拉普拉斯算子、prewitt算子、sobel算子对图像锐化处理.doc
《数字图像处理》期末大作业(1)
![《数字图像处理》期末大作业(1)](https://img.taocdn.com/s3/m/24f6615b0066f5335a8121a7.png)
《数字图像处理》期末大作业大作业题目及要求:一、题目:本门课程的考核以作品形式进行。
作品必须用Matlab完成。
并提交相关文档。
二、作品要求:1、用Matlab设计实现图形化界面,调用后台函数完成设计,函数可以调用Matlab工具箱中的函数,也可以自己编写函数。
设计完成后,点击GUI图形界面上的菜单或者按钮,进行必要的交互式操作后,最终能显示运行结果。
2、要求实现以下功能:每个功能的演示窗口标题必须体现完成该功能的小组成员的学号和姓名。
1)对于打开的图像可以显示其灰度直方图,实现直方图均衡化。
2)实现灰度图像的对比度增强,要求实现线性变换和非线性变换(包括对数变换和指数变换)。
3)实现图像的缩放变换、旋转变换等。
4)图像加噪(用输入参数控制不同噪声),然后使用空域和频域进行滤波处理。
5)采用robert算子,prewitt算子,sobel算子,拉普拉斯算子对图像进行边缘提取。
6)读入两幅图像,一幅为背景图像,一幅为含有目标的图像,应用所学的知识提取出目标。
3、认真完成期末大作业报告的撰写,对各个算法的原理和实验结果务必进行仔细分析讨论。
报告采用A4纸打印并装订成册。
附录:报告模板《数字图像处理》期末大作业班级:计算机小组编号:第9组组长:王迪小组成员:吴佳达浙江万里学院计算机与信息学院2014年12月目录(自动生成)1 绘制灰度直方图,实现直方图均衡化 (5)1.1 算法原理 (5)1.2 算法设计 (5)1.3 实验结果及对比分析 (5)2 灰度图像的对比度增强 (5)2.1 算法原理 (5)2.2 算法设计 (5)2.3 实验结果及分析 (5)3 图像的几何变换 (5)3.1 算法原理 (5)3.2 算法设计 (5)3.3 实验结果及分析 (5)4 图像加噪(用输入参数控制不同噪声),然后使用空域和频域进行滤波处理 (5)4.1 算法原理 (5)4.2 算法设计 (6)4.3 实验结果及分析 (6)5 采用robert,prewitt,sobel,拉普拉斯算子对图像进行边缘提取 (6)5.1 算法原理 (6)5.2 算法设计 (6)5.3 实验结果及分析 (6)6 读入两幅图像,一幅为背景图像,一幅为含有目标的图像,应用所学的知识提取出目标 (6)6.1 算法原理 (6)6.2 算法设计 (6)6.3 实验结果及分析 (6)7 小结(感受和体会) (6)1 绘制灰度直方图,实现直方图均衡化1.1 算法原理图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。
图像锐化算法实现
![图像锐化算法实现](https://img.taocdn.com/s3/m/132c8a9877a20029bd64783e0912a21614797fa6.png)
算法原理:通过将图像分解成多个频带,对每个频带进行滤波处理,再合并处理后的频带得到 锐化图像。
算法特点:能够更好地保留图像细节,提高图像清晰度,适用于各种类型的图像。
算法步骤:频带分解、滤波处理、频带合并、锐化图像。
算法应用:广泛应用于图像处理领域,如医学影像、遥感图像、安全监控等。
算法原理:根据图像局部特性自适 应调整滤波器系数,以提高图像边 缘清晰度
优点:对噪声具有较好的鲁棒性, 能够自适应地处理不同场景下的图 像锐化
添加标题
添加标题
常用实现方法:Laplacian、 Unsharp Masking等
添加标题
添加标题
适用场景:适用于各种类型的图像, 尤其适用于存在噪声和模糊的图像
图像锐化的实现步 骤
将彩色图像转换为灰度图像 增强图像对比度 突出图像边缘信息 减少图像数据量,加速处理速度
边缘检测是图像 锐化的重要步骤, 通过检测图像中 的边缘信息,可 以对图像进行清 晰化处理。
常见的边缘检测 算法包括Sobel、 Prewitt、Canny 等,这些算法通 过不同的方式检 测图像中的边缘 信息。
在边缘检测之后, 通常需要进行阈 值处理,将边缘 信息与阈值进行 比较,保留重要 的边缘信息,去 除不必要的噪声。
经过边缘检测和 阈值处理后,可 以对图像进行锐 化处理,使其更 加清晰。
对图像进行滤波处理,去除噪声和干扰 选择合适的滤波器,如高斯滤波器、中值滤波器等 对滤波后的图像进行锐化处理,增强边缘和细节 可根据实际需求选择不同的滤波器和参数,以达到最佳效果
对图像进行滤波处理,去除噪声 对图像进行边缘检测,突出边缘信息 对图像进行对比度增强,提高图像的清晰度 对图像进行细节增强,增强图像的纹理和细节信息
锐化和降噪的方法
![锐化和降噪的方法](https://img.taocdn.com/s3/m/30509157640e52ea551810a6f524ccbff121ca08.png)
锐化和降噪的方法图像处理是如今计算机视觉领域的一个重要组成部分,其目的是改善图像的质量和清晰度。
而锐化和降噪是图像处理中常用的两种方法,用于增强图像的细节和减少图像的噪点。
本文将介绍锐化和降噪的基本原理、常用方法以及其在实际应用中的作用。
一、锐化的方法在图像处理中,锐化是指增强图像的边缘和细节,使图像更加清晰和鲜明。
以下是几种常见的锐化方法:1.1 拉普拉斯锐化拉普拉斯锐化是一种基于二阶导数的锐化方法,它通过对图像进行拉普拉斯运算来增强图像的边缘。
