椭圆的焦点三角形的性质
椭圆的性质二 焦点三角形的性质
||PF|2 |PF|1
a
ex
(a
ex)
2ex
2
4 5
x
,
5
x
0
,
∴0<|F2N|<8,∴0<|OM|<4.
若 P 在椭圆的右半部分时,同样可得出 0<|OM|<4,故选:B.
方法二 极限法,当 P 在左端点时,|OM|=4,在 P 上顶点时,|OM|=0,∴0<|OM|<4.
三 课后练习:
1.(2019·郑州第二次质量预测)已知椭圆 C:ax22+by22=1(a>b>0)的左、右焦点分别为 F1,F2,离心率为23,
x2
令椭圆方程为
a2
y2 b2
1(a b 0)
则由椭圆的定义有 | PF1 | | PF2 | 2a , | F1F2 | 2c ,
∴
| PF1 | | PF2 |
| F1F2 | 2c
sin PF2F1 sin PF1F2 sin F1PF2
又 ∵ PF1F2 5PF2F1 , ∴ PF1F2 750 , PF2F1 150 ,
4.(2019
南昌模拟)P
为椭圆 x2 +y2=1 25 9
上一点,F1,F2
分别是椭圆的左、右焦点,过
P
点作
PH⊥F1F2
于
点 H,若 PF1⊥PF2,则|PH|=( )
A.25
B.8
4
3
C.8
D.9
4
解析:选 D 由椭圆 x2 +y2=1 得 a2=25,b2=9, 25 9
则 c= a2-b2= 25-9=4,∴|F1F2|=2c=8.由椭圆的定义可得|PF1|+|PF2|=2a=10,
A. (0, 3 ] 2
椭圆中焦点三角形的性质及应用探究
2 . 故 答 案 为 D.
2 、f 2
所以 l P F . 1 『 P F 。 I = ( 『 P F 『 +『 P F 。 I ) -4 c
2 ( 1 +C O S 0 )
4n 2— 4c 2 b
性质 四: 已 知 椭 圆 方 程 为 + 一 l ( n> 6> o) ・ 两 焦 点 分 别 为 F , Fz , 设 焦 点 三 角 形 PF F 中 F PF 一 0, 则
( 异 于 长 轴 的 端 点) ,则 称
△F PF 为 椭 圆 的 焦 点 三
证明 : 设 P( 。 , Y 。 ) , 由焦 半 径公 式可 知 : l P F l 一口+
e o , l PF1 口一e 1 . T o .
角形 .
性质一 : 过椭圆焦点 的所 有弦 中通 径 ( 垂 直于焦 点的 弦 ) 最短。 通 径 为 .
y a
在
一
一
刚一
一 4 b
半
一 一
例 1 设 椭 圆x z
十
一1 ( c £ >6 >0 ) 的右 焦点 为 F , 右 准
( 1 P F I +l P F : { ) 。 一2 I P F I I P F l 一4 c 2 l P F I l P F
6 z t a n 要一 t a n , 所 以 当 △ F P F 的 面 积 最 大 时 , 0 为 最 大 ,
这 时 点 P 为 椭 圆 短 轴 的端 点 , 0 —1 2 0 。 .
所 以P Fl ・PF 2 一l P Fl I・f P F z J C O S 0 一Ⅱ C O S 1 2 0 。 一
c o s 8 ≥1 —2 e 。 .
