第29章《投影与视图》达标测试卷(含答案)

合集下载

(最新)部编人教版数学九年级下册《第29章 投影与视图 综合测试题》(含答案解析)

(最新)部编人教版数学九年级下册《第29章 投影与视图 综合测试题》(含答案解析)

第29章 投影与视图 单元检测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , ) 1. 下列光源所形成的投影不是中心投影的是( )A.平面镜反射出的太阳光线B.台灯的光线C.手电筒的光线D.路灯的光线2. 如图的立体图形是由四个相同的小正方体组成,它的主视图是( )A.B.C.D.3. 下列哪种光线形成的投影不是中心投影( ) A.探照灯B.太阳C.手电筒D.路灯4. 为了看到柜顶上的物品,我们常常向后退几步或踮起脚,这其中的道理是( )A.增大柜顶的盲区B.减小柜顶的盲区C.增高视点D.缩短视线5. 如图是某几何体的三视图及相关数据,则判断正确的是( )A. B. C.D.6. 左边圆锥体的俯视图是( )A.B.C.D.7. 如图所示的正三棱柱的主视图是( )A.B.C.D.8. 几个相同的小正方体所搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小正方体的个数,其主视图是( )A.B.C.D.9. 一个几何体由一些小正方体摆成,其主(正)视图与左视图如图所示.其俯视图不可能是( )A.B.C.D.10. 由个相同的小正方体堆成的几何体,其视图如图所示,则的最大值是( )A. B. C. D.二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 请你写出一个左视图与俯视图相同的立体图形,这个立体图形是________.12. 已知圆柱按如图所示方式放置,其左视图的面积为,则该圆柱的侧面积为________.13. 画三视图是有一定要求的,首先确定________的位置,画出主视图,然后在主视图的下面画出________,在主视图的右面画出________.14. 在太阳光的照射下,矩形窗框在地面上的影子的形状一般是________形;圆形窗框在地面上的影子往往是________形.15. 在平行投影中,两人的高度和他们的影子________.16. 在下列关于盲区的说法中,正确的有________.(填序号①②等)①我们把视线看不到的地方称为盲区;②我们上山与下山时视野盲区是相同的;③我们坐车向前行驶,有时会发现高大的建筑物会被比它矮的建筑物挡住;④人们说“站得高,看得远”,说明在高处视野盲区要小些,视野范围要大些.17. 直角坐标平面内,一点光源位于处,线段轴,为垂足,,则在轴上的影长为________,点的影子的坐标为________.18. 从正面,左面,上面看到的几何体的形状图都一样的几何体是________(一种即可).19. 已知一个几何体的三视图如图所示,其中主视图和俯视图都是矩形,左视图是直角三角形,则它的表面积等于________.20. 墙角处有若干大小相同的小正方体堆成如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、从上面、从右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走________个小正方体.三、解答题(本题共计 8 小题,共计60分,)21. (4分)如图所示的图形是一个物体的三视图,请画出这个物体的大致形状.22. (8分)请画出下列几何体的主视图、左视图和俯视图.23. (8分)如图是有几个小立方块所搭集合体的俯视图,小正方形中的数字表示在该位置小立方块的个数.请画出相应集合体的从正面看和左面看到的图形.24. (8分)画出如图的主视图、左视图和俯视图.25. (8分)如图是一个几何体,请画出它的三视图.26. (8分)如图,是由几个小立方块搭成的几何体的俯视图,小正方形的数字表示该位置小立方块的个数,请画出相应的几何体的主视图及左视图.27.(8分) 某几何体的三视图如图所示,其中主视图中半圆的半径为.(1)请用文字(或图形)描述该几何体的形状;(2)求该几何体的表面积与体积.28. (8分)一个几何体从前面看及从上面看的视图如图所示.这样的几何体只有一种吗?它最多要多少个小立方体?最少要多少个小立方体?参考答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A【考点】中心投影【分析】找到不是灯光的光源即可.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有选项得到的投影为平行投影,故选.2.【答案】A【考点】简单组合体的三视图【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有个正方形,第二层左上有个正方形.故选.3.【答案】B【考点】中心投影【分析】找到不是灯光的光源即可.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有选项得到的投影为平行投影,故选.4.【答案】B【考点】视点、视角和盲区【分析】根据实际生活为了看到柜顶上的物品,我们常常向后退几步或踮起脚,实际就是减小盲区,即可得出答案.【解答】解:∵ 为了看到柜顶上的物品,我们常常向后退几步或踮起脚,∴ 这其中的道理是:减小柜顶的盲区.故选:.5.【答案】C【考点】作图-三视图勾股定理【分析】首先根据该几何体的三视图判断该几何体为圆锥,然后根据三视图的相关数据得到圆锥的底面上的高、母线长及底面半径,然后可以得到三者之间的关系.【解答】解:∵ 该几何体的正视图和左视图都是等腰三角形,俯视图是圆,∴ 该几何体为圆锥,∴ 圆锥的底面半径为,高为,母线长为,∵ 圆锥的底面半径、母线及圆锥的高构成直角三角形,∴ .6.【答案】C【考点】简单几何体的三视图【分析】俯视图是从物体上面看,所得到的图形.【解答】解:圆锥体从上面看可得到一个圆及圆心,即.故选:.7.【答案】D【考点】简单几何体的三视图【分析】主视图是分别从物体正面看所得到的图形.解:从几何体的正面看所得到的形状是矩形,中间有一道竖直的虚线,故选:.8.【答案】D【考点】由三视图判断几何体简单组合体的三视图【分析】画出立体图,即可解答.【解答】解:画出立体图:,主视图为,故选.9.【答案】C【考点】简单组合体的三视图【分析】根据给出的几何体,通过动手操作,观察可得答案选择,也可以根据画三视图的方法,发挥空间想象能力,直接想象出其主视图为.