具体步骤为:(1)对原始图像进行高斯模糊,以减少噪点的干扰;(2)对模糊后的图像进行拉普拉斯运算,得到图像的二阶导数;(3)将二阶导数与原始图像相加,得到锐化后的图像。
1.2 锐化掩模锐化掩模是一种基于图像卷积的锐化方法,它通过对图像进行卷积操作来增强图像的边缘和细节。
具体步骤为:(1)选择一个锐化模板,如Sobel算子或Prewitt算子;(2)将锐化模板与原始图像进行卷积运算,得到锐化后的图像。
1.3 高提升滤波高提升滤波是一种基于增强高频信息的锐化方法,它通过对图像进行平滑处理和原始图像之间的差值运算来增强图像的细节。
具体步骤为:(1)对原始图像进行平滑处理,如均值滤波或高斯滤波;(2)将平滑后的图像与原始图像之间的差值与一个增益因子相乘,得到锐化后的图像。
二、降噪的方法在图像处理中,噪点是指无意义的、干扰图像质量的像素值。
降噪方法的目标是减少噪点的数量和强度,以提高图像的质量。
以下是几种常见的降噪方法:2.1 中值滤波中值滤波是一种非线性滤波方法,它通过对图像进行排序,并选择中间值作为输出像素值来减少噪点的影响。
具体步骤为:(1)选择一个滤波器的窗口大小,如3x3或5x5;(2)将窗口中的像素按照灰度值进行排序,选择中间值作为输出像素值;(3)依次处理图像中的每个像素,得到降噪后的图像。
2.2 均值滤波均值滤波是一种线性滤波方法,它通过对图像进行平滑处理来减少噪点的干扰。
拉普拉斯算子、prewitt算子、sobel算子对图像锐化处理
![拉普拉斯算子、prewitt算子、sobel算子对图像锐化处理](https://img.taocdn.com/s3/m/e089814b0c22590103029d14.png)
《数字图像处理作业》图像的锐化处理---拉普拉斯算子、prewitt算子、sobel算子性能研究对比一、算法介绍1.1图像锐化的概念在图像增强过程中,通常利用各类图像平滑算法消除噪声,图像的常见噪声主要有加性噪声、乘性噪声和量化噪声等。
一般来说,图像的能量主要集中在其低频部分,噪声所在的频段主要在高频段,同时图像边缘信息也主要集中在其高频部分。
这将导致原始图像在平滑处理之后,图像边缘和图像轮廓模糊的情况出现。
为了减少这类不利效果的影响,就需要利用图像锐化技术,使图像的边缘变得清晰。
图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变得清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变得清晰。
从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。
但要注意能够进行锐化处理的图像必须有较高的性噪比,否则锐化后图像性噪比反而更低,从而使得噪声增加的比信号还要多,因此一般是先去除或减轻噪声后再进行锐化处理。
考察正弦函数,它的微分。
微分后频率不变,幅度上升2πa倍。
空间频率愈高,幅度增加就愈大。
这表明微分是可以加强高频成分的,从而使图像轮廓变清晰。
最常用的微分方法是梯度法和拉普拉斯算子。
但本文主要探究几种边缘检测算子,Laplace、Prewitt、Sobel算子以下具体介绍。
图像边缘检测:边缘检测是检测图像局部显著变化的最基本运算,梯度是函数变化的一种度量。
图像灰度值的显著变化可用梯度的离散逼近函数来检测,大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。
边缘检测可分为两大类基于查找一类和基于零穿越的一类。
基于查找的方法通过寻找图像一阶导数中的最大和最小值来检测边界,通常是将边界定位在梯度最大的方向。
基于零穿越的方法通过寻找图像二阶导数零穿越来寻找边界,通常是Laplacian过零点或者非线性差分表示的过零点。
图像锐化的原理和应用
![图像锐化的原理和应用](https://img.taocdn.com/s3/m/20be6bfbfc0a79563c1ec5da50e2524de518d0ef.png)
图像锐化的原理和应用1. 图像锐化的定义图像锐化是一种用于提高图像细节清晰度和增强边缘的图像处理技术。
它通过突出图像中的高频部分,使得图像的细节更加鲜明,能够使图像更加清晰和生动。
2. 图像锐化的原理图像锐化的原理是通过增强图像中的高频信息来实现的。
高频信息通常由图像中的边缘和细节组成。
图像锐化算法会对图像进行滤波操作,使得边缘更加明显,从而提高图像的清晰度。
3. 图像锐化的方法图像锐化有多种方法,下面列举了其中常用的几种方法:•拉普拉斯算子拉普拉斯算子是常用的用于图像锐化的算子之一。
它通过计算图像中每个像素的梯度来增强边缘信息,从而提高图像的清晰度。
•Sobel算子 Sobel算子也是一种常用的图像锐化算子。
它通过计算图像中每个像素点周围的像素点的差异来提取边缘信息。
•Unsharp Masking Unsharp Masking是一种经典的图像锐化方法。
它通过对原始图像进行高斯模糊操作,然后用原始图像减去模糊后的图像,最后将得到的差值叠加到原始图像上,以增强图像的边缘和细节。
•基于梯度的方法基于梯度的方法是一种常用的图像锐化方法。
它通过计算图像中每个像素点的梯度,然后对梯度进行增强,从而提高图像的清晰度和边缘。
4. 图像锐化的应用图像锐化广泛应用于各个领域,下面列举了其中几个常见的应用场景:•医学图像处理在医学图像处理中,图像锐化可以用于增强医学图像中的细节,提高诊断准确度。