2020高中数学 2.2.4 椭圆中焦点三角形的性质及应用教案 新人教A版选修1-1
高中数学 2.2.4 椭圆中焦点三角形的性质及应用教案 新人教A 版选修1-1,21θ=∠PF F 则2tan221θb S PF F =∆。
θcos 2)2(2122212212PF PF PF PF F F c -+== )cos 1(2)(21221θ+-+=PF PF PF PF θθθcos 12)cos 1(244)cos 1(24)(222222121+=+-=+-+=∴b c a c PF PF PF PF 1222121sin sin tan 21cos 2F PF b S PF PF b θθθθ∆∴===+ 性质二:已知椭圆方程为),0(12222>>=+b a by a x 左右两焦点分别为,,21F F 设焦点三角形21F PF ,若21PF F ∠最大,则点P 为椭圆短轴的端点。
证明:设),(o o y x P ,由焦半径公式可知:o ex a PF +=1,o ex a PF -=1 在21PF F ∆中,2122121212cos PF PF F F PF PF -+=θ21221221242)(PF PF c PF PF PF PF --+=1))((24124422122--+=--=o o ex a ex a b PF PF c a =122222--ox e a b a x a ≤≤-0 22a x o ≤∴性质三:已知椭圆方程为),0(12222>>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则.21cos 2e -≥θ证明:设,,2211r PF r PF ==则在21PF F ∆中,由余弦定理得:1222242)(2cos 212221221221212212221--=--+=-+=r r c a r r c r r r r r r F F r r θ.2112221)2(222222222122e a c a r r c a -=--=-+-≥ 命题得证。
椭圆中焦点三角形的性质及应用
椭圆中焦点三角形的性质及应用
又,故满足:故为直角三角形、说明:考查定义、利用已知、发挥联想,从而解题成功、性质一:已知椭圆方程为两焦点分别为设焦点三角形中则。
性质二:已知椭圆方程为左右两焦点分别为设焦点三角形,若最大,则点P为椭圆短轴的端点。
证明:设,由焦半径公式可知:,在中, = 性质三:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为性质四:已知椭圆方程为两焦点分别为设焦点三角形中则证明:设则在中,由余弦定理得:
命题得证。
(2000年高考题)已知椭圆的两焦点分别为若椭圆上存在一点使得求椭圆的离心率的取值范围。
简解:由椭圆焦点三角形性质可知即 ,于是得到的取值范围是性质五:已知椭圆方程为两焦点分别为设焦点三角形,则椭圆的离心率。
由正弦定理得:由等比定理得:而,∴。
已知椭圆的焦点是F1(-1,0)、F2(1,0),P为椭圆上一点,且|F1F2|是|PF1|和|PF2|的等差中项.(1)求椭圆的方程;(2)若点P在第三象限,且∠PF1F2=120,求tanF1PF2.解:(1)由题设2|F1F2|=|PF1|+|PF2|∴2a=4,又2c=2,∴b=∴椭圆的方程为=1.(2)设∠F1PF2=θ,则∠PF2F1=60-θ椭圆的离心率则,整理得:5sinθ=(1+cosθ)∴故,tanF1PF2=tanθ=.
第 1 页共 1 页。
椭圆焦点三角形的性质
椭圆的焦点三角形 基础再现: 已知椭圆22122:1(0)x y C a b a b+=>>的焦点为21,F F ,长轴端点为21,A A ,短轴端点为21,B B ,P 为椭圆上任意一点,O 为坐标原点.1. 焦半径1PF 的范围:[]c a c a +-,.类似的:OP 的范围:[]a b ,.2. 焦点三角形的周长:c a L 22+=.3.[]22221,b c b PF PF -∈⋅,当且仅当P 位于短轴端点时取得22c b -,长轴端点时取得2b . 4. 21PF F ∠在点P 位于短轴端点时取得最大值.类似的:21PA A ∠在点P 位于短轴端点时取得最大值.特别的:过焦点的所有弦中通径通径最短,通径:ab L 22= 5. 焦点三角形的面积: ⅰ.2121sin 21PF F PF PF S ∠⋅⋅=. ⅱ.p y c b b S =⋅=+⋅=2tan cos 1sin 22θθθ,当且仅当点P 位于短轴端点时面积取得最大值bc . 6.22121cos e PF F -≥∠,其中e 为椭圆离心率. 