圆的认识知识结构图
圆的认识免费ppt课件
交点的求法
将两个圆的方程联立,解 出交点坐标。
圆的组合图形
圆与直线的组合图形
当直线与圆相切或相交时,会形成一些特殊的组合图形,如扇形 、弓形等。
圆与圆之间的组合图形
两个或两个以上的圆可以形成一些特殊的组合图形,如椭圆、双曲 线等。
圆与其他图形的组合图形
圆与其他图形也可以组合成一些复杂的图形,如圆形花坛、圆形水 池等。
感谢您的观看
THANKS
05
圆的拓展知识
圆的切线
01
02
03
切线的定义
切线是指与圆只有一个公 共点的直线,这个公共点 叫做切点。
切线的判定
若直线与圆心的距离为零 ,则该直线为圆的切线。
切线的性质
切线垂直于过切点的半径 ,且切线长度等于半径长 度。
圆的交点
交点的定义
两个或两个以上的圆相交 于某一点,该点叫做交点 。
交点的性质
04
圆的定理
圆内角定理
总结词
圆内角定理描述了圆内角与其所对应 的弧之间的关系。
详细描述
圆内角定理指出,在同圆或等圆中, 相等的圆心角所对应的弧相等,相等 的圆周角所对应的弧也相等。这个定 理是圆的基本性质之一,是解决与圆 相关问题的重要依据。
圆外角定理
总结词
圆外角定理描述了圆外角与其所对应的弦之间的关系。
半径
从圆心到圆上任意一点的线段称为半径,半径的长度等于直 径的一半。点沿圆周移动一 圈的距离之和,计算公式为 C = 2πr ,其中 r 是圆的半径。
面积
圆的面积是圆所占平面的大小,计算 公式为 A = πr^2,其中 r 是圆的半径 。
圆的认识知识结构图
《圆的认识》单元知识点1、圆的认识(1) 直径是圆中所有线段中最长的一条。
(2) 半径和直径的关系:同一个圆里,直径是半径的两倍,半径 是直径的一半。
(3) 在同一个圆里,有无数条半径,所有半径的长度都相等。
(4) 在同一个圆里,有无数条直径,所有直径的长度都相等。
(5) 画圆时,圆规针尖固定的一点是圆心,圆规两脚之间距离是 半径。
圆心确定圆的位置,半径确定圆的大小、知识结构图广 圆各部分名称(圆心、直径、半径) 圆的认识 < 圆的画法、对称轴 圆的周长圆的认识r推导过程(渗透转化思想)圆的面积2 . . 2圆面积=n r X r= n r 。
即:S=n r 与圆相关的计算二、核心知识点半圆的周长、面积计算圆的周长=圆周率x 直径=圆周率x 半 径 X 2 (C =n d 或 C = 2 n r ) 组合图形求面积(6) 圆是轴对称图形,有无数条对称轴,对称轴就是直径所在的直线(7) 正方形里最大的圆:圆心是对角线交点,半径是正方形边长的一半。
(8) 长方形里最大的圆:圆心是对角线交点,半径是长方形宽的一半。
2、圆的周长(1) 圆周率:任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率,用字母n表示。
n是一个无限不循环小数,n~ 3.14。
(2) 圆的周长二圆周率X直径二圆周率x半径X 2 (C=n d或C= 2(3) 半圆的周长二圆周长的一半+直径(C半圆二n d宁2+ d, C半圆二n r + 2r (4)常用数据(略,自己背诵)(5)同一个圆里,圆的周长是直径的n倍,圆的周长是半径的2 n倍。
3、圆的面积(1) 圆面积公式的推导过程把圆分成若干等份,剪开后,拼成了一个近似的长方形。
长方形的面积与圆的面积相等;长方形的长相当于圆周长的一半,宽相当于圆的半径。
因为:长方形面积二长X宽,所以:圆面积二n r X r= n r2。
即:S=n r2。
要求圆的面积只要知道圆的半径或者知道圆的半径的平方。
圆的知识思维导图
圆的知识思维导图
圆的知识思维导图:
关于圆的知识点如下:
一、圆的概念:
在一个平面内,围绕一个点并以一定长度为距离旋转一周所形成的封闭曲线叫做圆。
二、圆的性质:
圆是轴对称图形,其对称轴是任意一条通过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
三、垂径定理及其推论:
1、定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