比如,在X射线图像处理中,图像锐化可以使得骨骼结构更加清晰,有助于医生的诊断。
•安防监控在安防监控中,图像锐化可以用于增强监控图像中的细节,提高监控画面的清晰度和辨识度。
这对于提高监控系统的效果至关重要。
•卫星图像处理在卫星图像处理中,图像锐化可以用于增强卫星图像中的地物边缘和细节,提高图像的可读性和分析性。
这对于地理信息系统的制作和应用具有重要意义。
5. 图像锐化的局限性图像锐化虽然可以提高图像的清晰度和辨识度,但也存在一定的局限性:•噪声增强在图像锐化过程中,由于增强了图像中的高频部分,可能也会增强图像中的噪声。
边缘检测算子原理
![边缘检测算子原理](https://img.taocdn.com/s3/m/f291e4c07d1cfad6195f312b3169a4517723e5e1.png)
边缘检测算子原理
边缘检测是图像处理中的一项重要任务,它可以用来检测图像中的边缘,从而提取出图像中的重要信息。
边缘检测算子是实现边缘检测的关键,它可以通过对图像进行卷积操作来实现边缘检测。
常用的边缘检测算子包括Sobel算子、Prewitt算子、Roberts算子等。
这些算子都是基于图像的灰度值变化来检测边缘的。
其中,Sobel算子是最常用的边缘检测算子之一,它可以通过对图像进行水平和垂直方向的卷积操作来检测边缘。
Sobel算子的原理是将一个3x3的卷积核应用于图像的每个像素点,计算出该像素点周围像素点的灰度值变化情况。
具体来说,对于一个像素点,Sobel算子会计算出它周围8个像素点的灰度值,然后根据这些灰度值计算出该像素点的梯度值。
如果该像素点的梯度值超过了一个预设的阈值,那么就认为该像素点处于边缘上。
除了Sobel算子,还有一些其他的边缘检测算子也是基于卷积操作的。
例如,Prewitt算子和Roberts算子都是通过对图像进行卷积操作来检测边缘的。
不同的算子有不同的优缺点,具体使用哪种算子要根据实际情况来决定。
边缘检测算子是实现边缘检测的关键,它可以通过对图像进行卷积操作来检测边缘。
常用的边缘检测算子包括Sobel算子、Prewitt
算子、Roberts算子等。
这些算子都是基于图像的灰度值变化来检测边缘的。
数字图像处理实验报告:灰度变换与空间滤波(附带程序,不看后悔)
![数字图像处理实验报告:灰度变换与空间滤波(附带程序,不看后悔)](https://img.taocdn.com/s3/m/75e7634ea1c7aa00b42acb1c.png)
1.灰度变换与空间滤波一种成熟的医学技术被用于检测电子显微镜生成的某类图像。
为简化检测任务,技术决定采用数字图像处理技术。
发现了如下问题:(1)明亮且孤立的点是不感兴趣的点;(2)清晰度不够,特别是边缘区域不明显;(3)一些图像的对比度不够;(4)技术人员发现某些关键的信息只在灰度值为I1-I2的范围,因此,技术人员想保留I1-I2区间范围的图像,将其余灰度值显示为黑色。
(5)将处理后的I1-I2范围内的图像,线性扩展到0-255灰度,以适应于液晶显示器的显示。
请结合本章的数字图像处理处理,帮助技术人员解决这些问题。
1.1问题分析及多种方法提出(1)明亮且孤立的点是不够感兴趣的点对于明亮且孤立的点,其应为脉冲且灰度值为255(uint8)噪声,即盐噪声,为此,首先对下载的细胞图像增加盐噪声,再选择不同滤波方式进行滤除。
均值滤波:均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。
优点:速度快,实现简单;缺点:均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。
其公式如下:使用矩阵表示该滤波器则为:中值滤波:滤除盐噪声首选的方法应为中值滤波,中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值。
其过程为:a 、存储像素1,像素2.....像素9的值;b 、对像素值进行排序操作;c 、像素5的值即为数组排序后的中值。
优点:由于中值滤波本身为一种利用统计排序方法进行的非线性滤波方法,故可以滤除在排列矩阵两边分布的脉冲噪声,并较好的保留图像的细节信息。
缺点:当噪声密度较大时,使用中值滤波后,仍然会有较多的噪声点出现。
数字图像处理实验
![数字图像处理实验](https://img.taocdn.com/s3/m/0602215acd1755270722192e453610661fd95a0d.png)
数字图像处理实验实验总学时:10学时实验目的:本实验的目的是通过实验进一步理解和掌握数字图像处理原理和方法。
通过分析、实现现有的图像处理算法,学习和掌握常用的图像处理技术。
实验内容:数字图像处理的实验内容主要有三个方面:(1) 对图像灰度作某种变换,增强其中的有用信息,抑制无用信息,使图像的视在质量提高,以便于人眼观察、理解或用计算机对其作进一步的处理。
(2) 用某种特殊手段提取、描述和分析图像中所包含的某些特征和特殊的信息,主要的目的是便于计算机对图像作进一步的分析和理解,经常作为模式识别和计算机视觉的预处理。
这些特征包括很多方面,例如,图像的频域特性、灰度特征、边界特征等。
(3) 图像的变换,以便于图像的频域处理。
实验一图像的点处理实验内容及实验原理:1、灰度的线性变换灰度的线性变换就是将图像中所有的点的灰度按照线性灰度变换函数进行变换。
该线性灰度变换函数是一个一维线性函数:灰度变换方程为:其中参数为线性函数的斜率,函数的在y轴的截距,表示输入图像的灰度,表示输出图像的灰度。