结合主视图和左视图,从正面看,几何体的第一行第列有个正方体,而选项没有.【解答】解:结合主视图和左视图,从正面看,几何体的第一行第列有个正方体,而选项没有.故选.10.【答案】A【考点】由三视图判断几何体【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:综合主视图和俯视图,底面最多有个,第二层最多有个,第三层最多有个,那么的最大值是.故选.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】正方体(答案不唯一).【考点】由三视图判断几何体【分析】左视图、俯视图是分别从物体左面、上面看,所得到的图形.【解答】解:答案不唯一,如正方体、球体等.故答案为:正方体(答案不唯一).12.【答案】【考点】简单几何体的三视图【分析】先由左视图的面积底面直径高,得出底面直径,再根据侧面积底面周长高即可求解.【解答】解:设圆柱的高为,底面直径为,则,解得,所以侧面积为:.故答案为.13.【答案】主视图,俯视图,左视图【考点】作图-三视图【分析】根据画三视图的要求填空即可.【解答】解:首先确定主视图的位置,画出主视图,然后在主视图的下面画出俯视图,在主视图的右面画出左视图.14.【答案】平行四边,椭圆【考点】平行投影【分析】太阳光照射矩形的窗户,根据在同一时刻,不同物体的物高和影长成比例,且平行物体的投影仍旧平行.故可知矩形的窗户的投影是平行四边形,同理得出圆形窗框在地面上的影子往往是椭圆形.【解答】解:题中都没说明阳光是从哪个角度射入,因此投影可以是与窗户相似,相等,等边不等长,等长不等宽的矩形,还有甚至是一般的平行四边形,但无论是什么,都是平行四边形.都是对边相等且平行的.圆形窗框在地面上的影子往往是椭圆形.故答案为:平行四边,椭圆.15.【答案】对应成比例【考点】平行投影【分析】根据平行投影特点在同一时刻,不同物体的物高和影长成比例可知.【解答】解:在同一时刻,不同物体的物高和影长成比例.即两人的高度和他们的影子对应成比例.16.【答案】①③④【考点】视点、视角和盲区【分析】盲区是指看不见的区域,仰视时越向前视野越小盲区越大,俯视时越向前视野越大,盲区越小.【解答】解:②中上山和下山时盲区是不同的,要记住仰视时越向前视野越小盲区越大,俯视时越向前视野越大,盲区越小.而①③④都是正确的,因此选①③④.17.【答案】,【考点】中心投影【分析】画出相应图形,可得相似三角形,利用相似三角形的对应边的比相等可得影长,加上即为点的横坐标,其纵坐标为.【解答】解:∵ 轴,轴,∴ ,∴ ,∴ ,设,∴ ,解得:,∴ ,∴ ,∴ 点的坐标为.故答案为:;.18.【答案】球(答案不唯一)【考点】简单几何体的三视图【分析】根据主视图,左视图,俯视图的定义找出从正面,左面,上面看到的几何体的形状图都一样的几何体即可.【解答】解:球从正面,左面,上面看到的平面图形为全等的圆,故答案为:球(答案不唯一).19.【答案】【考点】由三视图判断几何体【分析】应先判断出这个几何体的形状为三棱柱,进而求得表面积.【解答】解:由主视图和俯视图可判断出这个几何体为柱体,根据左视图可得此几何体为三棱柱,由个矩形和个三角形组成,矩形的长与宽分别是,;,;,.三角形为直角三角形,两直角边分别为,,斜边为.∴ 表面积为:故答案为:.20.【答案】【考点】简单组合体的三视图【分析】留下靠墙的正方体,以及墙角处向外的一列正方体,依次数出搬走的小正方体的个数相加即可.【解答】解:第列最多可以搬走个小正方体;第列最多可以搬走个小正方体;第列最多可以搬走个小正方体;第列最多可以搬走个小正方体;第列最多可以搬走个小正方体.个.故最多可以搬走个小正方体.故答案为:.三、解答题(本题共计 8 小题,共计60分)21.【答案】解:如图所示:【考点】由三视图判断几何体【分析】由立体图形的三视图可得立体图形有列,且第一列第二行个立方体,且上面有一个立方体,第二前后各一个立方体,进而画出图形.【解答】解:如图所示:22.【答案】解:如图所示;【考点】作图-三视图【分析】根据实际物体,主视图有两列,最左边有两个,主视图与左视图相同,俯视图左侧有一个,左侧有两个,直接画出三视图即可,注意三视图摆放的位置.【解答】解:如图所示;23.【答案】解:如图所示:.【考点】作图-三视图由三视图判断几何体【分析】主视图有列,每列小正方形数目分别为,,;左视图有列,每列小正方形数目分别为,,.依此画出图形即可求解.【解答】解:如图所示:.24.【答案】解:如图所示:.【考点】作图-三视图【分析】主视图有列,每列小正方形数目分别为,,;左视图有列,每列小长方形数目分别为,;俯视图有列,每列小长方形数目分别为,,.【解答】解:如图所示:.25.【答案】解:【考点】简单组合体的三视图【分析】该几何体的主视图为列小正方形,每列的正方形数分别为:,,;俯视图为行正方形,上边的正方形个,下面个小正方形靠右;左视图为列小正方形,左面个,右面个靠下.【解答】解:26.【答案】解:如图所示:【考点】作图-三视图由三视图判断几何体【分析】按照小正方形里的数字可知,主视图的左边是三个正方形,右边是两个正方形;左视图的左边是个正方形,右边是个正方形.【解答】解:如图所示:27.【答案】解:(1)由三视图可知:该几何体是一个长、宽、高分别为、、的长方体在上底面中间挖去一个直径为的半圆柱...【考点】由三视图判断几何体【分析】(1)由三视图可知:该几何体是一个长、宽、高分别为、、的长方体在上底面中间挖去一个直径为的半圆柱;(2)据(1)可计算出其表面积与体积.【解答】解:(1)由三视图可知:该几何体是一个长、宽、高分别为、、的长方体在上底面中间挖去一个直径为的半圆柱...28.【答案】解:这样的几何体不止一种,它最多要个小立体,最少要个小立方体【考点】由三视图判断几何体【分析】这种题需要空间想象能力,可以想象这样的小立方体搭了上中下三层,但只有从左到右的二排,符合题中两个视图的几何体不只一种.【解答】解:这样的几何体不止一种,它最多要个小立体,最少要个小立方体。

九年级数学下册第二十九章《投影与视图》综合经典测试题(含答案)

九年级数学下册第二十九章《投影与视图》综合经典测试题(含答案)

