹣x,得y=﹣×(﹣)=,故答案为:.4.已知一次函数的图象经过A(2,0),B(0,4)两点.(1)求此一次函数表达式;(2)试判断点(﹣1,6)是否在此一次函数的图象上.【分析】(1)设一次函数的解析式为y=kx+b(k≠0),再把A(2,0),B(0,4)代入求出k的值即可;(2)把x=﹣1代入(1)中函数解析式进行检验即可.【解答】解:(1)设一次函数的解析式为y=kx+b(k≠0),∵A(2,0),B(0,4)在函数图象上,∴,解得,∴一次函数的解析式为:y=﹣x+4;(2)由(1)知,函数解析式为:y=﹣x+4,∴当x=﹣1时,y=5≠6,∴点(﹣1,6)不一次函数的图象上.5.如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C(0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).求n的值及直线AD 的解析式.【分析】(1)把C (0,6)代入函数解析式,可得答案.(2)先求D 的坐标,再利用待定系数法求解AD 的解析式.【解答】解:(1)直线y =﹣2x +a 与y 轴交于点C (0,6),∴﹣2×0+a =6,∴a =6,∴直线的解析式为y =﹣2x +6;(2)点D (﹣1,n )在y =﹣2x +6上,∴n =﹣2×(﹣1)+6=8,∴D (﹣1,8),设直线AD 的解析式为y =kx +b ,把点A (﹣3,0)和D (﹣1,8)代入得,解得,∴直线AD 的解析式为y =4x +12.考向四:一次函数与方程不等式间的关系的交点坐标由函数图象直接写出不等式解集的方法归纳:1.已知方程2x ﹣1=﹣3x +4的解是x =1,则直线y =2x ﹣1和y =﹣3x +4的交点坐标为( )A .(1,0)B .(1,1)C .(﹣1,﹣3)D .(﹣1,1)【分析】把x =1代入直线解析式y =2x ﹣1求出y 的值即可得到交点坐标.【解答】解:∵x =1是方程2x ﹣1=﹣3x +4的解,∴把x =1代入y =2x ﹣1,得y =2×1﹣1=1.∴交点坐标为(1,1).故选:B .2.如图,直线y =ax +b (a ≠0)过点A (0,1),B (2,0),则关于x 的方程ax +b =0的解为 x =2 .【分析】所求方程的解,即为函数y =ax +b 图象与x 轴交点横坐标,确定出解即可.【解答】解:方程ax +b =0的解,即为函数y =ax +b 图象与x 轴交点的横坐标,∵直线y =ax +b 过B (2,0),∴方程ax +b =0的解是x =2,故答案为:x =2.3.如图,一次函数y =2x +1的图象与y =kx +b 的图象相交于点A ,则方程组的解是( )A.B.C.D.【分析】先求点A的横坐标,然后根据两条直线的交点坐标即可写出方程组的解.【解答】解:y=3代入y=2x+1得2x+1=3,解得x=1,所以A点坐标为(1,3),所以方程组的解是.故选:B.4.如图,已知直线y=ax+b和直线y=kx交于点P,若二元一次方程组的解为x、y,则x+y= 3 .【分析】根据由图象可知,直线y=ax+b和直线y=kx交于点P(1,2),即可确定二元一次方程组的解,进一步求值即可.【解答】解:由图象可知,直线y=ax+b和直线y=kx交于点P(1,2),∴二元一次方程组的解为,∴x+y=1+2=3,故答案为:3.5.若定义一种新运算:,例如:2@4=2+4﹣3=3,2@1=2﹣1+3=4,下列说法:①(﹣1)@(﹣2)=4;②若x@(x+2)=5,则x=3;③x@2x=3的解为x=2;④函数y=(x2+1)@1与x轴交于(﹣1,0)和(1,0).