7. PF F F PF PF F e 212121sin sin sin ∠+∠∠=,其中e 为椭圆离心率. 实战演练1.已知椭圆()()221:1,3,0,3,02516x y C A C +=-,B 为椭圆上一点,则在ABC ∆中BC A sin sin sin +的值为 .2.已知21,F F 为椭圆221:12516x y C +=的两个焦点,过1F 的直线交椭圆于B A ,,且1222=+B F A F ,则=AB .3.如图,把椭圆2212516x y +=的长轴AB 分成8分,过每个分点作x 轴的垂线交椭圆的上半部分于1P ,2P ,……7P 七个点,F 是椭圆的一个焦点,则127......PF P F P F +++= .4.已知椭圆()012222>>=+b a b y a x 的左右焦点分别为F ₁(-c ,0)、F ₂(c,0),且椭圆上存在一点P 使得∠F ₁PF ₂ =90°,则椭圆离心率e 的取值范围是: .5.若P 是椭圆16410022=+y x 上的一点,1F 、2F 分别是其左右焦点,且︒=∠6021PF F ,则△21PF F 的面积=S ,点P 的坐标为 .6.已知椭圆1:222=+y ax C (a >1)的左右焦点分别为1F 、2F ,P 为椭圆上一点,且︒=∠6021PF F ,则||||21PF PF ⋅的值为 .7.已知椭圆14:22=+y x C 的左右焦点分别为1F 、2F , P 是椭圆上一点,当△21PF F 的面积为1时,21PF PF ⋅的值为 .8.已知椭圆22194x y +=的左右焦点分别为1F 、2F ,点P 为其上的动点,当12F PF ∠为钝角时,点P 横坐标的取值范围是 .9.已知椭圆221164x y +=的左右焦点分别为1F 、2F ,点M 为其上的动点,当12F MF ∆为直角三角形时,12F MF ∆的面积=S .若将第9题椭圆方程变为2212516x y +=,则12F MF ∆的面积=S . 10.已知椭圆221259x y +=的左右焦点分别为1F 、2F ,点P 为其上的动点,且1260PF F ∠= ,则12F PF ∆的面积=S .11.已知椭圆221259x y +=的左右焦点分别为1F 、2F ,点P 为其上的动点,直线1PF 的斜率为73,则12F PF ∆的面积=S .。
椭圆焦点三角形的性质
一
。
一
1 f P F1
PF 2 l S i n 一
0
0
t an
两个 交 点 ( O , 一6 ) 、 ( 0 , 6 ) 。若 点 P 的 横 坐标 为 0 , 则 点 P在圆 z +Y 一C 上 , 故 /F PF 2为直 角 ; 若 点
P 的横 坐标 ∈( 一a , 0 ) U( 0 , a ) , 则 点 P在圆 z 。 + Y 。 一C 外 , 故 F PF 为锐 角 。 当c >6时 , 椭 导 。
例 2 已知 F 1 、 F z 是椭圆 c: x z T y Z —l ( 口 >6
P F 2 。若 △PF F z的面积 为 9 , 则6 一
四个 交点 。联 立 +西 Y 一 1和 。 +Y 一c , 得 一
,, n 。
。
—
—
解: 由椭 圆焦 点三 角形 的性 质 2 , 知 9 —6 z t d , n
性质 1 : 设以原点为圆心, 以 椭 圆 的 两 个 焦 点 的
由c >b , 知 在 椭 圆 上 存 在 点 P, 使
F P F 是锐角、 直角、 钝角。 设点 P的横 坐标 为 。 由椭 圆焦 点 三 角 形 的 性 质 1及 其 探 究 , 知: 当 F PF 为 直 角 时 , z 一 ± 二 一 ± 3 ;当
2 r l
z ∈ f 一 互 , — - b 2 1 , 则 点P 在 圆 z z + z 一 ≥ 羔 2 ( 字) 一
f 内 , 故 F P F。 为钝 角 。
中学生数理亿. 赢I l 赢三使用
椭 园 焦 点 三 角 开 乡 白 勺J } 生质
一 甘 肃
秒杀题型 焦点三角形(椭圆与双曲线)
2020年高考数学试题调研之秒杀圆锥曲线压轴题之秒杀题型三:椭圆、双曲线焦点三角形椭圆的焦点三角形:椭圆上任意一点P 与两焦点1F 、2F 构成的三角形:12PF F ∆。
秒杀题型一:性质:1.周长为定值:2()a c +。
2.12,F PF θ∠=当点P 靠近短轴端点时θ增大,当点P 靠近长轴端点时θ减小;与短轴端点重合时θ最大。
类比:(注:椭圆中端点三角形(长轴两端点与椭圆上一点构成)当P 在短轴端点时顶角最大。
)。
