类型五 探究矩形的存在性问题(教师)

合集下载

8、二次函数之矩形存在性问题

8、二次函数之矩形存在性问题

二次函数之矩形存在性问题1、(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线2=++经过()y ax x cB两0,4A﹣,()2,0点,直线3x=与x轴交于点C.(1)求a,c的值;(2)经过点O的直线分别与线段AB,直线3∆的面积相等,求直∆与OCEx=交于点D,E,且BDO线DE的解析式;(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线3x=上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.2、(2022•绥化)如图,抛物线2=++交y轴于点()y ax bx cC,过点A作AB y6,0A-,并经过点()0,4⊥4,0,连接AD,BC,BD.点E从轴交抛物线于点B,抛物线的对称轴为直线2x=,D点的坐标为()A点出发,以每秒2个单位长度的速度沿着射线AD运动,设点E的运动时间为m秒,过点E作⊥于F,以EF为对角线作正方形EGFH.EF AB(1)求抛物线的解析式;(2)当点G随着E点运动到达BC上时,求此时m的值和点G的坐标;(3)在运动的过程中,是否存在以B,G,C和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G的坐标,如果不存在,请说明理由.3、(2022•黔东南州)如图,抛物线22y ax x c =++的对称轴是直线1x =,与x 轴交于点A ,()3,0B ,与y 轴交于点C ,连接AC . (1)求此抛物线的解析式;(2)已知点D 是第一象限内抛物线上的一个动点,过点D 作DM x ⊥轴,垂足为点M ,DM 交直线BC 于点N ,是否存在这样的点N ,使得以A ,C ,N 为顶点的三角形是等腰三角形.若存在,请求出点N 的坐标,若不存在,请说明理由;(3)已知点E 是抛物线对称轴上的点,在坐标平面内是否存在点F ,使以点B 、C 、E 、F 为顶点的四边形为矩形,若存在,请直接写出点F 的坐标;若不存在,请说明理由.4、(2022•梁山县一模)如图,在平面直角坐标系中,抛物线()20y ax bx c a =++<与x 轴交于()2,0A -、()4,0B 两点,与y 轴交于点C ,且2OC OA =. (1)试求抛物线的解析式;(2)直线()10y kx k =+>与y 轴交于点D ,与抛物线交于点P ,与直线BC 交于点M ,记PMm DM=,试求m 的最大值及此时点P 的坐标;(3)在(2)的条件下,m 取最大值时,点Q 是x 轴上的一个动点,点N 是坐标平面内的一点,是否存在这样的点Q 、N ,使得以P 、D 、Q 、N 四点组成的四边形是矩形?如果存在,请求出点N 的坐标;如果不存在,请说明理由.5、(2022•武功县模拟)在平面直角坐标系中,已知抛物线21:L y x bx c =-++(b 、c 为常数)与x 轴交于()6,0A -、()2,0B 两点. (1)求抛物线L 1的函数表达式;(2)将该抛物线L 1向右平移4个单位长度得到新的抛物线L 2,与原抛物线L 1交于点C ,点D 是点C 关于x 轴的对称点,点N 在平面直角坐标系中,请问在抛物线L 2上是否存在点M ,使得以点C 、D 、M 、N 为顶点的四边形是以CD 为边的矩形?若存在,求出点M 的坐标;若不存在,请说明理由.6、(2022•东莞市校级一模)如图,在平面直角坐标系中,抛物线256y x bx c =++与x 轴的正半轴交于点D ,与y 轴交于点C ,点A 在抛物线上,AB y ⊥轴于点B .ABC ∆绕点B 逆时针旋转90°得到OBE ∆,连接DE .当2506x bx c ++<时,x 的取值范围是325x -<<.(1)求该抛物线的解析式; (2)求证:四边形OBED 是矩形;(3)在线段OD 上找一点N ,过点N 作直线m 垂直x 轴,交OE 于点F ,连接DF ,当DNF ∆的面积取得最大值时,求点N 的坐标,在此基础上,在直线m 上找一点P ,连接OP 、DP .使得90OPD DOE ∠+∠=︒,求点P 的坐标.7、(2022•石家庄二模)如图,抛物线()20y x bx c c =-++≠与x 轴交于点()1,0A -,B (点A 在点B 左侧),与y 轴交于点C ,连接BC .(1)点C 的纵坐标为 (用含b 的式子表示),OBC ∠= 度;(2)当1b =时,若点P 为第一象限内抛物线上一动点,连接BP ,CP ,求BCP ∆面积的最大值,并求出此时点P 的坐标;(3)已知矩形ODEF 的顶点D ,F 分别在x 轴、y 轴上,点E 的坐标为()3,2. ①抛物线的顶点为Q ,当AQ 的中点落在直线EF 上时,求点Q 的坐标;①当抛物线在矩形内部的部分对应的函数值y 随x 的增大而减小时,请直接写出b 的取值范围.8、(2022•滨海县一模)如图1,在平面直角坐标中,抛物线212y x bx c =++与x 轴交于点()1,0A -、()4,0B 两点,与y 轴交于点C ,连接BC ,直线:2BM y x m =+交y 轴于点M .P 为直线BC 上方抛物线上一动点,过点P 作x 轴的垂线,分别交直线BC 、BM 于点E 、F . (1)求抛物线的表达式:(2)当点P 落在抛物线的对称轴上时,求PBC ∆的面积:(3)①若点N 为y 轴上一动点,当四边形BENF 为矩形时,求点N 的坐标;①在①的条件下,第四象限内有一点Q ,满足QN QM =,当QNB ∆的周长最小时,求点Q 的坐标.9、(2022•石家庄模拟)某公园有一个截面由抛物线和矩形构成的观景拱桥,如图1所示,示意图如图2,且已知图2中矩形的长AD 为12米,宽AB 为4米,抛物线的最高处E 距地面BC 为8米. (1)请根据题意建立适当的平面直角坐标系,并求出抛物线的函数解析式;(2)若观景拱桥下放置两根长为7米的对称安置的立柱,求这两根立柱之间的水平距离; (3)现公园管理处打算在观景桥侧面搭建一个矩形“脚手架”PQMN (如图2),对观景桥表面进行维护,P ,N 点在抛物线上,Q ,M 点在BC 上,为了筹备材料,需求出“脚手架”三根支杆PQ ,PN ,MN 的长度之和的最大值,请你帮管理处计算一下.10、(2022•朝阳区校级一模)已知二次函数22y x mx m =--与y 轴交于点M ,直线5y m =+与y 轴交于点A ,与直线4x =交于点B ,直线2y m =-与y 轴交于点D (A 与D 不重合),与直线4x =交于点C ,构建矩形ABCD .(1)当点M 在线段AD 上时,求m 的取值范围.(2)求证:抛物线22y x mx m =--与直线5y m =+恒有两个交点.(3)当抛物线在矩形内部的函数值y 随着x 的增大而增大或y 随x 的增大而减小时,求m 的取值范围.(4)当抛物线在矩形内部(包括边界)最高点的横坐标等于点B 到x 轴距离的12时,直接写出m 的取值范围.11、(2022•长春一模)已知抛物线2221y x mx m =-++.(1)写出抛物线2221y x mx m =-++的顶点坐标(用含m 的式子表示). (2)当1x ≥时,y 随x 的增大而增大,则m 的取值范围是 .(3)当12x -≤≤时,函数2221y x mx m =-++的图象记为G ,设图象G 的最低点的纵坐标为y 0.当01y =-时,求m 的值.(4)当0m >时,分别过点()2,1A 、()2,4B 作y 轴垂线,垂足分别为点D 、点C ,抛物线在矩形ABCD 内部的图象(包括边界)的最低点到直线2y =-的距离等于最高点到x 轴的距离,直接写出m 的值.12、(2021•咸丰县一模)如图,在平面直角坐标系中,抛物线21322y x bx =-++与x 轴正半轴交于点A ,且点A 的坐标为()3,0,过点A 作垂直于x 轴的直线l ,P 是该抛物线上一动点,其横坐标为m ,过点P 作PQ l ⊥于点Q ,M 是直线l 上的一点,其纵坐标为32m -+.以PQ ,QM 为边作矩形PQMN .(1)求抛物线的解析式;(2)当点Q 与点M 重合时,求m 的值;(3)当矩形PQMN 是正方形,且抛物线的顶点在该正方形内部时,求m 的值;(4)当抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小时,求m 的取值范围.13、(2022•白山模拟)在平面直角坐标系中,抛物线22y x x b =-++(b 为常数,0b ≠)与y 轴交于点A ,且点A 的坐标为()0,3,过点A 作垂直于y 轴的直线l .P 是该抛物线上的任意一点,其横坐标为m ,过点P 作PQ l ⊥于点Q ,M 是直线l 上的一点,其横坐标为1m -+.以PQ ,QM 为边作矩形PQMN . (1)求b 的值;(2)当点Q 与点M 重合时,求m 的值; (3)当矩形PQMN 为正方形时,求m 的值;(4)当抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而增大时,直接写出m 的取值范围.14、(2021•吉林四模)如图,在平面直角坐标系中,抛物线21522y x bx =+-与x 轴交于点()5,0A ,与该抛物线的对称轴l 交于点B ,作直线AB .P 是该抛物线上的任意一点,其横坐标为m ,过点P 作x 轴的垂线交AB 于点Q ,过点P 作PN l ⊥于点N ,以PQ 、PN 为边作矩形PQMN . (1)求抛物线的解析式; (2)求直线AB 的解析式;(3)当该抛物线被矩形PQMN 截得的部分图象的最高点纵坐标与最低点纵坐标的距离为2时,求点P 的坐标;(4)当该抛物线与坐标轴的交点到直线MQ 的距离相等时,直接写出m 的值.15、(2021•南关区校级二模)在平面直角坐标系中,抛物线22y x ax a =--(a 为常数).(1)当1,2m ⎛⎫- ⎪⎝⎭在抛物线上,求m 的值.(2)当抛物线的最低点到x 轴的距离恰好是14时,求a 的值. (3)已知()1,1A -、11,22B a ⎛⎫-- ⎪⎝⎭,连接AB .当抛物线与线段AB 有交点时,记交点为P (点P 不与A 、B 重合),将线段PB 绕点P 顺时针旋转90°得到线段PM ,以PM 、P A 为邻边构造矩形PMQA . ①若抛物线在矩形PMQA 内部的图象的函数值y 随自变量x 的增大而减小时,求a 的取值范围. ①当抛物线在矩形PMQA 内部(包含边界)图象所对应的函数的最大值与最小值的差为32时,直接写出a 的值.16、(2021•吉林二模)如图,在平面直角坐标系中,抛物线21322y x x =--与x 轴正半轴交于点A ,过点A 的直线()0y kx b k =+≠与该抛物线的另一个交点B 的横坐标为2,P 是该抛物线上的任意一点,其横坐标为1m +,过点P 作x 轴的垂线,交直线AB 于点C ,在该垂线的点P 上方取一点D ,使1PD =,以CD 为边作矩形CDEF ,设点E 的横坐标为2m . (1)求直线AB 对应的函数关系式; (2)当点P 与点A 重合时,求点E 的坐标;(3)当点E 在该抛物线上时,求抛物线的顶点到EF 的距离;(4)当矩形CDEF 的一组邻边与该抛物线相交,且该抛物线在矩形CDEF 内的部分所对应的函数值y 随x 的增大而增大时,直接写出m 的取值范围.17、(2022•烟台一模)如图,平面直角坐标系中,正方形ABCD 的顶点A ,B 在x 轴上,抛物线2y x bx c =-++经过A ,()4,5C -两点,且与直线DC 交于另一点E .(1)求抛物线的解析式;(2)P 为y 轴上一点,过点P 作抛物线对称轴的垂线,垂足为Q ,连接EQ ,AP .试求EQ PQ AP ++的最小值;(3)N 为平面内一点,在抛物线对称轴上是否存在点M ,使得以点M ,N ,E ,A 为顶点的四边形是菱形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.18、(2022•长春模拟)在平面直角坐标系中,已知抛物线2y x bx c =++(b 、c 是常数)经过点()01-,和()2,7,点A 在这个抛物线上,设点A 的横坐标为m . (1)求此抛物线对应的函数表达式并写出顶点C 的坐标.(2)点B 在这个抛物线上(点B 在点A 的左侧),点B 的横坐标为12m --. ①当ABC ∆是以AB 为底的等腰三角形时,求OABC 的面积.①将此抛物线A 、B 两点之间的部分(包括A 、B 两点)记为图象G ,当顶点C 在图象G 上,记图象G 最高点的纵坐标与最低点的纵坐标的差为h ,求h 与m 之间的函数关系式.(3)设点D 的坐标为(),2m m -,点E 的坐标为()1,2m m --,点F 在坐标平面内,以A 、D 、E 、F 为顶点构造矩形,当此抛物线与矩形有3个交点时,直接写出m 的取值范围.19、(2022•丹东)如图1,抛物线()20y ax x c a =++≠与x 轴交于()2,0A -,()6,0B 两点,与y 轴交于点C ,点P 是第一象限内抛物线上的一个动点,过点P 作PD x ⊥轴,垂足为D ,PD 交直线BC 于点E ,设点P 的横坐标为m . (1)求抛物线的表达式;(2)设线段PE 的长度为h ,请用含有m 的代数式表示h ;(3)如图2,过点P 作PF CE ⊥,垂足为F ,当CF EF =时,请求出m 的值;(4)如图3,连接CP ,当四边形OCPD 是矩形时,在抛物线的对称轴上存在点Q ,使原点O 关于直线CQ 的对称点'O 恰好落在该矩形对角线所在的直线上,请直接写出满足条件的点Q 的坐标.20、如图,已知抛物线21111:C y a x b x c =++和()2222212:C y a x b x c a a =++=(|a 1|=|a 2|)都经过原点,顶点分别为A ,B ,与x 轴的另一交点分别为M ,N ,如果四边形ANBM 是平行四边形,则称抛物线C 1和C 2为对称抛物线.(1)观察图象,写出对称抛物线两条特征;(如:抛物线开口大小相同) (2)若抛物线C 1的解析式为22y x x =-+,确定对称抛物线C 2的解析式. (3)若4MN =,且四边形ANBM 是矩形时,确定对称抛物线C 1和C 2的解析式.。

专题四 二次函数综合题(含答案)2025年中考数学一轮题型专练(陕西)

专题四 二次函数综合题(含答案)2025年中考数学一轮题型专练(陕西)

专题四 二次函数综合题题型1 二次函数的实际应用二次函数的实际应用问题,在陕西中考2022,2023,2024年连续三年进行考查,其考查本质为二次函数表达式的应用,其主要为顶点式的考查,在表达式的基础上进行实践应用的考查,知x求y或知y求x,利用二次函数性质求最值,感受数学在实际问题中的应用.类型1 抛物线运动轨迹问题(2024·西安市莲湖区模拟)如图,在一场校园羽毛球比赛中,小华在点P选择吊球进行击球,当羽毛球飞行的水平距离是1 m时,达到最大高度3.2 m,建立如图所示的平面直角坐标系.羽毛球在空中的运行轨迹可以近似地看成抛物线的一部分,队友小乐则在点P选择扣球进行击球,羽毛球的飞行高度y1(单位:m)与水平距离x(单位:m)近似地满足一次函数关系y1=-0.4x+2.8.(1)根据如图所示的平面直角坐标系,求吊球时羽毛球满足的二次函数表达式.(2)在(1)的条件下,已知球网AB与y轴的水平距离OA=3 m,CA=2 m,且点A,C都在x轴上,实践发现击球和吊球这两种方式都能使羽毛球过网.要使球的落地点到点C的距离更近,请通过计算判断应该选择哪种击球方式?解题指南 (1)抓住最大高度这一特征,设出顶点式:y=a(x-h)2+k,然后将点P的坐标代入即可.(2)分别令一次函数与二次函数的y为0,对比两种方式在x轴的交点的横坐标到点C的横坐标的距离大小即可.类型2 以建筑为背景的“过桥”问题(2024·西工大模拟)陕北窑洞,具有十分浓厚的民俗风情和乡土气息.如图,某窑洞口的下部近似为矩形OABC,上部近似为一条抛物线.已知OA=3 m,AB=2 m,m.窑洞的最高点M(抛物线的顶点)离地面OA的距离为258(1)建立如图所示的平面直角坐标系,求抛物线的表达式.(2)若在窑洞口的上部要安装一个正方形窗户DEFG,使得点D,E在矩形OABC的边BC上,点F,G在抛物线上,那么这个正方形窗户DEFG的边长为多少米?解题指南 (1)借助点M为顶点,设出顶点式,然后将点B坐标代入顶点式即可.(2)设出小正方形DEFG的边长,然后用所设边长表示出点G的横坐标、纵坐标,最后代入(1)中抛物线的表达式解方程即可.(2024·西安新城区模拟)某地想将新建公园的正门设计为一个抛物线型拱门,设计部门给出了如下方案:将拱门图形放入平面直角坐标系中,如图,抛物线型拱门的跨度ON=24 m,拱高PE=8 m.其中,点N在x轴上,PE⊥ON,OE=EN.(1)求该抛物线的函数表达式.(2)现要在拱门中设置矩形框架,其周长越小越好(框架粗细忽略不计).设计部门给出了两个设计方案:方案一:矩形框架ABCD的周长记为C1,点A、D在抛物线上,边BC在ON上,其中AB=6 m.方案二:矩形框架A'B'C'D'的周长记为C2,点A',D'在抛物线上,边B'C'在ON上,其中A'B'=4 m.求这两个方案中,矩形框架的周长C1,C2,并比较C1,C2的大小.类型3 以“悬挂线”为背景解决高度问题如图,在一个斜坡上架设两个塔柱AB,CD(可看作两条竖直的线段),塔柱间挂起的电缆线下垂可以近似地看成抛物线的形状.两根塔柱的高度满足AB=CD=27 m,塔柱AB与CD之间的水平距离为60 m,且两个塔柱底端点D与点B的高度差为12 m.以点A为坐标原点,1 m为单位长度构建平面直角坐标系. (1)求点B,C,D的坐标.x2一样,且电(2)经过测量,AC段所挂电缆线对应的抛物线的形状与抛物线y=1100缆线距离斜坡面竖直高度至少为15.5 m时,才符合设计安全要求.请结合所学知识判断上述电缆线的架设是否符合安全要求?并说明理由.(2024·陕师大附中模拟)在元旦来临之际,学校安排各班在教室进行联欢.八(2)班同学准备装点一下教室.他们在屋顶对角A,B两点之间拉了一根彩带,彩带自然下垂后呈抛物线形状.若以两面墙交线AO为y轴,以点A正下方的墙角点O为原点建立平面直角坐标系,此时彩带呈现出的抛物线表达式为y=ax2-0.6x+3.5.已知屋顶对角线AB长12 m.(1)a= ,该抛物线的顶点坐标为.(2)小军想从屋顶正中心C(C为AB的中点)系一根绳子CD.将正下方彩带最低点向上提起,这样两侧的彩带就形成了两个对称的新抛物线形状(如图所示).要使两个新抛物线彩带最低点之间的水平距离为5 m,且比之前的最低点提高0.3 m.求这根绳子的下端D到地面的距离.题型2 图形面积探究类型1 面积、线段最值探究二次函数中面积问题,基本上都可以转化为线段相关问题,线段的三种表示方式:①水平型,②垂直型,③斜型.以边为分类标准,可采取不同方法进行面积的求解,现对不同类型线段的表示作以说明.(1)线段AB∥y轴时,点A,B横坐标相等,则AB=|y1-y2|=|y2-y1|=y1-y2.(2)线段BC∥x轴时,点B,C纵坐标相等,则BC=|x2-x1|=|x1-x2|=x2-x1.(3)线段AC与x轴,y轴不平行时,在Rt△ABC中,AC=AB2+BC2=(x1-x2)2+(y1-y2)2.第一步,过动点向x轴作垂线,与定边产生交点第二步,设动点坐标,表示交点坐标第三步,表示纵向线段长度|y上-y下|第四步,利用水平宽铅垂高表示三角形面积:S=12(y 上-y 下)(x 右-x 左)【原创好题】“水平宽”与“铅垂高”的运用:已知△ABC 的三个顶点坐标分别为A(x A ,y A ),B(x B ,y B ),C(x C ,y C ),用含有A,B,C 坐标的方式表示出△ABC 的面积.解题指南 (1)在平面直角坐标系中作△ABC,要求点A,B 在点C 的左、右两侧,经过点C 作x 轴的垂线交AB 于点D,则△ABC 被分成两部分,即S △ABC =S △ACD +S △BCD .(2)过点A 作△ADC 的高h 1,过点B 作△DBC 的高h 2,所以△ACD 与△BCD 的面积表示为S △ADC =12CD·h 1,S △BCD =12CD·h 2.(3)所以S △ABC =S △ADC +S △BCD =12CD·h 1+12CD·h 2=12CD·(h 1+h 2).(4)其中h 1与h 2的和可以看作点A 与点B 的水平间的距离,因此称之为“水平宽”,h 1+h 2=|x B -x A |,CD 是点C 与点D 的竖直间的距离,称之为“铅垂高”,即CD=|y D -y C |,故S △ABC =S △ACD +S △BCD =12|y D -y C |·|x B -x A |.1.如图,在平面直角坐标系xOy 中,直线y=x+4与坐标轴分别交于A,B 两点,抛物线y=-x 2+bx+c 过A,B 两点,D 为线段AB 上一动点,过点D 作CD ⊥x 轴于点C,交抛物线于点E.(1)求抛物线的表达式.(2)求△ABE 面积的最大值.2.如图,抛物线y=-x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接BC.(1)求A,B,C三点的坐标.(2)若P为线段BC上的一点(不与点B,C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N.当线段PM的长度最大时,求点M的坐标.类型2 面积关系探究(2018.T24)x2+bx与x轴交于O,A 【改编】在平面直角坐标系xOy中,已知抛物线y=-43两点,B(1,4)在抛物线上.若P是抛物线上一点,且在直线AB的上方,且满足△OAB 的面积是△PAB面积的2倍,求点P的坐标.解题指南 (1)第一步,将点B的坐标代入抛物线的表达式,求出b的值,根据A,B两点的坐标,求出直线AB的表达式;(2)第二步,借助三角形的面积公式,求出△OAB的面积,根据△OAB与△PAB的面积关系求出△PAB的面积;(3)第三步,设点P的坐标为t,-43t2+163t,过点P作x轴的垂线,与AB交于点N,并结合直线AB的表达式,表示出点N的坐标;(4)第四步,借助“水平宽,铅垂高”,求出PN的长度,用含有t的式子表示出PN的长度,构造方程求解即可.1.如图,抛物线y=-x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为x+3交于C,D两点,连接BD,AD.(3,0),抛物线与直线y=-32(1)求m的值.(2)求A,D两点的坐标.(3)若抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.2.如图,在平面直角坐标系中,点A(0,-1),抛物线y=-x2+bx+c经过点B(4,5)和C(5,0).(1)求抛物线的表达式.(2)连接AB,BC,求∠ABC的正切值.(3)在抛物线的对称轴上,是否存在点D,使得S△ABD=S△ABC?若存在,直接写出点D 的坐标;若不存在,请说明理由.3.已知抛物线y=-x2+bx+c过点A(-1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式.(2)P为抛物线对称轴上一动点,当△PCB是以BC为底边的等腰三角形时,求点P 的坐标.(3)在(2)的条件下,是否存在M为抛物线第一象限上的点,使得S△BCM=S△BCP?若存在,求出点M的横坐标;若不存在,请说明理由.解题指南 (1)由交点式可直接得出抛物线的解析式.(2)设P(1,m),根据列出方程,进而求得点P的坐标.(3)作PQ∥BC交y轴于点Q,作MN∥BC交y轴于点N,先求出PQ的解析式,进而求得MN的解析式,进一步求得结果. 借助“同底等高”找等面积的方法在平面直角坐标系中有△ABC,分别在BC所在直线的两侧找出一点P和Q,使得S△PBC=S△QBC=S△ABC.操作方式:(1)根据要求可知△PBC和△QBC均与△ABC具有共同的底边BC,要使它们的面积相等,只需要它们的高相等即可,因此可以设△PBC与△QBC的高均为h;(2)确定高以后,过点A作BC的平行线,则在所作平行线上存在一点P满足S△PBC=S△ABC;(3)如图,将BC所在直线向下平移AO'个单位长度,过A'作BC的平行线,则该直线上存在一点Q满足S△QBC=S△ABC;(4)运用“同底等高”法时,务必考虑不同位置的情况;(5)进行面积计算时,可以直接利用三角形面积公式求解.题型3 特殊三角形问题探究类型1 等腰三角形问题探究等腰三角形存在问题,可以分为两个方向来解决,几何法和代数法,其中几何法的优势在于比较直观地得到结果,对几何图形要求较高;代数法以解析几何为背景可更快地找到等量关系,方法较为单一,等腰三角形问题做完之后一定要验证是否出现三点共线的情况.方法一 几何法(1)两圆一线找出点;(2)利用勾股、相似、三角函数等求线段长,由线段长求得点坐标方法二 代数法(1)表示出三个点坐标A,B,C;(2)由点坐标表示出三条线段AB,AC,BC;(3)分类讨论①AB=AC;②AB=BC;③AC=BC;(4)列出方程求解(2024·铁一中模拟)如图,在平面直角坐标系中,抛物线L的顶点E的坐标为(-2,8),且过点B(0,6),与x轴交于M,N两点.(1)求该抛物线L的表达式.(2)设抛物线L关于y轴对称后的抛物线为L',其顶点记为点D,连接MD,在抛物线L'对称轴上是否存在点Q,使得以点M,D,Q为顶点的三角形为等腰三角形?若存在,求出点Q的坐标;若不存在,请说明理由.(2024·西咸新区模拟)如图,抛物线L:y=ax2+bx-3(a、b为常数,且a≠0)与x轴交于点A(-1,0),B(3,0),与y轴交于点C.将抛物线L向右平移1个单位长度得到抛物线L'.(1)求抛物线L的函数表达式.(2)连接AC,探究抛物线L'的对称轴直线l上是否存在点P,使得以点A,C,P为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.类型2 直角三角形问题探究直角三角形存在问题,菱形中对角线垂直,矩形中的内角为直角,有下列两个方向可以帮助解决问题,不同的方法适用不同方向的题目,注意区分其方法.一、勾股定理若AC2+BC2=AB2,则△ABC为直角三角形二、构造“K”字型相似过直角顶点作坐标轴的平行线,过其他两点向平行线作垂直,出现“一线三等角”模型,利用“一线三等角”的相似模型,构建方程解决问题已知抛物线L:y=ax2-2ax-8a(a≠0)与x轴交于点A,点B,且点A在点B的左侧,与y轴交于点C.(1)求出点A与点B的坐标.(2)当△ABC是以AB为斜边的直角三角形时,求抛物线L的表达式.如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+c(a≠0)交x轴于点A(-5,0),B(-1,0),交y轴于点C(0,5).(1)求抛物线C1的表达式和顶点D的坐标.(2)将抛物线C1关于y轴对称的抛物线记作C2,E为抛物线C2上一点,若△DOE是以DO为直角边的直角三角形,求点E的坐标. 直角三角形中的找点方法和计算方法找点方法:示例:如图,在平面内有A,B两点,试着找出一点C,使得A,B,C三点构成的三角形为直角三角形.分两种情况讨论:当AB为直角边时,{过点A作AB的垂线l1,过点B作AB的垂线l2;当AB为斜边时,以AB为直径作圆.如图,在直线l1,l2上的点C满足△ABC为直角三角形,但要注意一点:点C不与A,B两点重合.我们将这种找点C的方法称为“两线一圆”.计算方法:(1)利用勾股定理构造方程求解;(2)以“K”字型搭建相似三角形,列比例式构造方程求解.类型3 等腰直角三角形问题探究等腰直角三角形相关问题,以等腰直角三角形和正方形问题,主要解题方法相对统一,注意如何构图能直观得到“K”字全等是解决问题的关键之处.(1)过直角顶点作坐标轴平行线,构造“K”字全等(2)方法一:设某小边长度.方法二:设点坐标,表示直角三角形中的直角边(3)利用某纵向或横向线段构建等式(x+1)(x-5)与x轴交于A,B两点,与y轴交于点C.如果P是如图,抛物线y=-25抛物线上一点,M是该抛物线对称轴上的点,当△OMP是以OM为斜边的等腰直角三角形时,求点P的坐标.解题指南 第一步,过直角顶点作平行y轴的垂线,分别过另两个顶点作垂直,构造“K”字全等;第二步,利用坐标分别表示两直角三角形的直角边;第三步,利用某边相等构造方程.(2024·高新一中模拟)如图,在平面直角坐标系中,抛物线L:y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,3).(1)求出抛物线L的表达式和顶点的坐标.(2)P是抛物线L的对称轴右侧图象上的一点,过点P作x的垂线交x轴于点Q,作抛物线L关于直线PQ对称抛物线L',则C关于直线PQ的对称点为C',若△PCC'为等腰直角三角形,求出抛物线L'的表达式.题型4 三角形关系问题类型1 与相似三角形结合问题三角形的关系问题是陕西考试中非常常见的一个类型,中考中多次连续出现,相似问题的处理方法也相对较为固定,以固定三角形为参照,找到定角,以边为分类标准,进行分类讨论.主要有两个方法.方法一:利用一角相等,邻边成比例证明相似方法二:两组角相等的三角形相似分析目标三角形:第一类:找一角相等,用邻边成比例.第二类:找一角相等(多为90°问题),找另一角相等.方法总结:(1)分动、定三角形;(2)找等角;(3)表示边或者找另一角相等.(2024·曲江一中模拟)如图,抛物线y=ax 2+bx 经过坐标原点O 与点A(3,0),正比例函数y=kx 与抛物线交于点B 72,74.(1)求该抛物线的函数表达式.(2)P 是第四象限抛物线上的一个动点,过点P 作PM ⊥x 轴于点N,交OB 于点M,是否存在点P,使得△OMN 与以点N,A,P 为顶点的三角形相似?若存在,请求出点P 的坐标;若不存在,请说明理由.(2024·陕师大附中模拟)已知抛物线L 1:y=x 2+bx+c 与x 轴交于点A,B(点A 在点B 的左侧),与y 轴交于点C(0,-3),对称轴为直线x=1.(1)求此二次函数表达式和点A,B 的坐标.(2)P 为第四象限内抛物线L 1上一动点,将抛物线L 1平移得到抛物线L 2,抛物线L 2的顶点为点P,抛物线L 2与y 轴交于点E,过点P 作y 轴的垂线交y 轴于点D.是否存在点P,使以点P,D,E 为顶点的三角形与△AOC 相似?如果存在,请写出平移过程,并说明理由.类型2 与全等三角形结合问题1.全等为特殊的相似,相似比为1,方法与相似一致.2.注意相等角的邻边分类情况.【改编】如图,抛物线y=-23x 2+103x+4的图象与x 轴交于A,B 两点,与y 轴的正半轴交于点C,过点C 的直线y=-43x+4与x 轴交于点D.若M 是抛物线上位于第一象限的一动点,过点M 作ME ⊥CD 于点E,MF ∥x 轴交直线CD 于点F,当△MEF ≌△COD 时,求出点M 的坐标.解题指南 当△MEF ≌△COD 时,(1)找准对应角、边.结合关系式可知,∠MEF=∠COD,∠MFE=∠CDO,MF=CD.(2)根据直线CD 的表达式求出线段CD 的长度.由点M 在抛物线上,可以设点M的坐标为m,-23m 2+103m+4,再由MF ∥x 轴,得点F 的纵坐标.根据全等三角形的对应边相等可以得出点F 的横坐标为m-5.(3)由点F 在直线CD 上,将点F 的坐标代入直线CD 的表达式中,求出m 的值.已知经过原点O 的抛物线y=-x 2+4x 与x 轴的另一个交点为A.(1)求点A 的坐标及抛物线的对称轴.(2)B 是OA 的中点,N 是y 轴正半轴上一点,在第一象限内的抛物线上是否存在点M,使得△OMN 与△OBM 全等,且点B 与点N 为对应点?若存在,请求出点M 的坐标;若不存在,请说明理由. 与全等三角形结合问题的求解步骤(1)全等三角形的问题与相似三角形的问题步骤类似,均是先列出三角形的对应关系式,再根据关系式找出对应边相等;(2)借助对应边相等,将边与边的长度关系用点的坐标进行表示,然后运用“两点间距离公式”构造方程求解.题型5 特殊四边形问题探究类型1 平行四边形问题探究平行四边形问题,一般分为三定一动,两定两动问题,选取固定的两个点为分类标准,①以某边为边时;②以某边为对角线时.第一步,寻找分类标准;第二步,平移点,找关系(注意:从A到B和从B到A);第三步,代入关系求值(2024·西工大附中模拟)如图,抛物线y=ax2-2x+c与直线y=kx+b都经过A(0,3),B(-3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的表达式.(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过点M作x轴的垂线交抛物线于点N.使点M,N,C,E是平行四边形的四个顶点?若存在,求出点M的坐标;若不存在,请说明理由.【改编】已知点A(-1,0)在抛物线L:y=x2-x-2上,抛物线L'与抛物线L关于原点对称,点A的对应点为点A',是否在抛物线L上存在一点P,在抛物线L'上存在一点Q,使得以AA'为边,且以A,A',P,Q为顶点的四边形是平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由. 平行四边形中坐标的计算如图1,在平行四边形ABDC 中,关于坐标的计算——平移法则:x B -x A =x D -x C ,y B -y A =y D -y C ,x A -x C =x B -x D ,y A -y C =y B -y D .如图2,在平行四边形ADBC 中,关于坐标的计算——中点坐标公式:x M =x A +x B 2=x C +x D 2,y M =y A +y B 2=y C +y D 2.类型2 菱形问题探究菱形存在问题,主要分两类. 第一类:以平行四边形为背景,在平行四边形的基础上增加对角线垂直或邻边相等即可得菱形.(1)选一定点,再将这一定点与另外点的连线作为对角线,分类讨论.(2)利用中点坐标公式列方程:x A +x C 2=x B +x D 2;y A +y C 2=y B +y D 2.(3)对角线垂直:可参照直角存在问题.邻边相等:可参照等腰存在问题.(4)平移型:先平行四边形,再菱形.翻折型:先等腰,再菱形.第二类:若出现在平面内任意一点存在性问题,则去掉此点,转化为等腰存在问题,可以利用等腰存在问题策略解决问题如图,抛物线y=x 2+bx+c 与x 轴交于A,B 两点,与y 轴交于点C,OA=2,OC=6,连接AC 和BC.(1)求抛物线的函数表达式.(2)若M是y轴上的动点,在坐标平面内是否存在点N,使以A,C,M,N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.类型3 矩形问题探究矩形存在性问题,主要分两类. 第一类:以平行四边形为背景,在平行四边形的基础上增加对角线相等或一内角为90°即可得到矩形.(1)选一定点,再将这一定点与另外点的连线作为对角线,分类讨论.(2)利用中点坐标公式列方程:x A+x C=x B+x D;y A+y C=y B+y D.(3)方向一 对角线相等:(x A-x C)2+(y A-y C)2=(x B-x D)2+(y B-y D)2.方向二 有一角为90°.第二类:若出现在平面内任意一点存在性问题,则去掉此点,转化为直角存在问题,可以利用直角存在问题策略解决问题已知抛物线L:y=ax2+bx(a≠0)经过点B(6,0),C(3,9).(1)求抛物线L的表达式.(2)若抛物线L'与抛物线L关于x轴对称,P,Q(点P,Q不与点O,B重合)分别是抛物线L,L'上的动点,连接PO,PB,QO,QB,问四边形OPBQ能否为矩形?若能,求出满足条件的点P和点Q的坐标;若不能,请说明理由.已知抛物线L:y=-x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求A,B,C三点的坐标.(2)抛物线L平移后得到抛物线L',点A,C在抛物线L'上的对应点分别为点A',C',若以A,C,A',C'为顶点的四边形是面积为20的矩形,求平移后的抛物线L'的表达式.类型4 正方形问题探究(在菱形的基础上增加对角线相等)(1)选一定点,再将这一定点与另外点的连线作为对角线,分类讨论.(2)利用中点坐标公式列方程:x A+x C=x B+x D;y A+y C=y B+y D.(3)平行四边形题基础上加等腰直角三角形问题.,正方形ABCD的边AB 如图,一条抛物线y=ax2+bx(a≠0)的顶点坐标为2,83落在x轴的正半轴上,点C,D在这条抛物线上.(1)求这条抛物线的表达式.(2)求正方形ABCD的边长.解题指南 (1)已知顶点,可直接设抛物线的顶点式:y=a(x-h)2+k,将点的坐标代入计算即可.(2)①在正方形中,四条边均相等;②设出正方形的边长,并根据所设边长表示出正方形ABCD的顶点坐标;③注意观察正方形ABCD的顶点C,D在抛物线上;④代入相应点的坐标求出所设的边长即可.x2+bx+c的图象L经过原点,且与x轴的另一个交点为(8,0).已知二次函数y=-13(1)求该二次函数的表达式.(2)作x轴的平行线,交L于A,B两点(点A在点B的左侧),过A,B两点分别作x 轴的垂线,垂足分别为D,C.当以A,B,C,D为顶点的四边形是正方形时,求点A的坐标. 借助抛物线判定正方形的思路步骤1.明确在抛物线上的正方形的两个顶点;2.借助抛物线表达式y=ax2+bx+c(a≠0),设出其中一个顶点坐标为(x,ax2+bx+c),然后利用抛物线对称轴表示出另一个顶点坐标;3.根据正方形四条边相等构造一元二次方程求解即可.题型6 角度问题探究角相关问题是二次函数中相对较为综合性的问题,在近几年中考中也常出现在各个省市的中考题中,问题最终都会落到以下问题上来.等角问题,可直接用等角的性质来处理问题.解决策略:(1)寻找相似,出现等角;(2)利用三角函数找等角;(3)利用轴对称来找等角.【改编】在平面直角坐标系xOy中,已知抛物线y=-x2+4x-3与x轴分别交于A,B两点,且点A在点B的左侧.在抛物线上是否存在一点D,使得∠DOA=45°?若存在,求出点D的坐标;若不存在,请说明理由.解题指南 以平面直角坐标系为背景来探究角度问题,常用的思路为借助三角函数构造方程求解.本题具体步骤如下:第一步,根据∠DOA=45°,联想tan∠DOA=1;第二步,根据点D在抛物线上,可以过点D作x轴的垂线,记垂足为H,在△DOH中,tan∠DOH=DH OH;第三步,由点D在抛物线上,设点D的坐标为(t,-t2+4t-3);第四步,根据DH=|y D|=|-t2+4t-3|,OH=|t|,构造方程求解即可.已知抛物线L:y=-23x2+bx+c,与y轴的交点为C(0,2),与x轴的交点分别为A(3,0),B(点A在点B右侧).(1)求抛物线的表达式.(2)将抛物线沿x轴向左平移m(m>0)个单位长度,所得的抛物线与x轴的左交点为M,与y轴的交点为N,若∠NMO=∠CAO,求m的值.参考答案题型1 二次函数的实际应用类型1 抛物线运动轨迹问题例1 解析:(1)在y 1=-0.4x+2.8中,令x=0,则y 1=2.8,∴P (0,2.8).根据题意,二次函数图象的顶点坐标为(1,3.2).设二次函数的表达式为y=a (x-1)2+3.2,把P (0,2.8)代入y=a (x-1)2+3.2,得a+3.2=2.8,解得a=-0.4,∴吊球时羽毛球满足的二次函数表达式y=-0.4(x-1)2+3.2.(2)吊球时,令y=0,则-0.4(x-1)2+3.2=0,解得x 1=1+22,x 2=1-22(舍去),扣球时,令y=0,则-0.4x+2.8=0,解得x=7.∵OA=3 m,CA=2 m,∴OC=OA+AC=5.∵7-5=2,|22+1-5|=4-22<2,∴选择吊球时,球的落地点到点C 的距离更近.类型2 以建筑为背景的“过桥”问题例2 解析:(1)由题意得点M ,B 的坐标分别为32,258,(3,2).设抛物线的表达式为y=a x-322+258,将点B 的坐标代入上式得2=a 3-322+258,解得a=-12,∴抛物线的表达式为y=-12x-322+258.(2)设正方形的边长为2m.把点G 32-m ,2+2m 代入抛物线表达式,得2+2m=-1232-m-322+258,解得m=12(负值已舍去),∴正方形窗户DEFG 的边长为1 m .变式设问 解析:(1)由题意得抛物线的顶点坐标为(12,8),N (24,0).设y=a (x-12)2+8,把N (24,0)代入表达式中,得a=-118,∴该抛物线的函数表达式为y=-118(x-12)2+8.(2)方案一:令y=6,即6=-118(x-12)2+8.解得x 1=6,x 2=18,∴BC=AD=12.又∵AB=CD=6,∴矩形ABCD 的周长C 1=2×12+2×6=36(m).方案二:令y=4,即4=-118(x-12)2+8,解得x 1=12-62,x 2=12+62,∴B'C'=A'D'=12+62-(12-62)=122.又∵A'B'=C'D'=4,∴矩形A'B'C'D'的周长C 2=2×122+2×4=(242+8)m .∵C 1=36=28+8=4×7+8,C 2=242+8=4×62+8,∴36<242+8,即C 1<C 2.类型3 以“悬挂线”为背景解决高度问题例3 解析:(1)如图,过点C 作CE ⊥y 轴,垂足为E ,过点D 作DF ⊥y 轴,垂足为F.记CD 与x 轴相交于点G.根据题意,得点B 的坐标是(0,-27).∵FB=12,则GD=OF=OB-FB=27-12=15,OG=FD=EC=60,CG=CD-GD=27-15=12,∴点C 的坐标是(60,12),点D 的坐标是(60,-15).(2)符合安全要求.理由:设AC 段所挂电缆线对应的抛物线的函数表达式为y=1100x 2+bx ,将点C (60,12)代入表达式中,得12=1100×602+60b ,解得b=-25,∴y=1100x 2-25x.由点B (0,-27),D (60,-15)可知直线BD 的表达式为y=15x-27.记M 为抛物线上一点,过点M 作x 轴的垂线与BD 交于点N.设点M m ,1100m 2-25m ,则点N m ,15m-27,故MN=1100m 2-25m-15m-27=1100(m-30)2+18≥18>15.5,∴电缆线距离斜坡面竖直高度的最小值为18 m,高于安全需要的距离15.5 m,故符合安全要求.变式设问 解析:(1)0.05;(6,1.7).提示:由题意得抛物线的对称轴为直线x=6,则A (0,3.5),B (12,3.5),∴144a-7.2+3.5=3.5,解得a=0.05,∴抛物线的表达式为y=0.05x 2-0.6x+3.5.当x=6时,y=0.05x 2-0.6x+3.5=1.7,即该抛物线的顶点坐标为(6,1.7),(2)∵两个新抛物线彩带最低点之间的水平距离为5 m,且比之前的最低点提高0.3 m,∴左边新抛物线的顶点坐标为(3.5,2).设左边新抛物线的表达式为y=a'(x-3.5)2+2,将点A 的坐标代入上式得3.5=a'(0-3.5)2+2,解得a'=649,∴左侧抛物线的表达式为y=649(x-3.5)2+2.当x=6时,y=649(6-3.5)2+2=27198,∴这根绳子的下端D 到地面的距高为27198m .题型2 图形面积探究类型1 面积、线段最值探究例1 解析:如图,过点C 作垂直于x 轴的直线,与AB 交于点D ,分别过点A ,B 作CD 的垂线段h 1,h 2,即S △ABC =S △ACD +S △BCD .∵S △ADC =12CD ·h 1,S △BCD =12CD ·h 2,∴S △ABC =S △ACD +S △BCD =12CD ·(h 1+h 2).又∵CD=|y D -y C |,h 1+h 2=|x B -x A |,∴S △ABC =S △ACD +S △BCD =12(y D -y C)(x B -x A ).变式设问 1.解析:(1)在一次函数y=x+4中,令x=0,得y=4,令y=0,得x=-4,∴A (-4,0),B (0,4).∵点A (-4,0),B (0,4)在抛物线y=-x 2+bx+c 上,∴{-16-4b +c =0,c =4,解得{b =-3,c =4,∴抛物线的表达式为y=-x 2-3x+4.(2)设点C 的坐标为(m ,0)(-4≤m ≤0),则点E 的坐标为(m ,-m 2-3m+4),点D 的坐标为(m ,m+4),。