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,正方形ABCD 的边长为3cm ,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的面积是( )A .29cmB .29πcmC .218πcmD .218cm 2.如图所示,该几何体的主视图为( )A .B .C .D . 3.下面几何体的左视图是( )A .B .C .D . 4.如图是一个由相同小立方块搭成的几何体从上面看到的形状图,小正方形中的数字表示该位置上小立方块的个数,则该几何体从正面看是( )A .B .C .D . 5.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是( )A .B .C .D . 6.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm 7.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为300,同一时 刻,一根长为l 米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为( )A .米B .12米C .米D .10米8.如图,身高为1.6m 的某学生想测量一棵大树的高度,她沿着树影BA 由B向A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得BC =3.2m",CA =0.8m , 则树的高度为( )A .4.8mB .6.4mC .8mD .10m9.圆桌面(桌面中间有一个直径为1m 的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为2m ,桌面离地面1m ,若灯泡离地面2m ,则地面圆环形阴影的面积是( )A .2πm 2B .3πm 2C .6πm 2D .12πm 210.下面的三视图对应的物体是()A.B.C.D.11.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是()A.B.C.D.12.如图,用八个同样大小的小立方体粘成一个大正方体,得到的几何体从正面、从左面和从上面看到的形状图如图,若小明从八个小立方体中取走若干个,剩余小立方体保持位置不动,并使得到的新几何体从三个方向看到的形状图不变,则他取走的小立方体最多可以是()A.0个B.1个C.4个D.3个13.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.14.如图是由一些完全相同的小立方块搭成的几何体的三种视图.搭成这个几何体所用的小立方块的个数是()A.5个B.6个C.7个D.8个二、填空题15.用小立方体搭一个几何体,其主视图和俯视图如下图,搭这样的集合体最多需要__________个小立方体,最少需要__________个小立方体.16.由几个相同小正方体搭成的几何体的主视图与左视图如图所示,则该几何体最少由________个小正方体搭成.17.如图是某几何体的三视图,则该几何体左视图的面积为_________.18.小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是_____m.19.已知一个物体由x个相同的正方体堆成,它的正视图和左视图如图所示,那么x的最大值是_____.20.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是_____.21.如图,一几何体的三视图如图:那么这个几何体是______.22.图中几何体的主视图是().A BC D23.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.24.由n个相同的小正方体堆成的几何体,其视图如下所示,则n的最大值是_____.25.由一些完全相同的小正方体组成的几何体,从正面看和左面看的图形如图所示,则组成这个几何体的小正方体的个数至少是_____个.26.以下给出的几何体:球、正方体、圆柱、圆锥中,主视图是矩形,俯视图是圆形的是_____.三、解答题27.下图是某几何体的表面展开图:(1)这个几何体的名称是;(2)若该几何体的主视图是正方形,请在网格中画出该几何体的左视图、俯视图;(3)若网格中每个小正方形的边长为1,则这个几何体的体积为.28.如图是一个几何体从三个方向看所得到的形状图.(1)写出这个几何体的名称;(2)若从正面看的长为10cm,从上面看到的圆的直径为4cm,求这个几何体的表面积(结果保留π).29.画出下面图形的三视图.(请把线条加粗加黑!)30.如图,上午小明在上学路上发现路灯的灯泡B在太阳光下的影子恰好落到点E处,他自己的影子恰好落在另一灯杆CD的底部点C处,晚自习放学时,小明又站在上午同一地方,此时发现灯泡D的灯光下自己的影子恰好落在点E处.请在图中画出表示小明身高的线段(用线段FG表示).【参考答案】一、选择题1.D2.B3.C4.A5.B6.C7.A8.C9.B10.D11.C12.C13.D14.D二、填空题15.1410【分析】根据几何体三视图的性质分析即可【详解】∵俯视图有6个正方形∴最底层有6个正方形∵主视图第二层有3个正方形∴第二层最多有6个正方形最少有3个正方形∵主视图第三层有1个正方形∴第三层最多16.【解析】【分析】仔细观察该几何体的主视图和左视图发挥空间想象能力便可得出几何体的形状【详解】仔细观察物体的主视图和左视图可知:该几何体的下面最少要有三个小正方体上面最少要有一个小正方体故该几何体最少17.【解析】【分析】由视图知此几何体的侧视图为一个长方形故由题设条件求出侧视图的面积即可【详解】由几何体的主视图与俯视图可得几何体为三棱柱所以该几何体的左视图的面积为2×6=12故答案为:【点睛】本题考18.14【分析】设水塔的高为xm根据同一时刻平行投影中物体与影长成正比得到x:42=17:51然后利用比例性质求x即可【详解】设水塔的高为xm根据题意得x:42=17:51解得x=14即水塔的高为14m19.11【解析】综合正视图和左视图底面最多有3×3=9个小正方体第二层最多有2个小正方体那么x的最大值应该是9+2=11故答案为:11点睛:本题考查对三视图的理解应用及空间想象能力本题中虽然没有告诉俯视20.5【解析】试题21.