其中正确的个数是( )A.4B.3C.2D.1【分析】根据新定义,逐项判断即可.【解答】解:(﹣1)@(﹣2)=﹣1﹣(﹣2)+3=4,故①正确;∵x@(x+2)=x+(x+2)﹣3=2x﹣1,∴x@(x+2)=5即是2x﹣1=5,解得x=3,故②正确;当x<2x,即x>0时,∵x@2x=3,∴x+2x﹣3=3,解得x=2;当x≥2x,即x≤0时,∵x@2x=3,∴x﹣2x+3=3,解得x=0,∴x@2x=3的解是x=2或x=0,故③错误;∵x2+1≥1,∴y=(x2+1)@1=x2+1﹣1+3=x2+3,令y=0得x2+3=0,方程无实数解,∴函数y=(x2+1)@1与x轴无交点,故④错误;∴正确的有①②,共2个,故选:C.6.如图,已知一次函数y1=kx﹣b与y2=nx函数图象相交于点M,当kx﹣b=nx时,x的值是 1 ,当y1>y2时,x的取值范围是 x<1 ,当y1<y2时,x的取值范围是 x>1 .【分析】根据两条直线的交点、结合图象解答即可.【解答】解:由图象可知,当kx﹣b=nx时,x的值是1,当y1>y2时,x的取值范围是x<1,当y1<y2时,x的取值范围是x>1.故答案为:1,x<1,x>1.7.小时在学习了一次函数知识后,结合探究一次函数图象与性质的方法,对新函数y=2﹣|x﹣1|及其图象进行如下探究.(1)自变量x的取值范围是全体实数,x与y的几组对应值如表:x…﹣3﹣2﹣1012345…y…﹣2﹣1m1210n﹣2…其中m= 0 ,n= ﹣1 .(2)请在给出的平面直角坐标系中画出该函数的图象,并结合图象写出该函数的一条性质: 当x>1时,y随x的增大而减小;当x<1时,y随x的增大而增大 .(3)当时,x的取值范围为 x≤﹣1或x≥2 .【分析】(1)把x=﹣1和x=4分别代入解析式即可得到m、n的值;(2)利用描点法画出图象,观察图象可得出函数的性质;(3)利用图象即可解决问题.【解答】解:(1)把x=﹣1代入y=2﹣|x﹣1|得,y=2﹣|﹣1﹣1|=0,∴m=0;把x=4代入y=2﹣|x﹣1|得,y=2﹣|4﹣1|=﹣1,∴n=﹣1;故答案为:0,﹣1;(2)画出函数的图象如图:观察图象可知:当x>1时,y随x的增大而减小;当x<1时,y随x的增大而增大;故答案为:当x>1时,y随x的增大而减小;当x<1时,y随x的增大而增大;(3)画出一次函数y=x+的图象,观察图象可知:当时,x的取值范围为x≤﹣1或x≥2,故答案为:x≤﹣1或x≥2.考向五:一次函数与三角形面积一.一次函数与坐标轴围成三角形面积的规律方法归纳1.一次函数y=kx+b(k≠0)与坐标轴交点规律与x轴交点坐标(,0)故:当k、b同号时,直线交于x轴负半轴;当k、b异号时,直线交于x轴正半轴对于直线y=kx+b(k≠0)与y轴交点坐标(0,b)故:当b>0时,直线交于y轴正半轴;当b<0时,直线交于y轴负半轴2.求两直线交点坐标方法:联立两直线解析式,得二元一次方程组,解方程组得交点坐标;3.求三角形面积时,三角形有边在水平或者竖直边上,常以这条边为底,再由底所对顶点的坐标确定高;二.一次函数图象与几何图形动点面积1.此类问题需要将动点所在几何图形与一次函数图象同时分析,对照一次函数图象得出动点所在几何图形的边长信息2.对函数图象的分析重点抓住以下两点:①分清坐标系的x轴、y轴的具体意义②特别分析图象的拐点——拐点一般表示动点运动到几何图形的一个顶点3.动点所在几何图形如果是特殊图形,如等腰三角形、等腰直角三角形、含30°的直角三角形,注意对应图形性质与辅助线的应用。