二次函数,矩形的存在性问题,含答案(最新整理)

二次函数,矩形的存在性问题,含答案(最新整理)

1. (2015 黑龙江省龙东地区) 如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.2. (2015 重庆市綦江县) 如图,抛物线与x 轴交与A ,B 两点(点A 在点B 的左侧),与y 轴223y x x =-++交于点C . 点D 和点C 关于抛物线的对称轴对称,直线AD 与y 轴相交于点E .(1)求直线AD 的解析式;(2)如图1,直线AD 上方的抛物线上有一点F ,过点F 作FG ⊥AD 于点G ,作FH 平行于x 轴交直线AD 于点H ,求△FGH 的周长的最大值;(3)点M 是抛物线的顶点,点P 是y 轴上一点,点Q 是坐标平面内一点,以A ,M ,P ,Q 为顶点的四边形是AM 为边的矩形,若点T 和点Q 关于AM 所在直线对称,求点T 的坐标.xxx26图图图图226图图图图126图图1(0,4)、3. (2016 山东省东营市) 】.】.C的坐标分别是(﹣1,0),将在平面直角坐标系中,平行四边形ABOC如图放置,点A、此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线经过点C、A、A′,求此抛物线的解析式;(2)点M时第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)若P为抛物线上一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.4. (2016 贵州省毕节地区) 如图,已知抛物线y=x2+bx与直线y=2x+4交于A(a,8)、B两点,点P是抛物线上A、B之间的一个动点,过点P分别作x轴、y轴的平行线与直线AB交于点C和点E.(1)求抛物线的解析式;(2)若C为AB中点,求PC的长;(3)如图,以PC,PE为边构造矩形PCDE,设点D的坐标为(m,n),请求出m,n之间的关系式.5. (2013 湖南省常德市) 如图,已知二次函数的图象过点A (0,-3),B ),对称轴为直线12x =-,点P 是抛物线上的一动点,过点P 分别作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,在四边形PMON 上分别截取1111,,,.3333PC MP MD OM OE ON NF NP ====(1)求此二次函数的解析式;(2)求证:以C ,D ,E ,F 为顶点的四边形CDEF 是平行四边形;(3)在抛物线上是否存在这样的点P ,使四边形CDEF 为矩形?若存在,请求出所有符合条件的P 点坐标;若不存在,请说明理由.6.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图所示,直线BC下方的抛物线上有一点P,过点P作PE⊥BC于点E,作PF平行于x轴交直线BC 于点F,求△PEF周长的最大值;(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点P 的横坐标;若不存在,说明理由.参考答案1. (2015 黑龙江省龙东地区) 如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.1.分析:(1)解方程可求得OC、BC的长,可求得B、D的坐标,利用待定系数法可求得直线BD的解析式;(2)可求得E点坐标,求出直线OE的解析式,联立直线BD、OE解析式可求得H点的横坐标,可求得△OFH的面积;(3)当△MFD为直角三角形时,可找到满足条件的点N,分∠MFD=90°、∠MDF=90°和∠FMD=90°三种情况,分别求得M点的坐标,可分别求得矩形对角线的交点坐标,再利用中点坐标公式可求得N点坐标.解答:解:(1)解方程x2﹣6x+8=0可得x=2或x=4,∵BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC,∴BC=2,OC=4,∴B(﹣2,4),∵△ODE是△OCB绕点O顺时针旋转90°得到的,∴OD=OC=4,DE=BC=2,∴D(4,0),设直线BD解析式为y=kx+b,把B、D坐标代入可得,解得,∴直线BD的解析式为y=﹣x+;(2)由(1)可知E(4,2),设直线OE解析式为y=mx,把E点坐标代入可求得m=,∴直线OE解析式为y=x,令﹣x+=x,解得x=,∴H点到y轴的距离为,又由(1)可得F(0,),∴OF=,∴S△OFH=××=;(3)∵以点D、F、M、N为顶点的四边形是矩形,∴△DFM为直角三角形,①当∠MFD=90°时,则M只能在x轴上,连接FN交MD于点G,如图1,由(2)可知OF=,OD=4,则有△MOF∽△FOD,∴=,即=,解得OM=,∴M(﹣,0),且D(4,0),∴G(,0),设N点坐标为(x,y),则=,=0,解得x=,y=﹣,此时N点坐标为(,﹣);②当∠MDF=90°时,则M只能在y轴上,连接DN交MF于点G,如图2,则有△FOD ∽△DOM ,∴=,即=,解得OM=6,∴M (0,﹣6),且F (0,),∴MG=MF=,则OG=OM ﹣MG=6﹣=,∴G (0,﹣),设N 点坐标为(x ,y ),则=0,=﹣,解得x=﹣4,y=﹣,此时N (﹣4,﹣);③当∠FMD=90°时,则可知M 点为O 点,如图3,∵四边形MFND 为矩形,∴NF=OD=4,ND=OF=,可求得N (4,);综上可知存在满足条件的N 点,其坐标为(,﹣)或(﹣4,﹣)或(4,).2. (2015 重庆市綦江县) 如图,抛物线与x 轴交与A ,B 两点(点A 在点B 的左侧),与y 轴223y x x =-++交于点C . 点D 和点C 关于抛物线的对称轴对称,直线AD 与y 轴相交于点E .(1)求直线AD 的解析式;(2)如图1,直线AD 上方的抛物线上有一点F ,过点F 作FG ⊥AD 于点G ,作FH 平行于x 轴交直线AD 于点H ,求△FGH 的周长的最大值;(3)点M 是抛物线的顶点,点P 是y 轴上一点,点Q 是坐标平面内一点,以A ,M ,P ,Q 为顶点的四边形是AM 为边的矩形,若点T 和点Q 关于AM 所在直线对称,求点T 的坐标.xxx26图图图图226图图图图126图图1答案解:⑴AD :1y x=+⑵过点F 作x 轴的垂线,交直线AD 于点M ,易证△FGH ≌△FGM 故FGH FGM C C =△△设2(,23)F m m m -++则FM =2223(1)2m m m m m -++-+=-++则 C=212(1(1)2FM FM m +==-+-⑶①若AP 为对角线如图,由△PMS ∽△MAR 可得由点的平移可知故Q 点关于直线AM 的对称点T 为9(0,)2P 1(2)2Q -,1(0,)2-②若AQ 为对角线如图,同理可知P 由点的平移可知Q 故Q 点关于直线AM 的对称点T 为1(0,)2-7(2,)29(0,)23. (2016 山东省东营市) 】.】.在平面直角坐标系中,平行四边形ABOC 如图放置,点A 、C 的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O 顺时针旋转90°,得到平行四边形A ′B ′OC ′.(1)若抛物线经过点C 、A 、A ′,求此抛物线的解析式;(2)点M 时第一象限内抛物线上的一动点,问:当点M 在何处时,△AMA ′的面积最大?最大面积是多少?并求出此时M 的坐标;(3)若P 为抛物线上一动点,N 为x 轴上的一动点,点Q 坐标为(1,0),当P 、N 、B 、Q 构成平行四边形时,求点P 的坐标,当这个平行四边形为矩形时,求点N 的坐标.分析(1)由平行四边形ABOC 绕点O 顺时针旋转90°,得到平行四边形A ′B ′OC ′,且点A 的坐标是(0,4),可求得点A ′的坐标,然后利用待定系数法即可求得经过点C 、A 、A ′的抛物线的解析式;(2)首先连接AA ′,设直线AA ′的解析式为:y=kx+b ,利用待定系数法即可求得直线AA ′的解析式,再设点M 的坐标为:(x ,﹣x 2+3x+4),继而可得△AMA ′的面积,继而求得答案;(3)分别从BQ 为边与BQ 为对角线去分析求解即可求得答案.解答解:(1)∵平行四边形ABOC 绕点O 顺时针旋转90°,得到平行四边形A ′B ′OC ′,且点A 的坐标是(0,4),∴点A ′的坐标为:(4,0),∵点A 、C 的坐标分别是(0,4)、(﹣1,0),抛物线经过点C 、A 、A ′,设抛物线的解析式为:y=ax 2+bx+c ,∴,解得:,∴此抛物线的解析式为:y=﹣x 2+3x+4;(2)连接AA ′,设直线AA ′的解析式为:y=kx+b ,∴,解得:,∴直线AA ′的解析式为:y=﹣x+4,设点M 的坐标为:(x ,﹣x 2+3x+4),则S △AMA ′=×4×[﹣x 2+3x+4﹣(﹣x+4)]=﹣2x 2+8x=﹣2(x ﹣2)2+8,∴当x=2时,△AMA ′的面积最大,最大值S △AMA ′=8,∴M 的坐标为:(2,6);(3)设点P的坐标为(x,﹣x2+3x+4),当P,N,B,Q构成平行四边形时,∵平行四边形ABOC中,点A、C的坐标分别是(0,4)、(﹣1,0),∴点B的坐标为(1,4),∵点Q坐标为(1,0),P为抛物线上一动点,N为x轴上的一动点,①当BQ为边时,PN∥BQ,PN=BQ,∵BQ=4,∴﹣x2+3x+4=±4,当﹣x2+3x+4=4时,解得:x1=0,x2=3,∴P1(0,4),P2(3,4);当﹣x2+3x+4=﹣4时,解得:x3=,x2=,∴P3(,﹣4),P4(,﹣4);②当PQ为对角线时,BP∥QN,BP=QN,此时P与P1,P2重合;综上可得:点P的坐标为:P1(0,4),P2(3,4),P3(,﹣4),P4(,﹣4);如图2,当这个平行四边形为矩形时,点N的坐标为:(0,0)或(3,0).4. (2016 贵州省毕节地区) 如图,已知抛物线y=x2+bx与直线y=2x+4交于A(a,8)、B两点,点P是抛物线上A、B之间的一个动点,过点P分别作x轴、y轴的平行线与直线AB交于点C和点E.(1)求抛物线的解析式;(2)若C为AB中点,求PC的长;(3)如图,以PC,PE为边构造矩形PCDE,设点D的坐标为(m,n),请求出m,n之间的关系式.分析(1)把A点坐标代入直线方程可求得a的值,再代入抛物线可求得b的值,可求得抛物线解析式;(2)联立抛物线和直线解析式可求得B点坐标,过A作AQ⊥x轴,交x轴于点Q,可知OC=AQ=4,可求得C点坐标,结合条件可知P点纵坐标,代入抛物线解析式可求得P点坐标,从而可求得PC的长;(3)根据矩形的性质可分别用m、n表示出C、P的坐标,根据DE=CP,可得到m、n的关系式.解:(1)∵A(a,8)是抛物线和直线的交点,∴A点在直线上,∴8=2a+4,解得a=2,∴A点坐标为(2,8),又A点在抛物线上,∴8=22+2b,解得b=2,∴抛物线解析式为y=x2+2x;(2)联立抛物线和直线解析式可得,解得,,∴B 点坐标为(﹣2,0),如图,过A 作AQ ⊥x 轴,交x 轴于点Q ,则AQ=8,OQ=OB=2,即O 为BQ 的中点,当C 为AB 中点时,则OC 为△ABQ 的中位线,即C 点在y 轴上,∴OC=AQ=4,∴C 点坐标为(0,4),又PC ∥x 轴,∴P 点纵坐标为4,∵P 点在抛物线线上,∴4=x 2+2x ,解得x=﹣1﹣或x=﹣1,∵P 点在A 、B 之间的抛物线上,∴x=﹣1﹣不合题意,舍去,∴P 点坐标为(﹣1,4),∴PC=﹣1﹣0=﹣1;(3)∵D (m ,n ),且四边形PCDE 为矩形,∴C 点横坐标为m ,E 点纵坐标为n ,∵C 、E 都在直线y=2x+4上,∴C (m ,2m+4),E (,n ),∵PC ∥x 轴,∴P 点纵坐标为2m+4,∵P 点在抛物线上,∴2m+4=x 2+2x ,整理可得2m+5=(x+1)2,解得x=﹣1或x=﹣﹣1(舍去),∴P 点坐标为(﹣1,2m+4),∴DE=﹣m ,CP=﹣1﹣m ,∵四边形PCDE 为矩形,∴DE=CP ,即﹣m=﹣1﹣m ,整理可得n 2﹣4n ﹣8m ﹣16=0,即m 、n 之间的关系式为n 2﹣4n ﹣8m ﹣16=0.5. (2013 湖南省常德市) 如图,已知二次函数的图象过点A (0,-3),B ),对称轴为直线12x =-,点P 是抛物线上的一动点,过点P 分别作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,在四边形PMON 上分别截取1111,,,.3333PC MP MD OM OE ON NF NP ====(1)求此二次函数的解析式;(2)求证:以C ,D ,E ,F 为顶点的四边形CDEF 是平行四边形;(3)在抛物线上是否存在这样的点P ,使四边形CDEF 为矩形?若存在,请求出所有符合条件的P 点坐标;若不存在,请说明理由.解:(1)设二次函数的解析式为2y ax bx c =++,将点A (0,-3)、B)、对称轴方程分别代入可得:3,31.22c a c b a ⎧-=⎪=+⎪-=-⎩,解得1,1,3.a ab =⎧⎪=⎨⎪=-⎩∴此二次函数的解析式为23y x x =+-.(2)证明:如图连接CD ,DE ,EF ,FC.∵PM ⊥x 轴,PN ⊥y 轴,∴四边形OMPN 是矩形.∴MP =ON ,OM =PN.又1111,,,,3333PC MP MD OM OE ON NF NP ====∴,DM FN MC NE ==∴△CMD ≅△ENF,同理△ODE ≅△FPC(SAS),∴CF =ED ,CD =EF.,∴四边形CDEF 是平行四边形.(3)如图,作CQ ⊥y 轴于点Q ,设P 点坐标为()2,3x x x +-,则1.3QN PC OE MP ===∴()2133EQ x x =-+-.∴在Rt △ECQ 中,()22222213.9CE EQ CQ x x x =+=+-+当CD ⊥DE 时, ()()()()()()22222222222222222222222222221333413,99143,994114339999553.99DE OD OE x x x x x x CD DM CM x x x CE DE CD x x x x x x x x x =+⎛⎫⎡⎤=-+-+- ⎪⎢⎥⎝⎭⎣⎦=++-=+=++-∴=+=++-+++-=++- ()()()222222222215533,999443,993.x x x x x x x x x x x x ∴+-+=++-=+-+-=±(()()21212212123331,3 1.3311.x x x x y x x x x x y y P +-=====+-=-=-===-∴当时,此时,当时,,此时,,综上可知符合条件的点有四个,分别是,-,-,,,-本题用相似更简单!6.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图所示,直线BC下方的抛物线上有一点P,过点P作PE⊥BC于点E,作PF平行于x轴交直线BC 于点F,求△PEF周长的最大值;(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点P 的横坐标;若不存在,说明理由.【解答】解:(1)把A(﹣1,0),B(3,0)两点坐标代入抛物线y=ax2+bx﹣3,得到,解得,∴抛物线的解析式为y=x2﹣2x﹣3.(2)如图1中,连接PB、PC.设P(m,m2﹣2m﹣3),∵B(3,0),C(0,﹣3),∴OB=OC,∴∠OBC=45°,∵PF∥OB,∴∠PFE=∠OBC=45°,∵PE⊥BC,∴∠PEF=90°,∴△PEF是等腰直角三角形,∴PE最大时,△PEF的面积中点,此时△PBC的面积最大,则有S△PBC=S△POB+S△POC﹣S△BOC=•3•(﹣m2+2m+3)+•3•m﹣=﹣(m﹣)2+,∴m=时,△PBC的面积最大,此时△PEF的面积也最大,此时P(,﹣),∵直线BC的解析式为y=x﹣3,∴F(﹣,﹣),∴PF=,∵△PEF是等腰直角三角形,∴EF=EP=,∴C△PEF最大值=+.(3)①如图2中,当N与C重合时,点N关于对称轴的对称点P,此时思想MNQP是正方形,易知P(2,﹣3).点P横坐标为2,②如图3中,当四边形PMQN是正方形时,作PF⊥y轴于N,ME∥x轴,PE∥y轴.易知△PFN≌△PEM,∴PF=PE,设P(m,m2﹣2m﹣3),∵M(1,﹣4),∴m=m2﹣2m﹣3﹣(﹣4),∴m=或(舍弃),∴P点横坐标为所以满足条件的点P的横坐标为2或.。