圆锥【解析】试题分析:由主视图和左视图为三角形判断出是锥体由俯视图是圆形可判断出这个几何体应该是圆锥故答案为圆锥考点:由三视图判断几何体22.C【解析】试题分析:根据几何体的三视图知识几何体的主视图即从正面看到的图形此几何体从正面看到的图形为上下两层下面有两个小正方形上面靠左有一个小正方形如图C 所示故选C考点:几何体的三视图23.6【分析】根据题意画出示意图易得:Rt△EDC∽Rt△FDC进而可得;即DC2=EDFD代入数据可得答案【详解】根据题意作△EFC树高为CD且∠ECF=90°ED=3FD=12易得:Rt△EDC∽R24.18【分析】根据主视图和俯视图得出几何体的可能堆放从而即可得出答案【详解】综合主视图和俯视图底面最多有个第二层最多有个第三层最多有个则n的最大值是故答案为:18【点睛】本题考查了三视图中的主视图和俯25.4【分析】根据图示可知该几何体有2层由俯视图可得第一层小正方图的个数由主视图可得第二层小正方体的可能的个数即可解决问题【详解】由俯视图易得最底层有3个小正方体由主视图易得第二层最少有1个最多有2个小26.圆柱【分析】根据三视图的基本知识分析各个几何体的三视图然后可解答【详解】解:俯视图是圆的有球圆柱圆锥主视图是矩形的有正方体圆柱故答案为:圆柱【点睛】本题考查了简单几何体的三视图熟记简单几何的三视图是三、解答题27.28.29.30.【参考解析】一、选择题1.D解析:D【分析】先确定几何体的主视图,得到边长分别为3cm、6cm,再根据面积公式计算得出答案.【详解】如图,所得几何体的主视图是一个长方形,边长分别为3cm、6cm,∴所得几何体的主视图的面积是36 =218cm,故选:D.【点睛】此题考查几何体的三视图,平面图形的面积计算公式,正确理解几何体的三视图是解题的关键.2.B解析:B【分析】找到从正面看所得到的图形即可.【详解】从正面看两个矩形,中间的线为虚线,故选B.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.3.C解析:C【分析】根据三视图的定义,从左边观察可得.【详解】从左面看可得到左边有2个正方形,右边有1个正方形.故选:C.【点睛】考核知识点:三视图.注意观察的方向.4.A解析:A【分析】由已知条件可知,主视图有3列,每列小正方形数目分别为1,2,1;左视图有2列,每列小正方形数目分别为2,2,据此可画出图形.【详解】根据图形可知:主视图有3列,每列小正方形数目分别为1,2,1.故选A.【点睛】本题考查了几何体的三视图画法.由几何体的俯视图及小正方形中的数字,可知主视图有3列,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图有2列,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.5.B解析:B【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有4列,从左到右分别是1,2,3,2个正方形.【详解】由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,3,2个正方形.故选B.【点睛】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.6.C解析:C【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选C.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.7.A解析:A【解析】解直角三角形的应用(坡度坡角问题),锐角三角函数定义,特殊角的三角函数值,相似三角形的判定和性质.【分析】延长AC交BF延长线于E点,则∠CFE=30°.作CE⊥BD于E,在Rt△CFE中,∠CFE=30°,CF=4,∴CE=2,EF=4cos30°3在Rt△CED中,CE=2,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,∴DE=4.∴3∵△DCE∽△DAB,且CE:DE=1:2,∴在Rt △ABD 中,AB=BD=.故选A .8.C解析:C【解析】解:因为人和树均垂直于地面,所以和光线构成的两个直角三角形相似,设树高x 米,则 1.6AC AB x =,即0.8 1.60.8 3.2x=+ ∴x=8故选C . 9.B解析:B【解析】【分析】 先根据AC ⊥OB ,BD ⊥OB 可得出△AOC ∽△BOD ,由相似三角形的对应边成比例可求出BD 的长,进而得出BD ′=1m ,再由圆环的面积公式即可得出结论.【详解】解:如图所示:∵AC ⊥OB ,BD ⊥OB ,∴△AOC ∽△BOD ,∴OA AC OB BD =,即112BD=, 解得:BD =2m , 同理可得:AC ′=0.5m ,则BD ′=1m ,∴S 圆环形阴影=22π﹣12π=3π(m 2).故选B .【点睛】考查的是相似三角形的应用以及中心投影,利用相似三角形的对应边成比例得出阴影部分的半径是解题关键.10.D解析:D【解析】解:从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D 满足这两点.故选D .点睛:本题主要考查学生对图形的三视图的了解及学生的空间想象能力.11.C解析:C【解析】【分析】先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.【详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,后面一排分别有2个、3个、1个小正方体搭成三个长方体,并且这两排右齐,故从正面看到的视图为:.故选:C.【点睛】本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.12.C解析:C【解析】【分析】根据三视图不变,可知可以把1、4号小正方体下面的两个小正方体去掉,再把第二层的2、3号小正方体去掉,最多去掉四个.【详解】由于从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图不变,所以这个正方体可以把1、4号小正方体下面的两个小正方体去掉,再把2、3号小正方体去掉(或最底层2、3号小正方体下面的两个小正方体去掉,再把第二层的1、4号小正方体去掉),即可得取走的小立方体最多可以是4个.故选:C【点睛】本题考查了学生的观察能力和对几何体三种视图的空间想象能力,根据三视图确定几何体的形状是解决本题的关键.13.D解析:D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.14.D解析:D【解析】【分析】结合三视图的知识,主视图以及左视图底面有6个小正方体,共有两层三行,第二层有2个小正方体.