要求:输入一幅图像,根据输入的斜率和截距进行线性变换,并显示。
2、灰度拉伸灰度拉伸和灰度线性变换相似。
不同之处在于它是分段线性变换。
表达如下:其中,(x1,y1)和(x2,y2)是分段函数的转折点。
要求:输入一幅图像,根据选择的转折点,进行灰度拉伸,显示变换后的图像。
3、灰度直方图灰度直方图是灰度值的函数,描述的是图像中具有该灰度值的像素的个数,其横坐标表示像素的灰度级别,纵坐标表示该灰度出现的频率(象素的个数)。
要求:输入一幅图像,显示它的灰度直方图,可以根据输入的参数(上限、下限)显示特定范围的灰度直方图。
4、直方图均衡:要求1 显示一幅图像pout.bmp的直方图;2 用直方图均衡对图像pout.bmp进行增强;3 显示增强后的图像。
实验二:数字图像的平滑实验内容及实验原理:1.用均值滤波器(即邻域平均法)去除图像中的噪声;2.用中值滤波器去除图像中的噪声3. 比较两种方法的处理结果 实验步骤:用原始图象lena.bmp 或cameraman.bmp 加产生的3%椒盐噪声图象合成一幅有噪声的图象并显示;1. 用均值滤波器去除图像中的噪声(选3x3窗口);2. f (x 0,y 0)=Med {f (x,y )∨x ∈[x 0−N,x 0+N ],y ∈[y 0−N,y 0+N ]}用中值滤波器去除图像中的噪声(选3x3窗口做中值滤波);3. 将两种处理方法的结果与原图比较,注意两种处理方法对边缘的影响。
数字图像处理 实验报告(完整版)
![数字图像处理 实验报告(完整版)](https://img.taocdn.com/s3/m/e0b25e7716fc700abb68fcf8.png)
数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。
7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。
其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。
图像锐化处理报告
![图像锐化处理报告](https://img.taocdn.com/s3/m/af541884bceb19e8b8f6ba81.png)
课程设计任务书目录1 课程设计目的 (1)2 课程设计要求 (1)3 相关知识 (1)4 课程设计分析 (2)5 程序代码 (5)6 运行结果 (7)7 参考文献 (8)图像的锐化处理1.课程设计目的(1)加深对图像的锐化处理基本理论知识的理解。
(2)培养独立开展科研的能力和编程能力。
(3)掌握基本图像锐化处理的过程及其应用。
2.课程设计要求(1)掌握课程设计的相关知识、概念清晰。
(2)程序设计合理、能够正确运行。
3.相关知识图像处理并不仅限于对图像进行增强、复原和编码,还要对同乡进行分析,图像分析旨在对图像进行描述,即用一组数或符号表征图像中目标区的特征、性质和相互间的关系,为模式识别提供基础。
描述一般针对图像或景物中的特定区域或目标。
为了描述,首先要进行分割。
边缘检测是图像分析中的重要内容。
边缘是图像的最基本特征。
所谓边缘,是指周围像素灰度有阶跃变化货屋顶变化的那些像素的集合。
边缘广泛存在于物体于背景之间、物体与物体之间、基元与基元之间,因此它也是图像分割所依赖的重要特征。
两个具有不同灰度值的相邻区域之间总存在边缘,边缘是灰度值不连续的表现。
常见的边缘点有:①阶梯形边缘(Step-edge),即从一个灰度到比它高(或低)好多的另一个灰度;②屋顶形边缘(Roof-edge),它的灰度是慢慢增加(减少)到一定程度然后慢慢减小(增加);③线形边缘(Line-edge),它的灰度线性变化中出现灰度脉冲。
边缘特点如图所示。
由于边缘是图像上灰度变化最剧烈的地方,传统的边缘检测就是利用了这一特点,对图像各个像素点进行微分或求二阶微分来确定边缘像素点。
一阶微分图像的峰值处对应着图像的边缘点。
根据数字图像的特点,处理图像过程中常采用差分来代替导数运算,对于图像的简单一阶导数运算,由于具有固定的方向性,只能检测特定方向的边缘,所以不具有普遍性。
为了克服一阶导数的缺点,我们定义图像的梯度算子为:这是图像处理中最常用的一阶微分算法,式子中的F(j,k)表示图像的灰度值,图像梯度的最重要的性质是梯度的方向在图像灰度的最大变化率上,这恰好可以反映出图像边缘上的灰度变化。
图像处理中各种边缘检测的微分算子简单比较(Sobel,Robert, Prewitt,Laplacian,Canny)
![图像处理中各种边缘检测的微分算子简单比较(Sobel,Robert, Prewitt,Laplacian,Canny)](https://img.taocdn.com/s3/m/b223da778e9951e79b892757.png)
for(i=0;i<iHeight;i++)
delete []*(iExtent+i);
delete iExtent;
}
void Canny::GaussionSmooth()
{
int i,j,k; //循环变量
int iWindowSize; //记录模板大小的变量
int iHalfLen; //模板大小的一半
下面算法是基于的算法不可能直接运行,只是我把Canny的具体实现步骤写了出来,若需用还要自己写。
该算子具体实现方法:
// anny.cpp: implementation of the Canny class.