中考数学“特殊四边形的存在性问题”题型解析

中考数学“特殊四边形的存在性问题”题型解析

中考数学“特殊四边形的存在性问题”题型解析由抛物线上的点构成特殊四边形的问题,需要根据特殊四边形的性质与判定去确定点的坐标,然后求解 . 具体而言,解该类题时,我们要根据题目中的条件,科学地进行分类,然后画出图形,再根据这个四边形的性质或判定求出这点的坐标,若这一点是根据特殊四边形的特性得到的坐标,我们还应将这一点代入到抛物线的解析式中去验证是否是抛物线上的点 .本节主要来讨论下特殊四边形:平行四边形、菱形、矩形的存在性问题 .类型一:平行四边形问题【例题1】如图,抛物线y = 1/2 x^2 + bx + c 经过点A(-1,0)和点B(3,0),同时交y 轴于点C .(1)求抛物线的解析式;(2)若点Q 在y 轴上,点P 在抛物线上,且以A , B , Q , P 为顶点的四边形是平行四边形,求满足条件的点P 的坐标 .【分析】(1)根据抛物线经过A , B 两点即可求得b , c 的值,可解题;(2)以A , B , Q , P 为顶点的四边形是平行四边形,则点P 横坐标为4 或- 4,将x = 4 或- 4 代入抛物线解析式即可求得y 的值,即可解题 .【解析】(1)把A(-1,0),B(3,0)代入y = 1/2 x^2 + bx + c 中,∴抛物线的解析式是y = 1/2 x^2 - x - 3/2 .(2)①当AB 为边时,只要PQ∥AB 且PQ = AB = 4 即可 .又知点Q 在y 轴上,∴点P 的横坐标为4 或- 4 ,这时符合条件的点P 有两个,分别记为P1 , P2,把x = 4 代入y = 1/2 x^2 - x - 3/2 ,得y = 5/2 ,把x = - 4 代入y = 1/2 x^2 - x - 3/2 ,得y = 21/2 ,此时P1(4 , 5/2),P2(- 4 , 21/2);②当AB 为对角线时,只要线段PQ 与线段AB 互相平分即可 .又知点Q 在y 轴上,且线段AB 中点的横坐标为1,∴点P 的横坐标为2,这时符合条件的P 只有一个记为P3 ,而且当x = 2 时,y = - 3/2 ,此时P3(2,- 3/2),综上,满足条件的P 为P1(4 , 5/2),P2(- 4 , 21/2),P3(2,-3/2).类型二:菱形问题【例题2】如图,在平面直角坐标系中,点O 为坐标原点,直线y = -x + b 与坐标轴交于C,D 两点,直线AB 与坐标轴交于A , B 两点,线段OA , OC 的长是方程x^2 - 3x + 2 = 0 的两个根(OA > OC).(1)求点A , C 的坐标;(2)直线AB 与直线CD 交于点E,若点E 是线段AB 的中点,反比例函数y = k/x (k ≠0 )的图象的一个分支经过点E,求k 的值;(3)在(2)的条件下,点M 在直线CD 上,坐标平面内是否存在点N,使以点B , E , M , N 为顶点的四边形是菱形?若存在,请直接写出满足条件的点N 的坐标;若不存在,请说明理由 .【分析】(1)利用分解因式法解一元二次方程x^2 - 3x + 2 = 0 即可得出OA , OC 的值,再根据点所在的位置即可得出A , C 的坐标;(2)根据点C 的坐标利用待定系数法即可求出直线CD 的解析式,根据点A , B 的横坐标结合点E 为线段AB 的中点即可得出点E 的横坐标,将其代入直线CD 的解析式中即可求出点E 的坐标,再利用待定系数法即可求出k 的值;(3)假设存在,设点M 的坐标为(m , - m + 1), 分别以BE 为边、BE 为对角线来考虑 .根据菱形的性质找出关于m 的方程,解方程即可得出点M 的坐标,再结合点B , E 的坐标即可得出点N 的坐标 .【解析】(1)x^2 - 3x + 2 = (x - 1)(x - 2)= 0 ,∴x1 = 1 , x2 = 2 ,∵OA > OC ,∴OA = 2 , OC = 1 ,∴A(-2,0),C(1,0);(2)将C(1,0)代入y = - x + b 中,得0 = - 1 + b , 解得b = 1 ,∴直线CD 的解析式为y = - x + 1 .∵点E 为线段AB 的中点,A(-2,0),B 的横坐标为0 ,∴点E 的横坐标为- 1 .∵点E 为直线CD 上一点,∴E(-1,2).将点E(-1,2)代入y = k/x (k ≠0 )中,得2 = k / -1 , 解得k = -2 ;(3)假设存在,设点M 的坐标为(m , - m + 1),以点B , E , M , N 为顶点的四边形是菱形分两种情况(如上图所示)类型三:矩形问题【例题3】【解题策略】这三道例题分别呈现了运动变化过程中的平行四边形、菱形、矩形的存在性问题,三道例题的思路都是要依据特殊四边形的性质构图并建立方程求点的坐标 .特别地,由于菱形任意三个顶点组成的三角形都是等腰三角形,因此可将菱形问题转化为等腰三角形的存在性问题;而矩形问题则可转化为直角三角形的问题,要注意体会相关知识之间的联系 .。

中考复习专题8二次函数与矩形存在性问题(含解析)

中考复习专题8二次函数与矩形存在性问题(含解析)

专题8二次函数与矩形存在性问题1.矩形的判定:(1)有一个角是直角的平行四边形是矩形;(2)对角线相等的平行四边形是矩形;(3)有三个角为直角的四边形是矩形.2.题型分析矩形除了具有平行四边形的性质之外,还有“对角线相等”或“一个角为直角”,因此相比起平行四边形,坐标系中的矩形满足以下3个等式:因此在矩形存在性问题最多可以有3个未知量,代入可以得到三元一次方程组,可解.确定了有3个未知量,则可判断常见矩形存在性问题至少有2个动点,多则可以有3个.下:同时,也可以先根据A、B的坐标求出直线AB的解析式,进而得到直线AD或BC的解析式,从而确定C 或D的坐标.【例1】(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.(1)求a,c的值;(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.【分析】(1)把A(﹣2,0),B(0,4)两点代入抛物线y=ax2+x+c中列方程组解出即可;(2)利用待定系数可得直线AB的解析式,再设直线DE的解析式为:y=mx,点D是直线DE和AB的交点,列方程可得点D的横坐标,根据△BDO与△OCE的面积相等列等式可解答;(3)设P(t,﹣t2+t+4),分两种情况:作辅助线构建相似三角形,证明三角形相似或利用等角的三角函数列等式可解答.【解答】解:(1)把A(﹣2,0),B(0,4)两点代入抛物线y=ax2+x+c中得:解得:;(2)由(1)知:抛物线解析式为:y=﹣x2+x+4,设直线AB的解析式为:y=kx+b,则,解得:,∴AB的解析式为:y=2x+4,设直线DE的解析式为:y=mx,∴2x+4=mx,∴x=,当x=3时,y=3m,∴E(3,3m),∵△BDO与△OCE的面积相等,CE⊥OC,∴•3•(﹣3m)=•4•,∴9m2﹣18m﹣16=0,∴(3m +2)(3m ﹣8)=0,∴m 1=﹣,m 2=(舍),∴直线DE 的解析式为:y =﹣x ;(3)存在,B ,F ,G ,P 为顶点的四边形是以BF 为一边的矩形有两种情况:设P (t ,﹣t 2+t +4),①如图1,过点P 作PH ⊥y 轴于H ,∵四边形BPGF 是矩形,∴BP =FG ,∠PBF =∠BFG =∴∠CFG +∠BFO =∠BFO +∠OBF =∠CFG +∠CGF =∠OBF +∠PBH =90°,∴∠PBH =∠OFB =∠CGF ,∵∠PHB =∠FCG =90°,∴△PHB ≌△FCG (AAS ),∴PH =CF ,∴CF =PH =t ,OF =3﹣t ,∵∠PBH =∠OFB ,∴=,即=,解得:t 1=0(舍),t 2=1,∴F (2,0);②如图2,过点G作GN⊥y轴于N,过点P作PM⊥x轴于M,同①可得:NG=FM=3,OF=t﹣3,∵∠OFB=∠FPM,∴tan∠OFB=tan∠FPM,∴=,即=,解得:t1=,t2=(舍),∴F(,0);综上,点F的坐标为(2,0)或(,0).【例2】(2022•绥化)如图,抛物线y=ax2+bx+c交y轴于点A(0,﹣4),并经过点C(6,0),过点A作AB⊥y轴交抛物线于点B,抛物线的对称轴为直线x=2,D点的坐标为(4,0),连接AD,BC,BD.点E从A点出发,以每秒个单位长度的速度沿着射线AD运动,设点E的运动时间为m秒,过点E作EF⊥AB于F,以EF为对角线作正方形EGFH.(1)求抛物线的解析式;(2)当点G随着E点运动到达BC上时,求此时m的值和点G的坐标;(3)在运动的过程中,是否存在以B,G,C和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G的坐标,如果不存在,请说明理由.【分析】(1)根据抛物线的对称轴为直线x=2,可得出抛物线与x轴的另一个交点的坐标为(﹣2,0),列出交点式,再将点A(0,﹣4)可得出抛物线的解析式;(2)根据可得出△ABD是等腰直角三角形,再根据点E的运动和正方形的性质可得出点H,F,G的坐标,根据点B,C的坐标可得出直线BC的解析式,将点G代入直线BC的解析式即可;(3)若存在,则△BGC是直角三角形,则需要分类讨论,当点B为直角顶点,当点G为直角顶点,当点C为直角顶点,分别求解即可.【解答】解:(1)∵抛物线的对称轴为直线x=2,D点的坐标为(4,0),∴抛物线与x轴的另一个交点为(﹣2,0),∴抛物线的解析式为:y=a(x+2)(x﹣6),将点A(0,﹣4)解析式可得,﹣12a=﹣4,∴a=.∴抛物线的解析式为:y=(x+2)(x﹣6)=x2﹣x﹣4.(2)∵AB⊥y轴,A(0,﹣4),∴点B的坐标为(4,﹣4).∵D(4,0),∴AB=BD=4,且∠ABD=90°,∴△ABD是等腰直角三角形,∠BAD=45°.∵EF⊥AB,∴∠AFE=90°,∴△AEF是等腰直角三角形.∵AE=m,∴AF=EF=m,∴E(m,﹣4+m),F(m,﹣4).∵四边形EGFH是正方形,∴△EHF是等腰直角三角形,∴∠HEF=∠HFE=45°,∴FH是∠AFE的角平分线,点H是AE的中点.∴H(m,﹣4+m),G(m,﹣4+m).∵B(4,﹣4),C(6,0),∴直线BC的解析式为:y=2x﹣12.当点G随着E点运动到达BC上时,有2×m﹣12=﹣4+m.解得m=.∴G(,﹣).(3)存在,理由如下:∵B(4,﹣4),C(6,0),G(m,﹣4+m).∴BG2=(4﹣m)2+(m)2,BC2=(4﹣6)2+(﹣4)2=20,CG2=(6﹣m)2+(﹣4+m)2.若以B,G,C和平面内的另一点为顶点的四边形是矩形,则△BGC是直角三角形,∴分以下三种情况:①当点B为直角顶点时,BG2+BC2=CG2,∴(4﹣m)2+(m)2+20=(6﹣m)2+(﹣4+m)2,解得m=,∴G(,﹣);②当点C为直角顶点时,BC2+CG2=BG2,∴20+(6﹣m )2+(﹣4+m )2=(4﹣m )2+(m )2,解得m =,∴G (,﹣);③当点G 为直角顶点时,BG 2+CG 2=BC 2,∴(4﹣m )2+(m )2+(6﹣m )2+(﹣4+m )2=20,解得m =或2,∴G (3,﹣3)或(,﹣);综上,存在以B ,G ,C 和平面内的另一点为顶点的四边形是矩形,点G 的坐标为(,﹣)或(,﹣)或(3,﹣3)或(,﹣).【例3】(2022•黔东南州)如图,抛物线y =ax 2+2x +c 的对称轴是直线x =1,与x 轴交于点A ,B (3,0),与y 轴交于点C ,连接AC .(1)求此抛物线的解析式;(2)已知点D 是第一象限内抛物线上的一个动点,过点D 作DM ⊥x 轴,垂足为点M ,DM 交直线BC 于点N ,是否存在这样的点N ,使得以A ,C ,N 为顶点的三角形是等腰三角形.若存在,请求出点N 的坐标,若不存在,请说明理由;(3)已知点E 是抛物线对称轴上的点,在坐标平面内是否存在点F ,使以点B 、C 、E 、F 为顶点的四边形为矩形,若存在,请直接写出点F 的坐标;若不存在,请说明理由.【分析】(1)由抛物线的对称轴为直线x =1,抛物线经过点B (3,0),可得A (﹣1,0),用待定系数法即可求解;(2)求出直线BC的解析式,设点D坐标为(t,﹣t2+2t+3),则点N(t,﹣t+3),利用勾股定理表示出AC2,AN2,CN2,然后分①当AC=AN时,②当AC=CN时,③当AN=CN时三种情况进行讨论,列出关于t的方程,求出t的值,即可写出点N的坐标;(3)分两种情形讨论:①当BC为对角线时,②当BC为边时,先求出点E的坐标,再利用平行四边形的中心对称性求出点F的坐标即可.【解答】解:(1)抛物线y=ax2+2x+c的对称轴是直线x=1,与x轴交于点A,B(3,0),∴A(﹣1,0),∴,解得,∴抛物线的解析式y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3,∴C(0,3),设直线BC的解析式为y=kx+3,将点B(3,0)代入得:0=3k+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x设点D坐标为(t,﹣t2+2t+3),则点N(t,﹣t+3),∵A(﹣1,0),C(0,3),∴AC2=12+32=10,AN2=(t+1)2+(﹣t+3)2=2t2﹣4t+10,CN2=t2+(3+t﹣3)2=2t2,①当AC=AN时,AC2=AN2,∴10=2t2﹣4t+10,解得t1=2,t2=0(不合题意,舍去),∴点N的坐标为(2,1);②当AC=CN时,AC2=CN2,∴10=2t2,解得t1=,t2=﹣(不合题意,舍去),∴点N的坐标为(,3﹣);③当AN=CN时,AN2=CN2,∴2t2﹣4t+10=2t2,解得t=,∴点N的坐标为(,);综上,存在,点N的坐标为(2,1)或(,3﹣)或(,);(3)设E(1,a),F(m,n),∵B(3,0),C(0,3),∴BC=3,①以BC为对角线时,BC2=CE2+BE2,∴(3)2=12+(a﹣3)2+a2+(3﹣1)2,解得:a=,或a=,∴E(1,)或(1,),∵B(3,0),C(0,3),∴m+1=0+3,n+=0+3或n+=0+3,∴m=2,n=或n=,∴点F的坐标为(2,)或(2,);②以BC为边时,BE2=CE2+BC2或CE2=BE2+BC2,∴a2+(3﹣1)2=12+(a﹣3)2+(3)2或12+(a﹣3)2=a2+(3﹣1)2+(3)2,解得:a=4或a=﹣2,∴E(1,4)或(1,﹣2),∵B(3,0),C(0,3),∴m+0=1+3,n+3=0+4或m+3=1+0,n+0=3﹣2,∴m=4,n=1或m=﹣2,n=1,∴点F的坐标为(4,1)或(﹣2,1),综上所述:存在,点F的坐标为(2,)或(2,)或(4,1)或(﹣2,1).【例4】(2022•梁山县一模)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,m取最大值时,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.【分析】(1)因为抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)两点,所以可以假设y=a(x+2)(x ﹣4),求出点C坐标代入求出a即可;(2)由△CMD∽△FMP,可得m==,根据关于m关于x的二次函数,利用二次函数的性质即可解决问题;(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形.分两种情形分别求解即可:①当DP是矩形的边时,有两种情形;②当DP是对角线时;【解答】解:(1)因为抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)两点,所以可以假设y=a(x+2)(x﹣4),∵OC=2OA,OA=2,∴C(0,4),代入抛物线的解析式得到a=﹣,∴y=﹣(x+2)(x﹣4)或y=﹣x2+x+4或y=﹣(x﹣1)2+.(2)如图1中,由题意,点P在y轴的右侧,作PE⊥x轴于E,交BC于F.∵CD∥PE,∴△CMD∽△FMP,∴m==,∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1),∵BC的解析式为y=﹣x+4,设P(n,﹣n2+n+4),则F(n,﹣n+4),∴PF=﹣n2+n+4﹣(﹣n+4)=﹣(n﹣2)2+2,∴m==﹣(n﹣2)2+,∵﹣<0,∴当n=2时,m有最大值,最大值为,此时P(2,4).(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形.①当DP是矩形的边时,有两种情形,a、如图2﹣1中,四边形DQNP是矩形时,有(2)可知P(2,4),代入y=kx+1中,得到k=,∴直线DP的解析式为y=x+1,可得D(0,1),E(﹣,0),由△DOE∽△QOD可得=,∴OD2=OE•OQ,∴1=•OQ,∴OQ=,∴Q(,0).根据矩形的性质,将点P向右平移个单位,向下平移1个单位得到点N,∴N(2+,4﹣1),即N(,3)b、如图2﹣2中,四边形PDNQ是矩形时,∵直线PD的解析式为y=x+1,PQ⊥PD,∴直线PQ的解析式为y=﹣x+,∴Q(8,0),根据矩形的性质可知,将点D向右平移6个单位,向下平移4个单位得到点N,∴N(0+6,1﹣4),即N(6,﹣3).②当DP是对角线时,设Q(x,0),则QD2=x2+1,QP2=(x﹣2)2+42,PD2=13,∵Q是直角顶点,∴QD2+QP2=PD2,∴x2+1+(x﹣2)2+16=13,整理得x2﹣2x+4=0,方程无解,此种情形不存在,综上所述,满足条件的点N坐标为(,3)或(6,﹣3).1.(2022•武功县模拟)在平面直角坐标系中,已知抛物线L1:y=﹣x2+bx+c(b、c为常数)与x轴交于A (﹣6,0)、B(2,0)两点.(1)求抛物线L1的函数表达式;(2)将该抛物线L1向右平移4个单位长度得到新的抛物线L2,与原抛物线L1交于点C,点D是点C 关于x轴的对称点,点N在平面直角坐标系中,请问在抛物线L2上是否存在点M,使得以点C、D、M、N为顶点的四边形是以CD为边的矩形?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法直接求解即可;(2)存在,根据题意求得抛物线L2的表达式,再与抛物线L1联立,求得点C的坐标,进而求得点D的坐标;要使得以点C、D、M、N为顶点的四边形是以CD为边的矩形,分当M在x轴上方时和当M在x轴下方时,两种情况讨论,根据矩形的性质列出方程,求解即可.【解答】解:(1)把A(﹣6,0)、B(2,0)代入y=﹣x2+bx+c中,得,解得,∴抛物线L1的函数表达式为y=﹣x2﹣4x+12;(2)存在,理由如下:∵y=﹣x2﹣4x+12=﹣(x+2)+16,∴抛物线L2的函数表达式为y=﹣(x+2﹣4)2+16=﹣(x﹣2)2+16=﹣x2+4x+12,令﹣x2﹣4x+12=﹣x2+4x+12,解得:x=0,当x=0时,y=﹣x2﹣4x+12=12,∴点C的坐标为(0,12),∵点D是点C关于x轴的对称点,∴点D坐标为(0,﹣12),①当M在x轴上方时,要使得以点C、D、M、N为顶点的四边形是以CD为边的矩形,则y M=y C,即﹣x2+4x+12=12,解得:x1=0,x2=4,∴M1(4,12);②当M在x轴下方时,要使得以点C、D、M、N为顶点的四边形是以CD为边的矩形,则y M=y D,即﹣x2+4x+12=﹣12,解得:x1=2+2,x2=2﹣2,M2(2+2,﹣12),M3(2﹣2,﹣12).综上所述,在抛物线L2上是否存在点M,使得以点C、D、M、N为顶点的四边形是以CD为边的矩形,点M的坐标为(4,12)或(2+2,﹣12)或(2﹣2,﹣12).2.(2022•东莞市校级一模)如图,在平面直角坐标系中,抛物线y=+bx+c与x轴的正半轴交于点D,与y轴交于点C,点A在抛物线上,AB⊥y轴于点B.△ABC绕点B逆时针旋转90°得到△OBE,连接DE.当+bx+c<0时,x的取值范围是﹣<x<2.(1)求该抛物线的解析式;(2)求证:四边形OBED是矩形;(3)在线段OD上找一点N,过点N作直线m垂直x轴,交OE于点F,连接DF,当△DNF的面积取得最大值时,求点N的坐标,在此基础上,在直线m上找一点P,连接OP、DP.使得∠OPD+∠DOE =90°,求点P的坐标.【分析】(1)由题意可知抛物线与x轴的两个交点为(2,0),(﹣,0),再将两个点代入解析式即可求解;(2)由旋转是性质,可得OB=AB,则设A(﹣m,m),求出A点坐标,由此可得BE=OD,再由BE ∥OD,OB⊥OD即可证明;(3)设N(n,0),则F(n,n),则S=﹣(n﹣1)2+,可知当n=1时,S有最大值,此时N(1,0),F(1,),通过已知可推导出∠OPN=∠POE,从而得到PF=OF,设P(1,t),则|t﹣|=,求出t的值即可求点P的坐标.【解答】(1)解:∵当+bx+c<0时,x的取值范围是﹣<x<2,∴抛物线与x轴的两个交点为(2,0),(﹣,0),∴,解得,∴y=﹣x﹣1;(2)证明:由(1)可知D(2,0),C(0,﹣1),∴OD=2,OC=1,∵AB⊥y轴,∴△ABC是直角三角形,∵△ABC绕点B逆时针旋转90°得到△OBE,∴OB⊥BE,AB=OB,设A(﹣m,m),∴m=m2﹣m﹣1,解得m=﹣1或m=,∴A(﹣1,1),∴BO=1,∴BC=BE=2,∴BE=OD,∵∠BOD=90°,∴BE∥OD,∴四边形OBED是矩形;(3)∵E(2,1),∴直线OE的解析式为y=x,设N(n,0),则F(n,n),∴S=×DN×FN=×(2﹣n)×n=﹣(n﹣1)2+,∵N在线段OD上,∴0≤n≤2,∴当n=1时,S有最大值,此时N(1,0),F(1,),∵∠PNO=90°,∴∠EOD+∠POE=90°,∵∠OPD+∠DOE=90°,∴∠POE+∠OPN=∠OPD,∵O点与D点关于l对称,∴∠OPN=∠NPD,∴∠OPN=∠POE,∴PF=OF,设P(1,t),∴|t﹣|=,∴t=+或t=﹣+,∴P点坐标为(1,+)或(1,﹣+).3.(2022•石家庄二模)如图,抛物线y=﹣x2+bx+c(c≠0)与x轴交于点A(﹣1,0),B(点A在点B左侧),与y轴交于点C,连接BC.(1)点C的纵坐标为b+1(用含b的式子表示),∠OBC=45度;(2)当b=1时,若点P为第一象限内抛物线上一动点,连接BP,CP,求△BCP面积的最大值,并求出此时点P的坐标;(3)已知矩形ODEF的顶点D,F分别在x轴、y轴上,点E的坐标为(3,2).①抛物线的顶点为Q,当AQ的中点落在直线EF上时,求点Q的坐标;②当抛物线在矩形内部的部分对应的函数值y随x的增大而减小时,请直接写出b的取值范围.【分析】(1)将(﹣1,0)代入解析式可得c与b的关系,从而可得OB=OC,进而求解.(2)由b=1可得抛物线解析式及点B,C坐标,根据待定系数法求出直线BC解析式,设点P坐标为(m,﹣m2+m+2),作PE⊥x轴交BC于点E,连接PC,PB,由S△BCP=S△CEP+S△BEP求解.(3)①将二次函数解析式化为顶点式可得点Q坐标,由点A,Q坐标可得A,Q中点坐标,进而求解.②根据抛物线与y轴交点的位置及抛物线对称轴的位置,结合图象求解.【解答】解:(1)将(﹣1,0)代入y=﹣x2+bx+c得0=﹣1﹣b+c,解得c=b+1,∴y=﹣x2+bx+b+1,设点B坐标为(x2,0),则抛物线对称轴为直线x==,解得x2=b+1,∴点B坐标为(b+1,0),∴OC=OB=b+1,∴∠OBC=45°,故答案为:b+1,45.(2)当b=1时,y=﹣x2+x+2,作PE⊥x轴交BC于点E,连接PC,PB,设直线BC解析式为y=kx+b,将B(2,0),(0,2)代入y=kx+b得,解得,∴y=﹣x+2.设点P坐标为(m,﹣m2+m+2),则点E坐标为(m,﹣m+2),∴PE=﹣m2+2m,=S△CEP+S△BEP=PE•x P+PE(x B﹣x P)=PE•x B=﹣m2+2m=﹣(m﹣1)2+1,∵S△BCP∴m=1时,△BCP面积的最大为1,此时点P坐标为(1,2).(3)①∵y=﹣x2+bx+b+1=﹣(x﹣)2++b+1,∴点Q坐标为(,+b+1),∵A(﹣1,0),∴点A,Q中点坐标为(﹣+,++),∴++=2,解得b=2或b=﹣6,当b=2时,点Q坐标为(1,4),当b=﹣6时,点Q坐标为(﹣3,4).②∵E(3,2),∴点F坐标为(0,2),将(0,2)代入y=﹣x2+bx+b+1得b+1=2,解得b=1,将E(3,2)代入y=﹣x2+bx+b+1得2=﹣9+4b+1,解得b=,∴1≤b<,满足题意.当抛物线顶点Q(,+b+1)落在y轴上时,=0,解得b=0,当抛物线经过原点时,0=b+1,解得b=﹣1,∴﹣1<b≤0符合题意.综上所述,1≤b<或﹣1<b≤0.4.(2022•滨海县一模)如图1,在平面直角坐标中,抛物线与x轴交于点A(﹣1,0)、B (4,0)两点,与y轴交于点C,连接BC,直线BM:y=2x+m交y轴于点M.P为直线BC上方抛物线上一动点,过点P作x轴的垂线,分别交直线BC、BM于点E、F.(1)求抛物线的表达式:(2)当点P落在抛物线的对称轴上时,求△PBC的面积:(3)①若点N为y轴上一动点,当四边形BENF为矩形时,求点N的坐标;②在①的条件下,第四象限内有一点Q,满足QN=QM,当△QNB的周长最小时,求点Q的坐标.【分析】(1)根据抛物线与x轴交于点A(﹣1,0)、B(4,0)两点,即知抛物线的表达式为:y=﹣(x+1)(x﹣4),即y=﹣x2+x+2;(2)由y=﹣x2+x+2求出P(,),由B(4,0),C(0,2)得直线BC的表达式为y=﹣x+2,从而可得E(,),PE=﹣=,即可得△PBC的面积是;(3)①过点N作NG⊥EF于点G,求得直线BM的表达式为:y=2x﹣8即知M(0,﹣8),设E(a,﹣a+2),则F(a,2a﹣8),证明△NEG≌△BFH(AAS),可得NG=BH,EG=FH,即有a=4﹣a,解得F(2,﹣4),E(2,1),从而可得N(0,﹣3);②取MN的中点D,由QN=QM,知点Q在MN的垂直平分线上,又C△QNB=BQ+NQ+BN=BQ+NQ+5最小,只需BQ+MQ最小,即点B、Q、M共线,此时,点Q即为MN的垂=BQ+MQ+5,故要使C△QNB直平分线与直线BM的交点,由N(0,﹣3),M(0,﹣8),得D(0,﹣),即可得Q(,﹣).【解答】解:(1)∵抛物线与x轴交于点A(﹣1,0)、B(4,0)两点,∴抛物线的表达式为:y=﹣(x+1)(x﹣4),即y=﹣x2+x+2;(2)如图:∵点P落在抛物线y=﹣x2+x+2的对称轴上,∴P为抛物线y=﹣x2+x+2的顶点,∵y=﹣x2+x+2=﹣(x﹣)2+,∴P(,),在y=﹣x2+x+2中,令x=0得y=2,∴C(0,2)由B(4,0),C(0,2)得直线BC的表达式为y=﹣x+2,把x=代入y=﹣x+2得y=,∴E(,),∴PE=﹣=,=PE•|x B﹣x C|=××4=,∴S△PBC答:△PBC的面积是;(3)①过点N作NG⊥EF于点G,如图:∵y=2x+m过点B(4,0),∴0=2×4+m,解得m=﹣8,∴直线BM的表达式为:y=2x﹣8,∴M(0,﹣8),设E(a,﹣a+2),则F(a,2a﹣8),∵四边形BENF为矩形,∴∠NEG=∠BFH,NE=BF,又∠NGE=90°=∠BHF,∴△NEG≌△BFH(AAS),∴NG=BH,EG=FH,而NG=a,BH=OB﹣OH=4﹣a,∴a=4﹣a,解得a=2,∴F(2,﹣4),E(2,1),∴EH=1,∵EG=FH,∴EF﹣EG=EF﹣FH,即GF=EH=1,∵F(2,﹣4),∴G(2,﹣3),∴N(0,﹣3);②取MN的中点D,如图:∵QN=QM,∴点Q在MN的垂直平分线上,又∵B(4,0),N(0,﹣3),∴BN=5,=BQ+NQ+BN=BQ+NQ+5=BQ+MQ+5,∴C△QNB最小,只需BQ+MQ最小,∴要使C△QNB∴当点B、Q、M共线时,△QNB的周长最小,此时,点Q即为MN的垂直平分线与直线BM的交点,∵N(0,﹣3),M(0,﹣8),∴D(0,﹣),在y=2x﹣8中,令y=﹣得:﹣=2x﹣8,解得x=,∴Q(,﹣).5.(2022•石家庄模拟)某公园有一个截面由抛物线和矩形构成的观景拱桥,如图1所示,示意图如图2,且已知图2中矩形的长AD为12米,宽AB为4米,抛物线的最高处E距地面BC为8米.(1)请根据题意建立适当的平面直角坐标系,并求出抛物线的函数解析式;(2)若观景拱桥下放置两根长为7米的对称安置的立柱,求这两根立柱之间的水平距离;(3)现公园管理处打算在观景桥侧面搭建一个矩形“脚手架”PQMN(如图2),对观景桥表面进行维护,P,N点在抛物线上,Q,M点在BC上,为了筹备材料,需求出“脚手架”三根支杆PQ,PN,MN的长度之和的最大值,请你帮管理处计算一下.【分析】(1)以CB所在的直线为x轴,点E为顶点建立直角坐标系,用待定系数法求解即可;(2)确定立柱的纵坐标,解方程可得答案;(3)设N(m,﹣m2+8),则PN=2m,MN=PQ=﹣m2+8,三根支杆的总长度w=﹣m2+2m+16,【解答】解:(1)如图,以CB所在的直线为x轴,点E为顶点建立直角坐标系,由题意得,E(0,8),A(﹣6,4),设抛物线的解析式为y=ax2+c,代入可得,解得,∴y=﹣x2+8;(2)依题意可得﹣x2+8=7,解得x=±3,∴3﹣(﹣3)=6(米),答:这两根立柱之间的水平距离是6米;(3)设N(m,﹣m2+8),则PN=2m,MN=PQ=﹣m2+8,∴三根支杆的总长度w=PQ+PN+MN+2m+2(﹣m2+8)=﹣m2+2m+16,∵a=﹣<0,∴m=﹣=4.5时,w最大=20.5,∴三根支杆PQ,PN,MN的长度之和的最大值为20.5米.6.(2022•朝阳区校级一模)已知二次函数y=x2﹣2mx﹣m与y轴交于点M,直线y=m+5与y轴交于点A,与直线x=4交于点B,直线y=﹣2m与y轴交于点D(A与D不重合),与直线x=4交于点C,构建矩形ABCD.(1)当点M在线段AD上时,求m的取值范围.(2)求证:抛物线y=x2﹣2mx﹣m与直线y=m+5恒有两个交点.(3y随着x的增大而增大或y随x的增大而减小时,求m的取值范围.(4)当抛物线在矩形内部(包括边界)最高点的横坐标等于点B到x轴距离的时,直接写出m的取值范围.【分析】(1)由题意得:M(0,﹣m),A(0,m+5),D(0,﹣2m),分两种情况:当m+5>﹣2m,即m>﹣时,当m+5<﹣2m,即m<﹣时,分别根据“点M在线段AD上”,列出不等式求解即可;(2)由题意得:x2﹣2mx﹣2m﹣5=0,根据根的判别式即可证得结论;(3)由题意得:抛物线的对称轴为直线x=m,顶点坐标为(m,﹣m2﹣m),开口向上,分三种情况:①当m+5<﹣2m,即m<﹣时,②当m+5>﹣2m,即﹣<m≤0时,③当16﹣9m≤﹣2m,即m≥时,分别画出图形讨论即可;(4)由题意得:抛物线y=x2﹣2mx﹣m在矩形ABCD中的最高点的横坐标x的范围是0≤x≤4,点B(4,m+5)到x轴的距离为|m+5|,根据“抛物线在矩形内部(包括边界)最高点的横坐标等于点B到x轴距离的”分三种情况:①当m <﹣5时,抛物线在矩形内部(包括边界)最高点的坐标为(﹣m ﹣,﹣2m ),②当﹣5≤m <时,抛物线在矩形内部(包括边界)最高点的坐标为(m +,﹣2m ),③当m >﹣,且16﹣9m ≥m +5,即﹣<m ≤时,抛物线在矩形内部(包括边界)最高点的坐标为(m +,m +5),分别代入抛物线解析式求解即可.【解答】(1)解:由题意得:M (0,﹣m ),A (0,m +5),D (0,﹣2m ),当m +5>﹣2m ,即m >﹣时,∵点M 在线段AD 上,∴﹣2m <﹣m <m +5,∴m >0;当m +5<﹣2m ,即m <﹣时,∵点M 在线段AD 上,∴m +5<﹣m <﹣2m ,∴m <;综上所述,m 的取值范围为m >0或m <.(2)证明:当x 2﹣2mx ﹣m =+5时,整理得:x 2﹣2mx ﹣2m ﹣5=0,Δ=(﹣2m )2﹣4×1×(﹣2m ﹣5)=4(m +1)2+16,∵4(m +1)2≥0,∴4(m +1)2+16>0,∴抛物线y =x 2﹣2mx ﹣m 与直线y =m +5恒有两个交点.(3)解:∵y =x 2﹣2mx ﹣m =(x ﹣m )2﹣m 2﹣m ,∴该抛物线的对称轴为直线x =m ,顶点坐标为(m ,﹣m 2﹣m ),开口向上,与y 轴的交点M (0,﹣m ),①当m +5<﹣2m ,即m <﹣时,如图1,此时抛物线在矩形内部的函数值y随着x的增大而增大;②当m+5>﹣2m,即﹣<m≤0时,如图2,此时抛物线在矩形内部的函数值y随着x的增大而增大;③当m>0时,如图3,令x=4,则y=16﹣8m﹣m=16﹣9m,当16﹣9m≤﹣2m,即m≥时,抛物线在矩形内部(不包括边界)的函数值y随着x的增大而减小;综上,m的取值范围为m<﹣或﹣<m≤0或m≥.(4)解:由题意得:抛物线y=x2﹣2mx﹣m在矩形ABCD中的最高点的横坐标x的范围是0≤x≤4,点B(4,m+5)到x轴的距离为|m+5|,当x=4时,y=16﹣9m,∵抛物线在矩形内部(包括边界)最高点的横坐标等于点B到x轴距离的,∴抛物线在矩形内部(包括边界)最高点的横坐标为|m+5|,①当m<﹣5时,抛物线在矩形内部(包括边界)最高点的坐标为(﹣m﹣,﹣2m),∴﹣2m=(﹣m﹣)2﹣2m(﹣m﹣)﹣m,解得:m=,∵m<﹣5,∴m=﹣;②当﹣5≤m<时,抛物线在矩形内部(包括边界)最高点的坐标为(m+,﹣2m),∴﹣2m=(m+)2﹣2m(m+)﹣m,解得:m=﹣1,∵﹣5≤m<,∴m=﹣1﹣;③当m>﹣,且16﹣9m≥m+5,即﹣<m≤时,抛物线在矩形内部(包括边界)最高点的坐标为(m +,m +5),∴m +5=(m +)2﹣2m (m +)﹣m ,解得:m =﹣3,∵﹣<m ≤,∴m =﹣3+;综上所述,m 的值为﹣或﹣1﹣或﹣3+.7.(2022•长春一模)已知抛物线y =x 2﹣2mx +2m +1.(1)写出抛物线y =x 2﹣2mx +2m +1的顶点坐标(用含m 的式子表示).(2)当x ≥1时,y 随x 的增大而增大,则m 的取值范围是m ≤1.(3)当﹣1≤x ≤2时,函数y =x 2﹣2mx +2m +1的图象记为G ,设图象G 的最低点的纵坐标为y 0.当y 0=﹣1时,求m 的值.(4)当m >0时,分别过点A (2,1)、B (2,4)作y 轴垂线,垂足分别为点D 、点C ,抛物线在矩形ABCD 内部的图象(包括边界)的最低点到直线y =﹣2的距离等于最高点到x 轴的距离,直接写出m 的值.【分析】(1)由y =(x ﹣m )2﹣m 2+2m +1,即可求解;(2)由抛物线的图象可得m ≤y 随x 的增大而增大;(3)分三种情况讨论:当m <﹣1时,y 0=2+4m =﹣1,解得m =﹣(舍);当m >2时,x =2,函数有最小值,y 0=5﹣2m =﹣1,解得m =3;当﹣1≤m ≤2时,y 0=﹣m 2+2m +1=﹣1,解得m =+1(舍)或m =﹣+1;(4)分五种情况讨论:当0<m ≤时,﹣m 2+2m +1+2=4,解得m =1(舍);当<m ≤1时,﹣m 2+2m +1+2=4﹣2m +1,解得m =+2(舍)或m =﹣+2;当1<m ≤时,﹣m 2+2m +1+2=2m +1,解得m =或m =﹣(舍);当<m ≤2时,﹣m 2+2m +1+2=4,解得m =1(舍);当m >2时,最高点纵坐标是4,最低点纵坐标是1,此时不符合题意.【解答】解:(1)∵y =x 2﹣2mx +2m +1=(x ﹣m )2﹣m 2+2m +1,∴顶点坐标为(m ,﹣m 2+2m +1);(2)∵抛物线开口向上,∴m≤1时,y随x的增大而增大,故答案为:m≤1;(3)当m<﹣1时,x=﹣1,函数有最小值,∴y0=2+4m,∵y0=﹣1,∴2+4m=﹣1,解得m=﹣(舍);当m>2时,x=2,函数有最小值,∴y0=5﹣2m,∵y0=﹣1,∴5﹣2m=﹣1,解得m=3;当﹣1≤m≤2时,x=m,函数有最小值,∴y0=﹣m2+2m+1,∵y0=﹣1,∴﹣m2+2m+1=﹣1,解得m=+1(舍)或m=﹣+1;综上所述:m的值为3或﹣+1;(4)当0<m≤时,﹣m2+2m+1+2=4,解得m=1(舍);当<m≤1时,﹣m2+2m+1+2=4﹣2m+1,解得m=+2(舍)或m=﹣+2;当1<m≤时,﹣m2+2m+1+2=2m+1,解得m=或m=﹣(舍);当<m≤2时,﹣m2+2m+1+2=4,解得m=1(舍);当m>2时,最高点纵坐标是4,最低点纵坐标是1,∴3≠4,∴此时不符合题意;综上所述:m的值为或2﹣.8.(2021•咸丰县一模)如图,在平面直角坐标系中,抛物线与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l,P是该抛物线上一动点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为.以PQ,QM为边作矩形PQMN.(1)求抛物线的解析式;(2)当点Q与点M的值;(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值;(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,求m的取值范围.【分析】(1)利用待定系数法求解即可.(2)根据点M与点P的纵坐标相等构建方程求解即可.(3)根据PQ=MQ,构建方程求解即可.(4)当点P在直线l的左边,点M在点Q是下方下方时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,则有﹣m+<﹣m2+m+,解得0<m<4,观察图象可知.当0<m<3时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,如图4﹣1中.当m>4时,点M 在点Q的上方,也满足条件,如图4﹣2中.【解答】解:(1)∵抛物线的图象经过点A(3,0),∴=0,解得b=1.∴抛物线解析式为:.(2)∵P点的横坐标为m,且P点在抛物线y=的图象上,∴P点的坐标为(m,),∵PQ⊥l,l过A点且垂直于x轴,∴Q点的坐标为(3,),∵M点的坐标为(3,﹣m+),∵Q点与M点重合,∴=﹣m+,解方程得:m=0或m=4.(3)∵抛物线=﹣(x﹣1)2+2,∴抛物线的顶点坐标为(1,2).∵N点的坐标为N(m,﹣m+),要使顶点(1,2)在正方形PQMN内部,∴﹣m+>2,得m<﹣.∴PN=﹣m+﹣()=m2﹣2m,PQ=3﹣m.∵四边形PQMN是正方形,∴m2﹣2m=3﹣m,解得m=1+(舍去)或m=1﹣.∴当m=1﹣时,抛物线顶点在正方形PQMN内部.(4)∵M点的纵坐标﹣m+,随P点的横坐标m的增大而减小,根据(1)的结果得:当m=0时,M,Q两点重合;m=3时,P,Q重合;m=4时,M,Q重合,矩形PQMN不存在;当m<0时,直线MN在直线PQ上方,抛物线顶点在矩形PQMN内部,不合题意.当0<m<4时,直线MN在直线PQ下方,如图4﹣1,当3<m<4时,矩形内部没有抛物线图象,不合题意;当m>4时,直线MN在直线PQ上方,矩形内部有抛物线,且为对称轴右侧,y随x的增大而减小,如图4﹣2;综上:当0<m<3或m>4时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小.9.(2022•白山模拟)在平面直角坐标系中,抛物线y=﹣x2+2x+b(b为常数,b≠0)与y轴交于点A,且点A的坐标为(0,3),过点A作垂直于y轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其横坐标为﹣m+1.以PQ,QM为边作矩形PQMN.(1)求b的值;(2)当点Q与点M重合时,求m的值;(3)当矩形PQMN为正方形时,求m的值;(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而增大时,直接写出m的取值范围.【分析】(1)利用待定系数法求解即可.(2)根据点Q与点M的横坐标相等构建方程求解即可.(3)根据PQ=MQ,构建方程求解即可.(4)当点P在直线l的下边,点M在点Q右侧时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而增大,则有﹣m+1≤2,解得﹣1≤m<0;当点Q在点M右边时,存在两段,不合题意;当0<m<2时,点P在l的上方,当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而增大时,有<m<2.【解答】解:(1)把点A(0,3)代入y=﹣x2+2x+b,得到b=3.(2)∵抛物线的解析式为y=﹣x2+2x+3,∴P(m,﹣m2+2m+3),∵PQ⊥l,且l⊥y轴,∴PQ∥y,∴Q(m,3);∵点M(﹣m+1,3)与点Q重合,∴﹣m+1=m,解得m=.(3)y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的顶点坐标为(1,4),由题意PQ=MQ,∴|﹣m2+2m+3﹣3|=|﹣m+1﹣m|解得,m=1或m=﹣1或m=2+或m=2﹣.(4)根据题意可知,需要分类讨论:当点P在直线l的下边,点M在点Q右侧时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而增大,如图1,此时﹣m+1≤2,解得﹣1≤m<0;当点P在直线l的下边,点Q在点M右边时,如图2,存在两段,不合题意;当点P在l上方时,如图3和4,当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而增大时,当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而增大时,有<m<2.综上,当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而增大时,﹣1≤m<0或<m<2.10.(2021•吉林四模)如图,在平面直角坐标系中,抛物线y=x2+bx﹣与x轴交于点A(5,0),与该抛物线的对称轴l交于点B,作直线AB.P是该抛物线上的任意一点,其横坐标为m,过点P作x轴的垂线交AB于点Q,过点P作PN⊥l于点N,以PQ、PN为边作矩形PQMN.(1)求抛物线的解析式;(2)求直线AB的解析式;(3)当该抛物线被矩形PQMN截得的部分图象的最高点纵坐标与最低点纵坐标的距离为2时,求点P 的坐标;(4)当该抛物线与坐标轴的交点到直线MQ的距离相等时,直接写出m的值.【分析】(1)把点A(5,0)代入抛物线y=x2+bx﹣中可解答;(2)根据配方法可得抛物线顶点B的坐标,利用待定系数法可得直线AB的解析式;(3)分两种情况:①点P在对称轴的左侧;②点P在对称轴的右侧;根据该抛物线被矩形PQMN截得的部分图象的最高点纵坐标与最低点纵坐标的距离为2列方程可解答;(4)先求抛物线与y轴交点的坐标,根据该抛物线与坐标轴的交点到直线MQ的距离相等可知:点Q的纵坐标为﹣,将y=﹣代入直线AB的解析式可得答案.【解答】解:(1)把点A(5,0)代入抛物线y=x2+bx﹣中得:+5b﹣=0,解得:b=﹣2,∴抛物线的解析式为:y=x2﹣2x﹣;(2)∵y=x2﹣2x﹣=(x﹣2)2﹣,∴B(2,﹣),设直线AB的解析式为:y=kx+n,则,解得:,∴直线AB的解析式为:y=x﹣;(3)由题意得:P (m ,m 2﹣2m ﹣),∴Q (m ,m ﹣),分两种情况:①如图1,当点P 在对称轴的左侧时,∵抛物线被矩形PQMN 截得的部分图象的最高点纵坐标与最低点纵坐标的距离为2,∴m 2﹣2m ﹣+=2,解得:m 1=0,m 2=4(舍),∴P (0,﹣);②如图2,当点P 在对称轴的右边时,∵抛物线被矩形PQMN 截得的部分图象的最高点纵坐标与最低点纵坐标的距离为2,∴m 2﹣2m ﹣﹣m +=2,解得:m 1=6,m 2=1(舍),∴P (6,3.5);综上,点P 的坐标为(0,﹣)或(6,3.5);(4)如图3,当x =0时,y =﹣∵该抛物线与坐标轴的交点到直线MQ 的距离相等,即点D 与C 到直线MQ 的距离相等,∴点Q的纵坐标为﹣,当y=﹣时,m﹣=﹣,解得:m=.11.(2021•南关区校级二模)在平面直角坐标系中,抛物线y=x2﹣2ax﹣a(a为常数).(1)当(﹣,m)在抛物线上,求m的值.(2)当抛物线的最低点到x轴的距离恰好是时,求a的值.(3)已知A(﹣1,1)、B(﹣1,2a﹣),连接AB.当抛物线与线段AB有交点时,记交点为P(点P 不与A、B重合),将线段PB绕点P顺时针旋转90°得到线段PM,以PM、PA为邻边构造矩形PMQA.①若抛物线在矩形PMQA内部的图象的函数值y随自变量x的增大而减小时,求a的取值范围.②当抛物线在矩形PMQA内部(包含边界)图象所对应的函数的最大值与最小值的差为时,直接写出a的值.【分析】(1)将(﹣,m)代入y=x2﹣2ax﹣a求解.(2)求出顶点坐标,通过顶点纵坐标为±求解.(3)①通过数形结合,讨论抛物线对称轴与矩形边的位置关系与抛物线经过临界点时的值求解.②分类讨论点B在A上方与点B在A下方两种情况,分别求出最高点与最低点坐标作差求解.【解答】解:(1)将(﹣,m)代入y=x2﹣2ax﹣a可得:m=+a﹣a,∴m=.(2)∵y=x2﹣2ax﹣a=(x﹣a)2﹣a2﹣a,∴抛物线顶点坐标为(a,﹣a2﹣a),当﹣a2﹣a=时,解得a=﹣,当﹣a2﹣a=﹣时,解得a=或a=.。