【详解】综合主视图,俯视图,左视图底面有6个正方体,第二层有2个正方体,所以搭成这个几何体所用的小立方块的个数是8.故选D.【点睛】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.二、填空题15.1410【分析】根据几何体三视图的性质分析即可【详解】∵俯视图有6个正方形∴最底层有6个正方形∵主视图第二层有3个正方形∴第二层最多有6个正方形最少有3个正方形∵主视图第三层有1个正方形∴第三层最多解析:14 10【分析】根据几何体三视图的性质分析即可.【详解】∵俯视图有6个正方形∴最底层有6个正方形∵主视图第二层有3个正方形∴第二层最多有6个正方形,最少有3个正方形∵主视图第三层有1个正方形∴第三层最多有2个正方形,最少有1个正方形∴搭这样的集合体最多需要66214++=个小立方体,最少需要63110++=个小立方体 故答案为:14,10.【点睛】本题考查了几何体三视图的问题,掌握几何体三视图的性质是解题的关键.16.【解析】【分析】仔细观察该几何体的主视图和左视图发挥空间想象能力便可得出几何体的形状【详解】仔细观察物体的主视图和左视图可知:该几何体的下面最少要有三个小正方体上面最少要有一个小正方体故该几何体最少 解析:4【解析】【分析】仔细观察该几何体的主视图和左视图,发挥空间想象能力,便可得出几何体的形状.【详解】仔细观察物体的主视图和左视图可知:该几何体的下面最少要有三个小正方体,上面最少要有一个小正方体,故该几何体最少有4个小正方体组成,故答案为:4.【点睛】本题考查了由三视图判断几何体,主视图是从物体的前面看得到的视图,左视图是从物体的左面看得到的视图,熟练掌握是关键.17.【解析】【分析】由视图知此几何体的侧视图为一个长方形故由题设条件求出侧视图的面积即可【详解】由几何体的主视图与俯视图可得几何体为三棱柱所以该几何体的左视图的面积为2×6=12故答案为:【点睛】本题考解析:2【解析】【分析】由视图知,此几何体的侧视图为一个长方形,故由题设条件求出侧视图的面积即可.【详解】由几何体的主视图与俯视图可得,几何体为三棱柱,所以该几何体的左视图的面积为=,故答案为:2.【点睛】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三视图中的侧视图面积,解决本题的关键是由题设条件得出侧视图的形状及侧视图的几何特征.求解本题的关键是准确熟练理解三视图的投影规则,其规则是:主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等.18.14【分析】设水塔的高为xm 根据同一时刻平行投影中物体与影长成正比得到x:42=17:51然后利用比例性质求x即可【详解】设水塔的高为xm根据题意得x:42=17:51解得x=14即水塔的高为14m解析:14.【分析】设水塔的高为xm,根据同一时刻,平行投影中物体与影长成正比得到x:42=1.7:5.1,然后利用比例性质求x即可.【详解】设水塔的高为xm,根据题意得x:42=1.7:5.1,解得x=14,即水塔的高为14m.故答案为14.【点睛】本题考查了平行投影的知识,解题的关键是熟练的掌握投影的性质与运用.19.11【解析】综合正视图和左视图底面最多有3×3=9个小正方体第二层最多有2个小正方体那么x的最大值应该是9+2=11故答案为:11点睛:本题考查对三视图的理解应用及空间想象能力本题中虽然没有告诉俯视解析:11【解析】综合正视图和左视图,底面最多有3×3=9个小正方体,第二层最多有2个小正方体,那么x的最大值应该是9+2=11.故答案为:11.点睛:本题考查对三视图的理解应用及空间想象能力.本题中虽然没有告诉俯视图,但是说明了x取最大值也就间接的说明了俯视图的情况.20.5【解析】试题解析:5【解析】试题综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个,所以这个几何体的体积是5.21.圆锥【解析】试题分析:由主视图和左视图为三角形判断出是锥体由俯视图是圆形可判断出这个几何体应该是圆锥故答案为圆锥考点:由三视图判断几何体解析:圆锥【解析】试题分析:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥.故答案为圆锥.考点:由三视图判断几何体.22.C【解析】试题分析:根据几何体的三视图知识几何体的主视图即从正面看到的图形此几何体从正面看到的图形为上下两层下面有两个小正方形上面靠左有一个小正方形如图C所示故选C考点:几何体的三视图解析:C.【解析】试题分析:根据几何体的三视图知识,几何体的主视图即从正面看到的图形,此几何体从正面看到的图形为上下两层,下面有两个小正方形,上面靠左有一个小正方形,如图C所示.故选C.考点:几何体的三视图.23.6【分析】根据题意画出示意图易得:Rt△EDC∽Rt△FDC进而可得;即DC2=EDFD代入数据可得答案【详解】根据题意作△EFC树高为CD且∠ECF=90°ED=3FD=12易得:Rt△EDC∽R解析:6【分析】根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得ED DCDC FD=;即DC2=ED?FD,代入数据可得答案.【详解】根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=3,FD=12,易得:Rt△EDC∽Rt△DCF,有ED DCDC FD=,即DC2=ED×FD,代入数据可得DC2=36,DC=6,故答案为6.24.18【分析】根据主视图和俯视图得出几何体的可能堆放从而即可得出答案【详解】综合主视图和俯视图底面最多有个第二层最多有个第三层最多有个则n的最大值是故答案为:18【点睛】本题考查了三视图中的主视图和俯解析:18【分析】根据主视图和俯视图得出几何体的可能堆放,从而即可得出答案.【详解】综合主视图和俯视图,底面最多有2327++=个,第二层最多有2327++=个,第三层最多有2024++=个则n 的最大值是77418++=故答案为:18.【点睛】本题考查了三视图中的主视图和俯视图,掌握三视图的相关概念是解题关键.25.4【分析】根据图示可知该几何体有2层由俯视图可得第一层小正方图的个数由主视图可得第二层小正方体的可能的个数即可解决问题【详解】由俯视图易得最底层有3个小正方体由主视图易得第二层最少有1个最多有2个小 解析:4【分析】根据图示可知,该几何体有2层,由俯视图可得第一层小正方图的个数,由主视图可得第二层小正方体的可能的个数,即可解决问题.