1.(2017年新课标全国卷I 文12)设A 、B 是椭圆C 1323=+m y x 长轴的两个端点,若C 上存在点M 满足︒=∠120AMB ,则m 的取值范围是()A.(][)+∞,91,0 B.(][)+∞,93,0 C.(][)+∞,41,0 D.(][)+∞,43,0【解析】:当03m <<时,椭圆的焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 60ab≥= ,即≥.得01m <≤;当3m >时,椭圆的焦点在y 轴上,要使C 上存在点M 满足120AMB ∠= ,则tan 60ab ≥= ,≥,得9m ≥,故m 的取值范围为(][)+∞,91,0 ,选A.秒杀题型二:3.三角形面积:212tan 22S c y c y b θ=⨯⨯=⨯=,max ,S bc =即P 与短轴端点重合时面积最大。
1.(高考题)已知1F ,2F 是椭圆1:2222=+by a x C )0(>>b a 的两个焦点,P 为椭圆C 上一点,21PF PF ⊥.若21F PF ∆的面积为9,则b =.【解析】:由椭圆焦点三角形面积公式得:94tanb 22==b π,3=∴b 。
〖母题1〗已知12,F F 是椭圆22195x y +=的焦点,点P 在椭圆上且123F PF π∠=,求12F PF ∆的面积.【解析】:由椭圆定义及余弦定理得:533。
椭圆焦点三角形的性质探究与应团
椭圆焦点三角形的性质探究与应团作者:洪汪宝来源:《中学生数理化·高二数学》2019年第01期我们知道,椭圆上任意一点(除去长轴端点)与两焦点所构成的三角形称为椭圆的焦点三角形。
那么该三角形有哪些特殊的性质呢?本文对椭圆的焦点三角形的性质进行探究并举例说明其应用。
一、性质探究为了研究问题的方便,我们以焦点在x轴上的椭圆为例。
有兴趣的读者,可模仿推导焦点在y轴上的椭圆的情况。
性质1:△PF1F2的周长为定值,其值为2a+2c。
性质2:△PFF2的面积为c|y0|,其最大值为bc,当点P位于短轴端点时焦点三角形的面积取到最大值。
性质3:若∠F1PF2=a,则△PF1F2的面积为b2tana/2。
证明:故故性质4:|PF1|=a+ex0,|PF2|=a-ex0。
证明:根据此性质可知椭圆上的点到焦点的最大距离为a+c,最小距离为a-c,此时该点是椭圆长轴的端点。
性质5:∠F1PF2=a,则当点P位于上、下顶点时,a最大。
证明:由余弦定理知:当且仅当|PF1|=|PF2|即当点P位于上、下顶点时cosa取到最小值,又余弦函数在[0,π]上单调递减,此时a最大。
由以上证明过程不难得出cosa≥2b2/a2-1=1-2e2。
性质6:设∠PF1F2=β,∠PF2F1=θ,则椭圆的离心率e=- sin(β+θ)/sin β +sin θ证明:性质7:如图1,作∠F1PF2的补角的平分线PF,过F,2作PF的垂线,垂足为D点,则点D的轨迹是一个圆。
证明:所以点D的轨迹是一个以原点为圆心,半径为a的圆。
性质8:如图2,作圆与线段F、P的延长线、线段F2P、线段F1F2的延长线分别切于点D、E、F,则点F为椭圆的右顶点。
证明:解得xF=a。
所以点F为椭圆的右顶点。
二、性质应用例1Æ已知△PF1F2的面积为_____。
解:根据性质3可知△PF1F2的面积为9tan 45°=9。
例2Æ已知椭圆0)的两个焦点分别为F1,F2,若椭圆C上存在点P使∠F,PFz= 120°,则该椭圆C的离心率的取值范围为_____。
椭圆的焦点三角形
椭圆的焦点三角形椭圆,这玩意儿在数学里可真是个特别的存在。
而今天咱们要唠的是椭圆里的焦点三角形,这可是个挺有趣的知识点。
先来说说啥是焦点三角形。
想象一下,在一个椭圆里,有两个焦点F₁、F₂,然后从这两个焦点引出两条线,和椭圆上的一个点 P 相连,这样就形成了一个三角形,这就是焦点三角形啦。
我还记得之前给学生们讲这个知识点的时候,有个学生瞪着大眼睛一脸懵地问我:“老师,这焦点三角形到底有啥用啊?”我笑着跟他说:“别急,等你学会了你就知道它的妙处啦。
”咱们来看看焦点三角形的性质。
比如说,它的周长,那就是 PF₁+ PF₂+ F₁F₂。
这看起来简单,可做题的时候,不少同学就容易在这上面犯迷糊。
还有面积,这就得用到一个公式,S =b² × tan(θ/2),这里的 b 是短半轴长,θ 是∠F₁PF₂。
有一次考试,就考到了焦点三角形的面积问题。
题目给了椭圆的方程,还有∠F₁PF₂的大小,让求三角形的面积。
很多同学一看就慌了,不知道从哪下手。
其实啊,只要把公式套进去,很快就能算出来。
再来说说怎么利用焦点三角形求离心率。
离心率可是椭圆里的一个重要概念。
通过焦点三角形的一些边长关系,就能求出离心率的范围或者具体值。