《矩形的性质》的教学反思(5篇)

《矩形的性质》的教学反思(5篇)

《矩形的性质》的教学反思(5篇)《矩形的性质》的教学反思篇1本节课,以“平行四边形变形为矩形的过程”的演示引入课题,将学生视线集中在数学图形上,思维集中在数学思考上,更好地突出了观看的对象,使学生简洁把握问题的本质,真实、自然、和谐,表达了数学学习的内在需要,加强了学生对学问之间的理解和把握,形成了合本质相关的认知构造,取得了良好的教学效果。

到解释“矩形的对角线相等”的`理由时,大局部同学能说出利用三角形全等证明,有同学提出了用三角形全等的方法,他的方法是错误的,当时我没有留意那么多,跟着他的思路往下走。

最终觉察证不出对角线相等。

只有换另两个三角形全等。

把两条对角线表示出来,结果相等,也就证明白两条对角线相等。

通过这节课的教学,我觉得在以下方面做的比较到位:在课上,我能把握课标、教学内容处理上更有针对性,在把握深度上也做的比较好,在这节课中,也消逝了很多的亮点,用教具,让学生充分感受到平行四边形到矩形的变化过程,同时,在这节课上,我也承受了现代化教学手段,提高了课堂效率,根本完成了本节课的目标。

在这节课的教学中,也存在很多的问题,如在课堂中有的问题探究的形式比较单一,课堂容量显得不够大,评价检测还不是格外到位等。

没有准时觉察问题。

关注差生不够.在今后的教学工作中,应留意应适应学生的特点,在备课上多下功夫。

多关注学生,把课堂留给学生。

《矩形的性质》的教学反思篇2数学学习应表达以教师为主导、以学生为主体,以学问为载体、以培育学生的思维力气为重点的教学思想。

在教学“矩形的性质”一课时反思如下:1、手脑并用,走进课堂以“一个活动的平行四边形变形为矩形的过程”的演示引入课题,将学生视线集中在数学图形上,思维集中在数学思考上,更好地突出了观看的对象,使学生简洁把握问题的本质,真实、自然、和谐,表达了数学学习的内在需要,加强了学生对学问之间的理解和把握,形成了合本质相关的认知构造,取得了良好的教学效果。

2、探究理解。

11 问题详解 二次函数-矩形的存在性问题

11   问题详解 二次函数-矩形的存在性问题

参考答案1. (2015 省龙东地区) 如图,四边形OABC 是矩形,点A 、C 在坐标轴上,△ODE 是△OCB 绕点O 顺时针旋转90°得到的,点D 在x 轴上,直线BD 交y 轴于点F ,交OE 于点H ,线段BC 、OC 的长是方程x 2﹣6x+8=0的两个根,且OC >BC .(1)求直线BD 的解析式;(2)求△OFH 的面积;(3)点M 在坐标轴上,平面是否存在点N ,使以点D 、F 、M 、N 为顶点的四边形是矩形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.1. 分析: (1)解方程可求得OC 、BC 的长,可求得B 、D 的坐标,利用待定系数法可求得直线BD 的解析式;(2)可求得E 点坐标,求出直线OE 的解析式,联立直线BD 、OE 解析式可求得H 点的横坐标,可求得△OFH 的面积;(3)当△MFD 为直角三角形时,可找到满足条件的点N ,分∠MFD=90°、∠MDF=90°和∠FMD=90°三种情况,分别求得M 点的坐标,可分别求得矩形对角线的交点坐标,再利用中点坐标公式可求得N 点坐标.解答: 解:(1)解方程x 2﹣6x+8=0可得x=2或x=4,∵BC 、OC 的长是方程x 2﹣6x+8=0的两个根,且OC >BC , ∴BC=2,OC=4,∴B (﹣2,4),∵△ODE 是△OCB 绕点O 顺时针旋转90°得到的,∴OD=OC=4,DE=BC=2,∴D (4,0),设直线BD 解析式为y=kx+b ,把B 、D 坐标代入可得,解得,∴直线BD 的解析式为y=﹣x+;(2)由(1)可知E (4,2),设直线OE 解析式为y=mx ,把E 点坐标代入可求得m=,∴直线OE 解析式为y=x ,令﹣x+=x ,解得x=,∴H 点到y 轴的距离为,又由(1)可得F (0,),∴OF=,∴S △OFH =××=;(3)∵以点D 、F 、M 、N 为顶点的四边形是矩形,∴△DFM 为直角三角形,①当∠MFD=90°时,则M 只能在x 轴上,连接FN 交MD 于点G ,如图1,由(2)可知OF=,OD=4,则有△MOF ∽△FOD ,∴=,即=,解得OM=,∴M (﹣,0),且D (4,0),∴G (,0),设N 点坐标为(x ,y ),则=,=0,解得x=,y=﹣,此时N 点坐标为(,﹣);②当∠MDF=90°时,则M 只能在y 轴上,连接DN 交MF 于点G ,如图2,则有△FOD ∽△DOM ,∴=,即=,解得OM=6,∴M (0,﹣6),且F (0,),∴MG=MF=,则OG=OM ﹣MG=6﹣=,∴G (0,﹣),设N 点坐标为(x ,y ),则=0,=﹣,解得x=﹣4,y=﹣,此时N (﹣4,﹣);③当∠FMD=90°时,则可知M 点为O 点,如图3,∵四边形MFND 为矩形,∴NF=OD=4,ND=OF=,可求得N (4,);综上可知存在满足条件的N 点,其坐标为(,﹣)或(﹣4,﹣)或(4,). 2. (2015 市綦江县) 如图,抛物线223y x x =-++与x 轴交与A ,B 两点(点A 在点B 的左侧),与y 轴交于点C. 点D和点C关于抛物线的对称轴对称,直线AD与y轴相交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH的周长的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面一点,以A,M,P,Q为顶点的四边形是AM为边的矩形,若点T和点Q关于AM所在直线对称,求点T的坐标.xyxyxy26题备用图226题备用图126题图1CBAOCAOHGEDCBAOFM M答案解:⑴AD:1y x=+⑵过点F作x轴的垂线,交直线AD于点M,易证△FGH≌△FGM故FGH FGMC C=△△设2(,23)F m m m-++则FM=2223(1)2m m m m m-++-+=-++则C=219922(12)(12)()242FMFM FM m++⨯=+=-+-+故最大周长为9+924⑶①若AP为对角线如图,由△PMS∽△MAR可得9(0,)2P由点的平移可知1(2)2Q-,故Q点关于直线AM的对称点T为1(0,)2-②若AQ为对角线如图,同理可知P1(0,)2-由点的平移可知Q7(2,)2故Q点关于直线AM的对称点T为9(0,)23. (2016 省东营市) 】.】.在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线经过点C、A、A′,求此抛物线的解析式;(2)点M时第一象限抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)若P为抛物线上一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.分析(1)由平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),可求得点A′的坐标,然后利用待定系数法即可求得经过点C、A、A′的抛物线的解析式;(2)首先连接AA′,设直线AA′的解析式为:y=kx+b,利用待定系数法即可求得直线AA′的解析式,再设点M的坐标为:(x,﹣x2+3x+4),继而可得△AMA′的面积,继而求得答案;(3)分别从BQ为边与BQ为对角线去分析求解即可求得答案.解答解:(1)∵平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),∴点A′的坐标为:(4,0),∵点A、C的坐标分别是(0,4)、(﹣1,0),抛物线经过点C、A、A′,设抛物线的解析式为:y=ax2+bx+c,∴,解得:,∴此抛物线的解析式为:y=﹣x2+3x+4;(2)连接AA′,设直线AA′的解析式为:y=kx+b,∴,解得:,∴直线AA′的解析式为:y=﹣x+4,设点M的坐标为:(x,﹣x2+3x+4),则S△AMA′=×4×[﹣x2+3x+4﹣(﹣x+4)]=﹣2x2+8x=﹣2(x﹣2)2+8,∴当x=2时,△AMA′的面积最大,最大值S△AMA′=8,∴M的坐标为:(2,6);(3)设点P的坐标为(x,﹣x2+3x+4),当P,N,B,Q构成平行四边形时,∵平行四边形ABOC中,点A、C的坐标分别是(0,4)、(﹣1,0),∴点B的坐标为(1,4),∵点Q坐标为(1,0),P为抛物线上一动点,N为x轴上的一动点,①当BQ为边时,PN∥BQ,PN=BQ,∵BQ=4,∴﹣x2+3x+4=±4,当﹣x2+3x+4=4时,解得:x1=0,x2=3,∴P1(0,4),P2(3,4);当﹣x2+3x+4=﹣4时,解得:x3=,x2=,∴P3(,﹣4),P4(,﹣4);②当PQ为对角线时,BP∥QN,BP=QN,此时P与P1,P2重合;综上可得:点P的坐标为:P1(0,4),P2(3,4),P3(,﹣4),P4(,﹣4);如图2,当这个平行四边形为矩形时,点N的坐标为:(0,0)或(3,0).4. (2016 省地区) 如图,已知抛物线y=x2+bx与直线y=2x+4交于A(a,8)、B两点,点P是抛物线上A、B之间的一个动点,过点P分别作x轴、y轴的平行线与直线AB交于点C和点E.(1)求抛物线的解析式;(2)若C为AB中点,求PC的长;(3)如图,以PC,PE为边构造矩形PCDE,设点D的坐标为(m,n),请求出m,n之间的关系式.分析(1)把A点坐标代入直线方程可求得a的值,再代入抛物线可求得b的值,可求得抛物线解析式;(2)联立抛物线和直线解析式可求得B点坐标,过A作AQ⊥x轴,交x轴于点Q,可知OC=AQ=4,可求得C点坐标,结合条件可知P点纵坐标,代入抛物线解析式可求得P点坐标,从而可求得PC的长;(3)根据矩形的性质可分别用m、n表示出C、P的坐标,根据DE=CP,可得到m、n的关系式.解:(1)∵A(a,8)是抛物线和直线的交点,∴A点在直线上,∴8=2a+4,解得a=2,∴A点坐标为(2,8),又A点在抛物线上,∴8=22+2b,解得b=2,∴抛物线解析式为y=x2+2x;(2)联立抛物线和直线解析式可得,解得,,∴B点坐标为(﹣2,0),如图,过A作AQ⊥x轴,交x轴于点Q,则AQ=8,OQ=OB=2,即O为BQ的中点,当C为AB中点时,则OC为△ABQ的中位线,即C点在y轴上,∴OC=AQ=4,∴C点坐标为(0,4),又PC∥x轴,∴P点纵坐标为4,∵P点在抛物线线上,∴4=x2+2x,解得x=﹣1﹣或x=﹣1,∵P点在A、B之间的抛物线上,∴x=﹣1﹣不合题意,舍去,∴P点坐标为(﹣1,4),∴PC=﹣1﹣0=﹣1;(3)∵D(m,n),且四边形PCDE为矩形,∴C点横坐标为m,E点纵坐标为n,∵C、E都在直线y=2x+4上,∴C(m,2m+4),E(,n),∵PC∥x轴,∴P点纵坐标为2m+4,∵P点在抛物线上,∴2m+4=x2+2x,整理可得2m+5=(x+1)2,解得x=﹣1或x=﹣﹣1(舍去),∴P点坐标为(﹣1,2m+4),∴DE=﹣m ,CP=﹣1﹣m ,∵四边形PCDE 为矩形,∴DE=CP ,即﹣m=﹣1﹣m , 整理可得n 2﹣4n ﹣8m ﹣16=0,即m 、n 之间的关系式为n 2﹣4n ﹣8m ﹣16=0. 5. (2013 省市) 如图,已知二次函数的图象过点A (0,-3),B (3,3),对称轴为直线12x =-,点P 是抛物线上的一动点, 过点P 分别作PM ⊥x 轴于点M ,PN ⊥y 轴于点N , 在四边形PMON 上分别截取1111,,,.3333PC MP MD OM OE ON NF NP ==== (1)求此二次函数的解析式;(2)求证:以C ,D ,E ,F 为顶点的四边形CDEF 是平行四边形;(3)在抛物线上是否存在这样的点P ,使四边形CDEF 为矩形?若存在,请求出所有符合条件的P 点坐标;若不存在,请说明理由.解:(1)设二次函数的解析式为2y ax bx c =++,将点A (0,-3)、B (3,3)、对称轴方程分别代入可得:3,3331.22c a b c b a ⎧-=⎪⎪=++⎨⎪-=-⎩,解得1,1,3.a a b =⎧⎪=⎨⎪=-⎩∴此二次函数的解析式为23y x x =+-.(2)证明:如图连接CD ,DE ,EF ,FC.∵PM ⊥x 轴,PN ⊥y 轴,∴四边形OMPN 是矩形.∴MP =ON ,OM =PN.又1111,,,,3333PC MP MD OM OE ON NF NP ==== ∴,DMFN MC NE ==∴△CMD ≅△ENF,同理△ODE ≅△FPC(SAS), ∴CF =ED ,CD =EF.,∴四边形CDEF 是平行四边形.(3)如图,作CQ ⊥y 轴于点Q ,设P 点坐标为()2,3x x x +-, 则1.3QN PC OE MP ===∴()2133EQ x x =-+-.∴在Rt △ECQ 中,()22222213.9CE EQ CQ x x x =+=+-+当CD⊥DE时,()()()()()()22222222222222222222222222221333413,99143,994114339999553.99DE OD OEx x xx x xCD DM CMx x xCE DE CDx x x x x xx x x=+⎛⎫⎡⎤=-+-+-⎪⎢⎥⎝⎭⎣⎦=++-=+=++-∴=+=++-+++-=++-Q()()()222222222215533,999443,993.x x x x x xx x xx x x∴+-+=++-=+-+-=±()()()()212122121233,3,3,3;331,3 1.33333311.x x x x xy yx x x x xy yP+-===-==-+-=-=-===-∴-当时,此时,当时,,此时,,综上可知符合条件的点有四个,分别是,,,-,-,,,-本题用相似更简单!6.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图所示,直线BC下方的抛物线上有一点P,过点P作PE⊥BC于点E,作PF平行于x轴交直线BC 于点F,求△PEF周长的最大值;(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面一点,若点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点P 的横坐标;若不存在,说明理由.【解答】解:(1)把A(﹣1,0),B(3,0)两点坐标代入抛物线y=ax2+bx﹣3,得到,解得,∴抛物线的解析式为y=x2﹣2x﹣3.(2)如图1中,连接PB、PC.设P(m,m2﹣2m﹣3),∵B(3,0),C(0,﹣3),∴OB=OC,∴∠OBC=45°,∵PF∥OB,∴∠PFE=∠OBC=45°,∵PE⊥BC,∴∠PEF=90°,∴△PEF是等腰直角三角形,∴PE最大时,△PEF的面积中点,此时△PBC的面积最大,则有S△PBC=S△POB+S△POC﹣S△BOC=•3•(﹣m2+2m+3)+•3•m﹣=﹣(m﹣)2+,∴m=时,△PBC的面积最大,此时△PEF的面积也最大,此时P(,﹣),∵直线BC的解析式为y=x﹣3,∴F(﹣,﹣),∴PF=,∵△PEF是等腰直角三角形,∴EF=EP=,∴C△PEF最大值=+.(3)①如图2中,当N与C重合时,点N关于对称轴的对称点P,此时思想MNQP是正方形,易知P(2,﹣3).点P横坐标为2,②如图3中,当四边形PMQN是正方形时,作PF⊥y轴于N,ME∥x轴,PE∥y轴.易知△PFN≌△PEM,∴PF=PE,设P(m,m2﹣2m﹣3),∵M(1,﹣4),∴m=m2﹣2m﹣3﹣(﹣4),∴m=或(舍弃),∴P点横坐标为所以满足条件的点P的横坐标为2或.。

专题05 二次函数中的矩形存在性问题(老师版)

专题05 二次函数中的矩形存在性问题(老师版)