2、推论:
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧;
在同圆或者等圆中,圆的两条平行弦所夹的弧相等。
圆的知识框架图
drO①半径:连接圆心和圆上任意一点的线段。
②直径:经过圆心并且两端都在圆上的线段。
③圆的基本特征:A.圆是轴对称图形,有无数条对称轴。
B.圆有无数条半径,无数条直径。
在同一圆里(等圆),所有的半径都相等,所有的直径都相等。
d=2r r=12dC.圆心→位置,半径→大小。
④正方形中画一个最大的圆。
⑤直径是圆中最长的线段。
①圆的周长:圆的周长:围成圆的曲线的长。
②测量圆周长的方法:绕绳法,滚动法,绕尺法(化曲为直)③圆周率:一个圆的周长与直径的比值:π是一个无限不循环小数,π≈3.14④C=πd C=2πr根据周长可以求半径:r=C ÷(2π)⑤半圆形的周长公式:C 半圆=12πd+dC 半圆=πr+2r如果知道半圆形的周长,求半径。
用方程解答:题目:已知半圆形花坛的周长为20.56米,求半径。
解:设半径为x 米。
2×3.14×x ×12+2x =20.56①圆的面积推导:把一个圆分成若干等份,剪开后,拼成一个近似平行四边形,分得份数越多,拼成的图形越接近一个长方形。
长方形的长近似于圆周长的一半(πr),宽近似于圆的半径(r )。
因为长方形面积=长×宽,所以圆的面积=πr ×r =πr ²。
②③外方内圆,外圆内方。
rπr①概念:圆上两点之间的部分叫弧,一条弧和经过这条弧两端的两条半径围成的图形叫扇形,顶点在圆心的角叫做圆心角。
②在同一圆中,扇形的大小与这个扇形的圆心角的大小有关③会画已知半径和圆形角的扇形。
④特殊的扇形:⑤扇环:你会求外圆内方或外方内圆时,阴影面积?圆与正方形面积比吗?周长相等的平面图形中,圆的面积最大。
半径扩大到原来的3倍,周长也扩大到原来的3倍,面积扩大到原来的9倍。
解决问题时,要努力找到圆的半径。
把圆转化成近似长方形后,面积不变,周长增加了2r 。
不管圆的半径是多少,只要半径增加a 米,圆的周长就增加(2×3.14×a )米。
知识卡片-圆的认识
圆的认识能量储备● 在同一平面内,一条线段OP 绕它固定的一个端点O 旋转一周(如图312所示),另一个端点P 所形成的图形叫做圆.定点O 就是圆心,线段OP 就是圆的半径.以点O 为圆心的圆记作⊙O ,读作“圆O ”.● 平面上到定点的距离等于定长的所有点组成的图形叫做圆.其中,定点就是圆心,定长就是半径.● 弦:连接圆上任意两点的线段叫做弦,如图313中AB是弦.● 直径:经过圆心的弦叫做直径,如图313中的弦CD 为⊙O 的直径,直径等于半径的两倍.● 弧:圆上任意两点间的部分叫做圆弧,简称弧,弧用符号“(”表示;圆的任意一条直径的两个端点分圆成两条弧,每条弧都叫做半圆;大于半圆的弧叫做优弧,优弧要用三个字母表示,如图313中以A ,D 为端点的优弧ACD 记作ACD ︵;小于半圆的弧叫做劣弧,如图313中以A ,D 为端点的劣弧ABD 记作AD ︵或ABD ︵.● 等圆:能够重合的两个圆叫做等圆,同圆或等圆的半径相等;圆心相同,半径不相等的两个圆叫做同心圆● 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
通关宝典★ 基础方法点方法点1:确定一个圆的两个要素:一是圆心,二是半径。
圆心确定其位置,半径确定其大小。
例:小欢和小影在沙滩上玩游戏,需要画一个圆圈,而他们手中没有任何工具,请你帮助他们想一想,怎样得到圆圈.分析:要作出一个圆,需要确定圆心和半径,可充分利用现有条件:两个人和沙滩来满足需要.解:可让小欢站在原地旋转,小影拉直小欢的手臂,绕小欢走一圈,用脚在沙滩上画出一条曲线,就是一个圆圈.,方法点2:只有在同圆或等圆中才存在等弧,在大小不等的两个圆中不存在等弧.判断等弧时,首先要看两弧所在的圆是否为同圆或等圆,然后再看两弧的长度是否相等例:有以下结论:①直径是弦;②弦是直径;③半圆是弧,但弧不一定是半圆;④半径相等的两个半圆是等弧;⑤长度相等的两条弧是等弧.其中错误的有()A.1个B.2个C.3个D.4个解析:本题考查圆的相关概念,应根据概念判断.由直径的概念可知①正确,②错误;由弧包括半圆、优弧、劣弧可知③正确;因为等弧是在同圆或等圆中能够互相重合的弧,而半径相等的两个半圆能够互相重合,故半径相等的两个半圆是等弧,④正确;长度相等的两条弧不一定是等弧,如半径为1的圆和半径为2的半圆长度相等,但不是等弧,故⑤错误.答案:B。