这就像是解开一道谜题,每一个条件都是一个线索,只要把这些线索拼凑起来,就能找到答案。
我曾经在课堂上做过一个小实验,我画了一个椭圆,然后标上焦点和一个点 P,让同学们自己去推导焦点三角形的一些性质。
有的同学很快就找到了思路,有的同学则皱着眉头苦思冥想。
最后大家一起讨论,把这个知识点弄得明明白白。
总之啊,椭圆的焦点三角形虽然看起来有点复杂,但只要咱们用心去学,多做几道题,就能掌握它的窍门。
就像生活中的很多难题一样,只要咱们不害怕,肯钻研,总能找到解决的办法。
希望同学们以后再遇到焦点三角形的问题,都能轻松应对,加油!。
椭圆中三角形面积公式
椭圆中三角形面积公式椭圆三角形面积公式:S=b2*tan。
椭圆是移动点P的轨迹,其从平面到固定点F1和F2的距离之和等于常数(大于|F1F2|)。
F1和F2称为椭圆的两个焦点。
数学表达式为:|Pf1|PF2|=2A(2A>|F1F2|)。
椭圆的焦点三角形是指以椭圆的两个焦点F1,F2与椭圆上任意一点P为顶点组成的三角形。
焦点三角形面积公式是S=b²·tan(θ/2)(θ为焦点三角形的顶角)。
椭圆的焦点三角形性质为:(1)|PF1|+|PF2|=2a。
(2)4c²=|PF1|²+|PF2|²-2|PF1|·|PF2|·cosθ。
(3)周长=2a+2c。
(4)面积=S=b²·tan(θ/2)(∠F1PF2=θ)。
椭圆三角形面积公式:S=b^2*tan(θ/2)。
1、离心率由正弦公式推导:F1P/sinα=F2P/sinβ=F1F2/sin θ,sinθ=sin(α+β),F1P+F2P=2a,F1F2=2c,e=c/a。
2、已知tan(θ/2)=sinα/(cosα+1)。
3、焦点三角形面积由余弦公式推导:∠F1PF2=θ,PF1=m,PF2=n。
4、则m+n=2a,在△F1PF2中,由余弦定理:(F1F2)^2=m^2+n^2-2mncosθ。
5、即4c^2=(m+n)^2-2mn-2mncosθ=4a^2-2mn(1+cosθ)。
6、所以mn=2b^2/(1+cosθ)。
7、S=(mnsinθ)/2=b^2*sinθ/(1+cosθ)=b^2*tan(θ/2)。
椭圆三角形表达椭圆是移动点P的轨迹,其从平面到固定点F1和F2的距离之和等于常数(大于|F1F2|)。
F1和F2称为椭圆的两个焦点。
数学表达式为:Pf1|PF2|=2A(2A>|F1F2|)。
焦点三角形面积公式是S=b²·tan(θ/2)(θ为焦点三角形的顶角)。
椭圆焦点三角形性质
椭圆焦点三角形性质是椭圆的一个重要性质,它是椭圆的一种特殊的三角形,它的特点是它的三个顶点都在椭圆的焦点上。
椭圆焦点三角形的性质有以下几点:1、椭圆焦点三角形的三个顶点都在椭圆的焦点上,这是椭圆焦点三角形的最大特点。
2、椭圆焦点三角形的三条边都是椭圆的椭圆轴,也就是说,椭圆焦点三角形的三条边都是椭圆的椭圆轴。
3、椭圆焦点三角形的三个内角都是相等的,也就是说,椭圆焦点三角形的三个内角都是相等的。
4、椭圆焦点三角形的三条边都是等长的,也就是说,椭圆焦点三角形的三条边都是等长的。
5、椭圆焦点三角形的三个外角都是相等的,也就是说,椭圆焦点三角形的三个外角都是相等的。
6、椭圆焦点三角形的三个顶点都在椭圆的焦点上,这意味着椭圆焦点三角形的三个顶点都在椭圆的焦点上,而不是在椭圆的椭圆轴上。
7、椭圆焦点三角形的三条边都是等腰的,也就是说,椭圆焦点三角形的三条边都是等腰的。
8、椭圆焦点三角形的三个外角都是相等的,也就是说,椭圆焦点三角形的三个外角都是相等的。
9、椭圆焦点三角形的三个内角都是相等的,也就是说,椭圆焦点三角形的三个内角都是相等的。
10、椭圆焦点三角形的三条边都是等腰的,也就是说,椭圆焦点三角形的三条边都是等腰的。
椭圆焦点三角形的性质是椭圆的一个重要性质,它是椭圆的一种特殊的三角形,它的特点是它的三个顶点都在椭圆的焦点上,而不是在椭圆的椭圆轴上。
椭圆焦点三角形的三条边都是等长的,三个内角和三个外角都是相等的,这是椭圆焦点三角形的特点。
椭圆焦点三角形的性质在几何学中有着重要的应用,它可以用来求解椭圆的焦点,以及椭圆的椭圆轴的长度等问题。
此外,椭圆焦点三角形的性质也可以用来求解椭圆的面积,以及椭圆的周长等问题。
总之,椭圆焦点三角形的性质是椭圆的一个重要性质,它的特点是它的三个顶点都在椭圆的焦点上,而不是在椭圆的椭圆轴上,它的三条边都是等长的,三个内角和三个外角都是相等的,它在几何学中有着重要的应用。
12.4.3焦点三角形的性质及椭圆中的最值问题
F1
O
F2
x
x2 (2)已知直线l : x y m 0与椭圆C : y 2 1, 4 交于A, B两点,求|AB | 的最大值.