//
//////////////////////////////////////////////////////////////////////
dTemp[i]=new double[iWidth];
//获得模板长度和模板的各个权值
MakeGauss(&pdKernel,&iWindowSize);
//得到模板的一半长度
iHalfLen=iWindowSize/2;
//对图像对水方向根据模板进行平滑
for(i=0;i<iHeight;i++)
//对原图象进行滤波
GaussionSmooth();
//计算X,Y方向上的方向导数
DirGrad(iGradX,iGradY);
//计算梯度的幅度
GradExtent(iGradX,iGradY,iExtent);
//应用non-maximum抑制
NonMaxSuppress(iExtent,iGradX,iGradY,iEdgePoint);
图像增强实验
![图像增强实验](https://img.taocdn.com/s3/m/8d154538aaea998fcc220ee6.png)
一、实验目的1、了解图像增强的目的及意义,加深对图像增强的感性认识,巩固所学理论知识。
2、学会对图像直方图的分析。
3、掌握直接灰度变换的图像增强方法。
4、掌握直方图均衡化。
5、采用均值滤波、中值滤波实现图像平滑。
6、采用梯度方法、拉普拉斯算子、Sobel 算子和 Prewitt 算子实现图像锐化。
二、实验原理及知识点图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。
其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。
图像增强技术主要有直接灰度尺度变换、直方图修改处理、图像平滑化处理、图像尖锐化处理等。
1、 灰度变换灰度变换是图像增强的一种重要手段,它常用于改变图象的灰度范围及分布,是图象数字化及图象显示的重要工具。
在实际应用中,为了突出图像中感兴趣的研究对象,常常要求局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理。
若假定原图像f(x, y)的灰度范围为[a, b ],希望变换后图像 g(x, y)的灰度范围扩展至[c, d ],则线性变换可表示为:g (x , y )= [ f (x , y ) − a ] + c2、 直方图变换直方图是图像的最基本的统计特征,它反映的是图像的灰度值的分布情况。
直方图均衡化的目的是使图像在整个灰度值动态变化范围内的分布均匀化,改善图像的亮度分布状态,增强图像的视觉效果。
直方图均衡化是通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。
依据定义,在离散形式下, 用 r k 代表离散灰度级,用 p r (r k )代表 p r (r ),并且有下式成立:ab c d --P r(r k)=n k0 ≤r k≤ 1 k= 0,1,2,L,l−1 n式中:n k为图像中出现r k级灰度的像素数,n是图像像素总数,而n k/n即为频数。
k nj ks k= T (r k)=∑=∑ p r(r j) 0≤ r j≤1 k =0,1,L,l −1nj =0j =03、空域滤波空域滤波是在图像空间中借助模板对图像进行领域操作,处理图像每一个像素的取值都是根据模板对输入像素相应领域内的像素值进行计算得到的。
sobel、prewitt、roberts边缘检测方法的原理
![sobel、prewitt、roberts边缘检测方法的原理](https://img.taocdn.com/s3/m/b66bcaed9fc3d5bbfd0a79563c1ec5da50e2d6c8.png)
sobel、prewitt、roberts边缘检测方法的原理边缘检测是图像处理技术中一个基本的操作,它将图像中具有显著特征的部分作为有意义的边缘提取出来。
Sobel、Prewitt、Roberts 等滤波器是边缘检测方法中最基本的滤波算子,它们以2×2或3×3窗口的形式获取图像的空间响应,能够从图像中提取特征,大大提高图像质量。
本文将介绍这三种方法的原理与实现过程,以加深对边缘检测的理解。
首先,介绍Sobel算子的原理。
Sobel算子是一种空间滤波算子,它能通过运算来获得图像中的边缘特征,主要利用Laplacian算子与二阶矩对图像求导来提取图像中边缘特征。
Sobel算子包含两个模板:水平方向模板与垂直方向模板,差分求导是其基本的计算方式,能从图像中提取出边缘的变化,提取边缘的方式主要有三种:图像深度的差分(GrayScale)、灰度差分与颜色差分。
其次,介绍Prewitt算子的原理。
Prewitt算子是一种空间滤波算子,它是在Sobel算子的基础上改进而来,和Sobel算子一样具有边缘检测的作用,主要利用了梯度计算,并采用平滑处理,使边缘检测更加准确。
Prewitt算子有三种模板:水平方向模板、垂直方向模板和斜向模板,也可以通过不同的模板来提取不同的边缘特征,可以提高检测的精度。
最后,介绍Roberts算子的原理。
Roberts算子是一种基于空间滤波算子,旨在检测图像中的边缘信息,它只有一种模板,模板是由两个互相垂直的2×2的小窗口组成,可以检测到沿着水平和垂直方向的强边缘。
Roberts算子像素值的变化大小与边缘方向有关,因此可以获得较高的边缘检测精度。
综上所述,Sobel、Prewitt、Roberts三者都是边缘检测方法中最基本的滤波算子,它们能从图像中提取特征,具有良好的效果,但同时也存在一些局限性,比如会检测出细长的边缘或者会检查出一些非边缘位置的像素。
[Python图像处理]十一.图像锐化与边缘检测之Roberts算子、Prewitt算子、。。。
![[Python图像处理]十一.图像锐化与边缘检测之Roberts算子、Prewitt算子、。。。](https://img.taocdn.com/s3/m/499da9856429647d27284b73f242336c1eb930f4.png)
[Python图像处理]⼗⼀.图像锐化与边缘检测之Roberts算⼦、Prewitt算⼦、。
Roberts算⼦Roberts算⼦即为交叉微分算法,它是基于交叉差分的梯度算法,通过局部差分计算检测边缘线条。