圆单元知识结构图
正方形面积长方形面积=长×宽
数方格圆面积÷正方形面积=3倍多一些S=πr²等积变形
圆的面积圆的面积=圆周长一半×半径
完整性各部分面积之和
圆的组合图形面积组合图形面积大面积-小面积大圆面积-小圆面积
圆环面积(R²-r²)π
方法的迁移应用
完善特征
基本特征:曲线围成的平面图形
平面图形特征圆的特征圆心:决定圆的大小
组成半径
定扇形是圆的几分之几
一部分圆心角
圆扇形半径决定扇形的大小
弧
完善对圆的认识
正方形:周长÷直径=4
平面图形周长圆:周长圆周长÷直径圆周长÷直径=πC=dπ或C=2πr
六边形:周长÷直径=3
“化曲为直”,曲线图形与直线图形周长的探索
六年级数学上册《圆》知识结构图与教学目标
人教版六年级上册数学 第五单元:《圆》石洞小学 李妍梅一、本单元知识框架二、本单元学习内容的前后联系三、学生情况分析 1、在学习本单元之前,学生已经认识了长方形、正方形、平行四边形、三角形、梯形等平面图形并会计算它们的周长和面积,初步认识了圆,在此基础上继续研究学习,这是学生研究曲线图形的开始,从学习直线图形到学习曲线图形,无论是内容本身,还是研究方法,都有所变化,因此在教学中要注重从学生已有的生活经验和知识背景出发,结合具体情境和操作活动激活已经存在于学生头脑中的经验,促使学生逐步归纳内化,上升到数学的层面来认识圆,体会圆的本质特征,学会计算圆的周长和面积。
2、这个阶段的学生心里慢慢的趋向于成熟,能够对问题发表自己的独到的见解和看法,能够经受一定的挫折和困难。
但还不够成熟。
遇到困难是还是需要老师进行帮扶和鼓励。
从而建立学习信心。
3、能够独立的进行计算,具备了一定的归纳总结的能力。
有一定的自主探究和合作学习的能力,愿意参与主动合作学习。
四、单元教材分析1、比在数学中是一个重要概念,同时,学生理解比的意义往往比较困难。
教材密切联系学生已有的生活以验和学习经验,设计了系列情境,经发学生的讨论和思考,关地此基础上抽象出比的概念,使学生体会经放比的必要性以及比在生活中的广泛存在。
这一系列情境也为学生理解比的意义提供了丰富的直观背景和具体案例。
由浅入深地引导学生在独立思考、实际操作和合作交涉中,体会生活中存在两个数量之间比的关系,切实感受比产生的背景,理解比的意义。
2、比在生活中有着广泛的应用,教材不仅仅在引入比时为学生提供了丰富的现实情境,还鼓励学生寻找生活中的“比”,使学生认识到比的知识与日常生活的密切联系。
3、教材还特别安排了解决按照一定的比进行分配的实际问题,这类问题在生活中有着广泛的应用,教材鼓励学生根据比的意义解决这一类问题。
鼓励学生运用多种解决问题的策略。
在此基础上,教材又安排了生活中不同方面的例子,鼓励学生运用合理的策略解决实际问题。
人教版-数学-六年级上册-《圆的认识》知识讲解 圆的各部分名称
圆的各部分名称
问题导入观察下图,我们来认识一下圆的各部分名称。
(教材58页)曲
过程讲解
1.认识圆心
(l)圆心的意义:观察上图,用圆规画圆时,针尖所在的点叫做圆心。
(2)圆心的字母表示法:圆心一般用字母o表示,如右图。
(3)圆心的作用:圆心确定圆的中心位置。
2.认识半径
(l)半径的意义:连接圆心和圆上任意一点的线段叫做半径,如下图。
(2)半径的字母表示法:半径一般用字母r表示。
(3)半径的作用:半径决定圆的大小。
半径越长,圆越大;半径越短,圆越小。
3.认识直径
(l)直径的意义:通过圆心并且两端都在圆上的线段叫做直径,如下图。
(2)直径的字母表示法:直径一般用字母d表示。
归纳总结
圆的各部分名称:
拓展提高
1.等圆:半径相等的两个圆叫做等圆。