专题05 二次函数中的矩形存在性问题【例题讲解】如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(﹣3,0),且OB=OC.(1)求抛物线的解析式;(2)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4.点D是抛物线上M,N之间的动点,过点D作y轴的平行线交MN于点E,点D关于点E的对称点为F,当m为何值时,四边形MDNF为矩形.【解答】解:(1)∵抛物线与x轴交于点A(﹣1,0),点B(﹣3,0)∴设交点式y=a(x+1)(x+3)∵OC=OB=3,点C在y轴负半轴∴C(0,﹣3)把点C代入抛物线解析式得:3a=﹣3∴a=﹣1∴抛物线解析式为y=﹣(x+1)(x+3)=﹣x2﹣4x﹣3(2)如图,∵D、F关于点E对称,∴DE=EF∵四边形MDNF是矩形∴MN=DF,且MN与DF互相平分∴DE=MN,E为MN中点∴x D=x E==m+2由①得当d=m+2时,DE=4∴MN=2DE=8∴(m+4﹣m)2+[﹣m2﹣12m﹣35﹣(﹣m2﹣4m﹣3)]2=82解得:m1=﹣4﹣,m2=﹣4+∴m的值为﹣4﹣或﹣4+时,四边形MDNF为矩形.【模型解读】矩形的判定:(1)有一个角是直角的平行四边形;(2)对角线相等的平行四边形;(3)有三个角为直角的四边形.【题型分析】矩形除了具有平行四边形的性质之外,还有“对角线相等”或“内角为直角”,因此相比起平行四边形,坐标系中的矩形满足以下3个等式:(AC 为对角线时)因此在矩形存在性问题最多可以有3个未知量,代入可以得到三元一次方程组,可解. 确定了有3个未知量,则可判断常见矩形存在性问题至少有2个动点,多则可以有3个.题型如下:(1)2个定点+1个半动点+1个全动点;(2)1个定点+3个半动点.【解析思路】思路1:先直角,再矩形在构成矩形的4个点中任取3个点,必构成直角三角形,以此为出发点,可先确定其中3个点构造直角三角形,再确定第4个点.对“2定+1半动+1全动”尤其适用.引例:已知A (1,1)、B (4,2),点C 在x 轴上,点D 在平面中,且以A 、B 、C 、D 为顶点的四边形是矩形,求D 点坐标.【分析】点C 满足以A 、B 、C 为顶点的三角形是直角三角形,构造“两线一圆”可得满足条件的点C 有、、、在点C 的基础上,借助点的平移思路,可迅速得到点D 的坐标.【小结】这种解决矩形存在性问题的方法相当于在直角三角形存在性问题上再加一步求D 点坐标,也是因为这两个图形之间的密切关系方能如此.A CB D AC B Dx x x x y y y y ⎧+=+⎪⎪+=+⎨=14,03C ⎛⎫⎪⎝⎭214,03C ⎛⎫⎪⎝⎭()32,0C ()43,0C思路2:先平行,再矩形当AC 为对角线时,A 、B 、C 、D 满足以下3个等式,则为矩形:其中第1、2个式子是平行四边形的要求,再加上式3可为矩形.表示出点坐标后,代入点坐标解方程即可.无论是“2定1半1全”还是“1定3半”,对于我们列方程来解都没什么区别,能得到的都是三元一次方程组.引例:已知A (1,1)、B (4,2),点C 在x 轴上,点D 在坐标系中,且以A 、B 、C 、D 为顶点的四边形是矩形,求D 点坐标.【分析】设C 点坐标为(a ,0),D 点坐标为(b ,c ),又A (1,1)、B (4,2).先考虑平行四边形存在性:(1)AB 为对角线时,,满足此条件的C 、D 使得以A 、B 、C 、D 为顶点的四边形是平行四边形,另外AB=CD综合以上可解:或.故C (3,0)、D (2,3)或C (2,0)、D (3,3).(2)AC 为对角线时,,另外AC=BD ,得.故C 、D .(3)AD 为对角线时,,另外AD=BC综合以上可解得:.故C 、D .【小结】这个方法是在平行四边形基础上多加一个等式而已,剩下的都是计算.A CB D AC BD x x x x y y y y ⎧+=+⎪⎪+=+⎨=14120a bc +=+⎧⎨+=+⎩=323a b c =⎧⎪=⎨⎪=⎩233a b c =⎧⎪=⎨⎪=⎩14102a bc+=+⎧⎨+=+⎩=143531a b c ⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩14,03⎛⎫ ⎪⎝⎭5,13⎛⎫- ⎪⎝⎭14120b ac +=+⎧⎨+=+⎩=431331a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩14,03⎛⎫ ⎪⎝⎭13,13⎛⎫⎪⎝⎭【模型实例】1.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣4交x轴于A(﹣1,0)、B(4,0)两点,交y轴于点C.(1)求该抛物线的表达式;(2)点P为第四象限内抛物线上一点,连接PB,过点C作CQ∥BP交x轴于点Q,连接PQ,求△PBQ面积的最大值及此时点P的坐标;(3)在(2)的条件下,将抛物线y=ax2+bx﹣4向右平移经过点(,0)时,得到新抛物线y=a1x2+b1x+c1,点E在新抛物线的对称轴上,在坐标平面内是否存在一点F,使得以A、P、E、F为顶点的四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由.参考:若点P1(x1,y1)、P2(x2,y2),则线段P1P2的中点P0的坐标为(,).【解答】解:(1)由题意得:,解得,故抛物线的表达式为y=x2﹣3x﹣4;(2)由抛物线的表达式知,点C(0,﹣4),设点P的坐标为(m,m2﹣3m﹣4),设直线PB的表达式为y=kx+t,则,解得,∵CQ∥BP,故设直线CQ的表达式为y=(m+1)x+p,该直线过点C(0,﹣4),即p=﹣4,故直线CQ的表达式为y=(m+1)x﹣4,令y=(m+1)x﹣4=0,解得x=,即点Q的坐标为(,0),则BQ=4﹣=,设△PBQ面积为S,则S=×BQ×(﹣y P)=﹣××(m2﹣3m﹣4)=﹣2m2+8m,∵﹣2<0,故S有最大值,当m=2时,△PBQ面积为8,此时点P的坐标为(2,﹣6);(3)存在,理由:将抛物线y=ax2+bx﹣4向右平移经过点(,0)时,即点A过该点,即抛物线向右平移了+1=个单位,则函数的对称轴也平移了个单位,即平移后的抛物线的对称轴为直线x=+=3,故设点E的坐标为(3,m),设点F(s,t),①当AP是边时,则点A向右平移3个单位向下平移6个单位得到点P,同样点F(E)向右平移3个单位向下平移6个单位得到点E(F)且AE=PF(AF=PE),则或,解得或,故点F的坐标为(0,)或(6,﹣4);②当AP是对角线时,由中点坐标公式和AP=EF得:,解得或,故点F的坐标为(﹣2,﹣3﹣)或(﹣2,﹣3);综上,点F的坐标为(0,)或(6,﹣4)或(﹣2,﹣3﹣)或(﹣2,﹣3).2.如图,直线y=x﹣3与坐标轴交于A、B两点,抛物线y=x2+bx+c经过点B,与直线y=x﹣3交于点E(8,5),且与x轴交于C,D两点.(1)求抛物线的解析式;(2)点P在抛物线上,在坐标平面内是否存在点Q,使得以点P,Q,B,C为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【解答】解:(1)直线y=x﹣3与坐标轴交于A、B两点,则A(3,0)B(0,﹣3),把B、E点坐标代入二次函数方程,解得:抛物线的解析式y=x2﹣x﹣3…①,则:C(6,0);(2)存在.①当BC为矩形对角线时,矩形BP′CQ′所在的位置如图所示,设:P′(m,n),n=m2﹣m﹣3…③,P′C所在直线的k1=,P′B所在的直线k2=,则:k1•k2=﹣1…④,③、④联立得:=0,解得:m=0或6,这两个点分别和点B、C重合,与题意不符,故:这种情况不存在,舍去.②当BC为矩形一边时,情况一:矩形BCQP所在的位置如图所示,直线BC所在的方程为:y=x﹣3,则:直线BP的k为﹣2,所在的方程为y=﹣2x﹣3…⑤,联立①⑤解得点P(﹣4,5),则Q(2,8),情况二:矩形BCP″Q″所在的位置如图所示,此时,P″在抛物线上,其坐标为:(﹣10,32),Q″坐标为(﹣16,29).故:存在矩形,点Q的坐标为:(2,8)或(﹣16,29).3.如图,在平面直角坐标系中,抛物线y=﹣x2+•x+(m>0)与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C,连接BC.(1)若OC=2OA,求抛物线对应的函数表达式;(2)设直线y=x+b与抛物线交于B,G两点,问是否存在点E(在抛物线上),点F(在抛物线的对称轴上),使得以B,G,E,F为顶点的四边形成为矩形?若存在,求出点E,F的坐标;若不存在,说明理由.【解答】解:(1)∵A的坐标为(﹣1,0),∴OA=1,∵OC=2OA,∴OC=2,∴C的坐标为(0,2),将点C代入抛物线y=﹣x2+•x+(m>0),得=2,即m=4,∴抛物线对应的函数表达式为y=﹣x2+x+2;(2)存在,理由如下:∵直线y=x+b与抛物线交于B(m,0),∴直线BG的解析式为y=x﹣m①,∵抛物线的表达式为y=﹣x2+•x+②,联立①②解得,或,∴G的坐标为(﹣2,﹣m﹣1),∵抛物线y=﹣x2+•x+的对称轴为直线x=,∴点F的横坐标为,①若BG为边,不妨设E在x轴上方,如图,过点E作EH⊥x轴于H,设E的坐标为(t,﹣t2+•t+),∵∠GBE=90°,∴∠OBG=∠BEH,∴tan∠OBG=tan∠BEH==,∴=,解得:t=3或m(舍),∴E的坐标为(3,2m﹣6),由平移性质,得:B的横坐标向左平移m+2个单位得到G的横坐标,∵EF∥BG且EF=BG,∴E横坐标向左平移m+2个单位,得:到F的横坐标为3﹣(m+2)=﹣m+1,∴=﹣m+1,解得m=1,∴E(3,﹣4),F(0,﹣),这说明E不在x轴上方,而在x轴下方;②若BG为对角线,设BG的中点为M,由中点坐标公式得,,∴M的坐标为(,),∵矩形对角线BG、EF互相平分,∴M也是EF的中点,∴E的横坐标为,∴E的坐标为(,),∵∠BEG=90°,∴EM=,∴=,整理得:16+(m2+4m+1)2=20(m+2)2,变形得:16+[(m+2)2﹣3]2=20(m+2)2,换元,令t=(m+2)2,得:t2﹣26t+25=0,解得:t=1或25,∴(m+2)2=1或25,∵m>0,∴m=3,即E的坐标为(0,),F的坐标为(1,﹣4),综上,即E的坐标为(0,),F的坐标为(1,﹣4)或E(3,﹣4),F(0,﹣).4.如图,在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.(1)求抛物线的解析式;(2)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.【解答】解:(1)∵OA=1,∴A(﹣1,0),又∵对称轴为x=2,∴B(5,0),将A,B代入解析式得:,解得,∴,自变量x为全体实数;(2)设P(2,y),Q(m,n),由(1)知B(5,0),C(0,),若BC为矩形的对角线,由中点坐标公式得:,解得:,又∵∠BPC=90°,∴PC2+PB2=BC2,即:,解得y=4或y=﹣,∴n=或n=4,∴Q(3,)或Q(3,4),若BP为矩形的对角线,由中点坐标公式得,解得,又∵∠BCP=90°,BC2+CP2=BP2,即:,解得y=,∴Q(7,4),若BQ为矩形的对角线,由中点坐标公式得,解得:,又∵∠BCQ=90°,∴BC2+CQ2=BQ2,即:,解得n=,∴Q(﹣3,﹣),综上,点Q的坐标为(3,)或(3,4),或(7,4)或(﹣3,﹣).5.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c交x轴于点A和C(1,0),交y轴于点B(0,3),抛物线的对称轴交x轴于点E,交抛物线于点F.(1)求抛物线的解析式;(2)M为平面直角坐标系中一点,在抛物线上是否存在一点N,使得以A,B,M,N为顶点的四边形为矩形?若存在,请直接写出点N的横坐标;若不存在,请说明理由.【解答】解:(1)把C(1,0),B(0,3)代入y=﹣x2+bx+c中,得:,∴b=﹣2,c=3,∴y=﹣x2﹣2x+3,(2)存在,∵A(﹣3,0),B(0,3),设N(n,﹣n2﹣2n+3),则AB2=18,AN2=(n2+2n﹣3)2+(n+3)2,BN2=n2+(n2+2n)2,∵以点A,B,M,N为顶点构成的四边形是矩形,∴△ABN是直角三角形,若AB是斜边,则AB2=AN2+BN2=(n2+2n﹣3)2+(n+3)2+n2+(n2+2n)2,解得:n1=,,∴N的横坐标为或,若AN是斜边,则AN2=AB2+BN2,即(n2+2n﹣3)2+(n+3)2=18+n2+(n2+2n)2,解得n=0(与点B重合,舍去)或n=﹣1,∴N的横坐标是﹣1,若BN是斜边,则BN2=AB2+AN2,即n2+(n2+2n)2=18+(n2+2n﹣3)2+(n+3)2,解得n=﹣3(与点A重合,舍去)或n=2,∴N的横坐标为2,综上N的横坐标为,,﹣1,2.6.如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线的解析式;(2)E在抛物线对称轴上,在平面内是否存在点F,使得以点B,C,E,F为顶点的四边形是矩形?若存在,请写出点F的坐标,若不存在,请说明理由;【解答】解:(1)将点A、B、C的坐标代入抛物线表达式得,解得,故抛物线的表达式为y=﹣x2+x+1;(2)设点E(1,m)、点F(s,t),当BC为边时,点C向右平移3 个单位向下平移1个单位得到点B,同样E(F)向右平移3 个单位向下平移1个单位得到点F(E),且BE=CF(CE=BF),∴或,解得或,当BC为对角线时,由中点公式和BC=EF得:,解得或,故点F的坐标为(﹣2,﹣5)或(4,3)或(2,﹣1)或(2,2);7.如图,在平面直角坐标系中,直线y=﹣x+3交坐标轴于B,C两点,抛物线y=ax2+bx+3经过B,C两点,且交x 轴于另一点A(﹣1,0).点D为第一象限内抛物线上一动点,过点D作DQ∥CO,交BC于点P,交x轴于点Q.(1)求抛物线的解析式;(2)在抛物线上取点E,在坐标系内取点F,问是否存在以C,B,E,F为顶点且以CB为边的矩形?如果存在,请直接写出点E的坐标;如果不存在,请说明理由.【解答】解:(1)∵直线y=﹣x+3交坐标轴于B,C两点,∴点B的坐标为(3,0),点C的坐标为(0,3),∵点A的坐标为(﹣1,0),点B的坐标为(3,0),设抛物线的解析式为y=a(x﹣3)(x+1).将C(0,3)代入y=a(x﹣3)(x+1).得a=﹣1,11∴抛物线解析式为y =﹣x 2+2x+3.(2)存在,点E 的坐标为(1,4)或(﹣2,﹣5).若CE ⊥BC ,直线CE 的解析式为:y =x+3,∴,∴(舍去),,∴点E 的坐标为:(1,4).若BE ⊥BC ,直线BE 解析式为:y =x ﹣3,∴,∴,,∴点E 的坐标为:(﹣2,﹣5),综上所述,当点E (1,4)或(﹣2,﹣5)时,存在以C ,B ,E ,F 为顶点且以CB为边的矩形.。

矩形存在性问题

矩形存在性问题

二次函数与矩形的问题.例1如图,已知二次函数y=a(x-h)*2-1的图像与x轴交于A(2,0),B两点,与y 轴交于点C(0,8).(1)求二次函数解析式;(2)P(6,2)为平面内一点,设直线y=kx+b交抛物线于M,N,是否存在以A,M,N,P为顶点的四边形是矩形?若存在,求直线解析式;若不存在,请说明理由;(存在+代数论证方法)如图,矩形OABC,A(-3,0),过点C的直线y=-2x+4例2.与x轴交于点D,二次函数y=-0.5x*2+bx+c的图像经过B,C两点。

(1)求B,C两点的坐标及二次函数的解析式;(2)若点P是CD的中点,在二次函数图像上是否存在点M,使以A,P,C,M为顶点的四边形为矩形?若存在,求出点M的坐标;若不存在,请说明理由。

例3.如图,抛物线y=ax*2+bx+c(a<0)与x轴交于A(-2,0),B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记M=PM:DM,试求M的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由。

练习1如图,已知二次函数的图象过点A (0,﹣3),B (,),对称轴为直线x=﹣,点P 是抛物线上的一动点,过点P 分别作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,在四边形PMON上分别截取PC=MP ,MD=OM ,OE=ON ,NF=NP .(1)求此二次函数的解析式;(2)求证:以C 、D 、E 、F 为顶点的四边形CDEF 是平行四边形;(3)在抛物线上是否存在这样的点P ,使四边形CDEF 为矩形?若存在,请求出所有符合条件的P 点坐标;若不存在,请说明理由.2如图,抛物线y=﹣x 2+bx+c 与x 轴分别相交于点A (﹣2,0),B (4,0),与y 轴交于点C ,顶点为点P .(1)求抛物线的解析式;(2)动点M、N从点O同时出发,都以每秒1个单位长度的速度分别在线段OB、OC上向点B、C方向运动,过点M 作x轴的垂线交BC于点F,交抛物线于点H.①当四边形OMHN为矩形时,求点H的坐标;②是否存在这样的点F,使△PFB为直角三角形?若存在,求出点F的坐标;若不存在,请说明理由.3如图,在平面直角坐标系xO y中,抛物线y=ax2-2ax-3a(a<0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k、b用含a的式子表示);(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为54,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.备用图。

中考数学复习⑦平行四边形及矩形、菱形、正方形存在性问题探究

中考数学复习⑦平行四边形及矩形、菱形、正方形存在性问题探究

类型⑦ 平行四边形及矩形、菱形、正方形存在性问题探究,备考攻略)在平行四边形有关存在性问题中,常会遇到这样两类探究性的问题:1.已知三点的位置,在二次函数上或在坐标平面内找一动点,使这四点构成平行四边形(简称“三定一动”).2.已知两个点的位置,在二次函数上或在坐标平面内找两个动点,使这四点构成平行四边形(简称“两定两动”).平行四边形的这四个点有可能是定序的,也有可能没有定序.1.确定动点位置时出现遗漏.2.在具体计算动点坐标时出现方法不当或错解.1.分清题型(属于三定一动还是两定两动,因为这两种题型的分类标准有所不同).2.分类讨论且作图(利用分类讨论不重不漏的寻找动点具体位置).3.利用几何特征计算(不同的几何存在性要用不同的解题技巧).可以把存在性问题的基本思路叫做“三步曲”:一“分”二“作”三“算”.1.如果为“三定一动” ,要找出平行四边形第四个顶点,则符合条件的有 3 个点;这三个点的找法是以三个定点为顶点画三角形,过每个顶点画对边的平行线,三条直线两两相交,产生所要求的 3 个点.2.如果为“两定两动” ,要找出平行四边形第三、四个顶点,将两个定点连成定线段,将此线段按照作为平行四边形的边或对角线两种分类讨论.1.若平行四边形的四个顶点都能用坐标来表示,则直接利用坐标系中平行四边形的基本特征:即对边平行且相等或对边水平距离相等和竖直距离相等列方程求解.2.若平行四边形的四个顶点中某些点不能用坐标表示,则利用列方程组解图形交点的方法解决.3.灵活运用平行四边形的中心对称的性质,也可使问题变得简单.4.平移坐标法.先由题目条件探索三点的坐标(若只有两个定点,可设一个动点的坐标). 再画出以三点为顶点的平行四边形,根据坐标平移的性质写出第四个顶点的坐标.最后根据题目的要求(动点在什么曲线上),判断平行四边形的存在性.1.矩形: 增加对角线相等和邻边垂直的性质 ,还可以转化为直角三角形的存在性问题.2.菱形:增加四边相等和对角线垂直的性质 ,还可以转化为直角三角形或等腰 (等边 ) 三角形存在性问题.3. 正方形:兼顾以上性质 ,还可以转化为 等腰直角三角形存在性问 题.,典题精讲 )◆平移坐标法例 1】如图,在平面直角坐标系中 ,已知抛物线 y =-x 2-2x +3与 x 轴交于 A ,B两 点(A 在 B 的左侧 ),与 y 轴交于点 C ,顶点为 P ,如果以点 P ,A ,C ,D 为顶点的四边形是平行四边形 , 求点 D 的坐标.直线两两相交 ,产生 3个符合条件的点 D (如图 ).22由 y =- x 2-2x +3=- (x +1)2+4,得 A ( -3,0),C (0,3),P (-1,4).我们看到 , 用坐标平移的方法 ,远比用解析式构造方程组求交点方便多了.【答案】 点 D 的坐标为 (2,7)或 (-4,1)或(-2,-1).◆两定两动的分类讨论 (对点法的应用 )3)所以 P (-1,右3, 4)右==3,=上3== D 1(2,所以下3, 左30)P (-1, 4)=== ==D 2(-4,1)所以右1, 下1 3A (-0)右==1,= ==D 3(-2,1). 右1,下1由于 P (-1,4)=====C(0,由于 A ( - 3,0)右==3,==上=3C (0, 下3,左3由于 C (0, 3) =====A ( -3, 解析】 P ,A ,C 三点是确定的 ,过△ PAC 的三个顶点分别画对边的平行线 ,三条【例2】如图① ,在平面直角坐标系 xOy 中,抛物线 y= ax2- 2ax- 3a(a< 0)与 x 轴交于A,B两点(点A 在点 B 的左侧),经过点 A 的直线 l:y=kx+b与 y轴负半轴交于点 C,与抛物线的另一个交点为 D ,且 CD =4AC.(1)直接写出点 A 的坐标 ,并求直线 l 的函数解析式; (其中 k ,b 用含 a 的式子表示 )5(2)点 E 是直线 l 上方的抛物线上的动点 ,若△ ACE 的面积的最大值为 45,求 a 的值;(3)设 P 是抛物线的对称轴上的一点 ,点 Q 在抛物线上 ,以点 A ,D ,P ,Q 为顶点的四 边形能否成为矩形?若能 ,求出点 P 的坐标;若不能 ,请说明理由.【解析】1.过点 E 作 x 轴的垂线交 AD 于 F ,那么△ AEF 与△ CEF 是共底的两个三角形.2.以 AD 为分类标准讨论矩形 ,当 AD 为边时 ,AD 与 QP 平行且相等 ,对角线 AP =QD ;当 AD 为对角线时 , AD 与 PQ 互相平分且相等.【答案】 解: (1)由 y =ax 2- 2ax -3a = a (x +1)(x -3),得 A (-1,0).由 CD =4AC ,得 x D =4.所以 D (4 ,5a ).由 A (-1,0),D (4, 5a ),得直线 l 的函数解析式为 y =ax + a ;(2)如图② ,过点 E 作 x 轴的垂线交 AD 于 F.设 E (x ,ax 2-2ax -3a ),F (x , ax +a ),那么 EF =y E -y F =ax 2-3ax -4a. 由 S △ACE = S △AEF - S △CEF = 12EF (x E - x A )- 12EF (x E - x C )= 21EF (x C - x A ) = 12(ax 2- 3ax - 4a )1 32 25 =2a x -2 -8a ,得△ ACE 面积的最大值为- 25a.解方程- 25a =5,得 a =- 2;8 8 4 5(3)已知 A ( -1, 0), D (4, 5a ), x P = 1,以 AD 为分类标准 ,分两种情况讨论:①如图③ ,如果 AD 为矩形的边 ,那么 AD ∥ QP ,AD = QP ,对角线 AP =QD. 由 x D - x A = x P - x Q , 得 x Q =- 4.当 x =-4 时,y =a (x +1)(x -3)=21a.所以 Q (-4,21a ).由 y D -y A = y P -y Q ,得 y P = 26a.所以 P (1,26a ).由 AP 2=QD 2,得 22+(26a )2=82+(16a )2.图① 备用图整理,得 7a2=1.所以 a=-77.此时 P 1,-2677;②如图④ ,如果 AD 为矩形的对角线,那么 AD 与 PQ 互相平分且相等.由 x D+ x A= x P+ x Q,得 x Q=2.所以 Q(2,- 3a).由 y D +y A = y P +y Q ,得 y P = 8a.所以 P (1,8a ). 由 AD 2=PQ 2,得 52+(5a )2=12+ (11a )2.整理 ,得 4a 2=1.所以 a =- 12.此时 P (1, -4).y =- x 2-2x +3与x 轴交于 A ,B 两点(点A 在点 B 的左侧),与y 轴交于点 C ,顶点为 P.若以 A ,C ,P ,M 为顶点的四边形是平行四边形 ,求点 M 的坐标. (三定 一动型 )解: (1)确定位置:如图.①以 A ,C ,P 三个定点为顶点画 △APC ;②过点 A 作PC 的平行线 ,过点 P 作AC 的平行线 ,过点C 作AP 的平行线;三条直线 相交于 M 1, M 2,M 3;(2)代数法求点 M 的坐标:如图:设点 M 1(m ,n ), 利用平行四边形对边水平距离相等和竖直距离相等可得:解得 n =1,即 M 1(-4,1). m =- 4,同理可得: M 2(-2,-1),M 3(2,7).图③ 图④1.已知抛物线n - 0=4-3,- 3-m =0-(-综上所述,点 M 的坐标为(-4,1),(- 2,-1),(2, 7).1 2 32.如图,抛物线 y=-2x2+2x+2与x轴交于点 A,点B,与y轴交于点 C,点D 与点 C关于 x轴对称,点P是 x轴上的一个动点 . 设点 P的坐标为(m,0),过点 P作 x轴的垂线 l 交抛物线于点 Q.(1)求点 A,点 B,点 C 的坐标;(2)求直线 BD 的解析式;(3)当点P在线段 OB上运动时,直线 l交BD于点 M,试探究 m为何值时,四边形 CQMD 是平行四边形.∴C(0,2).当 y= 0 时,-2x +2x+ 2= 0,解得 x1=- 1,x2=4.∴A(-1,0),B(4,0);(2)∵点 D与点 C关于 x轴对称,∴D(0,-2).设直线 BD 为 y=kx- 2,把 B(4,0)代入,得 0=4k-2,∴k=I.∴k=2.解得 m1=0(不合题意,舍去),m2=2.∴ m = 2.3.(2017 兰州中考)如图,抛物线 y=- x2+bx+c与直线 AB 交于 A(-I∴ BD 的解析式为 y=2x-2;(3)∵P(m,0),1 12 3∴M(m ,2m-2),Q(m,-2m +2m+2).若四边形 CQMD 为平行四边形,∴QM∥CD, QM=CD=4,当 P在线段 OB 上运动时,QM =-12m2+23m+2 -21m-2=-12m2+ m+ 4=4,4,-4),B(0, 14)两点,直线 AC:y=-2x-6交y轴于点 C.点 E是直线 AB 上的动点,过点 E作EF⊥x 轴交 AC 于点 F,交抛物线于点 G.2(1)求抛物线 y=- x2+bx+ c 的解析式;(2)连接 GB,EO ,当四边形 GEOB 是平行四边形时,求点 G 的坐标;(3)在 y轴上存在一点 H,连接 EH , HF,当点 E运动到什么位置时,以A,E,F,H 为顶点的四边形是矩形?求出此时点E, H 的坐标.解:(1)∵点 A(-4,-4),B(0,4)在抛物线 y=-x2+bx+c上,-16- 4b+ c =- 4 ,∴c=4,b=-2,∴c=4,∴抛物线的解析式为 y=- x2-2x+ 4;(2)设直线 AB 的解析式为 y=kx+ n,∵直线 AB 过点 A, B,n=4,k= 2,∴- 4k + n=- 4, n=4,∴直线 AB 的解析式为 y= 2x+ 4,设 E(m, 2m+4),∴ G(m,-m2-2m+ 4),∵四边形 GEOB 是平行四边形,∴ EG= OB = 4,∴- m2-2m+ 4-2m-4= 4,∴m=- 2,∴G(-2,4);(3)①如图,由(2)知,直线 AB 的解析式为 y = 2x +4, ∴设 E (a , 2a +4),1∵直线 AC :y =- 2x -6,∴ Fa , - 2a - 6 , 设 H (0 , p ),∵以点 A ,E ,F ,H 为顶点的四边形是矩形 ∵直线 AB 的解析式为 y = 2x + 4,1直线 AC : y =- 2x -6, ∴AB ⊥AC ,∴EF 为对角线 ,11 ∴2(- 4+ 0) = 2(a + a ),11 12(-4+p )=21错误!,∴a =- 2,p =-1, ∴E (-2,0),H (0,-1).。

矩形教学反思

矩形教学反思

矩形教学反思1. 引言矩形是数学中常见的一个几何形状,也是中小学数学教学中的重要内容之一。

但是,在我过去的教学中,我认识到传统的矩形教学存在一些问题。

本文将对矩形教学进行反思,并提出改进的建议。

2. 问题分析2.1 传统教学模式单一在传统的矩形教学中,往往只注重学生记忆矩形的特征和性质,例如矩形的定理和公式,而忽略了培养学生的创造性思维能力和问题解决能力。