常⽤来处理具有陡峭的第噪声图像,当图像边缘接近于正45度或负45度时,该算法处理效果更理想,其缺点时对边缘的定位不太准确,提取的边缘线条较粗。
在Python中,Roberts算⼦主要是通过Numpy定义模板,再调⽤OpenCV的filter2D()函数实现边缘提取。
该函数主要是利⽤内核实现对图像的卷积运算,其函数原型如下:dst = filter2D(src, ddepth, kernel, dts, anchor,delta, borderType)src:表⽰输⼊图像ddepth: 表⽰⽬标图像所需的深度kernel: 表⽰卷积核,⼀个单通道浮点型矩阵anchor:表⽰内核的基准点,其默认值为(-1, -1),位于中⼼位置delta:表⽰在存储⽬标图像前可选的添加到像素的值,默认值为0borderType:表⽰边框模式import cv2import numpy as npimport matplotlib.pyplot as pltimg = cv2.imread("src.png")img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# Roberts算⼦kernelx = np.array([[-1, 0], [0, 1]], dtype=int)kernely = np.array([[0, -1], [1, 0]], dtype=int)x = cv2.filter2D(grayImage, cv2.CV_16S, kernelx)y = cv2.filter2D(grayImage, cv2.CV_16S, kernely)# 转转成uint8absX = cv2.convertScaleAbs(x)absY = cv2.convertScaleAbs(y)Roberts = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)# 正常显⽰中⽂标签plt.rcParams["font.sans-serif"] = ["SimHei"]# 显⽰图形titles = ["原始图像", "Roberts算⼦"]images = [img, Roberts]for i in range(2):plt.subplot(1, 2, i+1)plt.imshow(images[i], "gray")plt.title(titles[i])plt.xticks([])plt.yticks([])plt.show()效果如下:Prewitt算⼦Prewitt是⼀种图像边缘检测的微分算⼦,其原理是利⽤特定区域内像素值产⽣的差分实现边缘检测。
图像处理中的边缘增强算法研究
![图像处理中的边缘增强算法研究](https://img.taocdn.com/s3/m/059a1b9077eeaeaad1f34693daef5ef7ba0d12fa.png)
图像处理中的边缘增强算法研究摘要:图像边缘是图像中最重要的特征之一,它包含了图像中物体的边界和轮廓。
边缘增强算法是图像处理中常用的一种方法,旨在增强图像边缘的清晰度和对比度,从而提高图像的可视化效果和辨识度。
本文将研究并探讨几种图像处理中常用的边缘增强算法,包括Sobel算子、Prewitt算子、Canny算子和拉普拉斯算子。
1. 引言图像处理技术已经广泛应用于各个领域,如医学影像、计算机视觉和图像识别等。
图像边缘是图像中的重要特征之一,可用于物体定位、轮廓提取和图像分割等应用。
然而,由于图像受到噪声和模糊等因素的影响,边缘的清晰度和对比度可能被削弱。
因此,通过边缘增强算法来提高边缘的质量成为图像处理中的一个重要研究方向。
2. Sobel算子Sobel算子是一种基于局部区域像素灰度差分的边缘增强算法,它通过计算图像像素点的梯度信息来检测图像的边缘。
Sobel算子是一种简单且高效的算法,常用于平滑图像和边缘检测。
它利用一个3x3的卷积核对图像进行卷积操作,从而得到图像梯度的近似值。
Sobel算子能够提取出较为粗略的边缘,但在一些复杂的场景中可能会存在一定的误检和漏检问题。
3. Prewitt算子Prewitt算子与Sobel算子类似,同样是一种基于局部区域像素灰度差分的边缘增强算法。
Prewitt算子通过计算图像水平和垂直方向灰度差分的绝对值之和来实现边缘检测。
与Sobel算子不同的是,Prewitt算子采用了等权重的卷积核,可以更加有效地提取出图像的边缘信息。
然而,Prewitt算子也存在一定的误检和漏检问题,并且对噪声比较敏感。
4. Canny算子Canny算子是一种经典的边缘增强算法,具有良好的边缘检测效果和低误检率。
Canny算子首先通过计算图像的梯度幅值和方向来找到潜在的边缘点,然后根据两个阈值进行边缘的细化和连接。
Canny算子不仅能够提取出细节丰富的边缘,还能够抑制噪声和防止边缘断裂。
sobel、prewitt、roberts边缘检测方法的原理
![sobel、prewitt、roberts边缘检测方法的原理](https://img.taocdn.com/s3/m/dd34c634fd4ffe4733687e21af45b307e871f9da.png)
sobel、prewitt、roberts边缘检测方法的原理Sobel、Prewitt、Roberts边缘检测方法是三种重要的边缘检测方法,用于图像处理中的目标探测、图像分割等应用中,其原理及实现方法也极其重要。
本文将详细阐述Sobel、Prewitt和Roberts三种边缘检测方法的原理,并介绍它们在实际应用中的优势和不足。
一、Sobel边缘检测方法的原理Sobel边缘检测方法是基于拉普拉斯算子的一种边缘检测方法。
它在基于图像灰度密度函数的基础上,采用不同的滤波模板,对图像的指定的位置用微分操作,计算图像像素点灰度值变化的大小,从而提取图像边缘信息,检测图像中出现的边缘。
Sobel算子是由一个3x3窗口内图像像素组成,采用一个简单的二阶导数来实现,其对应的模板为:Gx=[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]Gy=[[-1, -2, -1], [0, 0, 0], [1, 2, 1]]使用这两个模板分别做X、Y方向上的微分计算,其微分结果用以下公式计算:G(x,y)=√(Gx(x,y)^2+Gy(x,y)^2)使用Sobel边缘检测法的步骤主要有,首先使用模板Gx、Gy对原图像做窗口移动,计算对应的每个像素点的梯度值;接着使用阈值处理得到的梯度值,以利用连通域的思想,将不同水平的梯度值精确标定;最后,可以用梯度值来进行边缘检测,以及图形分割等应用。