一元三次函数的图像性质研究

一元三次函数的图像性质研究
f (x) , f (x) [a 2, 4 a], a 2 0, f (x) 0不恒成立.
(3)当0 a 1时,由f / (x) 3ax2 3 0,可得两根 1 , 1 , aa
且 1 1, 1 1, x 1,1时f (x) , f (x) [a 2, 4 a],
a
a
3
3(
1) 3 2)
0, 0,
a
7 4
.
3
3.函数f (x) ax3 3x 1对x 1,1总有f x 0成立,则a
.
(1)当a 0时, f (x) 3x 1, 对于x 1,1, f (x) [2, 4],
f x 0不恒成立,a 0.
(2)当a 0时, f / (x) 3ax2 3 0无根,且f / (x) 0. x 1,1时,
a 2 0, f (x) 0不恒成立.a (0,1]
4 3.函数f (x) ax3 3x 1对x 1,1总有f x 0成立,则a
.
(4)当a 1时, f / (x) 0的两根还是 1 与 1 ,且 1 1, 1 1,
aa
a
a
x [1, 1 ]与[ 1 ,1]时, f (x) ; x ( 1 , 1 ),时f (x) ,
33
解:(1) f (x) 3x2 2ax 1,当 ≤ 0,即当a2 ≤3时, f (x)≥ 0,
f (x)在x R内单调递增.

0,即当a2
3时,由f (x) 0可求得两根为, x1,2
a
a2 3
3.
有f
(
x)在x
,a
a2 3
3
与x
a
a2 3
3


.
在x

第三章 一元函数的导数及其应用-专题突破5 三次函数的图象与性质

第三章 一元函数的导数及其应用-专题突破5 三次函数的图象与性质
′ 的极值点,同时也是″ 的零点.
返回至目录
变式2 已知函数 = 3 + 3 2 + 的图象上存在一定点满足:若过点的直线与曲
2
线交于不同于的两点 1 , 1 , 2 , 2 ,则1 + 2 等于定值.该定值为___.
解:当点是图象的对称中心时,1 + 2 为定值.
−24.
当 = −1时,函数 取得极大值,为 −1 = −1
3
− 3 × −1
2
− 9 × −1 + 3 52 − 9 × 5 + 3 = 8,所以函数 的最大值为 5 = −1 = 8.
作函数 在[−2,5]上的大致图象如图所示.
例3 已知函数 = 3 − 3 2 − 9 + 3,若函数 = − 在[−2,5]上有3个零
点,则的取值范围为 (
A. −24,8
)
B.(−24,1]
C.[1,8]
D.[1,8)

返回至目录
解:′ = 3 2 − 6 − 9 = 3 − 3 + 1 ,令′ = 0,解得 = −1或 = 3.
则 的图象关于“拐点” 1,2 对称.
一般地,三次函数 =
3
+
2
+ + ≠ 0

的“拐点”是(− ,
3


3
),它
就是 图象的对称中心(或者:任何一个三次函数都有拐点;任何一个三次函数都
有对称中心;任何一个三次函数平移后可以是奇函数).
返回至目录
【点拨】三次函数 的图象一定是中心对称图形,对称中心横坐标即其导函数
有三个不同的零点.

人教版高考总复习一轮数学精品课件 第四章 一元函数的导数及其应用-第四节 三次函数的图象与性质

人教版高考总复习一轮数学精品课件 第四章 一元函数的导数及其应用-第四节 三次函数的图象与性质






[, ]上恒成立,可得 ≤ + , + ≥ ⋅ = ,当且仅当 = 时取等号,可
得 ≤ .故选D.
2
3
(2)已知函数 = 3 + 2 + + 在 = − 与 = 1处都取得极值.
①求,的值与函数 的单调区间;
解 = 3 + 2 + + ,′ = 3 2 + 2 + ,由


> ,



< ,











+ > ,
解得 < −.故选B.


+
+ < ,


(2)(2023扬州校考)设为实数,函数 = − 3 + 3 + .
①求 的极值.
解 ′ = −3 2 + 3,令′ = 0,得 = −1或 = 1.当 ∈ −∞, −1 时,′ < 0;

− ,
3


3
和极小值点三等分,类似地,对极小值也有类似结论.
自测诊断
1.已知三次函数 =
1 3

3
− 4 − 1 2 + 152 − 2 − 7 + 2在上是增函数,
则实数的取值范围是() D
A. < 2或 > 4B.−4 < < −2C.2 < < 4D.2 ≤ ≤ 4