这种单一的教学模式容易导致学生对矩形的学习兴趣的降低,缺乏实际运用的能力。

2.2 缺乏实际应用矩形作为一个广泛应用于现实生活中的几何形状,应该与实际生活联系起来进行教学。

然而,在传统的教学中,学生很少有机会将所学的矩形知识应用于实际情境中,缺乏实际应用的机会,从而难以将所学的知识转化为实际能力。

2.3 缺乏启发式教学传统的矩形教学往往是教师传授知识,学生接受和记忆。

缺乏启发式的教学方法,限制了学生的思维发展和创造性思维的培养。

学生在被动接受知识的过程中,难以主动思考和发现问题,从而限制了学习的效果。

3. 改进方案针对上述问题,我提出以下改进方案来改善矩形教学的效果。

3.1 引入探究性学习为了培养学生的问题解决能力和创造性思维,可以引入探究性学习的方法。

例如,可以设计一些实际问题,让学生探索如何使用矩形的知识来解决问题,提高学生的实际运用能力。

3.2 结合实际应用在教学中,应该将矩形的应用与日常生活联系起来。

例如,可以引入建筑设计、地图制作等实际案例,让学生了解矩形在现实生活中的应用,并通过解决实际问题来加深对矩形知识的理解和掌握。

3.3 激发学生的兴趣为了提高学生对矩形学习的兴趣,可以采用一些趣味性的教学方法。

例如,通过游戏、竞赛等方式,让学生在愉快的氛围中学习矩形知识,激发他们的学习兴趣和积极性。

3.4 多样化评价方式为了更全面地评价学生的学习情况,应该采用多样化的评价方式。

除了传统的笔试和口试,还可以结合实际应用情境进行综合评价。

例如,设计一个小项目,要求学生运用矩形的知识来解决实际问题,并通过评估其解决问题的能力来衡量学生的学习成果。

(完整版)二次函数,矩形的存在性问题,含答案.doc

(完整版)二次函数,矩形的存在性问题,含答案.doc

二次函数中矩形的存在性问题1. (2015 黑龙江省龙东地区) 如图,四边形OABC是矩形,点 A、 C在坐标轴上,△ ODE是△ OCB绕点 O 顺时针旋转90°得到的,点 D在 x 轴上,直线BD交 y 轴于点 F,交 OE于点 H,线段 BC、 OC的长是方程 x2 ﹣6x+8=0 的两个根,且 OC>BC.( 1)求直线 BD的解析式;( 2)求△ OFH的面积;( 3)点 M在坐标轴上,平面内是否存在点 N,使以点 D、F、 M、 N为顶点的四边形是矩形?若存在,请直接写出点 N的坐标;若不存在,请说明理由.12. (2015重庆市綦江县)如图,抛物线y x22x 3 与x轴交与A,B两点(点A在点B的左侧),与y 轴交于点 C.点D和点C关于抛物线的对称轴对称,直线AD与 y 轴相交于点E.(1)求直线AD的解析式;(2)如图 1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△ FGH的周长的最大值;( 3)点M是抛物线的顶点,点P 是 y 轴上一点,点Q是坐标平面内一点,以A, M,P, Q为顶点的四边形是 AM为边的矩形,若点T 和点 Q关于 AM所在直线对称,求点T 的坐标.y yM yMCDC CFHE GA B A A BO x O x O x 26题图 126题备用图 126题备用图 223. (2016山东省东营市)】.】.在平面直角坐标系中,平行四边形ABOC如图放置,点A、 C的坐标分别是( 0, 4)、(﹣ 1, 0),将此平行四边形绕点 O顺时针旋转 90°,得到平行四边形 A′B′OC′.( 1)若抛物线经过点 C、 A、A′,求此抛物线的解析式;( 2)点 M时第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;( 3)若 P 为抛物线上一动点,N 为 x 轴上的一动点,点Q坐标为( 1,0),当 P、 N、 B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N 的坐标.3二次函数中矩形的存在性问题4. (2016 贵州省毕节地区 ) 如图,已知抛物线 y=x 2+bx 与直线 y=2x+4 交于 A( a, 8)、 B 两点,点 P 是抛物线上A、B 之间的一个动点,过点 P 分别作 x 轴、 y 轴的平行线与直线 AB交于点 C和点 E.(1)求抛物线的解析式;(2)若 C为 AB 中点,求 PC的长;(3)如图,以 PC,PE为边构造矩形 PCDE,设点 D 的坐标为( m, n),请求出 m, n 之间的关系式.4二次函数中矩形的存在性问题5. (2013 湖南省常德市 ) 如图,已知二次函数的图象过点(0 ,- 3) ,( 3,3 ),对称轴为直线 x1 ,2点 P 是抛物线上的一动点,过点P 分别作 PM ⊥ x 轴于点 M , PN ⊥ y 轴于点 N ,在四边形 PMON 上分别截取PC1MP , MD1OM ,OE1ON , NF1NP.3 3 3 3( 1)求此二次函数的解析式;( 2)求证:以 C , D , E , F 为顶点的四边形 CDEF 是平行四边形;( 3)在抛物线上是否存在这样的点 P ,使四边形 CDEF 为矩形?若存在,请求出所有符合条件的 P 点坐标;若不存在,请说明理由.56.如图所示,抛物线y=ax 2+bx﹣ 3 与 x 轴交于 A(﹣ 1, 0),B( 3, 0)两点,与y 轴交于点C.( 1)求抛物线的解析式;( 2)如图所示,直线BC下方的抛物线上有一点P,过点 P 作 PE⊥ BC于点 E,作 PF 平行于 x 轴交直线BC 于点 F,求△ PEF周长的最大值;( 3)已知点M是抛物线的顶点,点N 是 y 轴上一点,点Q是坐标平面内一点,若点P 是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、 Q为顶点且以PM为边的正方形?若存在,直接写出点P 的横坐标;若不存在,说明理由.6参考答案1. (2015 黑龙江省龙东地区 ) 如图,四边形OABC是矩形,点 A、 C在坐标轴上,△ ODE是△ OCB绕点 O 顺时针旋转90°得到的,点 D在 x 轴上,直线BD交 y 轴于点 F,交 OE于点 H,线段 BC、 OC的长是方程 x2 ﹣6x+8=0 的两个根,且 OC>BC.( 1)求直线 BD的解析式;( 2)求△ OFH的面积;( 3)点 M在坐标轴上,平面内是否存在点N,使以点D、 F、 M、N 为顶点的四边形是矩形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.1.分析:( 1)解方程可求得 OC、 BC的长,可求得 B、 D 的坐标,利用待定系数法可求得直线BD的解析式;( 2)可求得 E 点坐标,求出直线 OE的解析式,联立直线 BD、OE解析式可求得 H点的横坐标,可求得△ OFH的面积;( 3)当△ MFD为直角三角形时,可找到满足条件的点N,分∠ MFD=90°、∠ MDF=90°和∠ FMD=90°三种情况,分别求得M点的坐标,可分别求得矩形对角线的交点坐标,再利用中点坐标公式可求得N 点坐标.解答:解:(1)解方程x2﹣ 6x+8=0 可得 x=2 或 x=4,∵ BC、 OC的长是方程x2﹣ 6x+8=0 的两个根,且OC> BC,∴BC=2, OC=4,∴ B(﹣ 2,4),∵△ ODE是△ OCB绕点 O顺时针旋转 90°得到的,∴OD=OC=4, DE=BC=2,∴ D( 4, 0),设直线 BD解析式为 y=kx+b ,把 B、 D坐标代入可得,解得,∴直线BD的解析式为y= ﹣x+;( 2)由( 1)可知E( 4, 2),设直线 OE解析式为y=mx,把 E 点坐标代入可求得m= ,∴直线 OE解析式为y= x ,令﹣x+ =x ,解得 x=,∴ H点到y轴的距离为,又由( 1)可得F( 0,),∴ OF=,∴ S△OFH=××=;(3)∵以点 D、 F、 M、 N 为顶点的四边形是矩形,∴△ DFM为直角三角形,①当∠ MFD=90°时,则 M只能在 x 轴上,连接 FN交 MD于点 G,如图 1,由( 2)可知OF= ,OD=4,则有△ MOF∽△ FOD,∴=,即=,解得OM=,∴ M(﹣,0),且D(4,0),∴ G(,0),设 N 点坐标为( x , y),则=,=0,解得 x=,y=﹣,此时N点坐标为(,﹣);②当∠ MDF=90°时,则M只能在 y 轴上,连接DN交 MF于点 G,如图 2,7则有△ FOD ∽△ DOM ,∴= ,即 =,解得 OM=6,∴ M ( 0,﹣ 6),且 F ( 0,),∴ MG= MF= ,则 OG=OM ﹣ MG=6﹣ =,∴ G ( 0,﹣),设 N 点坐标为( x , y ),则=0, =﹣ ,解得 x=﹣ 4, y=﹣,此时 N (﹣ 4,﹣);③当∠ FMD=90°时,则可知 M 点为 O 点,如图 3, ∵四边形 MFND 为矩形,∴ NF=OD=4, ND=OF= ,可求得 N ( 4, );综上可知存在满足条件的N 点,其坐标为( ,﹣ )或(﹣ 4,﹣ )或( 4,).2. (2015 重庆市綦江县 ) 如图,抛物线 yx 2 2x 3 与 x 轴交与 A , B 两点(点 A 在点 B 的左侧),与y 轴交于点 C . 点 D 和点 C 关于抛物线的对称轴对称,直线AD 与 y 轴相交于点 E .( 1)求直线 AD 的解析式;( 2)如图 1,直线 AD 上方的抛物线上有一点 F ,过点 F 作 FG ⊥ AD 于点 G ,作 FH 平行于 x 轴交直线 AD 于点H ,求△ FGH 的周长的最大值;( 3)点 M 是抛物线的顶点,点 P 是 y 轴上一点,点 Q 是坐标平面内一点,以 A , M ,P , Q 为顶点的四边形 是 AM 为边的矩形,若点 T 和点 Q 关于 AM 所在直线对称,求点 T 的坐标 .yy M y M CDCCFHEGABAABOxOxOx26题图 1 26题备用图 1 26题备用图 2答案解:⑴ AD : y x 1⑵过点 F 作 x 轴的垂线,交直线AD 于点 ,易证△ ≌△M FGH FGM故C△ FGHC △ FGM设 F (m, m 2 2m 3)则 FM = m 2 2m 3 (m 1) m 2m 2则 C=FM2 FM(1 2) FM(1 2)( m1 )2 9 9 22 24故最大周长为9+9 248二次函数中矩形的存在性问题⑶①若 AP 为对角线如图,由△ PMS∽△ MAR可得P(0, 9 1AM的对称点 T 为(0,1 ) 由点的平移可知Q( 2, ) 故Q点关于直线)2 2 2②若 AQ为对角线如图,同理可知 P 1 7 ) 故 Q点关于直线AM的对称点 T为92 223. (2016 山东省东营市 ) 】.】.在平面直角坐标系中,平行四边形ABOC如图放置,点A、 C的坐标分别是( 0, 4)、(﹣ 1, 0),将此平行四边形绕点O顺时针旋转 90°,得到平行四边形A′B′ OC′.( 1)若抛物线经过点C、 A、A′,求此抛物线的解析式;( 2)点 M时第一象限内抛物线上的一动点,问:当点M在何处时,△ AMA′的面积最大?最大面积是多少?并求出此时M的坐标;( 3)若 P 为抛物线上一动点, N 为 x 轴上的一动点,点 Q坐标为(1, 0),当 P、 N、B、 Q构成平行四边形时,求点 P 的坐标,当这个平行四边形为矩形时,求点N 的坐标.分析( 1)由平行四边形ABOC绕点 O 顺时针旋转90°,得到平行四边形A′ B′ OC′,且点A 的坐标是(0, 4),可求得点A′的坐标,然后利用待定系数法即可求得经过点 C、 A、 A′的抛物线的解析式;( 2)首先连接AA′,设直线AA′的解析式为:y=kx+b ,利用待定系数法即可求得直线AA′的解析式,再设点M的坐标为:( x ,﹣ x2+3x+4),继而可得△AMA′的面积,继而求得答案;( 3)分别从BQ为边与BQ为对角线去分析求解即可求得答案.解答解:( 1)∵平行四边形ABOC绕点 O顺时针旋转90°,得到平行四边形A′ B′ OC′,且点A 的坐标是( 0,4),∴点 A′的坐标为:( 4, 0),∵点 A、 C 的坐标分别是(0, 4)、(﹣ 1, 0),抛物线经过点C、 A、 A′,设抛物线的解析式为:y=ax 2+bx+c ,∴,解得:,∴此抛物线的解析式为:y=﹣ x2+3x+4 ;( 2)连接AA′,设直线AA′的解析式为:y=kx+b ,∴,解得:,∴直线AA′的解析式为:y= ﹣ x+4,设点 M的坐标为:( x,﹣ x2 +3x+4),则S△AMA′= × 4× [ ﹣ x2+3x+4 ﹣(﹣ x+4 ) ]= ﹣ 2x2 +8x=﹣ 2(x ﹣ 2)2+8,∴当 x=2 时,△ AMA′的面积最大,最大值S△AMA′ =8,9∴ M的坐标为:( 2, 6);(3)设点 P 的坐标为( x,﹣ x2 +3x+4),当 P, N,B, Q构成平行四边形时,∵平行四边形 ABOC中,点 A、 C 的坐标分别是( 0, 4)、(﹣ 1, 0),∴点 B的坐标为( 1, 4),∵点 Q坐标为( 1, 0), P 为抛物线上一动点, N 为 x 轴上的一动点,①当BQ为边时, PN∥ BQ, PN=BQ,∵ BQ=4,∴﹣ x2+3x+4= ± 4,当﹣ x2+3x+4=4 时,解得: x1=0, x 2=3,∴ P1( 0,4), P2(3, 4);当﹣ x2 +3x+4=﹣ 4 时,解得: x3=,x2=,∴ P3(,﹣4),P4(,﹣4);②当 PQ为对角线时,BP∥ QN, BP=QN,此时 P 与 P1, P2重合;综上可得:点P 的坐标为:P1( 0, 4), P2(3, 4), P3(,﹣4),P4(,﹣4);如图 2,当这个平行四边形为矩形时,点N 的坐标为:( 0, 0)或( 3, 0).4. (2016 贵州省毕节地区 ) 如图,已知抛物线 y=x 2+bx 与直线 y=2x+4 交于 A( a, 8)、 B 两点,点 P 是抛物线上A、B 之间的一个动点,过点 P 分别作 x 轴、 y 轴的平行线与直线 AB交于点 C和点 E.(1)求抛物线的解析式;(2)若 C为 AB 中点,求 PC的长;(3)如图,以 PC,PE为边构造矩形 PCDE,设点 D 的坐标为( m, n),请求出m,n 之间的关系式.分析( 1)把 A 点坐标代入直线方程可求得 a 的值,再代入抛物线可求得 b 的值,可求得抛物线解析式;(2)联立抛物线和直线解析式可求得B 点坐标,过 A 作 AQ⊥ x 轴,交 x 轴于点 Q,可知 OC= AQ=4,可求得 C点坐标,结合条件可知P 点纵坐标,代入抛物线解析式可求得 P 点坐标,从而可求得PC的长;( 3)根据矩形的性质可分别用m、n 表示出C、P 的坐标,根据DE=CP,可得到m、n的关系式.解:( 1)∵ A( a, 8)是抛物线和直线的交点,∴ A 点在直线上,∴8=2a+4 ,解得 a=2,∴ A 点坐标为( 2, 8),又 A 点在抛物线上,∴8=22 +2b,解得 b=2,∴抛物线解析式为 y=x 2 +2x;( 2)联立抛物线和直线解析式可得,10解得, ,∴ B 点坐标为(﹣ 2, 0),如图,过 A 作 AQ ⊥ x 轴,交 x 轴于点 Q ,则 AQ=8, OQ=OB=2,即 O 为 BQ 的中点,当 C 为 AB 中点时,则 OC 为△ ABQ 的中位线,即 C 点在 y 轴上, ∴ OC= AQ=4,∴ C 点坐标为( 0, 4),又 PC ∥ x 轴,∴ P 点纵坐标为 4, ∵ P 点在抛物线线上, ∴ 4=x 2 +2x ,解得 x=﹣ 1﹣或 x=﹣ 1,∵ P 点在 A 、 B 之间的抛物线上, ∴ x= ﹣1﹣ 不合题意,舍去,∴ P 点坐标为( ﹣ 1, 4),∴ PC=﹣ 1﹣ 0= ﹣ 1;( 3)∵ D ( m , n ),且四边形 PCDE 为矩形, ∴ C 点横坐标为 m , E 点纵坐标为 n ,∵ C 、 E 都在直线 y=2x+4 上,∴ C ( m , 2m+4), E (, n ),∵ PC ∥x 轴,∴ P 点纵坐标为 2m+4, ∵ P 点在抛物线上,22﹣ 1 或 x=﹣﹣ 1(舍去),∴ 2m+4=x +2x ,整理可得 2m+5=( x+1 ) ,解得 x= ∴ P 点坐标为( ﹣ 1, 2m+4),∴ DE=﹣ m , CP=﹣ 1﹣ m ,∵四边形 PCDE 为矩形,∴ DE=CP ,即﹣ m=﹣ 1﹣ m ,2整理可得 n ﹣ 4n ﹣ 8m ﹣ 16=0,即 m 、 n 之间的关系式为 n 2﹣ 4n ﹣ 8m ﹣ 16=0.5. (2013 湖南省常德市 ) 如图,已知二次函数的图象过点 A (0 ,- 3) ,B ( 3,3 ),对称轴为直线 x1,点 P 是抛物线上的一动点,2P过点 分别作⊥ 轴于点 , ⊥ 轴于点 ,PM xM PN y N在四边形 PMON 上分别截取 PC1MP , MD1OM ,OE1ON , NF1NP.33 3 3( 1)求此二次函数的解析式;( 2)求证:以 C , D , E , F 为顶点的四边形 CDEF 是平行四边形;( 3)在抛物线上是否存在这样的点P ,使四边形 CDEF 为矩形?若存在,请求出所有符合条件的P 点坐标;若不存在,请说明理由 .11解:( 1)设二次函数的解析式为23, 3 )、对称轴方程分别代入可得:y ax bx c ,将点 A 0-3)、B (( ,3 c,a 1,3 3a 3b c ,解得 a 1, ∴此二次函数的解析式为 y x 2x 3 .b1 . b3.2a2( 2)证明:如图连接 CD , DE , EF , FC.∵PM ⊥ x 轴, PN ⊥y轴,∴四边形 OMPN 是矩形 . ∴ MP =ON , OM =PN.又 PC1 1 11 MP , MD OM ,OE ON , NFNP,3 3 33∴ DMFN , MC NE ∴△ CMD △ENF, 同理△ ODE △ FPC(SAS),∴ CF =ED , CD =EF., ∴四边形 CDEF 是平行四边形 .( 3)如图,作 CQ ⊥ y 轴于点 Q ,设 P 点坐标为 x, x 2 x 3 ,则QNPC OE 1 MP . ∴ EQ1 x 2x 3 . ∴在 Rt △ ECQ33CE 2EQ 2 CQ 2中,1 x2x2x2.39Q DE 2 OD 2OE 22 x 212x 2 x 34 3 13222x9 x x3 ,9当⊥ 时,CD 2DM 2 CM 2CD DE1 x 242x 2 x 3,9 9CE 2 DE 2 CD 2x 31 x2 4 x 2 x 34 x 21 x 22299 x 2 x995 x 253 .2991 x 2x 3 2x 25x 25x 2x 32当x 2 x3 x 时 , x 13,x 2 3,999, 此时, y 13,y 23 ;4 x 2 4x 2 2 当x 2x3x 时, x 13, x 2 1,x 3 ,9 9此时, y 1 3, y 2 1.x2x3x.综上可知符合条件的 点有四个, P 分别是 , 3 , ,- 3 ,- 3 , 3 , ,-1 .3 3 1 本题用相似更简单!126.如图所示,抛物线y=ax 2+bx﹣ 3 与 x 轴交于 A(﹣ 1, 0),B( 3, 0)两点,与y 轴交于点C.( 1)求抛物线的解析式;( 2)如图所示,直线BC下方的抛物线上有一点P,过点 P 作 PE⊥ BC于点 E,作 PF 平行于 x 轴交直线BC 于点 F,求△ PEF周长的最大值;( 3)已知点M是抛物线的顶点,点N 是 y 轴上一点,点Q是坐标平面内一点,若点P 是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、 Q为顶点且以PM为边的正方形?若存在,直接写出点P 的横坐标;若不存在,说明理由.【解答】解:( 1)把 A(﹣ 1, 0), B( 3, 0)两点坐标代入抛物线y=ax2+bx﹣ 3,得到,解得,∴抛物线的解析式为y=x 2﹣ 2x ﹣3.(2)如图 1 中,连接 PB、 PC.设 P( m, m2﹣ 2m﹣3),∵ B( 3, 0), C( 0,﹣ 3),∴OB=OC,∴∠OBC=45°,∵PF∥ OB,∴∠ PFE=∠OBC=45°,∵PE⊥ BC,∴∠ PEF=90°,∴△ PEF是等腰直角三角形,∴ PE最大时,△ PEF的面积中点,此时△PBC的面积最大,则有 S△PBC=S△POB+S△POC﹣ S△BOC= ?3?(﹣ m2+2m+3) + ?3?m﹣ =﹣(m﹣)2+,∴m= 时,△ PBC的面积最大,此时△ PEF的面积也最大,此时 P(,﹣),13∵直线 BC的解析式为y=x ﹣3,∴ F(﹣,﹣),∴ PF=,∵△ PEF是等腰直角三角形,∴ EF=EP=,∴ C△PEF最大值 = +.( 3)①如图 2 中,当 N 与 C 重合时,点N 关于对称轴的对称点P,此时思想MNQP是正方形,易知P( 2,﹣ 3).点 P 横坐标为 2,②如图 3 中,当四边形PMQN是正方形时,作PF⊥ y 轴于 N, ME∥ x 轴, PE∥y 轴.易知△ PFN≌△ PEM,2∴ PF=PE,设 P( m,m﹣ 2m﹣ 3),∵ M( 1,﹣ 4),2∴ m=m﹣ 2m﹣3﹣(﹣ 4),∴ m=或(舍弃),∴ P 点横坐标为所以满足条件的点P 的横坐标为 2 或.14。