二、Prewitt边缘检测方法的原理Prewitt边缘检测方法是一种基于梯度计算的边缘检测方法,它是对Sobel算子的改进,采用比Sobel算子更底层的模板,它的模板为:Gx=[[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]Gy=[[-1, -1, -1], [0, 0, 0], [1, 1, 1]]两个模板分别做X、Y方向上的微分计算,其微分结果用以下公式计算:G(x,y)=√(Gx(x,y)^2+Gy(x,y)^2)Prewitt算子比Sobel算子要简单,它不需要计算图像像素点灰度值变化的大小,可以很快地检测图像中出现的边缘,而且由于采用的简单模板,可以更好地抑制噪声和处理带有高斯噪声的图像,并且可以获得较好的实时性能。
sobel 算法,经典算法,图像处理,Prewitt算子,LoG算子
![sobel 算法,经典算法,图像处理,Prewitt算子,LoG算子](https://img.taocdn.com/s3/m/ca9ac0fcb8f67c1cfad6b883.png)
1第2章 经典边缘检测算子数字图像的基本概念图像数字化图像数字化是将一幅画面转化成计算机能处理的形式——数字图像的过程。
模拟图像 数字图像 正方形点阵图2.1.1 图像数字化的基本过程具体来说,就是把一幅图画分割成如图2.1.1所示的一个个小区域(像元或像素),并将各小区域灰度用整数来表示,形成一幅数字图像。
它包括采样和量化两个过程。
小区域的位置和灰度就是像素的属性。
采样。
将空间上连续的图像变换成离散点的操作称为采样。
采样间隔和采样孔径的大小是两个很重要的参数。
当对图像进行实际的采样时,怎样选择各采样点的间隔是个非常重要的问题。
关于这一点,图像包含何种程度的细微的浓淡变化,取决于希望忠实反映图像的程度。
量化。
经采样图像被分割成空间上离散的像素,但其灰度是连续的,还不能用计算机进行处理。
将像素灰度转换成离散的整数值的过程叫量化。
一幅数字图像中不同灰度值的个数称为灰度级数,用G 表示。
一般来说, ,g 就是表示图像像素灰度值所需的比特位数。
一幅大小为M ×N 、灰度级数为G 的图像所需的存储空间,即图像的数据量,大小为2g GM×N×g (bit)数字图像的描述黑白图像是指图像的每个像素只能是黑或者白,没有中间的过渡,故又称为2值图像。
2值图像的像素值为0、1。
图2.1.2 二值图像灰度图像是指灰度级数大于2的图像。
但它不包含彩色信息。
图2.1.3 灰度图像Sobel算子Sobel算法是一种较成熟的微分边缘检测算法,它计算简单,且能产生较好的检测效果,对噪声具有平滑作用,可以提供较为精确的边缘方向信息。
在讨论Sobel边缘算子之前,首先给出一些术语的定义。
(1)边缘点:图像中具有坐标[i,j],且处在强度显著变化的位置上的点。
23(2)边缘段:对应于边缘点坐标[i ,j]及其方位,边缘的方位可能是梯度角。
(3)边缘检测器:从图像中抽取边缘(边缘点和边缘段)集合的算法。
哪些是图像锐化操作方法
![哪些是图像锐化操作方法](https://img.taocdn.com/s3/m/94544f5624c52cc58bd63186bceb19e8b8f6ec38.png)
哪些是图像锐化操作方法
图像锐化是一种常见的图像处理技术,目的是提高图像的边缘和细节,使图像看起来更加清晰和鲜明。
以下是一些常见的图像锐化操作方法:
1. 锐化滤波器:
- Sobel算子:通过对图像进行梯度计算来增强边缘。
- Laplacian算子:通过计算图像的二阶导数来增强边缘。
- 理想锐化滤波器:通过增强高频分量来提高图像的锐度。
2. 高通滤波:
- 经典的高通滤波器如Laplacian滤波器可以增强图像的高频分量,从而提高锐度。
- 基于梯度的高通滤波器如Prewitt、Roberts等也可以用于图像锐化。
3. 锐化掩模:
- 锐化掩模是使用原始图像和模糊图像之间的差异来增强图像的边缘。
- 常见的锐化掩模有Unsharp Masking(USM)和高斯锐化等。
4. 频域滤波:
- 快速傅里叶变换(FFT)可以将图像转换到频域进行处理。
在频域中,可以通过滤波来增强高频分量。
5. 对比度增强:
- 使用对比度增强技术可以增强图像的边缘和细节,从而使图像看起来更加锐利。
需要注意的是,锐化操作容易引入噪声和伪影,因此在实际应用中需要进行适当的调整和平衡。
sobel、prewitt、roberts边缘检测方法的原理
![sobel、prewitt、roberts边缘检测方法的原理](https://img.taocdn.com/s3/m/581f86a3d1d233d4b14e852458fb770bf78a3be7.png)
sobel、prewitt、roberts边缘检测方法的原理边缘检测是图像处理的重要工具,可以检测图像中的线条和轮廓。
它是一种基于领域差分算子的一种技术,它是用来识别图像中的边缘。
边缘检测算法可以分为线性和非线性。
其中,sobel、prewitt和roberts是线性边缘检测算法,它们是最常用的边缘检测算法。
Sobel算子是一种二维空间域差分算子,它可以检测空间域中图像的边缘。
它使用双重离散微分操作,将图像分解为多个部分,每个部分的梯度值可以作为向量的分量,有助于找出边缘的位置。
Prewitt算子也是一种领域差分操作,通过对图像上每个点的领域梯度进行滤波,检测出图像中的边缘,并计算梯度方向和梯度大小。
Prewitt算子与Sobel算子类似,但使用的滤波器却有所不同,它分为水平和垂直滤波器,分别识别水平和垂直方向的边缘。
Roberts算子是一种基于图像二阶差分的算子,它可以就近检测边缘,是一种常用的算法。
它的操作简单,可以在没有滤波器的情况下,运用加权平均的方式计算图像的梯度大小和方向,从而检测边缘。
Sobel、Prewitt、Roberts三种算子的区别主要体现在梯度计算方面,Sobel算子可以计算出图像中梯度的细节,但可能存在噪声;Prewitt算子在计算梯度时采用滤波器,从而抑制了噪声,但可能损失梯度细节;而Roberts算子不需要滤波器,检测速度更快,但效果不够准确。