1 ,2
1 ,2

“一元三次函数的图象和性质”教学纪实与反思

“一元三次函数的图象和性质”教学纪实与反思

“一元三次函数的图象和性质”教学纪实与反思作者:李爽来源:《黑龙江教育·小学》2021年第10期教学内容:人教A版选择性必修二“一元三次函数的图象和性质”。

设计说明:本课题之前,学生已经掌握了用导数工具,判断函数的单调性、求函数极值、最值。

在此基础上引导学生运用数形结合、类比、特殊到一般等数学思想,并以GeoGebra软件为平台,在教师引导下对一元三次函数的图象和性质进行探索与研究。

本课体现了发现问题、分析问题、解决问题的研究过程,本着以学生为主体的教育理念,培养了学生主动探究的意识,激发了学生学习数学的兴趣。

教学目标:1.知识与技能(1)通过本节课的学习掌握一元三次函数图象;(2)掌握一元三次函数的性质,会对性质进行简单的应用;(3)能用一元三次函数的图象和性质解决有关问题。

2.过程与方法(1)运用信息技术工具,让学生通过直观想象,由特殊到一般归纳出一元三次函数图象形状;(2)运用导数进行数学抽象,分析研究函数的图象和性质。

3.情感态度与价值观(1)本节课发展了学生的学科素养有:直观想象、逻辑推理、数学抽象。

(2)本节课培养了学生实践能力,探索精神,感受到科技带给我们的新成果。

教学重点:(1)一元三次函数的图象。

(2)一元三次函数的性质。

教学难点:一元三次函数零点个数判断。

教学过程:一、一元三次函数的解析式师:同学们,前面我们学过一次函数,二次函数,指数函数,对数函数,幂函数,三角函数,今天我们一起来探究一元三次函数的图像和性质。

师:类比一元二次函数的解析式,你能给出一元三次函数的解析式吗?生:一元三次函数解析式f(x)=ax3+bx2+cx+d(a≠0)。

师:强调a≠0。

二、探究一元三次函数的图像师:高一我们学习幂函数的时候,学过一个特殊的三次函数,它是f(x)=x3。

我们知道它是奇函数且单调递增,在黑板右侧画出图像,请同学们思考一下,给a, b,c,d赋不同的值,三次函数的图像形状也和f(x)=x3图像的形状一样吗?生:不一样。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
百 b xE = - -/ - 2 土 a 3
= 2+ b -
= 韭 夏
() 1 △<0时 ,对 V R, )>0恒 成立 ,f( ) 区间 ∈ f ( 在
。x 的单调性 和极值情况列表如下 : ( ∞,+ 。上 递增 ,厂 ) 一 a) ( 的图象没有 与 轴平行或 重合 的切线 , ( 。 0 由 < 知 > 9,对函数, )


元 三次 函数 的图象和性质
函数 f( =O。 x +c ) . +b +d ≠0 X )称作 关于 的一元三
次函数. 用导数知识和二次函数知识对三次函数的性质和图象探
讨如下 :
厂( ) a b =3 x+2x+c ,记 △=( b 2 )一4・ a・ 4 b 一 a ) 3 c= ( 3c .
当 圹一 时 f x-i ,当 扩+∞ 时. — + . 在( ∞,+ ()- . - + 厂 )+ ∞,厂 ( ) 一 ∞)
( ∞, ) 一 2
, ()
X 2

(2 1 ,X )

筇 l
O , () 故. ) ( 一o ∞) . 的图象如图 l , 厂 所示.
质进行 系统探讨 ,并分 析几道 应用 的例 子 ,可 供备考教 学 中对
“ 导数 ”复习时作参考.