4 10 5
(2)当F 1PF 2 60 时,求F 1PF 2的面积;
4 3 3
y
F1
o
F2
x
x2 y 2 变式:已知椭圆 2 2 1 (a b 0), 焦点坐标为F1 , F2 , 点P为椭圆上的动点, a b 2 S△ PF1F2 b tan 若F1PF2 时,求F1PF2的面积; 2
2
xp2
yp2
F1
o
P F2
x
PF1 PF2 2 cos F1PF2 0 PF1 PF2 0 ( 5 x p )( 5 x p ) y p 0 | PF1 || PF2 |
4 2 9 3 5 3 5 2 x ( , ) xp 5 y p 0 x p 5 4 x p 0 x p p 9 5 5 5
3. 椭圆上一点到定直线的距离的最值问题
x2 y 2 例1:已知椭圆 1,直线L : 4 x 5 y 40 0, 25 9 椭圆上是否存在一点,它到直线L的距离最小? 最小距离是多少?
解:设直线m平行于l, 则l可写成: 4x 5 y k 0
4 x 5 y k 0 2 2 由方程组 x y 1 25 9 2 2 消去y,得25x 8kx k - 225 0
x2 y 2 2.在椭圆 C: 2 2 1( a b 0 )中, F1 和 F2 是椭圆的两个焦 a b
椭圆专题:椭圆中焦点三角形的6种常见考法高二数学上学期同步讲与练(选择性必修第一册)(原卷版)
椭圆专题:椭圆中焦点三角形的6种常见考法焦点三角形的定义与常用性质1、定义:椭圆上一点与椭圆的两个焦点组成的三角形通常称为“焦点三角形”。
一般利用椭圆的定义、余弦定理和完全平方公式等知识,建立12+AF AF ,2212+AF AF ,12AF AF 之间的关系,采用整体代入的方法解决焦点三角形的面积、周长及角的有关问题(设12∠F AF 为 )2、常用性质性质1:122+=AF AF a ,122+=BF BF a (两个定义)拓展:12∆AF F 的周长为121222++=+AF AF F F a c1∆ABF 的周长为12124+++=AF AF BF BF a性质2:222212121242cos ==+-c F F AF AF AF AF θ(余弦定理)性质3:当A 为短轴的端点时,12∠F AF 最大推导:由性质2得,()222221212121212244c cos 22+--+-==AFAF AF AF c AF AF AF AF AF AF θ()222121212224221--==-a AF AF cb AF AF AF AF .∵212212+=22⎛⎫≤ ⎪⎝⎭AF AF AF AF a ,当且仅当12=AF AF 时,即点A 是短轴端点时取等号,∴2221222cos 11=-≥-b b AF AF aθ.又∵cos =y θ在()0,π上单调递减,∴当A 为短轴的端点时,12∠F AF 最大。
性质4:122121sin tan 22∆===AF F A S AF AF b c y θθ当=A y b ,即A 为短轴的端点时,12∆AF F 的面积最大,最大值为bc推导:由性质3的推导过程得2122cos 1=-b AF AF θ∴21221cos =+b AF AF θ,∴122221222sincos 11222sin sin tan 221cos 22cos 2∆==⋅⋅=⋅=+AF F b S AF AF b b θθθθθθθ题型一椭圆中焦点三角形的周长问题【例1】已知∆ABC 的顶点B ,C 在椭圆2211216x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另一个焦点在BC 边上,则∆ABC的周长是()A.23B.3C.8D.16【变式1-1】已知椭圆()222210x y a b a b+=>>的两个焦点为1F ,2F ,过点1F 的直线交椭圆于A ,B 两点,若2∆ABF 的周长为16,则=a ()A.2B.4C.6D.8【变式1-2】椭圆C :2221(0)x y a a+=>的左、右焦点分别为1F ,2F ,P 为椭圆上异于左右顶点的任意一点,1PF 、2PF 的中点分别为M 、N ,O 为坐标原点,四边形OMPN 的周长为4,则12∆PF F 的周长是_____.【变式1-3】已知椭圆的方程为22194x y +=,过椭圆中心的直线交椭圆于A 、B 两点,2F 是椭圆的右焦点,则2ABF 的周长的最小值为______.题型二椭圆中焦点三角形的面积问题【例2】椭圆C :2214924x y +=的焦点为1F ,2F ,点P 在椭圆上,若18PF =,则12PF F △的面积为()A.48B.40C.28D.24【变式2-1】设12,F F 是椭圆2211224x y +=的两个焦点,P 是椭圆上一点,且1213cos F PF ∠=.