【详解】由俯视图易得,最底层有3个小正方体,由主视图易得,第二层最少有1个,最多有2个小正方体,那么搭成这个几何体的小正方体最少为3+1=4个,最多为3+2=5个故答案为:4【点睛】本题考查了从不同方向观察几何体,难度适中,熟练掌握根据主视图和俯视图确定小正方体的个数是解题关键.26.圆柱【分析】根据三视图的基本知识分析各个几何体的三视图然后可解答【详解】解:俯视图是圆的有球圆柱圆锥主视图是矩形的有正方体圆柱故答案为:圆柱【点睛】本题考查了简单几何体的三视图熟记简单几何的三视图是 解析:圆柱.【分析】根据三视图的基本知识,分析各个几何体的三视图然后可解答.【详解】解:俯视图是圆的有球、圆柱、圆锥,主视图是矩形的有正方体、圆柱,故答案为:圆柱.【点睛】本题考查了简单几何体的三视图,熟记简单几何的三视图是解题关键.三、解答题27.(1)长方体;(2)作图见解析;(3)12.【分析】(1)展开图都是由3对长方形组成的,每对长方形的大小完全相同.(2)观察左视图,主视图以及俯视图即可判定.(3)根据长方体的体积公式求解.【详解】(1)由题目中的图可知为长方体.(2)∵该几何体的主视图是正方形,则主视图和俯视图如图:⨯⨯=.(3)体积=长⨯宽⨯高=32212【点睛】本题考查作图-三视图、解题的关键是学会观察、搞清楚三视图的定义,求长方体体积的计算公式.28.48πcm.(1)圆柱;(2)2【分析】(1)根据该几何体的主视图与左视图是矩形,俯视图是圆可以确定该几何体是圆柱;(2)根据告诉的几何体的尺寸确定该几何体的表面积即可;【详解】(1)由三视图判断出该几何体是圆柱.(2)∵从正面看的长为10cm,从上面看的圆的直径为4cm,∴该圆柱的底面半径径为2cm,高为10cm,∴该几何体的侧面积为2=⨯⨯=,底面积为:2πr2=8πcm2.2πrh2π21040πcm∴该几何体的表面积为2+=.40π8π48πcm【点睛】本题考查了由三视图判断几何体及几何体的表面积问题,解题的关键是了解圆柱的表面积的计算方法.29.见解析.【分析】根据三视图画出图形解答即可.【详解】根据题意,如图所示:(小正方形之间的拼缝可以不画!轮廓线正确就正确)主视图左视图俯视图【点睛】本题是考查了简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.30.详见解析.【分析】先画出上午太阳光线下的灯泡B的照射光线BE,过点C作BE的平行线,再连接下午时灯光下灯泡D的光线DE,与过点C的光线交于点G,在过点G作地面的垂线GF,即是表示小明身高的线段.【详解】如图所示,线段FG即为所求.【点睛】此题考查投影,投影分为平行投影和中心投影,解题中能正确区分两种投影的区别是解题的关键.。

人教版九年级下数学第二十九章《投影与视图》检测题及答案

 人教版九年级下数学第二十九章《投影与视图》检测题及答案

人教版九年级下数学第二十九章《投影与视图》检测题及答案(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.平行投影中的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散的 2.两个不同长度的物体在同一时刻同一地点的太阳光下得到的投影是( ) A.相等 B.长的较长 C.短的较长 D.不能确定 3.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( ) A.小明的影子比小强的影子长 B.小明的影长比小强的影子短 C.小明的影子和小强的影子一样长 D.无法判断谁的影子长 4.木棒长为1.2 m ,则它的正投影的长一定( )A.大于1. 2 mB.小于1.2 mC.等于1.2 mD.小于或等于1.2 m 5.小明从正面观察如图所示的两个物体,看到的是( )6.在同一时刻,身高1.6 m 的小强的影长是1.2 m , 旗杆的影长是15 m ,则旗杆高为( ) A.16 m B.18 m C.20 m D.22 m7.如图是由一些相同的小正方体构成的几何体的三视图,则这个几何体的小正方体的个数是( )A.4B.5C.6D.7 8.如图所示是一根电线杆在一天中不同时刻的影长图, 试按一天中时间先后顺序排列,正确的是( )第8题图A.①②③④B.④①③②C.④②③①D.④③②①BA第7题图 主视图左视图俯视图第5题图9.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为( )A.上午8时B.上午9时30分C.上午10时D.上午12时 10.如果用□表示1个立方体,用 表示两个立方体叠加,用█表示三个立方体叠加,那么图中由6个立方体叠成的几何体的主视图是 ( )二、填空题(每小题3分,共24分)11.在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是 .(填序号) 12.小军晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定的说:“广场上的大灯泡一定位于两人 ”. 13.如图所示的圆柱的左视图是 ,俯视图是 . 14.一个几何体的三视图如图所示,那么这个几何体是 .15.一张桌子上摆放若干碟子,从三个方向上看,三种视图如图所示,则这张桌子上共有碟子 个.A B C D第10题图俯视图主视图左视图第14题图 第13题图42第16题图第15题图小赵16.如图所示,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于 . 17.如图所示是正方体的展开图,则原正方体相对两个面上的数字 之和的最小值是 .18.皮影戏中的皮影是由 投影得到的.三、解答题(共46分)19. (6分)分别画出图中立体图形的三视图.20. (6分)确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.21. (6分)分别画出图中几何体的主视图、左视图、俯视图.22.(6分)已知,如图,和是直立在地面上的两根立柱.,某一时刻在阳光下的投影. (1)请你在图中画出此时在阳光下的投影;(2)在测量的投影时,同时测量出在阳光下的投影长为,请你计算的长.第17题图第19题图第22题图ABC ED第21题图第20题图23.(6分)如图所示,在太阳光线照射下,应如何摆放木杆才能使其影子最长?画图进行说明.24.