形象地说 , 二次方程, () 0 = 的实根 耽将区间(a,+ ) 一。 ∞
( 即 轴) “ 两刀 三段 ” .( 从 左到右 在三段上 依次是增 函数 、 ,厂 ) 减函数 、增 函数. 2口 . <0的情形
3 a
( > 知 < 2, 函 J 的单调性和极值情况列表如下 : 由a 0 。 ) 对 数 r ) (
( ∞,衲) 一 ,( ) + X l 0 (l x,勋) 2 0 ( 耽,+ ∞) +
数 、三次方程 ” 的问题在 中学数学 中 占居 了重要 的地位 ,尽 管
N。 01 O9 2 1
J u a fChn s te t s E u ain o r lo ie e Mah mai d c t n c o
— —
21 0 1年
第 9期
摘要 :“ 一元三 次函数、三次方程 ”问题在 中学数 学中具 有 重要地位 。与 高等数 学具有 紧密联 系 ,文章 以 “ 导数 ”和 “ 三
) (: 中学数学 教材 “ 数 ”一 章仅对 三次 函数 的极值 、区间上的最 ,() 增函数 极大值,(- 减函数 极小值, ) 增函数 导 当 一 时,( 一一 0 ∞ ) O,当 圹 + ∞ 时,( ) ∞, x f  ̄ + 一+ f( )C l J 值 、图象 切线作 了非常简 单的应用 示例 ,但每年 ( 文科 )高考
3 9
, 的图象如图6 形象地说,方程 () 的实根 () . =0
将区间( ∞,+ ( 一 ∞)即 轴) 两刀三段 ” , 从左到右在三段上 “ , () 依次是减 函数 、增函数 、减 函数 .
对三 次函数的考查都非常突 出. “ 三次 函数 和 三次方 程 问题 ”对 “ 导数 ”知识 和 “ 三个二
次”知识 有着非 常典 型的应用 ,与高等数 学紧 密联系 ,能较好
象如 图 3 所示 .
地 拓展学 生的视 野 ,它是 培养学 生数学 素养 、检查学生 数学能
力 的很好的素材.因此 ,在 “ 导数”一章的教学中 ,有必要对三 次 函数 、三次方 程问题 作一些 拓展 ,在 高三备 考复 习教 学 中有 必要 对三次 函数 问题作 系统 的探讨.下文对三次函数的 图象 和性
( △ 0 对V e , ) 0 成 且 ,( ) 2 = 时, xR f ≥ 恒 立, 除 = ) 一
收稿 日期 :2 1 — 3 1 0 10—4 教 学及其研 究工作.
f() 减函数 极小值f x) 增函数 极大值r ) 减函数 x (: (-

作者简介 :张国坤 ( 6一 ,男 ,云南曲靖会 泽人 ,中学高级教师 ,云 南省数 学特级教师 ,云南省曲靖 市学术技 术带头人 。主要从 事高 中数学 1 7) 9
元 三次 函数 图 象和 性质作 全 面深 刻探 讨 并获得 了一般 性 的结 且当 一一 ∞时,( ) a,当 + ∞时,( ) ∞, ) 一一。 + 一+ ,( l 虱象如 论 。对一元 三次方程 实根 情 况进行 了深入 的探 讨 ,对一元 三次 图 2所示. 函数 图象的切 线作例 示探 讨 ,文章 列举 了若干典 型例题进行 分 () 3 △>0时 ,二次 方 程 , ( ):0有 两个 不 等实 根 : I =
极点 分布 和函数单调性研 究.

关键词 :一元三次 函数 ;函数 图象;图象性质 中学 数学对一元二次方程问题研究得 比较透彻 , 三个二次 ” “ 的知识在 中学数 学 中得 到 了 比较广 泛 的应 用 .近年来 “ 次函 三
2 -x E b /


3 a

-b x- = 2+ / 韭 堑 E
个二 次 ( 即二 次函数 、二次方程、二次 不等 式) ”知识 为工具对


, 一 :外 有 )0, )( , 是 函 , 0 恒 , >,(在一 +) 增 数 (b) ( ∞ 上
, )图 有 只 一 与 轴 行 重 的 线 y ( , 的 象 且 有 条 平 或 合 切 := 一 , 蚤)

可作与 n 0 > 情形类似 的讨论 , 结果如下 : () 1 △≤ 0 , () 一 时 厂 在( ∞,+ 上是减 函数 , 中 △< 时 ∞) 其 0
厂 图象如图 4所示 ,△=0时.( 图象如 图 5所示. () 厂 )
分两类情形讨论 .
1 o>0的情形 .
( ) 0时 ,二次方程 厂 () 有两个不等实根 : = 2 △> =0
相关文档
最新文档