专题15 存在性-矩形(解析版)中考数学压轴题--二次函数--存在性问题

专题15 存在性-矩形(解析版)中考数学压轴题--二次函数--存在性问题

中考数学压轴题--二次函数--存在性问题第15节 矩形的存在性方法点拨矩形ABCD ,O 为对角线AC 与BD 的交点,则O 的坐标为(2,2C A C A y y x x ++)或者(2,2D B D B y y x x ++)解题方法:(在平行四边形的基础上增加对角线相等) (1)选一定点,再将这一定点与另外点的连线作为对角线,分类讨论;(2)利用中点坐标公式列方程:D B C A x x x x +=+;D B C A y y +=+y y(3)对角线相等:()2222)()()(D B D B C A C A y y x x y y x x -+-=-+-例题演练1.如图,在平面,在平面直角坐标系中,地物线y =x 2+bx +c 与x 轴交于点A (﹣1,0),B (3,0)与y 轴交于点C .(1)求该抛物线的函数表达式;(2)点P 是直线BC 下方抛物线上的任意一点,连接PB ,PC ,以PB ,PC 为邻边作平行四边形CPBD,求四边形CPBD面积的最大值;(3)将该抛物线沿射线CB方向平移个单位,平移后的抛物线与y轴交于点E,点M为直线BC上的一点,在平面直角坐标系中是否存在点N,使以点C,E,M,N为顶点的四边形为矩形,若存在,请直接写出点N的坐标;若不存在,请说明理由.【解答】解:(1)把A(﹣1,0),B(3,0)代入y=x2+bx+c,得,解得,∴该抛物线的函数表达式为y=x2﹣x﹣2.(2)如图1,过点P作PH⊥x轴于点H,交BC于点G.∵抛物线y=x2﹣x﹣2与y轴交于点C,∴C(0,﹣2).设直线BC的函数表达式为y=kx﹣2,则3k﹣2=0,解得k=,∴y=x﹣2.设P(x,x2﹣x﹣2)(0<x<3),则G(x,x﹣2),∴PG=x﹣2﹣(x2﹣x﹣2)=﹣x2+2x,∵S△PBC=PG•OH+PG•BH=PG•OB=PG,∴S平行四边形CPBD=2S△PBC=3PG,∴S平行四边形CPBD=3(﹣x2+2x)=﹣2x2+6x=﹣2(x﹣)2+,∴当x=时,四边形CPBD的面积的值最大,最大值为.(3)存在.如图2,设抛物线y=x2﹣x﹣2的顶点为Q,其对称轴交x轴于点J,交直线BC于点K,设抛物线y=x2﹣x﹣2平移后的顶点为R,过点R作RI⊥JQ于点I.∵QR∥BC,∴∠RQI=∠BKJ=∠BCO,∵∠RIQ=∠BOC=90°,∴△RIQ∽△BOC.∵OB=3,OC=2,∴BC==,∴OC:OB:BC=2:3:,∴IQ:IR:QR=2:3:,∵QR=,∴IQ=QR=×=1,IR=QR=×=.由y=x2﹣x﹣2=y=(x﹣1)2﹣,得Q(1,﹣),∴1+=,+1=,R(,),∴平移后抛物线的函数表达式为y=(x﹣)2﹣,当x=0时,y=×()2=,∴E(0,).若以C、E、M、N为顶点的四边形是以CE为一边的矩形,则EN∥CM,EN=CM.当y=时,由x﹣2=,得x=,∴M(,),N(,﹣2);若以C、E、M、N为顶点的四边形是以CE为对角线的矩形,则EN∥CM,EN=CM.如图3,作NT⊥y轴于点T.∵EN∥BC,∴∠NET=∠ECM=∠BCO,∵∠NTE=∠EMC=∠BOC=90°,∴△NTE∽△EMC∽△BOC,∴EN=CM=CE=×(+2)=,∴TN=EN=×=,TE=EN=×=,∴OT==,∴N(,).综上所述,点N的坐标为(,﹣2)或(﹣,).2.如图1,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴交于点A(﹣2,0)、B(4,0),与y轴交于点C.(1)求抛物线的函数解析式;(2)点D是抛物线上一点,D点横坐标为3,连接AD,点P为AD上方抛物线上一点,连接P A,PD,请求出△P AD面积的最大值及此时点P的坐标;(3)如图2,将原抛物线y=ax2+bx+4沿x轴负半轴方向平移2个单位长度,得到新抛物线y1=a1x2+b1x+c1(a1≠0),新抛物线与原抛物线交于点M.点N是原抛物线对称轴上一点,在平面直角坐标系内是否存在点Q,使得以点A、M、N、Q为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由e【解答】解:(1)将A、B点的坐标代入抛物线y=ax2+bx+4中,得,解得,∴抛物线的解析式为y=﹣x2+x+4;(2)分别过点D、P作x轴的垂线,交x轴于E、F,如图1,∵点P为AD上方抛物线上一点,∴x的取值范围是﹣2<x<3,∵D、P都是抛物线上的点,设P(x,﹣x2+x+4),D点的横坐标为3,∴DE=﹣×32+3+4=,PF=﹣x2+x+4,∵S△P AD=S梯形PFED+S△APF﹣S△AED,即S△P AD=×[(PF+DE)×EF]+×AE×DE,∴S△P AD=×[(﹣x2+x+4+)×(3﹣x)]+×[x﹣(﹣2)]×(﹣x2+x+4)﹣×[3﹣(﹣2)]×,化简得S△P AD=﹣x2+x+,∵﹣<0,∴S△P AD有最大值,当x==时,S△P AD有最大值为,此时P(,);(3)存在,∵抛物线解析式y=﹣x2+x+4=﹣(x﹣1)2+,∴移动后的解析式为y=﹣(x﹣1+2)2+=﹣x2﹣x+4,∵二次函数前后图象交于M,∴﹣x2+x+4=﹣x2﹣x+4,解得x=0,∴M(0,4),∵抛物线移动前对称轴为x==1,点N是原对称轴上的一点,∴N点的横坐标为1;①若以点A、M、N、Q为顶点的四边形是矩形,当MN和AM为邻边时,则MN⊥AM,过点N作平行于x轴的直线交y轴于点T,如图2,在△AMO和△MNT中,,∴△AMO∽△MNT,∴=,∵AO=2,MO=4,NT=1,∴=,即=,∴MT=,∴点T的纵坐标为4﹣=,∴点N的坐标为(1,),根据矩形性质和平移法则,线段AM向右平移1,向下平移,得到对应线段QN,四边形AQNM构成矩形,∴点A向右平移1,向下平移,得到点Q,此时点Q的坐标为(﹣1,﹣),②若以点A、M、N、Q为顶点的四边形是矩形,当AN和AM为邻边时,则AN⊥AM,设原抛物线对称轴交x轴于G,如图3,在△AOM和△NGA中,,∴△AOM∽△NGA,∴=,∵AO=2,MO=4,AG=1﹣(﹣2)=3,∴=,即=,∴NG=3,同理点M向右平移3,向下平移,得到Q,∴此时点Q的坐标为(3,),综上,以点A、M、N、Q为顶点的四边形是矩形时点Q的坐标为(﹣1,﹣)或(3,).3.如图,已知抛物线y=ax2+bx+2的图象与x轴交于A,B两点,与y轴交于点C.﹣1,3是关于x的一元二次方程ax2+bx+2=0的两个根.(1)求该抛物线的解析式;(2)过点A作AD∥BC交抛物线于点D,AD与y轴交于点E,P为直线BC上方抛物线上的一个动点,连接P A交BC于点F,求S△PEF的最大值及此时点P的坐标;(3)在(2)的条件下,点M为抛物线上一动点,在平面内找一点N,是否存在以点A,M,N,P为顶点的四边形是以P A为边的矩形?若存在,请直接写出点N的坐标,若不存在,请说明理由.【解答】解:(1)∵﹣1,3是关于x的一元二次方程ax2+bx+2=0的两个根,∴,解得,∴该抛物线的解析式为y=x2+x+2.(2)如图1,作PH⊥x轴,交AD于点H,作PG⊥AD于点G,作BK⊥AD于点K.当y=0时,x1=﹣1,x2=3,则A(﹣1,0)、B(3,0);当x=0时,y=2,则C(0,2).设直线BC的解析式为y=kx+2,则3k+2=0,解得k=,∴y=x+2;设直线AD的解析式为y=x+c,则+c=0,解得c=,∴y=x,E(0,),∵OA=1,OE=,∠AOE=90°,∴AE==,∴OE:OA:AE=2:3:.∴BK=AB•sin∠OAE=(3+1)×=,∴S△AEF=××=,设P(x,x2+x+2),则H(x,x),∴PH=x2+x+2+x+=x2+2x+,∵PH∥y轴,∴∠PHG=∠AEO,∴PG=PH•sin∠AEO=(x2+2x+),∴S△PEF=××(x2+2x+)=x2+x=(x)2+,∴当x=时,S△PEF的面积最大,最大值为,此时P(,).(3)存在.如图2,设直线AP交y轴于点R,直线AM交y轴于点Q,直线AP的解析式为y=px+q,由(1)得P(,),则,解得,∴y=x+1,R(0,1),OA=OR=1.当矩形AMNP以AP、AM为邻边时,则∠RAQ=90°,PN∥AM,MN∥AP.∵∠OAR=∠ORA=45°,∠AOR=∠AOQ=90°,∴∠OAQ=∠OQA=45°,∴OQ=OA=1,Q(0,﹣1);设直线AM的解析式为y=mx﹣1,则﹣m﹣1=0,解得m=﹣1,∴y=﹣x﹣1;设直线PN的解析式为y=﹣x+n,则+n=,解得n=4,∴y=﹣x+4.由,得,,∴M(,);设直线MN的解析式为y=x+r,则+r=,解得r=﹣10,∴y=x﹣10,由,得,∴N(7,﹣3);设PN交抛物线于另一点M′,作M′N′∥AP交AM于点N′.由,得,,∴M′(2,2),设直线M′N′的解析式为y=x+d,则2+d=2,解得d=0,∴y=x,由,得,当矩形AN′M′P以AP、PM′为邻边,则N′(,).综上所述,点N的坐标为(7,﹣3)或(,).4.如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A,B的坐标分别为(0,1),(﹣9,10),AC∥x轴.(1)求抛物线的解析式;(2)点P是直线AC下方抛物线上的动点,过点P且与y轴平行的直线l与直线AB交于点E,当四边形AECP的面积最大时,求点P的坐标;(3)点A关于x轴的对称点为A′,将该抛物线平移至其顶点与A′重合,得到一条新抛物线,平移后的抛物线与原抛物线相交于点M,点N为原抛物线对称轴上一点,在平面直角坐标系中是否存在一点D,但以点C,D,M,N为顶点的四边形为矩形,若存在,请直接写出点D的坐标,若不存在,请说明理由.【解答】解:(1)∵y=x2+bx+c经过A(0,1),B(﹣9,10),则,解得,故抛物线的解析式是y=x2+2x+1①;(2)设直线AB的解析式为y=mx+n,将A(0,1),B(﹣9,10)代入得:,解得,∴AB解析式为y=﹣x+1,由x2+2x+1=1解得x1=0,x2=﹣6,∴C(﹣6,1),AC=6,∵P在AC下方抛物线上,设P(t,t2+2t+1),∴﹣6<t<0∵过点P且与y轴平行的直线l与直线AB交于点E,∴E(t,﹣t+1),∴EP=(﹣t+1)﹣(t2+2t+1)=﹣t2﹣3t,而四边形AECP的面积S四边形AECP=S△EAC+S△P AC=AC•EF+AC•PF=AC•EP,∴S四边形AECP=×6×(﹣t2﹣3t)=﹣t2﹣9t=﹣(t+)2+,∵﹣6<﹣<0,∴t=﹣时,S四边形AECP最大值为:,此时t2+2t+1=×(﹣)2+2×(﹣)+1=﹣,∴P(﹣,﹣);(3)存在,理由:点A的坐标为(0,1),则点A′为(0,﹣1),则平移后的抛物线表达式为y=x2﹣1②,联立①②并解得,故点M的坐标为(﹣1,﹣),设点N的坐标为(﹣3,m),点D的坐标为(s,t),而点C的坐标为(﹣6,1),①当CM是矩形的边时,点C向右平移5个单位向下平移个单位得到点M,同样点N(D)向右平移5个单位向下平移个单位得到点D(N),且CD=MN(CN=DM),则或,解得或;故点D的坐标为(2,)或(﹣8,﹣5);②当CM是矩形对角线时,则CM的中点即为DN的中点,且CM=DN,∴,解得或,故点D的坐标为(﹣4,)或(﹣4,).综上,点D坐标为(2,)或(﹣8,﹣5)或(﹣4,)或(﹣4,).5.在平面直角坐标系xOy中,抛物线y=x2﹣2x﹣6与x轴交于点A、B(点A在点B左侧),与y轴交于点C,顶点为点D.(1)求点B、D的坐标;(2)如图1,点P在直线BD下方抛物线上运动(不含端点B、D),记△PCB的面积为S1,记△PDB的面积为S2,求2S1﹣S2的最大值及此时点P的坐标;(3)如图2,将该抛物线沿直线DB平移,设平移后的新抛物线的顶点为D'(D'与D不重合),新抛物线与直线DB的另一个交点为点E,在平面直角坐标系中是否存在点F,使以点C、D'、E、F为顶点的四边形为矩形?若存在,直接写出点F的坐标;若不存在,请说明理由.【解答】解:(1)令x=0,则y=﹣6,∴C(0,﹣6),令y=0,则,解得x=﹣2或6,∴A(﹣2,0),B(6,0),∵,∴D(2,﹣8),即B(6,0),D(2,﹣8);(2)设直线BC为y=k1x﹣6,代入B点坐标得:0=6k1﹣6,解得k1=1,∴直线BC解析式为y=x﹣6,同理,直线BD解析式为y=2x﹣12,设P,过P作PM∥y轴交BC于M,交BD于N,如下图,则M(x,x﹣6),N(x,2x﹣12),∴PM=x﹣6﹣=,∴=,∴PN=2x﹣12﹣(x2−2x−6)=﹣x2+4x﹣6,同理S2=PN•(6−2)=2PN=2(﹣x2+4x﹣6)=﹣x2+8x+12,∴2S1﹣S2=﹣2x2+10x﹣12=,∵2<x<6,∴时,2S1﹣S2最大值为,此时P();(3)将抛物线沿BD方向平移,设D′(n,2n﹣12),∴平移后的抛物线为:,∵平移后的抛物线与直线BD交于点D′和点E,∴联立,化简得,x2﹣(2n+4)x+n2+4n=0,∴x D′+x E=2n+4,又x D′=n,∴x E=n+4,∴y E=2(n+4)﹣12=2n﹣4,∴E(n+4,2n﹣4),以C、D′、E、F为顶点构矩形,分以下三类:①当CD′为矩形CED′F的对角线时,,解得,∴F(﹣4,﹣14),∵CD′=EF,∴n2+(2n﹣6)2=(n+8)2+(2n+10)2,∴,符合题意,此时F(﹣4,﹣14),②当D′E为矩形CD′FE的对角线时,,解得,∴F(2n+4,4n﹣10),∵CF=D′E,∴(2n+4)2+(4n﹣4)2=42+82,∴或2,符合题意,此时F()或(8,﹣2),③当CE为矩形CD′EF的对角线时,设点F的坐标为(a,b),而点E、C、D′的坐标分别为(n+4,2n﹣4)、(0,﹣6)、(n,2n﹣12),由中点公式得,解得,故点F的坐标为(4,2);综上,点F的坐标为F(﹣4,﹣14)或()或(8,﹣2)或(4,2).6.如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c(a≠0)经过点A、E,点E的坐标是(5,3),抛物线交x轴于另一点C(6,0).(1)求抛物线的解析式.(2)设抛物线的顶点为D,连接BD,AD,CD,动点P在BD上以每秒2个单位长度的速度由点B向点D运动,同时动点Q在线段CA上以每秒3个单位长度的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒,PQ交线段AD于点H.①当∠DPH=∠CAD时,求t的值;②过点H作HM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N.在点P、Q的运动过程中,是否存在以点P,N,H,M为顶点的四边形是矩形?若存在,求出t的值;若不存在,请说明理由.【解答】解:(1)在直线y=﹣2x+4中,令x=0时,y=4,∴点B坐标(0,4),令y=0时,得:﹣2x+4=0,解得:x=2,∴点A(2,0),∵抛物线经过点A(2,0),C(6,0),E(5,3),∴可设抛物线解析式为y=a(x﹣2)(x﹣6),将E(5,3)代入,得:3=a(5﹣2)(5﹣6),解得:a=﹣1,∴抛物线解析式为:y=﹣(x﹣2)(x﹣6)=﹣x2+8x﹣12;(2)①∵抛物线解析式为:y=﹣x2+8x﹣12=﹣(x﹣4)2+4,∴顶点D(4,4),∵点B坐标(0,4),∴BD∥OC,BD=4,∵y=﹣x2+8x﹣12与x轴交于点A,点C,∴点C(6,0),点A(2,0),∴AC=4,∵点D(4,4),点C(6,0),点A(2,0),∴AD=CD=2,∴∠DAC=∠DCA,∵BD∥AC,∴∠DPH=∠PQA,且∠DPH=∠DAC,∴∠PQA=∠DAC,∴PQ∥DC,且BD∥AC,∴四边形PDCQ是平行四边形,∴PD=QC,∴4﹣2t=3t,∴t=;②存在以点P,N,H,M为顶点的四边形是矩形,此时t=1﹣.如图,若点N在AB上时,即0≤t≤1,∵BD∥OC,∴∠DBA=∠OAB,∵点B坐标(0,4),A(2,0),点D(4,4),∴AB=AD=2,OA=2,OB=4,∴∠ABD=∠ADB,∴tan∠OAB===tan∠DBA=,∴PN=2BP=4t,∴MH=PN=4t,∵tan∠ADB=tan∠ABD==2,∴MD=2t,∴DH==2t,∴AH=AD﹣DH=2﹣2t,∵BD∥OC,∴=,∴=,∴5t2﹣10t+4=0,∴t1=1+(舍去),t2=1﹣;若点N在AD上,即1<t≤,∵PN=MH,∴点E、N重合,此时以点P,N,H,M为顶点的矩形不存在,综上所述:当以点P,N,H,M为顶点的四边形是矩形时,t的值为1﹣.7.已知,二次函数y=﹣x2+x+2图象与x轴交于A、B两点,与y轴交于点C,连接AC、BC.(1)如图1,请判断△ABC的形状,并说明理由;(2)如图2,D为线段AB上一动点,作DP∥AC交抛物线于点P,过P作PE⊥x轴,垂足为E,交BC于点F,过F作FG⊥PE,交DP于G,连接CG,OG,求阴影部分面积S的最大值和D点坐标;(3)如图3,将抛物线沿射线AC方向移动个单位得到新的抛物线y'=ax2+bx+c(a ≠0),是否在新抛物线对称轴上存在点M,在坐标平面内存在点N,使得以C、B、M、N为顶点的四边形是以CB为边的矩形?若存在,请直接写出N点坐标;若不存在,请说明理由.【解答】解:(1)令x=0,则y=,∴,令y=0,则,解得:,∴,∴,在Rt△AOB中,AC2=OA2+OC2=15,同理,BC2=60,又AB=,∴AC2+BC2=AB2,∴∠ACB=90°,即△ABC为直角三角形;(2)设直线AC为,代入点A(,0)得,k1=2,∴直线AC为,同理,直线BC为,(2)∵PE⊥x轴,∴PE∥y轴,设P(m,),F(m,),∴,∵GF⊥PE,PE⊥x轴,∴GF∥x轴,∠GFP=90°,∵AC∥PD,∴∠CAO=∠PDE=∠PGF,又∠AOC=∠GFP=90°,∴△AOC∽△GFP,∴,∴GF=,∵,∴,∴当PF最大时,S阴取得最大值,∵=,又,∴当m=时,PF最大值为,S阴最大值为3,∴P(),∵PD∥AC,∴可设直线PD为y=2x+b,代入点P,得b=,∴直线PD为:,令y=0,解得x=,∴,此时S阴最大值为3;(3)存在这样的点M,使以C、B、M、N为顶点的四边形为矩形,∵,∴当抛物线沿射线AC方向平移个单位,可以分解为水平向右平移个单位,竖直向上平移3个单位,∵y=,∴平移后得抛物线为:,∴对称轴为直线,①当∠MCB=90°,MB为对角线,构成矩形MCBN时,如图1,过M作MQ⊥y轴于Q点,∴∠MCQ+∠OCB=90°,又∠OBC+∠OCB=90°,∴∠MCQ=∠OBC,∴tan∠MCQ=tan∠OBC=,∴,又MQ=,∴,∴,由坐标与平移关系可得,N(),②当∠CBM=90°,CM为对角线,构成矩形BCNM时,如图2,∵∠CBO+∠OBM=90°,∠BMQ+∠OBM=90°,∴∠BMQ=∠CBO,∴tan∠BMQ=tan∠CBO,∴,∵,∴,∴,由坐标与平移关系可得,N(),综上所述,N为()或().8.如图,抛物线y=ax2+bx+c的图象交x轴于A(﹣3,0)、B两点,顶点为点C(﹣1,﹣2),连接BC.(1)求抛物线的解析式;(2)如图1,作∠ABC的角平分线BE,交对称轴于交点D,交抛物线于点E,求DE的长;(3)如图2,在(2)的条件下,点F是线段BC上的一动点(点F不与点和点B重合,连接DF,将△BDF沿DF折叠,点B的对应点为点B1,△DFB1与△BDC的重叠部分为△DFG,请探究,在坐标平面内是否存在一点H,使以点D、F、G、H为顶点的四边形是矩形?若存在,请求出点H的坐标,若不存在,请说明理由.【解答】解:(1)∵抛物线的顶点C(﹣1,﹣2),∴可以假设抛物线的解析式为y=a(x+1)2﹣2,把A(﹣3,0)代入可得a=,∴抛物线的解析式为y=(x+1)2﹣2=x2+x﹣.(2)如图1中,设抛物线的对称轴交x轴于F(﹣1,0).由题意,BF=2,CF=2,∴tan∠CBF==,∴∠CBF=60°,∵BE平分∠ABC,∴∠ABE=∠ABC=30°,∴DF=BF•tan30°=,∴D(﹣1,﹣),∴直线BD的解析式为y=x﹣,由,解得,或,∴E(﹣,﹣),∴DE==.(3)如图2﹣1中,当∠DGF=90°时,点H在第三象限,此时CG=GB,G(0,﹣),F(,﹣),利用平移的性质可得H(﹣,﹣).如图2﹣2中,当∠DFC=90°时,点H在第三象限,此时CF=FB,点C,G,B′共点,F(0,﹣),利用平移的性质可得H(﹣2,﹣).如图2﹣3中,当∠DGF=90°,点H在第三象限,此时G(﹣1,),F(﹣,﹣),利用平移的性质可得H(﹣,﹣),综上所述,满足条件的点H的坐标为(﹣,﹣)或(﹣2,﹣)或(﹣,﹣).9.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)交x轴于A(﹣1,0),B(4,0),交y轴于点C.(1)求该抛物线解析式;(2)点P为第四象限内抛物线上一点,连接PB,过C作CQ∥BP交x轴于点Q,连接PQ,求△PBQ面积的最大值及此时点P的坐标;(3)在(2)的条件下,将抛物线y=ax2+bx﹣2(a≠0)向右平移经过点Q,得到新抛物线y=a1x2+b1x+c1(a1≠0),点E在新抛物线的对称轴上,是否存在平面内一点F,使得A,P,E,F为顶点的四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx﹣2(a≠0)交x轴于A(﹣1,0),B(4,0),∴,解得,∴抛物线的解析式为y=x2﹣x﹣2.(2)如图,连接BC,OP,设P(m,m2﹣m﹣2).∵CQ∥PB,∴S△PBQ=S△PBC=S△POC+S△POB﹣S△OBC=×2×m+×4×(﹣m2+m+2)﹣×2×4=﹣m2+4m=﹣(m﹣2)2+4,∵﹣1<0,∴m=2时,△PBQ的面积的最大值为4,∴P(2,﹣3).(3)存在.理由:如图2中,过点P作PH⊥AB于H,过点P作新抛物线的对称轴l的垂线垂足为J,设直线l与x轴的交点为T,过点A作AE⊥AP交新抛物线的对称轴于E′,可得矩形AE′F′P.∵P(2,﹣3),B(4,0),∴直线PB的解析式为y=x﹣6,∵CQ∥PB,∴CQ的解析式为y=x﹣2,∴Q(,0),∴AQ=1+=,∴平移后的抛物线的对称轴x=,∴AT=,∵PH⊥AH,AH=PH=3,∴∠HAP=∠APH=45°,∴AT=TE′=,∴E′(,),∵P A=E′F′,P A∥E′F′,∴点E′向右平移3个单位,向下平移3个单位得到F′,∴F′(,),过点P作PE⊥P A,交直线l于E,可得矩形APEF,过点P作PJ⊥直线l于J,同法可得,PJ=EJ=,∴E(,﹣),∵P A=EF,P A∥EF,∴点E向左平移3个单位,向上平移3个单位得到F,∴F(,).综上所述,满足条件的点F的坐标为(,)或(,).10.如图,在平面直角坐标系中,抛物线交x轴于点A和点B(点A在原点的左侧,点B在原点的右侧),点A的坐标为(﹣3,0),点B的坐标为(1,0),交y 轴于点C.(1)求该抛物线的解析式;(2)已知点P为抛物线上一点,直线PC与x轴交于点Q.使得PQ=CQ.求点P坐标;(3)若点M是抛物线对称轴上一点,点N是平面内一点,是否存在以A,C,M,N为顶点的矩形?若存在,请直接写出N点的坐标;若不存在,请说明理由.【解答】解:(1)抛物线交x轴于A(﹣3,0),B(1,0),∴,解得,∴抛物线解析式为;(2)∵点P为抛物线上一点,∴设P(m,﹣m2﹣m+4),如图1,作PH⊥x轴于H,∴PH∥OC,∴△QCO∽△QPH,∴,∴(﹣m2﹣m+4)=±,解得:m=﹣或﹣或,∴P点坐标(﹣,5)或(﹣,5)或(,﹣5)或(,﹣5);(3)∵抛物线y=﹣x2﹣x+4的对称轴为x=﹣1,设点M的坐标为(﹣1,m),∵点A的坐标为(﹣3,0),点C的坐标为(0,4),∴AM==,同理可得:AC=5,CM=,分AC为边或AC为对角线两种情况考虑:①当AC为边时,有AC2+AM2=CM2或AC2+CM2=AM2,即25+m2+4=m2﹣8m+17或25+m2﹣8m+17=m2+4,解得:m=﹣或,∴点M的坐标为(﹣1,﹣)或(﹣1,);如图2,过M作y轴的垂线交于点H,过点N作x轴的垂线交于点G,由题意得:四边形NACM为矩形,则AN=CM,∵∠MCH=∠BAM′=∠ANG,∠NGA=∠CHM=90°,∴△AGN≌△MHC(AAS),∴NG=HC=﹣4=,AG=MH=1,∴点N的坐标为(﹣4,),同理可得,点N′的坐标为(2,),由全等三角形的性质得,N点的坐标为(﹣4,)或(2,);②当AC为对角线时,有AM2+CM2=AC2,即m2+4+m2﹣8m+17=25,解得:m=2+或2﹣,∴点M的坐标为(﹣1,2+)或(﹣1,2﹣).如图3,分别过M或N作y轴或x轴的垂线,由全等三角形的性质,同理可得:N点的坐标为(﹣2,2﹣)或(﹣2,2+),综上所述:存在以A、C、M、N为顶点的矩形,点N的坐标为:(2,)或(﹣4,)或(﹣2,2﹣)或(﹣2,2+).11.如图,已知抛物线y=ax2+bx+c与x轴交于A(1,0)、B(﹣5,0)两点,与y轴交于点C(0,),点D为抛物线的顶点.(1)求抛物线的解析式;(2)如图1,过点D作DH⊥x轴于点H,若点P为抛物线上位于第二象限内且在对称轴左侧的一点,连接PD、PB,求四边形DHBP面积的最大值及此时点P的坐标;(3)如图2,点E在y轴负半轴上,点F是抛物线上一点,在抛物线对称轴上是否存在一点G,使得以点B、E、F、G为顶点的四边形为矩形,若存在,请直接写出点G的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+c与x轴交于A(1,0)、B(﹣5,0)两点,与y 轴交于点C(0,),∴,∴,∴抛物线解析式为:y=﹣+,∴顶点坐标D为(﹣2,),(2)连接BD,过P作y轴平行线交BD于Q,∴S△HBP=S△BDH+S△BDP,△BDH的面积为定值,∴当△BDP面积最大时,四边形DHBP面积最大,∵DH⊥x轴,∴DH=y D=,BH=,∵B为(﹣5,0),D为(﹣2,),设直线BD为:y=kx+b,∴,∴,设P为(t,﹣),则Q为(t,),∴PQ=y P﹣y Q=﹣t2﹣t﹣,∵S△BDP=S△BPQ+S△DPQ===﹣,∴当t=﹣时,△BDP的面积最大,最大为,‘∴四边形DHBP面积最大为=,此时,点P为(﹣,),(3)∵抛物线对称轴为:x=﹣2,∴设点G(﹣2,m),又∵E在y轴负半轴上,F在抛物线上,∴设E(n,﹣n2﹣n+),∵B(﹣5,0),∴①当矩形以BG为对角线时,BE⊥EG,∴,∴,∴,∴此时G(﹣2,﹣),②当矩形以BE为对角线时,BG⊥EC,∴,∴,∴此时G(﹣2.﹣3),③当矩形以BF为对角线时BE⊥BG,∴,∴,∴或,∵e<0,∴e,∴,∴综上所述:G的坐标为(﹣2,)或(﹣2,﹣)或(﹣2,﹣3).12.如图,抛物线y=﹣x2+bx+c与直线AB相交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C,点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线的函数表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)在y轴上存在一点H,连接EH,HF,是否存在点E,以A,E,F,H为顶点的四边形是矩形?若存在,求出点E的坐标,若不存在,请说明理由.【解答】解:(1)根据题意,得,解得,∴y=﹣x2﹣2x+4;(2)设直线AB的函数表达式为y=mx+n,则,解得,∴y=2x+4,设点E的坐标为(x,2x+4),则点G的坐标为(x,﹣x2﹣2x+4),∴GE=(﹣x2﹣2x+4)﹣(2x+4)=﹣x2﹣4x,∵四边GEOB是平行四边形,∴OB∥GE,GE=OB,∴﹣x2﹣4x=4,解得x1=x2=﹣2,∴y=﹣(﹣2)2﹣2×(﹣2)+4=4,∴点G的坐标为(﹣2,4);(3)存在,理由:由AC的表达式知,点C(0,﹣6),由A、B、C的坐标知,AB2=42+82=80,AC2=42+22=20,BC2=100,∴AB2+AC2=BC2,∴△ABC为直角三角形,则∠EAF为直角,如图1,由(2)知,直线AB的解析式为y=2x+4,∴设E(a,2a+4),∵直线AC:y=﹣x﹣6,∴F(a,﹣a﹣6),设H(0,p),∵以点A,E,F,H为顶点的四边形是矩形,如上图,则EF为对角线,∴EF与AH互相平分,∴(﹣4+0)=(a+a),(﹣4+p)=(2a+4﹣a﹣6),解得,∴E(﹣2,0).。

《矩形的性质》教学反思(通用6篇)

《矩形的性质》教学反思(通用6篇)

《矩形的性质》教学反思(通用6篇)《矩形的性质》教学反思(通用6篇)身为一名人民教师,我们要有很强的课堂教学能力,通过教学反思可以有效提升自己的课堂经验,教学反思应该怎么写呢?以下是小编整理的《矩形的性质》教学反思(通用6篇),仅供参考,欢迎大家阅读。

《矩形的性质》教学反思1本节课内容-矩形的性质,整个课按矩形的定义—矩形的性质(一般性质和特殊性质)—例题讲解(总结特殊结论)—当场练习的流程进行讲解。

整节课目标明确,让学生清楚地意识到这节课需要掌握的知识;内容比较流畅,知识点很自然地串联在一起;课堂目标完成良好,学生的反映力和做题的正确率都比较乐观。

但是课堂中也存在不少的问题:1、语言不够精炼。

这说明了备课不是很充分,这也是我长期以来的一个缺点,总是在课堂中讲个不停,语言多了,重点就不够突出!下定决心,把握好每节课,争取做到语言简明扼要、不重不漏。

2、在课程设计上犯了一个错误。

那就是我把矩形的性质和矩形的对称性分开了,而矩形的性质本身就包括的对称性,这个反映出对知识的不熟悉,备课时得把握教师用书和新课标。

3、不会等。

在让学生独立思考时,没有能够做到耐心等待,给学生思考的时间不够充分,这样就造成了一种后果,学生刚进入思考的状态,就被我打断,这还是由于我太心急,没有足够的耐心。

以后的教学过程中要学会等4、不能及时有效的处理学生课堂上出现的错误。

数学课中学生出现思维错误是常有的事,教师要把它引导到自己正确的思维上去,训练学生思维的灵活性,但我没有正确的加以引导,而是草草说明之后就另寻解题思路,扼杀了学生的积极性另外在例题讲解过程中,我有意外的收获。

在解释“矩形的对角线相等”的理由时,大部分同学能说出利用三角形全等证明,有学生提出了另外一种证法,就是利用勾股定理,把两条对角线表示出来,结果相等,也就证明了两条对角线相等。

该方法新颖,体现了学生敏锐的洞察力和活跃的创新思维。

我随即表扬了她,并对这种证法给予肯定,同学们都向她投去赞许的目光……,接下来的例题讲解时,又有一个男生提出了很好的解法。

反比例函数与特殊四边形存在性问题(原卷版)(人教版) -九年级数学下册

反比例函数与特殊四边形存在性问题(原卷版)(人教版)    -九年级数学下册

专题03反比例函数与特殊四边形存在性问题类型一、平行四边形形存在性问题(1)求一次函数和反比例函数的解析式;△的面积;(2)求OAD(3)问:在直角坐标系中,是否存在一点形?若存在,直接写出点P的坐标;若不存在,请说明理由.(1)求k的值;(2)如图2,点G是y轴正半轴上的一个动点,过点G作y轴的垂线,分别交反比例函数(1)求点A的坐标.(2)求反比例函数kyx=的表达式及点(3)在坐标平面上是否存在一点若存在,请直接写出点E的坐标;若不存在,诸说明理由.【变式训练3】.如图,ABC 在平面直角坐标系中,已知AB AC =,90BAC ∠=︒,已知点()6,0A -、()7,3C -,且点B 在第二象限内.(1)求点B 的坐标;(2)将ABC 以每秒3个单位的速度沿x 轴向右运动,设运动时间为t 秒,是否存在某一时刻,使B 、C 的对应点E 、F ,恰好落在第一象限内的反比例函数的图像上,请求出此时t 的值以及这个反比例函数的解析式;(3)在(2)的情况下,问:是否存在x 轴上的点P 和反比例函数图像上的点Q ,使得以P 、Q 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出符合题意的点Q 的坐标;若不存在,请说明理由.类型二、菱形存在性问题(1)求出点D 坐标和反比例函数关系式;(2)写出点E 的坐标并判断DE 与AC 的位置关系(说明理由)(3)点F 在直线AC 上,点G 是坐标系内点,当四边形判断点G 是否在反比例函数图象上.(1)判断点B是否在反比例函数8yx=-的图象上,并说明理由;(2)如图1,过坐标原点O作直线交反比例函数y=是4,顺次连接AD,DB,BC和CA.求证:四边形(3)已知点P在x轴的正半轴上运动,点Q在平面内运动,当以点类型三、矩形存在性问题(1)求双曲线的表达式;(2)将直线y=x+1向下平移一个单位长度得直线(1)求反比例函数的表达式;(2)将直线34y x =-向上平移后与y 轴交于点果ABD △的面积为16,求直线向上平移的距离;(3)E 是y 轴正半轴上的一点,F 是平面内任意一点,使以点矩形,请求出所有符合条件的点E 的坐标.(1)求点B ,C 的坐标;(2)若反比例函数()0ky k x=≠图象的一支经过点D ,求这个反比例函数的解析式;(3)平面内是否存在点M ,N (M 在N 的上方),使以B ,D ,M ,N 为顶点的四边形是边长比为2:3的矩形?若存在,请直接写出在第四象限内点N 的坐标;若不存在,请说明理由.(1)求反比例和一次函数解析式.类型四、正方形存在性问题(1)求k,b的值.(2)当ABP的面积为3时,求点P的坐标.(3)设PQ的中点为C,点D为x轴上一点,点顶点的四边形为正方形时,求出点P的坐标.(1)求反比例函数的解析式;(2)如图2,点()40D ,,连接CD ,点E 是反比例函数(ky k x=点E 在点C 的右侧,连接AE ,CE ,若ACE △的面积与且ACD 标;(1)求n 的值.(2)若点C 为2ny x=图像上一点,过点12BCD S =时,求C 点横坐标.(3)若点E 在直线AB 上,请在坐标平面内找一点形是正方形,并求出点F 的坐标.(1)求k,b的值.(2)当ABP的面积为3时,求点P的坐标. (3)设PQ的中点为C,点D为x轴上一点,点E 点的四边形为正方形时,求出点P的坐标.【变式训练4】.在平面直角坐标系中,直线y=与反比例函数y=kx(k≠0)的图象在第一象限相交于点(1)如图1,求反比例函数y=k(k≠0)的解析式;。

2020年中考数学二次函数压轴题核心考点突破14矩形存在性问题

2020年中考数学二次函数压轴题核心考点突破14矩形存在性问题

引例:已知 A(1,1)、B(4,2),点 C 在 x 轴上,点 D 在坐标系中,且以 A、B、C、D 为顶点的四边形是矩形,求 D 点坐标.
y
A O
B x
【分析】 设 C 点坐标为(a,0),D 点坐标为(b,c),又 A(1,1)、B(4,2). 先考虑平行四边形存在性:
(1)AB
为对角线时,
C 的坐标为(0,3),点 C 与点 D 关于抛物线的对称轴对称.
(1)求抛物线的解析式;
(2)若点 P 为抛物线对称轴上一点,连接 BD,以 PD,PB 为边作平行四边形 PDNB,是
否存在这样的点 P,使得平行四边形 PDNB 是矩形?若存在,请求出 tan∠BDN 的值;
y
y
若不存在,请说明理由.
a 42 0 22 ,
a
4 3
综合以上可解得:
b
13 3
.故
C
14 3
,
0
、D
13 3
,1

c 1
【小结】这个方法是在 平行四边形基础上多加一个等式而已,剩 下的都是计算的故事.
【2018·铁岭中考(删减)】
如图,抛物线 y x2 bx c 交 x 轴于点 A ,B,交 y 轴于点 C.点 B 的坐标为(3,0)点
xA yA
xC yC
xB yB
xD yD
xA xC 2 yA yC 2
(AC 为对角线时)
xB xD 2 yB yD 2
因此在矩形存在性问题最多可以有 3 个未知量,代入可以得到三元一次方程组,可解. 确定了有 3 个未知量,则可判断常见矩形存在性问题至少有 2 个动点,多则可以有 3 个.
中物理
矩形存在性问题

(全国通用)中考数学专题拔高系列:矩形存在性问题解决方法汇总

(全国通用)中考数学专题拔高系列:矩形存在性问题解决方法汇总

所谓矩形存在性问题,即在坐标系中确定动点位置,使其与其他点等构成矩形,本文将对题型构造及解决方法作简单介绍.首先关于矩形本身,我们已经知道: 矩形的判定(1)有一个角是直角的平行四边形;(2)对角线相等的平行四边形;(3)有三个角为直角的四边形.01问题与方法题型分析矩形除了具有平行四边形的性质之外,还有“对角线相等”或“内角为直角”,因此相比起平行四边形,坐标系中的矩形满足以下3个等式:(AC为对角线时)因此在矩形存在性问题最多可以有3 个未知量,代入可以得到三元一次方程组,可解.确定了有3个未知量,则可判断常见矩形存在性问题至少有2个动点,多则可以有3个题型如下:(1)2个定点+1个半动点+1个全动点;(2)1个定点+3个半动点.思路1:先直角,再矩形在构成矩形的4个点中任取3个点,必构成直角三角形,以此为出发点,可先确定其中3 个点构造直角三角形,再确定第4 个点.对“2定+1 半动+1 全动”尤其适用.引例:已知A(1,1)、B(4,2),点C在x轴上,点D在平面中,且以A、B、C、D为顶点的四边形是矩形,求D点坐标.【小结】这种解决矩形存在性问题的方法相当于在直角三角形存在性问题上再加一步求D点坐标,也是因为这两个图形之间的密切关系方能如此.思路2:先平行,再矩形当AC为对角线时,A、B、C、D满足以下3个等式,则为矩形:其中第1、2个式子是平行四边形的要求,再加上式3可为矩形.表示出点坐标后,代入点坐标解方程即可.无论是“2定1半1全”还是“1定3半”,对于我们列方程来解都没什么区别,能得到的都是三元一次方程组。

引例:已知A(1,1)、B(4,2),点C在x轴上,点D在平面中,且以A、B、C、D为顶点的四边形是矩形,求D点坐标.【小结】这个方法是在平行四边形基础上多加一个等式而已,剩下的都是计算的故事.02中考真题2018铁岭中考删减【构造直角得矩形】如图,抛物线y=-x²+bx+c交x轴于点A,B,交y轴于点C.点B的坐标为(3,0)点C的坐标为(0,3),点C与点D关于抛物线的对称轴对称.(1)求抛物线的解析式;(2)若点P为抛物线对称轴上一点,连接BD,以PD,PB为边作平行四边形PDNB,是否存在这样的点P,使得平行四边形PDNB是矩形?若存在,请求出tan∠BDN 的值;若不存在,请说明理由.2019南充中考删减【构造对角线互相平分且相等得矩形】如图,抛物线y=ax²+bx+c与x 轴交于点A(-1,0),点B(-3,0),且OB=OC.(1)求抛物线的解析式;(2)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4.点D是抛物线上M、N之间的动点,过点D作y轴的平行线交MN于点E.①求DE的最大值;②点D关于点E的对称点为F,当m为何值时,四边形MDNF为矩形.。

存在性问题之直角三角形、矩形

存在性问题之直角三角形、矩形
其中第1、2个式子是平行四边形的要求,再加上式3可为矩形.表示出点坐标后,代入点坐 标解方程即可
综合与探究
如图,抛物线y=-4/9x2+bx+c与y轴交于点A(0,8),与x轴交于点B(6,0), C,过点A作AD∥x轴与抛物线交于另一点D.
(1)求抛物线的表达式; (2)连接AB,点P为AB上一个动点,由点A以每秒1个单位长度的速度沿AB运动 (不与点B重合),运动时间为t,过点P作PQ∥y轴交抛物线于点Q,求PQ与t的函数 关系式;
如果问题变为等腰直角三角形存在性,则同样可采取上述方法,只不过三垂直得到的不 是相似,而是全等.
• (2018年湖南省怀化市)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A (﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.
(1)求抛物线的解析式和直线AC的解析式;
(3)点M是y轴上的一个点,点N是平面直角坐标系内一点,是否存在这样的点M、 N,使得以B、D、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若 不存在,请说明理由.
思路1:先直角,再矩形 在构成矩形的4个点中任取3个点,必构成直角三角形,以此为出发点,先确定其
中3个点构造直角三角形,再确定第4个点.
【小结】解决 矩形存在性问 题的方法相当 于在直角三角 形存在性问题 上再加一步求 D点坐标,
思路2:先平行,再矩形
当AC为对角线时,A、B、C、D满足以下3个等式,则为矩形:
存在性问题系列之二
直角三角形、矩形
晋中灵石马和中学108
一 直角三角形存在性问题
[引例] 如图,在平面直角坐标系中,点 A 坐标 为(1,1),点 B 坐标为(5,3),在 x 轴 上找一点 C 使得△ABC 是直角三角形, 求点 C 坐标.