则12PF F △的面积为()A.6B.C.8D.【变式2-2】已知1F 、2F 为椭圆22:14x y Γ+=的左、右焦点,M 为Γ上的点,则12MF F △面积的最大值为()B.2C.D.4【变式2-3】已知点P 为椭圆C :22195x y +=上一点,点1F ,2F 分别为椭圆C 的左、右焦点,若122PF PF =,则12PF F △的内切圆半径为()B.155题型三椭圆中焦点三角形的个数问题【例3】已知点1F 、2F 为椭圆22143x y+=的左、右焦点,若点P 为椭圆上一动点,则使得123F PF π∠=的点P 的个数为()A.0B.2C.4D.不能确定【变式3-1】设椭圆22:184x y Γ+=的左、右两焦点分别为1F ,2F ,P 是Γ上的点,则使得12PF F △是直角三角形的点P 的个数为_________.【变式3-2】已知1F 、2F 为椭圆22143x y+=的左、右焦点,若M 为椭圆上一点,且12MF F △的内切圆的周长等于π,则满足条件的点M 的个数为()A.2B.4C.0D.不确定【变式3-3】若1F 、2F 分别是椭圆2212516x y +=的左、右焦点,M 是椭圆上的任意一点,且12MF F △的内切圆的周长为3π,则满足条件的点M 的个数为()A.2B.4C.6D.不确定题型四椭圆中焦点三角形的顶点坐标问题【例4】已知1F 、2F 为双曲线C :221x y -=的左、右焦点,点P 在C 上,21PF F ∠=︒60,则P 到x 轴的距离为()A.2B.2【变式4-1】已知椭圆221169x y +=的左、右焦点分别为1F ,2F ,点P 在椭圆上,若12PF F △为直角三角形,则点P 到x 轴的距离为()或94B.3D.94【变式4-2】椭圆22194x y +=的焦点F 1,F 2,点P 为其上的动点,当∠F 1PF 2为钝角时,点P横坐标的取值范围是()A.B.)C.(﹣5,5)D.(﹣5,5)【变式4-3】椭圆22:14x C y +=的左右焦点分别为12,F F ,点M 为其上的动点,当12F MF ∠为钝角时,点M 的纵坐标的取值范围是____________.题型五椭圆中焦点三角形的中位线问题【例5】设1F ,2F 为椭圆22194x y+=的两个焦点,点P 在椭圆上,若线段1PF 的中点在y 轴上,则21PF PF 的值为()A.513B.45C.27D.49【变式5-1】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是()B.D.【变式5-2】已知椭圆22:194x y C +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为,A B ,线段MN 的中点在椭圆C 上,则AN BN +的值为()A.6B.12C.18D.24【变式5-3】如图,若P 为椭圆C :()222210x y a b a b+=>>上一点,()F -为椭圆的焦点,若以椭圆短轴为直径的圆与PF 相切于中点,则椭圆C 的方程为___________.题型六椭圆中焦点三角形的角平分线问题【例6】已知1F ,2F 是椭圆C :22214x y b+=的左、右焦点,离心率为12,点A 的坐标为3(1,)2,则12F AF ∠的平分线所在直线的斜率为()A.2B.1【变式6-1】已知12F F ,是椭圆221369x y+=的两个焦点,P 是椭圆上任意一点,过1F 引12F PF ∠的外角平分线的垂线,垂足为Q ,则Q 与短轴端点的最近距离为()A.5B.4C.3D.2【变式6-2】已知椭圆()2221024x y b b+=<<,1F ,2F 分别为椭圆的左、右焦点,P 为椭圆上一点,()2,1M ,1MF 平分角12PF F ∠,2MF 是角21PF F ∠的外角平分线,则1MPF 与2MPF 的面积之和为()A.1B.32C.2D.3【变式6-3】已知1F ,2F 是椭圆22221(0)x y a b a b+=>>的两焦点,P 是椭圆上任一点,从2F 引12F PF ∠外角平分线的垂线,垂足为Q ,则点Q 的轨迹为()A.圆B.两个圆C.椭圆D.两个椭圆。
椭圆中的重要结论
椭圆中焦点三角形的性质及应用
定义:椭圆上任意一点与两焦点所构成的三角形称为焦点三角形。
与焦点三角形的有关问题有意地考查了定义、三角形中的的正(余)弦定理、内角和定理、面积公式等.
一.焦点三角形的形状判定及周长、面积计算
例1 椭圆112
162
2=+y x 上一点P 到焦点21,F F 的距离之差为2,试判断21F PF ∆的形状.