(8分)求证:一个人在两个高度相同的路灯之间行走,他前后的两个影子的长度之和是一个定值.25.(8分)如图所示为一几何体的三视图: (1)写出这个几何体的名称;(2)任意画出这个几何体的一种表面展开图; (3)若长方形的高为10 cm ,正三角形的边长为4 cm , 求这个几何体的侧面积.答案1.A 解析:平行光线所形成的投影称为平行投影.2.D 解析:如果两个物体是平行放置,则选项B 对,如果不是平行放置,则无法确定.由于本题没有具体说明它们是如何放置,所以应该选D.3.D 解析: 因为不知道二人离路灯的距离,所以无法判断.在二人离路灯相等距离的情况下,小明的长.4.D 解析:正投影的长度与木棒的摆放角度有关系,但无论怎样摆都不会超过1.2 .5.C 解析:由于正方体的正视图是个正方形,而竖着的圆柱体的正视图是个长方形,因此只有C 的图形符合这个条件.故选C .6.C 解析:设旗杆高为 m .根据在同一时刻物体高度与影长成比例可得:=, .故选C .7.B 解析:结合三视图,这个几何体中,底层有3+1=4(个)小正方体,第二层有1个小正方体,因此小正方体的个数为4+1=5.第23题图主视图左视图俯视图第25题图8.B 解析:根据题意,太阳是从东方升起,故影子指向的方向为西方.然后依次为西北-北-东北-东,故分析可得先后顺序为④①③②.故选B.9.A 解析:根据从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.可知本题中影子最长的时刻为上午8时.10.B 解析:从正面看,左边上下都只有一个正方体;中间下面一排有三个正方体,上面没有正方体;右边下面一排有一个正方体,上面没有正方体.故选B.11.②解析:长方体的三视图都是矩形,但是矩形的大小不一样,所以①不符合;球的三视图都是相同大小的圆,所以②符合;圆锥的主视图和左视图都是三角形,而俯视图是中心带圆点的圆,所以③不符合;圆柱的主视图和左视图都是矩形,而俯视图是圆,所以④不符合;三棱柱主视图和左视图是矩形,俯视图是三角形,所以⑤也不符合.12.中间的上方解析:在点光源下不同的位置形成的影子的方向和长短不确定,当两人的影子一个向东,一个向西,则光源一定位于两人中间的上方.13.矩形圆解析:根据三视图的定义可知,圆柱的主视图和左视图是矩形,俯视图是圆.14.圆锥解析:根据图中三视图的形状,主视图和左视图是三角形,俯视图是圆心带有圆点的圆,所以是圆锥.15.12 解析:易得三摞碟子数从三视图看第一列有4+5=9(个),第二列有3个,则这个桌子上共有9+3=12(个)碟子.故答案为12.16.24 解析:长方体的左视图是一个矩形,因为它的面积为6,一边长为2,所以另一边长为3,从而得出长方体的高为3,因此长方体的体积等于2×4×3=24.17.6 解析:易得2和6是相对的两个面;3和4是相对的两个面;1和5是相对的两个面,∵ 2+6=8,3+4=7,1+5=6,∴原正方体相对两个面上的数字和最小的是6.故答案为6.18.中心投影解析:皮影戏是在灯光照射下在影布上形成的投影,故是中心投影.19.解:如图所示.第19题答图20.解:如图所示.第20题答图21. 分析:从正面看从左往右4列正方形的个数依次为1,3,1,1; 从左面看从左往右3列正方形的个数依次为3,1,1; 从上面看从左往右4列正方形的个数依次为1,3,1,1. 解:如图所示.22. 解:(1)如图所示.(2)∵ , ∴ = =5×63=10().23. 解:当木杆与太阳光线垂直时其影长最长,如图所示.24. 解:如图所示,为路灯高度,为该人高度,为该人前后的两个影子. ∵∥,∴ =,∴ = ,即 =. 同理=. ∴ = =常数(定值).25.分析:(1)只有棱柱的主视图和左视图才能出现长方形,根据俯视图是三角形,可得到此几何体为三棱柱;(2)应该会出现三个长方形,两个三角形;(3)侧面积为3个长方形,它的长和宽分别为10,4,计算出一个长方形的面积,乘3即可. 解:(1)正三棱柱; (2)如图所示;(3)3×10×4=120().第21题答图第23题答图 第24题答图F E D C A ab bN MB AB C FDE第25题答图。

(最新)部编人教版数学九年级下册《第29章 投影与视图 综合测试题》(含答案解析)

(最新)部编人教版数学九年级下册《第29章 投影与视图 综合测试题》(含答案解析)

第29章 投影与视图 单元检测试卷学校:__________ 班级:__________ 姓名:__________ 考号:一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. 一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是( ) A.B.C.D.2. 在同一时刻的阳光下,甲的影子比乙的影子长,那么在同一路灯下( ) A.甲的影子比乙的长 B.甲的影子比乙的影子短 C.甲的影子和乙的影子一样长 D.无法判断3. 人离窗子越远,向外眺望时此人的盲区是( ) A.变小 B.变大 C.不变D.以上都有可能4. 下列四个几何体中,俯视图是圆的几何体共有( )A.个B.个C.个D.个5. 如图四个几何体,其中,它们各自的主视图与俯视图不相同的几何体的个数是( )A. B. C. D.6. 如图是由三个棱长为的正方体组成的几何体,则从前往后看得到的投影是( )A.B.C.D.7. 在下面的四个几何体中,它们各自的主视图与左视图不相同的是( )A.圆锥B.正方体C.三棱柱D.圆柱 8. 一个几何体由若干个相同的小正方体搭成,其三视图如图所示,则搭成这个几何体的小正方体的个数为( )A. B. C. D.9. 如图所示的物体从上面看到的形状图是( )A.B.C.D.10. 由个相同的小正方体堆成的几何体,其视图如图所示,则的最大值是( )A. B. C. D.二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11. 在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来(如图),则这堆正方体货箱数共有________.12. 任意放置以下几何体:正方体、圆柱、圆锥、球体,则三视图都完全相同的几何体是________.13. 如图中的几何体是由简单几何体________和________搭成的,它的主视图是________,左视图是________,俯视图是________.14. 如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要________ 个小立方体.15. 