(完整word版)11答案二次函数-矩形的存在性问题

(完整word版)11答案二次函数-矩形的存在性问题

参考答案1. (2015 黑龙江省龙东地区) 如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.1.分析:(1)解方程可求得OC、BC的长,可求得B、D的坐标,利用待定系数法可求得直线BD的解析式;(2)可求得E点坐标,求出直线OE的解析式,联立直线BD、OE解析式可求得H点的横坐标,可求得△OFH的面积;(3)当△MFD为直角三角形时,可找到满足条件的点N,分∠MFD=90°、∠MDF=90°和∠FMD=90°三种情况,分别求得M点的坐标,可分别求得矩形对角线的交点坐标,再利用中点坐标公式可求得N点坐标.解答:解:(1)解方程x2﹣6x+8=0可得x=2或x=4,∵BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC,∴BC=2,OC=4,∴B(﹣2,4),∵△ODE是△OCB绕点O顺时针旋转90°得到的,∴OD=OC=4,DE=BC=2,∴D(4,0),设直线BD解析式为y=kx+b,把B、D坐标代入可得,解得,∴直线BD的解析式为y=﹣x+;(2)由(1)可知E(4,2),设直线OE解析式为y=mx,把E点坐标代入可求得m=,∴直线OE解析式为y=x,令﹣x+=x,解得x=,∴H点到y轴的距离为,又由(1)可得F(0,),∴OF=,∴S△OFH=××=;(3)∵以点D、F、M、N为顶点的四边形是矩形,∴△DFM为直角三角形,①当∠MFD=90°时,则M只能在x轴上,连接FN交MD于点G,如图1,由(2)可知OF=,OD=4,则有△MOF∽△FOD,∴=,即=,解得OM=,∴M(﹣,0),且D(4,0),∴G(,0),设N点坐标为(x,y),则=,=0,解得x=,y=﹣,此时N点坐标为(,﹣);②当∠MDF=90°时,则M只能在y轴上,连接DN交MF于点G,如图2,则有△FOD ∽△DOM ,∴=,即=,解得OM=6,∴M (0,﹣6),且F (0,), ∴MG=MF=,则OG=OM ﹣MG=6﹣=,∴G (0,﹣), 设N 点坐标为(x ,y ),则=0,=﹣, 解得x=﹣4,y=﹣,此时N (﹣4,﹣);③当∠FMD=90°时,则可知M 点为O 点,如图3, ∵四边形MFND 为矩形,∴NF=OD=4,ND=OF=,可求得N (4,); 综上可知存在满足条件的N 点,其坐标为(,﹣)或(﹣4,﹣)或(4,).2. (2015 重庆市綦江县) 如图,抛物线223y x x =-++与x 轴交与A ,B 两点(点A 在点B 的左侧),与y 轴交于点C . 点D 和点C 关于抛物线的对称轴对称,直线AD 与y 轴相交于点E . (1)求直线AD 的解析式;(2)如图1,直线AD 上方的抛物线上有一点F ,过点F 作FG ⊥AD 于点G ,作FH 平行于x 轴交直线AD 于点H ,求△FGH 的周长的最大值;(3)点M 是抛物线的顶点,点P 是y 轴上一点,点Q 是坐标平面内一点,以A ,M ,P ,Q 为顶点的四边形是AM 为边的矩形,若点T 和点Q 关于AM 所在直线对称,求点T 的坐标.xy xy xy 26题备用图226题备用图126题图1CBAOCAOHGE DC BAOFMM答案解:⑴AD :1y x =+⑵过点F 作x 轴的垂线,交直线AD 于点M ,易证△FGH ≌△FGM 故FGH FGM C C =△△ 设2(,23)F m m m -++则FM =2223(1)2m m m m m -++-+=-++则 C=219922(12)(12)()22FM FM m ++⨯=+=-+-+故最大周长为9+92⑶①若AP为对角线如图,由△PMS∽△MAR可得9(0,)2P由点的平移可知1(2)2Q-,故Q点关于直线AM的对称点T为1(0,)2-②若AQ为对角线如图,同理可知P1(0,)2-由点的平移可知Q7(2,)2故Q点关于直线AM的对称点T为9(0,)23. (2016 山东省东营市) 】.】.在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线经过点C、A、A′,求此抛物线的解析式;(2)点M时第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)若P为抛物线上一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.分析(1)由平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),可求得点A′的坐标,然后利用待定系数法即可求得经过点C、A、A′的抛物线的解析式;(2)首先连接AA′,设直线AA′的解析式为:y=kx+b,利用待定系数法即可求得直线AA′的解析式,再设点M的坐标为:(x,﹣x2+3x+4),继而可得△AMA′的面积,继而求得答案;(3)分别从BQ为边与BQ为对角线去分析求解即可求得答案.解答解:(1)∵平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),∴点A′的坐标为:(4,0),∵点A、C的坐标分别是(0,4)、(﹣1,0),抛物线经过点C、A、A′,设抛物线的解析式为:y=ax2+bx+c,∴,解得:,∴此抛物线的解析式为:y=﹣x2+3x+4;(2)连接AA′,设直线AA′的解析式为:y=kx+b,∴,解得:,∴直线AA′的解析式为:y=﹣x+4,设点M的坐标为:(x,﹣x2+3x+4),则S△AMA′=×4×[﹣x2+3x+4﹣(﹣x+4)]=﹣2x2+8x=﹣2(x﹣2)2+8,∴当x=2时,△AMA′的面积最大,最大值S△AMA′=8,∴M的坐标为:(2,6);(3)设点P的坐标为(x,﹣x2+3x+4),当P,N,B,Q构成平行四边形时,∵平行四边形ABOC中,点A、C的坐标分别是(0,4)、(﹣1,0),∴点B的坐标为(1,4),∵点Q坐标为(1,0),P为抛物线上一动点,N为x轴上的一动点,①当BQ为边时,PN∥BQ,PN=BQ,∵BQ=4,∴﹣x2+3x+4=±4,当﹣x2+3x+4=4时,解得:x1=0,x2=3,∴P1(0,4),P2(3,4);当﹣x2+3x+4=﹣4时,解得:x3=,x2=,∴P3(,﹣4),P4(,﹣4);②当PQ为对角线时,BP∥QN,BP=QN,此时P与P1,P2重合;综上可得:点P的坐标为:P1(0,4),P2(3,4),P3(,﹣4),P4(,﹣4);如图2,当这个平行四边形为矩形时,点N的坐标为:(0,0)或(3,0).4. (2016 贵州省毕节地区) 如图,已知抛物线y=x2+bx与直线y=2x+4交于A(a,8)、B两点,点P是抛物线上A、B之间的一个动点,过点P分别作x轴、y轴的平行线与直线AB交于点C和点E.(1)求抛物线的解析式;(2)若C为AB中点,求PC的长;(3)如图,以PC,PE为边构造矩形PCDE,设点D的坐标为(m,n),请求出m,n之间的关系式.分析(1)把A点坐标代入直线方程可求得a的值,再代入抛物线可求得b的值,可求得抛物线解析式;(2)联立抛物线和直线解析式可求得B点坐标,过A作AQ⊥x轴,交x轴于点Q,可知OC=AQ=4,可求得C点坐标,结合条件可知P点纵坐标,代入抛物线解析式可求得P点坐标,从而可求得PC的长;(3)根据矩形的性质可分别用m、n表示出C、P的坐标,根据DE=CP,可得到m、n的关系式.解:(1)∵A(a,8)是抛物线和直线的交点,∴A点在直线上,∴8=2a+4,解得a=2,∴A点坐标为(2,8),又A点在抛物线上,∴8=22+2b,解得b=2,∴抛物线解析式为y=x2+2x;(2)联立抛物线和直线解析式可得,解得,,∴B点坐标为(﹣2,0),如图,过A作AQ⊥x轴,交x轴于点Q,则AQ=8,OQ=OB=2,即O为BQ的中点,当C为AB中点时,则OC为△ABQ的中位线,即C点在y轴上,∴OC=AQ=4,∴C点坐标为(0,4),又PC∥x轴,∴P点纵坐标为4,∵P点在抛物线线上,∴4=x2+2x,解得x=﹣1﹣或x=﹣1,∵P点在A、B之间的抛物线上,∴x=﹣1﹣不合题意,舍去,∴P点坐标为(﹣1,4),∴PC=﹣1﹣0=﹣1;(3)∵D(m,n),且四边形PCDE为矩形,∴C点横坐标为m,E点纵坐标为n,∵C、E都在直线y=2x+4上,∴C(m,2m+4),E(,n),∵PC∥x轴,∴P点纵坐标为2m+4,∵P点在抛物线上,∴2m+4=x2+2x,整理可得2m+5=(x+1)2,解得x=﹣1或x=﹣﹣1(舍去),∴P点坐标为(﹣1,2m+4),∴DE=﹣m,CP=﹣1﹣m,∵四边形PCDE为矩形,∴DE=CP,即﹣m=﹣1﹣m,整理可得n2﹣4n﹣8m﹣16=0,即m、n之间的关系式为n2﹣4n﹣8m﹣16=0.5. (2013 湖南省常德市) 如图,已知二次函数的图象过点A(0,-3),B(3,3),对称轴为直线12x=-,点P是抛物线上的一动点,过点P分别作PM⊥x轴于点M,PN⊥y轴于点N,在四边形PMON上分别截取1111,,,.3333 PC MP MD OM OE ON NF NP ====(1)求此二次函数的解析式;(2)求证:以C,D,E,F为顶点的四边形CDEF是平行四边形;(3)在抛物线上是否存在这样的点P,使四边形CDEF为矩形?若存在,请求出所有符合条件的P 点坐标;若不存在,请说明理由.解:(1)设二次函数的解析式为2y ax bx c =++,将点A (0,-3)、B (3,3)、对称轴方程分别代入可得:3,3331.22c a b c b a ⎧-=⎪⎪=++⎨⎪-=-⎩,解得1,1,3.a a b =⎧⎪=⎨⎪=-⎩∴此二次函数的解析式为23y x x =+-.(2)证明:如图连接CD ,DE ,EF ,FC.∵PM ⊥x 轴,PN ⊥y 轴, ∴四边形OMPN 是矩形.∴MP =ON ,OM =PN. 又1111,,,,3333PCMP MD OM OE ON NF NP ==== ∴,DMFN MC NE ==∴△CMD ≅△ENF,同理△ODE ≅△FPC(SAS),∴CF =ED ,CD =EF.,∴四边形CDEF 是平行四边形. (3)如图,作CQ ⊥y 轴于点Q ,设P 点坐标为()2,3x x x +-,则1.3QNPC OE MP ===∴()2133EQ x x =-+-.∴在Rt △ECQ中,()22222213.9CE EQ CQ x x x =+=+-+当CD ⊥DE 时, ()()()()()()22222222222222222222222222221333413,99143,994114339999553.99DE OD OE x x x x x x CD DM CM x x x CE DE CD x x x x x x x x x =+⎛⎫⎡⎤=-+-+- ⎪⎢⎥⎝⎭⎣⎦=++-=+=++-∴=+=++-+++-=++-Q()()()222222222215533,999443,993.x x x x x xx x xx x x∴+-+=++-=+-+-=±()()()()212122121233,3,3,3;331,3 1.33333311.x x x x xy yx x x x xy yP+-===-==-+-=-=-===-∴-当时,此时,当时,,此时,,综上可知符合条件的点有四个,分别是,,,-,-,,,-本题用相似更简单!6.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图所示,直线BC下方的抛物线上有一点P,过点P作PE⊥BC于点E,作PF平行于x轴交直线BC 于点F,求△PEF周长的最大值;(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点P的横坐标;若不存在,说明理由.【解答】解:(1)把A(﹣1,0),B(3,0)两点坐标代入抛物线y=ax2+bx﹣3,得到,解得,∴抛物线的解析式为y=x2﹣2x﹣3.(2)如图1中,连接PB、PC.设P(m,m2﹣2m﹣3),∵B(3,0),C(0,﹣3),∴OB=OC,∴∠OBC=45°,∵PF∥OB,∴∠PFE=∠OBC=45°,∵PE⊥BC,∴∠PEF=90°,∴△PEF是等腰直角三角形,∴PE最大时,△PEF的面积中点,此时△PBC的面积最大,则有S△PBC=S△POB+S△POC﹣S△BOC=•3•(﹣m2+2m+3)+•3•m﹣=﹣(m﹣)2+,∴m=时,△PBC的面积最大,此时△PEF的面积也最大,此时P(,﹣),∵直线BC的解析式为y=x﹣3,∴F(﹣,﹣),∴PF=,∵△PEF是等腰直角三角形,∴EF=EP=,∴C△PEF最大值=+.(3)①如图2中,当N与C重合时,点N关于对称轴的对称点P,此时思想MNQP是正方形,易知P(2,﹣3).点P横坐标为2,②如图3中,当四边形PMQN是正方形时,作PF⊥y轴于N,ME∥x轴,PE∥y轴.易知△PFN≌△PEM,∴PF=PE,设P(m,m2﹣2m﹣3),∵M(1,﹣4),∴m=m2﹣2m﹣3﹣(﹣4),∴m=或(舍弃),∴P点横坐标为所以满足条件的点P的横坐标为2或.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

类型五探究矩形的存在性问题1、(2013•常德)如图,已知二次函数的图象过点A(0,﹣3),B(,),对称轴为直线x=﹣,点P是抛物线上的一动点,过点P分别作PM⊥x轴于点M,PN⊥y轴于点N,在四边形PMON上分别截取PC=MP,MD=OM,OE=ON,NF=NP.(1)求此二次函数的解析式;(2)求证:以C、D、E、F为顶点的四边形CDEF是平行四边形;(3)在抛物线上是否存在这样的点P,使四边形CDEF为矩形?若存在,请求出所有符合条件的P点坐标;若不存在,请说明理由.考点:二次函数综合题.3718684分析:(1)利用顶点式和待定系数法求出抛物线的解析式;(2)证明△PCF≌△OED,得CF=DE;证明△CDM≌△FEN,得CD=EF.这样四边形CDEF 两组对边分别对应相等,所以四边形CDEF是平行四边形;(3)根据已知条件,利用相似三角形△PCF∽△MDC,可以证明矩形PMON是正方形.这样点P就是抛物线y=x2+x﹣3与坐标象限角平分线y=x或y=﹣x的交点,联立解析式解方程组,分别求出点P的坐标.符合题意的点P有四个,在四个坐标象限内各一个.解答:(1)解:设抛物线的解析式为:y=a(x+)2+k,∵点A(0,﹣3),B(,)在抛物线上,∴,解得:a=1,k=.∴抛物线的解析式为:y=(x+)2=x2+x﹣3.(2)证明:如右图,连接CD、DE、EF、FC.∵PM⊥x轴于点M,PN⊥y轴于点N,∴四边形PMON为矩形,∴PM=ON,PN=OM.∵PC=MP,OE=ON,∴PC=OE;∵MD=OM,NF=NP,∴MD=NF,∴PF=OD.在△PCF与△OED中,∴△PCF≌△OED(SAS),∴CF=DE.同理可证:△CDM≌△FEN,∴CD=EF.∵CF=DE,CD=EF,∴四边形CDEF是平行四边形.(3)解:假设存在这样的点P,使四边形CDEF为矩形.设矩形PMON的边长PM=ON=m,PN=OM=n,则PC=m,MC=m,MD=n,PF=n.若四边形CDEF为矩形,则∠DCF=90°,易证△PCF∽△MDC,∴,即,化简得:m2=n2,∴m=n,即矩形PMON为正方形.∴点P为抛物线y=x2+x﹣3与坐标象限角平分线y=x或y=﹣x的交点.联立,解得,,∴P1(,),P2(﹣,﹣);联立,解得,,∴P3(﹣3,3),P4(﹣1,1).∴抛物线上存在点P,使四边形CDEF为矩形.这样的点有四个,在四个坐标象限内各一个,其坐标分别为:P1(,),P2(﹣,﹣),P3(﹣3,3),P4(﹣1,1).点评:本题是二次函数综合题型,考查了二次函数的图象与性质、待定系数法、全等三角形、相似三角形、解方程、矩形、正方形等知识点,所涉及的考点较多,但难度均匀,是一道好题.第(2)问的要点是全等三角形的证明,第(3)问的要点是判定四边形PMON必须是正方形,然后列方程组求解.2.(2015•四川省宜宾市,第24题,12分)(注意:在试题卷上作答无效) 如图,抛物线y=–12x2+bx+c与x轴分别相交于点A(–2,0)、B(4,0),与y轴交于点C,顶点为点P.(1)求抛物线的解析式;(2)动点M、N从点O同时出发,都以每秒1个单位长度的速度分别在线段OB、OC上向点B、C方向运动,过点M作x轴的垂线交BC于点F,交抛物线于点H①当四边形OMHN为矩形时,求点H的坐标;②是否存在这样的点F,使△PFB为直角三角形?若存在,求出点F的坐标;若不存在,请说明理由。

OH FPMN C BAyx3.(2015•四川成都,第28题12分)如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax ﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y 轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.考点:二次函数综合题.分析:(1)由抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于两点A、B,求得A点的坐标,作DF⊥x轴于F,根据平行线分线段成比例定理求得D的坐标,然后利用待定系数法法即可求得直线l的函数表达式.(2)设点E(m,a(m+1)(m﹣3)),y AE=k1x+b1,利用待定系数法确定y AE=a(m﹣3)x+a(m ﹣3),从而确定S△ACE=(m+1)[a(m﹣3)﹣a]=(m﹣)2﹣a,根据最值确定a的值即可;(3)分以AD为对角线、以AC为边,AP为对角线、以AC为边,AQ为对角线三种情况利用矩形的性质确定点P的坐标即可.解答:解:(1)令y=0,则ax2﹣2ax﹣3a=0,解得x1=﹣1,x2=3∵点A在点B的左侧,∴A(﹣1,0),如图1,作DF⊥x轴于F,∴DF∥OC,∴=,∵CD=4AC,∴==4,∵OA=1,∴OF=4,∴D点的横坐标为4,代入y=ax2﹣2ax﹣3a得,y=5a,∴D(4,5a),把A、D坐标代入y=kx+b得,解得,∴直线l的函数表达式为y=ax+a.(2)设点E(m,a(m+1)(m﹣3)),y AE=k1x+b1,则,解得:,∴y AE=a(m﹣3)x+a(m﹣3),∴S△ACE=(m+1)[a(m﹣3)﹣a]=(m﹣)2﹣a,∴有最大值﹣a=,∴a=﹣;(3)设P(1,p),Q(q,a(q+1)(q﹣3)),A(﹣1,0),D(4,5a),①以AD为对角线,APDQ为矩形,坐标满足.x P+x Q=x A+x D,y P+y Q=y A+y D,1+q=﹣a+4,p+a(q+1)(q﹣3)=5a,∴q=2,a(q+1)(q﹣3)=5a﹣p∴Q(2,5a﹣p),∵5a﹣p=a(2+1)(2﹣3),∴5a﹣p=﹣3a,p=8a,如图2,过P作PG∥x轴,过A作AF⊥PG,DG⊥PG,则△APF∽△PDG,∴a=﹣,∴P(1,﹣4);②以AC为边,AP为对角线,x P+x A=x Q+x D,y P+y A=y Q+y D,1+(﹣1)=q+4,P+O=a(q+1)(q﹣3)+5a,∴q=﹣4,a(q+1)(q﹣3)=P﹣5a∴Q(﹣4,21a),∵21a=p﹣5a,∴p=26a,∴P(1,26a),∵AD⊥AQ,∴k AD•k AQ=1,即﹣7a•a=﹣1∴a2=,∴a=或a=﹣(舍),∴P(1,﹣);③以AD为边,AQ为对角线,x P+x D=x A+x Q,y P+y D=y A+y Q,1+4=q﹣1,p+5a=a(q+1)(q﹣3)+O,∴q=6,a(q+1)(q﹣3)=P+5a∴Q(6,21a),∵5a﹣p=21a∴p=16a,∵AD⊥AP,∴k AD•k AP=1,即8a•a=﹣1,a2=﹣(舍),综上:P1(1,﹣4);,P2(1,﹣);点评:本题是二次函数的综合题,考查了待定系数法求一次函数的解析式,二次函数图象上点的坐标特征,以及矩形的判定,根据平行线分线段成比例定理求得D的坐标是本题的关键.4.(2015•重庆)如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y 轴交于点C,点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形.若点T和点Q关于AM所在直线对称,求点T的坐标.【解答】解:(1)当x=0时,y=﹣x2+2x+3=3,则C(0,3),当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线对称轴为直线x=1,而点D和点C关于直线x=1对称,∴D(2,3),设直线AD的解析式为y=kx+b,把A(﹣1,0),D(2,3)分别代入得,解得,∴直线AD的解析式为y=x+1;(2)当x=0时,y=x+1=1,则E(0,1),∵OA=OE,∴△OAE为等腰直角三角形,∴∠EAO=45°,∵FH∥OA,∴△FGH为等腰直角三角形,过点F作FN⊥x轴交AD于N,如图,∴FN⊥FH,∴△FNH为等腰直角三角形,而FG⊥HN,∴GH=NG,∴△FGH周长等于△FGN的周长,∵FG=GN=FN,∴△FGN周长=(1+)FN,∴当FN最大时,△FGN周长的最大,设F(x,﹣x2+2x+3),则N(x,x+1),∴FN=﹣x2+2x+3﹣x﹣1=﹣(x﹣)2+,当x=时,FH有最大值,∴△FGN周长的最大值为(1+)×=,即△FGH周长的最大值为;(3)直线AM交y轴于R,y=﹣x2+2x+3=﹣(x﹣1)2+4,则M(1,4)设直线AM的解析式为y=mx+n,把A(﹣1,0)、M(1,4)分别代入得,解得,∴直线AM的解析式为y=2x+2,当x=0时,y=2x+2=2,则R(0,2),当AQ为矩形APQM的对角线,如图1,∵∠RAP=90°,而AO⊥PR,∴Rt△AOR∽Rt△POA,∴AO:OP=OR:OA,即1:OP=2:1,解得OP=,∴P点坐标为(0,﹣),∵点A(﹣1,0)向上平移4个单位,向右平移2个单位得到M(1,4),∴点P(0,﹣)向上平移4个单位,向右平移2个单位得到Q(2,),∵点T和点Q关于AM所在直线对称,∴T点坐标为(0,);当AP为矩形AMPQ的对角线,反向延长QA交y轴于S,如图2,同理可得S点坐标为(0,﹣),∵R点为AM的中点,∴R点为PS的中点,∴PM=SA,P(0,),∵PM=AQ,∴AQ=AS,∴点Q关于AM的对称点为S,即T点坐标为(0,﹣).综上所述,点T的坐标为(0,)或(0,﹣).5.(2014•四川自贡,第24题14分)如图,已知抛物线y=ax2﹣x+c与x轴相交于A、B两点,并与直线y=x﹣2交于B、C两点,其中点C是直线y=x﹣2与y轴的交点,连接AC.(1)求抛物线的解析式;(2)证明:△ABC为直角三角形;(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC各边上)若能,求出最大面积;若不能,请说明理由.考点:二次函数综合题分析:(1)由直线y=x﹣2交x轴、y轴于B、C两点,则B、C坐标可求.进而代入抛物线y=ax2﹣x+c,即得a、c的值,从而有抛物线解析式.(2)求证三角形为直角三角形,我们通常考虑证明一角为90°或勾股定理.本题中未提及特殊角度,而已经A、B、C坐标,即可知AB、AC、BC,则显然可用勾股定理证明.(3)在直角三角形中截出矩形,面积最大,我们易得两种情形,①一点为C,AB、AC、BC边上各有一点,②AB边上有两点,AC、BC边上各有一点.讨论时可设矩形一边长x,利用三角形相似等性质表示另一边,进而描述面积函数.利用二次函数最值性质可求得最大面积.解答:(1)解:∵直线y=x﹣2交x轴、y轴于B、C两点,∴B(4,0),C(0,﹣2),∵y=ax2﹣x+c过B、C两点,∴,解得,∴y=x2﹣x﹣2.(2)证明:如图1,连接AC,∵y=x2﹣x﹣2与x负半轴交于A点,∴A(﹣1,0),在Rt△AOC中,∵AO=1,OC=2,∴AC=,在Rt△BOC中,∵BO=4,OC=2,∴BC=2,∵AB=AO+BO=1+4=5,∴AB2=AC2+BC2,∴△ABC为直角三角形.(3)解:△ABC内部可截出面积最大的矩形DEFG,面积为,理由如下:①一点为C,AB、AC、BC边上各有一点,如图2,此时△AGF∽△ACB∽△FEB.设GC=x,AG=﹣x,∵,∴,∴GF=2﹣2x,∴S=GC•GF=x•(2)=﹣2x2+2x=﹣2[(x﹣)2﹣]=﹣2(x﹣)2+,即当x=时,S最大,为.②AB边上有两点,AC、BC边上各有一点,如图3,此时△CDE∽△CAB∽△GAD,设GD=x,∵,∴,∴AD=x,∴CD=CA﹣AD=﹣x,∵,∴,∴DE=5﹣x,∴S=GD•DE=x•(5﹣x)=﹣x2+5x=﹣[(x﹣1)2﹣1]=﹣(x﹣1)2+,即x=1时,S最大,为.综上所述,△ABC内部可截出面积最大的矩形DEFG,面积为.点评:本题考查了二次函数图象的基本性质,最值问题及相似三角形性质等知识点,难度适中,适合学生巩固知识.6.(2014•湖州)如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c (c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD.(1)若点A的坐标是(﹣4,4).①求b,c的值;②试判断四边形AOBD的形状,并说明理由;(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由.【解答】解:(1)①∵AC∥x轴,A点坐标为(﹣4,4).∴点C的坐标是(0,4)把A、C两点的坐标代入y=﹣x2+bx+c得,,解得;②四边形AOBD是平行四边形;理由如下:由①得抛物线的解析式为y=﹣x2﹣4x+4,∴顶点D的坐标为(﹣2,8),过D点作DE⊥AB于点E,则DE=OC=4,AE=2,∵AC=4,∴BC=AC=2,∴AE=BC.∵AC∥x轴,∴∠AED=∠BCO=90°,∴△AED≌△BCO,∴AD=BO.∠DAE=∠OBC,∴AD∥BO,∴四边形AOBD是平行四边形.(2)存在,点A的坐标可以是(﹣2,2)或(2,2)要使四边形AOBD是矩形;则需∠AOB=∠BCO=90°,∵∠ABO=∠OBC,∴△ABO∽△OBC,∴=,又∵AB=AC+BC=3BC,∴OB=BC,∴在Rt△OBC中,根据勾股定理可得:OC=BC,AC=OC,∵C点是抛物线与y轴交点,∴OC=c,∴A点坐标为(±c,c),∴顶点横坐标=﹣c,b=﹣c,顶点D纵坐标是点A纵坐标的2倍,为2c,顶点D的坐标为(﹣c,2c)∵将D点代入可得2c=﹣(﹣c)2+c•c+c,解得:c=2或者0,当c为0时四边形AOBD不是矩形,舍去,故c=2;∴A点坐标可以为(2,2)或者(﹣2,2).7、(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=﹣1.(1)求抛物线对应的函数关系式;(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPQ为矩形;②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.考点:二次函数综合题分析:(1)利用顶点式、待定系数法求出抛物线的解析式;(2)①当四边形OMPQ为矩形时,满足条件OM=PQ,据此列一元二次方程求解;②△AON为等腰三角形时,可能存在三种情形,需要分类讨论,逐一计算.解答:解:(1)根据题意,设抛物线的解析式为:y=a(x+1)2+k,∵点A(1,0),B(0,3)在抛物线上,∴,解得:a=﹣1,k=4,∴抛物线的解析式为:y=﹣(x+1)2+4.(2)①∵四边形OMPQ为矩形,∴OM=PQ,即3t=﹣(t+1)2+4,整理得:t2+5t﹣3=0,解得t=,由于t=<0,故舍去,∴当t=秒时,四边形OMPQ为矩形;②Rt△AOB中,OA=1,OB=3,∴tanA=3.若△AON为等腰三角形,有三种情况:(I)若ON=AN,如答图1所示:过点N作ND⊥OA于点D,则D为OA中点,OD=OA=,∴t=;(II)若ON=OA,如答图2所示:过点N作ND⊥OA于点D,设AD=x,则ND=AD•tanA=3x,OD=OA﹣AD=1﹣x,在Rt△NOD中,由勾股定理得:OD2+ND2=ON2,即(1﹣x)2+(3x)2=12,解得x1=,x2=0(舍去),∴x=,OD=1﹣x=,∴t=;(III)若OA=AN,如答图3所示:过点N作ND⊥OA于点D,设AD=x,则ND=AD•tanA=3x,在Rt△AND中,由勾股定理得:ND2+AD2=AN2,即(x)2+(3x)2=12,解得x1=,x2=﹣(舍去),∴OD=1﹣x=1﹣,∴t=1﹣.综上所述,当t为秒、秒,(1﹣)秒时,△AON为等腰三角形.点评:本题考查了二次函数的图象与性质、待定系数法、解一元二次方程、勾股定理、解直角三角形、矩形性质、等腰三角形的性质等知识点,综合性比较强,有一定的难度.第(2)问为运动型与存在型的综合性问题,注意要弄清动点的运动过程,进行分类讨论计算.。

相关文档
最新文档