性质一:已知椭圆方程为),0(12222>>=+b a b
y a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则2tan 221θb S PF F =∆。
性质二:已知椭圆方程为),0(12222>>=+b a b
y a x 左右两焦点分别为,,21F F 设焦点三角形21F PF ,若21PF F ∠最大,则点P 为椭圆短轴的端点。
性质三:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为a
b 22 性质四:已知椭圆方程为),0(12222>>=+b a b
y a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则.21cos 2e -≥θ
例2(2000年高考题)已知椭圆)0(122
22>>=+b a b
y a x 的两焦点分别为,,21F F 若椭圆上存在一点,P 使得,1200
21=∠PF F 求椭圆的离心率e 的取值范围。
例3已知椭圆的焦点是F1(-1,0)、F2(1,0),P为椭圆上一点,且|F1F2|是|PF1|和|PF2|的等差中项.
(1)求椭圆的方程;
(2)若点P在第三象限,且∠PF1F2=120°,求tan F1PF2.。
椭圆焦点三角形性质探究
椭圆焦点三角形的性质探究在椭圆的定义中,焦点占有举足轻重的地位,在椭圆的定义性质考查中,或多或少都会和椭圆的焦点联系考查,而椭圆的焦点三角形(椭圆上一点与两焦点所构成的三角形称为焦点三角形。
)又包含了两个焦点作为顶点,因此在高考模考中经常以焦点三角形为背景进行命题。
本文就焦点三角形的一些常见性质进行归纳总结,并在性质背景下对19年的文数高考题进行旧题新解,希望对大家的学习所帮助。
形21F PF 的周长为定值c a 22+.【例1】已知椭圆22221(0)x y a b a b +=>>的左右焦点分别为21,F F ,离心率为43,点P 为椭圆上一点,若 9021=∠PF F ,且21F PF ∆内切圆的半径为1,则椭圆C 的方程为______.【答案】171622=+y x【解析】因为21F PF ∆的周长为c a 22+则1)22(214tan221⨯+==∆c a b S F PF π,即2b c a =+ 又43=a c ,且222c b a +=,解得7,4==b a 即椭圆方程为171622=+y x【证明】记2211||,||r PF r PF ==,由椭圆定义得a r r 2||21=+ ①在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ 即.4cos 22)(22121221c r r r r r r =--+θ ② 将①式代入②式得.4)cos 1(242212c r r a =+-θ.cos 12cos 1)(222221θθ+=+-=∴b c a r r所以2tan 2cos 22cos2sin2cos 1sin sin 2122222121θθθθθθθ⋅=⋅=+⋅==∆b b b r r S PF F .即.2tan 221θ⋅=∆b S PF F【例2】已知12,F F 为椭圆22221(0)x y a b a b+=>>的左右焦点,P 为椭圆上一点(异于左、右顶点),若存在以c 22为半径的圆内切于21F PF ∆,则椭圆离心率的取值范围是( )A. ]31,0( B.]32,0( C.]32,31( D.)1,32[ 【答案】A 【解析】存在以c 22为半径的圆内切于21F PF ∆,即焦点三角形面积满足: b c r c a S PF F ⨯⨯≤⋅+=∆221)22(2121 即bc c a c ≤+)(22,所以b c a 2)(≤+ 即)(22)(2222c a b c a -=≤+,化简得0)3)((≥-+c a c a 即c a 3≥,故有310≤<e 【2020∙全国Ⅰ卷∙文∙11】设21,F F 是双曲线13:22=-y x C 的两个焦点,O 为坐标原点,点P 在C 上且2=OP ,则21F PF ∆的面积为A.27 B.3 C. 25D.2 【答案】B【解析】在双曲线C 中,易得2=c所以221===OF OF OP ,即21F PF ∆为直角三角形 由引理2易得345cot 2cot2221==⋅=∆ b b S F PF θ(其中θ为21PF F ∠)【2019∙全国Ⅱ卷∙文∙20】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.【解析】(1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c =,1PF =1221)a PF PF c =+=,故C 的离心率是1ce a==. (2)【解法一】设点为(,)P x y ,则1||2162y c ⋅= ① 222x y c +=,②22221x y a b+=,③ 由②③及222a b c =+得422b y c=,又由①知22216y c =,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故a ≥所以4b =,a 的取值范围为)+∞.【解法二】由性质二(需要证明)得,1645tan 2tan 2221221===∠⋅=∆b b PF F b S F PF ,所以4b = 又因为y c PFF b S F PF =∠⋅=∆2tan 21221,所以当且仅当点P 位于椭圆上下顶点时,21PF F ∠达到最大,即9021≥∠PF F依题需要12tan21≥=∠bcPF F ,即b c ≥ 所以2222232,a b c b =+≥=故42a ≥.性质三:已知12,F F 为椭圆22221(0)x y a b a b+=>>的两个焦点,P 为椭圆上任意一点,则当点P 为椭圆短轴的端点时,12F PF ∠最大。