等圆经过平移可以完全重
A,如下图。
2.同心圆:圆心重合、半径不相等的两个圆叫做同心圆,如下图。
圆中知识结构图
关于《圆》的知识结构整理一.主要定理及其作用:1.圆心角,弧,弦,弦心距之间的关系定理:在同圆或等圆中,如果①两个圆心角②两条弧,③两条弦④两条弦心距中,有一组量相等, 那么它们所对应的其余各组量都分别相等:(等弧一等角-一等弦……)用的最多的依据:①在同圆或等圆中,如果两个圆心角相等,那么它们所对的两条弧相等②等弧所对的圆心角相等:③在同圆或等圆中,如果两条弦相等,那么它们所对的两条弧相等④等弧所对的两条弦相等2.垂径定理:如果一条直线①过圆心;②垂直于弦:③平分弦:④平分劣弧:⑤平分优弧•只要具备其中两个条件,就可推岀其余三个结论. (直角三角形一等弧……)用的最多的依据:①垂直于弦的直径平分弦,并且平分弦所的两条弧②平分弦(非直径)的直径垂直于这条弦,并且平分这条弦所对的两条弧.③一条弦的垂直平分线I I经过圆心,并且平分这条弦所对的两条弧④平分弧的直径过圆心的直线垂直平分这条弧所对的弦.3.圆周角定理:(1)直径所对的圆周角是直角:(2) 90°的圆周角所对的弦是直径。
(3)—条弧所对的圆周角等于它所对的圆心角的一半:(4)同弧所对的圆周角相等:(5)等弧所对的圆周角相等:(6)在同圆或等圆中,相等的圆周角所对的弧相等:(等弧——等角——直角三角形)4.切线的性质定理:圆的切线垂直于经过切点的半径(直径)。
(垂直关系)5.切线的判定定理:经过半径的外端,并且垂直于这条半径的直线是圆的切线O6.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
(等弦一-等弧一-等角)7.相切和相交两圆的性质定理:如果两圆相切,连心线必过切点。
如果两圆相交,连心线垂直平分公共弦二.主要辅助线及其作用:1.作弦心距:弦的中点.弧的中点。
2.过某一点作弦:构造相等的圆周角。
3.作直径:构造直角三角形和同弧所对的圆周角。
4.连结过切点的半径:“题中若有圆切线圆心切点连一连”。
圆的认识思维导图
圆的认识思维导图
圆的认识思维导图如下:
圆的认识:
1、是一种几何图形,指的是平面中到一个定点距离为定值的所有点的集合。
这个给定的点称为圆的圆心。
作为定值的距离称为圆的半径。
当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹就是一个圆。
2、圆的直径有无数条;圆的对称轴有无数条。
圆的直径是半径的2倍,圆的半径是直径的一半。
圆的历史:
是一个看来简单,实际上是十分奇妙的形状。
古代人最早是从太阳、阴历十五的月亮得到圆的概念的。
圆的陶器是将泥土放在一个转盘上制成的。
(完整版)圆知识结构图
第二十四章《圆》小结一、本章知识结构框图二、本章知识点概括(一)圆的有关概念1、圆(两种定义)、圆心、半径;2、圆的确定条件:①圆心确定圆的位置,半径确定圆的大小;②不在同一直线上的三个点确定一个圆。
3、弦、直径;4、圆弧(弧)、半圆、优弧、劣弧;5、等圆、等弧,同心圆;6、圆心角、圆周角;7、圆内接多边形、多边形的外接圆;8、割线、切线、切点、切线长;9、反证法:假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立。
(二)圆的基本性质1、圆的对称性①圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。
*②圆是中心对称图形,圆心是对称中心。
2、圆的弦、弧、直径的关系①垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
* [引申] 一条直线若具有:Ⅰ、经过圆心;Ⅱ、垂直于弦;Ⅲ、平分弦;Ⅳ、平分弦所对的劣弧;Ⅴ、平分弦所对的优弧,这五个性质中的任何两条,必具有其余三条性质,即“知二推三”。
(注意:具有Ⅰ和Ⅲ时,应除去弦为直径的情况)3、弧、弦、圆心角的关系①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