Sobel、Prewitt和Roberts这三种算子都是空间域差分算子,它们的操作简单,精度较高,它们的检测速度也是比较快的,所以它们是常用的边缘检测算法。
一般来说,在选择边缘检测算法时,除了要考虑检测的准确性和精确性,还要考虑操作的复杂度、检测的速度以及算法的可移植性。
在不同的应用场景中,可以根据实际需要,选择合适的边缘检测算法,从而获得较好的处理效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数字图像处理作业》
图像的锐化处理
---拉普拉斯算子、prewitt算子、sobel算子性能研究对比
完成日期:2012年10月6日
一、算法介绍
1.1图像锐化的概念
在图像增强过程中,通常利用各类图像平滑算法消除噪声,图像的常见噪声主要有加性噪声、乘性噪声和量化噪声等。
一般来说,图像的能量主要集中在其低频部分,噪声所在的频段主要在高频段,同时图像边缘信息也主要集中在其高频部分。
这将导致原始图像在平滑处理之后,图像边缘和图像轮廓模糊的情况出现。
为了减少这类不利效果的影响,就需要利用图像锐化技术,使图像的边缘变得清晰。
图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变得清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变得清晰。
从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。
但要注意能够进行锐化处理的图像必须有较高的性噪比,否则锐化后图像性噪比反而更低,从而使得噪声增加的比信号还要多,因此一般是先去除或减轻噪声后再进行锐化处理。
考察正弦函数,它的微分。
微分后频率不变,幅度上升2πa倍。
空间频率愈高,幅度增加就愈大。
这表明微分是可以加强高频成分的,从而使图像轮廓变清晰。
最常用的微分方法是梯度法和拉普拉斯算子。
但本文主要探究几种边缘检测算子,Laplace、Prewitt、Sobel算子以下具体介绍。
图像边缘检测:边缘检测是检测图像局部显著变化的最基本运算,梯度是函数变化的一种度量。
图像灰度值的显著变化可用梯度的离散逼近函数来检测,大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。
边缘检测可分为两大类基于查找一类和基于零穿越的一类。
基于查找的方法通过寻找图像一阶导数中的最大和最小值来检测边界,通常是将边界定位在梯度最大的方向。
基于零穿越的方法通过寻找图像二阶导数零穿越来寻找边界,通常是Laplacian过零点或者非线性差分表示的过零点。
1.2拉普拉斯算子
拉式算子是一个刻画图像灰度的二阶商算子,它是点、线、边界提取算子,亦称为边界提取算子。
通常图像和对他实施拉式算子后的结果组合后产生一个锐化图像。
拉式算子用来改善因扩散效应的模糊特别有效,因为它符合降制模型。
扩散效应是成像过程中经常发生的现象。
拉普拉斯算子也是最简单的各向同性微分算子,具有旋转不变性。
一个二维图像函数的拉普拉斯变换是各向同性的二阶导数,定义
(1)
为了更适合于数字图像处理,将拉式算子表示为离散形式:
(2)
另外,拉普拉斯算子还可以表示成模板的形式,如下图(1)所示,为离散拉普拉斯算子的模板,图(2)表示其扩展模板。
图(1) 图(2)
从模板形式容易看出,如果在图像中一个较暗的区域中出现了一个亮点,那么用拉普拉斯运算就会使这个亮点变得更亮。
因为图像中的边缘就是那些灰度发生跳变的区域,所以拉普拉斯锐化模板在边缘检测中很有用。
一般增强技术对于陡峭的边缘和缓慢变化的边缘很难确定其边缘线的位置。
但此算子却可用二次微分正峰和负峰之间的过零点来确定,对孤立点或端点更为敏感,因此特别适用于以突出图像中的孤立点、孤立线或线端点为目的的场合。
同梯度算子一样,拉普拉斯算子也会增强图像中的噪声,有时用拉普拉斯算子进行边缘检测时,可将图像先进行平滑处理。
1.3 Prewitt算子(平均差分法)
因为平均能减少或消除噪声,Prewitt梯度算子法就是先求平均,再求差分来求梯度。
水平和垂直梯度模板分别为:
利用检测模板可求得水平和垂直方向的梯度,再通过梯度合成和边缘点判定,就可得到
平均差分法的检测结果。
1.4 Sobel算子(加权平均差分法)
Sobel算子是典型的基于一阶导数的边缘检测算子,由于该算子中引入了类似局部平均的运算,因此对噪声具有平滑作用,能很好的消除噪声的影响。
Sobel算子包含两组3x3的矩阵,分别为横向及纵向模板,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差
图3 Sobel算子
单独使用Sobel算子做边缘检测,边缘定位精度不高,有时还可能对非边缘像素的响应
大于某些边缘处的响应或者响应差别不是很大,造成漏检或误检,但是它对噪声具有较好的
鲁棒性。
Prewitt算子和Sobel算子提取边缘的结果差不多。
在提取边缘的同时它对噪声具有平滑作用,能够抑制一定的噪声。
由于Prewitt边缘检测算子是通过八个方向模板对图像进行卷积运算,因此运算量比较大。
二、程序代码
2.1拉普拉斯算子程序代码:
(1)I=imread('tire.tif');
subplot(1,2,1);
imshow(I);
title('原始图像');
I=double(I);
H=[0 -1 0
-1 5 -1
0 -1 0];
J=conv2(I,H,'same');
subplot(1,2,2);
imshow(J,[]);
title('拉普拉斯算子增强图像');
(2) I=imread('D:\照片\图片11.jpg');
[H,W]=size(I);
M=double(I);
J=M;
for i=2:H-1
for j=2:W-1
J(i,j)=4*M(i,j)-[M(i+1,j)+M(i-1,j)+M(i,j+1)+M(i,j-1)];
end;
end;
subplot(1,2,1);imshow(I);title('原图');
subplot(1,2,2);imshow(uint8(J));title('锐化处理后的图');
2.2 Prewitt算子(平均差分法)
[I,map]=imread('D:\图片\摄影作品\2.jpg ');
[H,W]=size(I);
M=double(I);
J=M;
for i=2:H-1
for j=2:W-1。