②在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。
③在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。
归纳:在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等。
4、圆周角的性质①定理:在同圆或等圆中,同弧或等弧所对圆周角相等,都等于这条弧所对的圆心角的一半。
②在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等。
③推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
(三)与圆有关的位置关系1、点与圆的位置关系设⊙O的半径为r,OP=d则:点P在圆内d<r;点P在圆上d=r;点P在圆外d>r.2、直线与圆的位置关系设⊙O的半径为r,圆心O到l的距离为d则:直线l与⊙O相交d<r直线和圆有两个公共点;直线l与⊙O相切d=r直线和圆只有一个公共点;直线l与⊙O相离d>r直线和圆没有公共点。
初中数学 圆 知识点 考点 思维导图 圆的概念与性质 与圆有关的位置关系 圆有关的计算 正多边形与圆
1、与圆的位置关系可从形和数两方面来判断,思维单一容易致误. 2、切线长定理不能与三角函数结合致误. 3、两圆相交时,半径与圆心距的关系考虑不全.
点在圆内台d <r 点在圆上台 d=r
1.有切线,作过切点的半径.
2.有半径,过端点作圆的切线.
常作的
辅助线
点在圆外 与d>r
3.有切线长,作以切线、过切点的半径、圆心
2.在同圆或等圆中,同弧或等弧所对的圆周角相等;
相等的圆周角所对的弧相等.
定义 顶点都在同一圆上的多边形.
顶点都在同一圆上的三角形称圆内接三角形,
圆内接三角形 定义 圆心称三角形外心.
2.直径所对圆周角的特征
或三角形外接圆 性质 外心到各顶点距离相等,是三角形各边的中垂线的交点.
(1)作辅助线,构造"直径所对的圆周角是直角"
初初中中数数学学 圆 思思维维导导图图
考点 知识点 快速理解记忆
超超实实用用一一看看就就明明白白 极易记忆
第一节 圆的概念与性质
第二节 与与圆圆有关的位置关系
第三节 与圆有关的计算 第四节节 正多边形与圆
初中数学 第七章 圆 第一节 圆的概念与性质
在平面内,线段OA绕它固定的一个端点O旋转一周,另
(1)判定方法
1定义法∶与圆只有一个交点的直线
②数量法∶与圆心的距离d=/的直线.
(2)相切判定
③判定定理.
有明确交点,连半径,证直线与半径垂直. (3)证明直
无明确的交点,过圆心作垂线段,证其等于半径.线与圆相切
已知直线满足∶①过圆心;②过切点;
③垂直于切线.可知二推出另一个.
(4)切线性 质的拓展
线交点组成的正多边形叫圆外切正多边形.
性质 正多边形都有一外接圆,反之,同一个圆有无数多个内接正多边形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、圆的面积的计算公式及推导过程;
3、利用圆的面积的计算公式解决生活中的数学问题;
强调:
圆的周长和面积计算公式的教学,加强了启发性和探索
性,注意让学生动手操作,使学生在实践活动中通过交流、 思考来探究圆的周长和面积计算方法,逐步导出和掌握计算 公式。对于圆的周长,让学生通过用线绕一绕,把圆放在直 尺上滚一滚等方法来测量,然后再通过填表,运用不完全归 纳法来探寻周长与直径的比值的规律,从而引出圆周率的概 念。对于圆的面积教学,则采用转化的方法,把圆的面积转 化为熟悉的直线图形的面积来计算。
认识圆
圆的认识知识结构图
1.认识圆心、半径和直径、半径和直径的长度间的关系; 2.掌握用圆规画圆的方法(加深对圆的认识); 3.圆是轴对称图形,有无条对称轴;
圆
1、周长的概念;2、周长的计算公式及推导过程; 圆的周长
的 认
3、利用周长的计算公式解决生活中的数学问题; 1、圆的面积的概念;
识
圆的面积