旗杆、树和竹竿都垂直于地面且一字排列,在路灯下树和竹竿的影子的方位和长短如图所示.请根据图上的信息标出灯泡的位置(用点表示),再作出旗杆的影子.(不写作法,保留作图痕迹)结论:旗杆的影子是线段________(在图中用两个大学字母标明旗杆的影子).16. 任意放置以下几何体:正方体、圆柱、圆锥,则三视图都完全相同的几何体是________.17. 当太阳斜照或直照时,一个放在水平地面上的长方形状的箱子在地面上留下的影子是________.18. 小明同学在教室透过窗户看外面的小树,他能看见小树的全部吗?请在图中画说明.如果他想看清楚小树的全部,应该往________(填前或后)走.在图中画出视点(小明眼睛)的位置.19. 如图,一只小猫在一片废墟中玩耍,一只老鼠呆在________处才不会被小猫发现.20. 墙角处有若干大小相同的小正方体堆成如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、从上面、从右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走________个小正方体.三、解答题(本题共计 8 小题,共计60分)21. (6分)长方体的主视图与俯视图如图所示,这个长方体的体积是多少?22. (6分)画出如图所示的几何体的主视图、左视图、俯视图:23.(8分) 已知如图①所示的几何体.(1)下面所画的此几何体的三视图②错了吗?如果错了,错在哪里?并画出正确的视图;(2)根据图中尺寸,求出几何体的表面积.(注:长方形的底面为正方形;单位:)24. (8分)画出下列几何体的三视图.主视图;左视图;俯视图.25. (8分)已知一个几何体的俯视图如图所示,请画出这个几何体的主视图、左视图.26. (8分)如图所示为一个正六棱柱的主视图,请你根据图中标注的尺寸计算其表面积.(用,表示)27. (8分)(1)一木杆按如图所示的方式直立在地面上,请在图中画出它在阳光下的影子;(用线段表示) 27. (8分)(2)图是两根标杆及它们在灯光下的影子.请在图中画出光源的位置(用点表示);并在图中画出人在此光源下的影子.(用线段表示)28.(8分) 按要求完成下列视图问题(1)如图(一),它是由个同样大小的正方体摆成的几何体.将正方体①移走后,新几何体的三视图与原几何体的三视图相比,哪一个视图没有发生改变?(2)如图(二),请你借助虚线网格(甲)画出该几何体的俯视图.(3)如图(三),它是由几个小立方块组成的俯视图,小正方形上的数字表示该位置上的正方体的个数,请你借助虚线网格(乙)画出该几何体的主视图.(4)如图(四),它是由个大小相同的正方体组成的几何体的主视图和俯视图,请你借助虚线网格(丙)画出该几何体的左视图.参考答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】平行投影【分析】根据看等边三角形木框的方向即可得出答案.2.【答案】D【考点】平行投影中心投影【分析】在同一路灯下由于位置不同,影长也不同,所以无法判断谁的影子长.3.【答案】B【考点】视点、视角和盲区【分析】根据视角与盲区的关系来判断.4.【答案】B【考点】简单几何体的三视图【分析】根据俯视图是从上面看所得到的图形判断即可.5.【答案】C【考点】简单几何体的三视图【分析】分别确定四个几何体从上面看和正面看所得到的视图即可.6.【答案】A【考点】简单组合体的三视图【分析】从前往后看得到的投影是主视图,然后找到从正面看所得到的图形即可.7.【答案】C【考点】简单几何体的三视图【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.8.【答案】C【考点】由三视图判断几何体【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.9.【答案】D【考点】简单组合体的三视图【分析】从上面看分别有列,分别有、、个正方体,据此解得即可.10.【答案】A【考点】由三视图判断几何体【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】个【考点】由三视图判断几何体【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.12.【答案】正方体和球体【考点】简单几何体的三视图【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.13.【答案】长方体,正方体,,,【考点】简单组合体的三视图【分析】得到组合几何体的上面和下面分别是由什么几何体组合而成的即可;分别得到从正面,左面,上面,看得到的图形即为所求的主视图,左视图,俯视图.14.【答案】【考点】由三视图判断几何体【分析】由主视图求出这个几何体共有层,再求出第二层、第三层最少的个数,由俯视图可得第一层正方体的个数,相加即可.15.【答案】【考点】中心投影【分析】根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光源.所以分别把树木和竹竿的顶端和影子的顶端连接并延长可交于一点,即点光源的位置,再由点光源出发连接旗杆顶部的直线与地面相交即可找到旗杆影子的顶端.16.【答案】正方体【考点】简单几何体的三视图【分析】判断出这三个几何体的三视图,即可知道三视图均相同的几何体.17.【答案】矩形,五边形或六边形【考点】简单几何体的三视图【分析】太阳直照箱子时,影子为矩形,当斜照时,有可能是五边形或六边形.18.【答案】前【考点】视点、视角和盲区【分析】根据视点、视角和盲区的定义结合图形得出答案.19.【答案】,,,【考点】视点、视角和盲区【分析】观察图形,利用视角和盲区的知识,只有老鼠在盲区才不会被小猫发现.20.【答案】【考点】简单组合体的三视图【分析】留下靠墙的正方体,以及墙角处向外的一列正方体,依次数出搬走的小正方体的个数相加即可.三、解答题(本题共计 8 小题,共计60分)21.【答案】这个长方体的体积是.【考点】由三视图判断几何体【分析】由所给的视图判断出长方体的长、宽、高,让它们相乘即可得到体积.22.【答案】解:作图如下:【考点】简单组合体的三视图【分析】主视图有列,每列小正方形数目分别为,,;左视图有列,每列小正方形数目分别为,,;俯视图,列,每列小正方形数目分别为,,.23.【答案】解:(1)左视图错误,圆锥的左视图是三角形,左视图应为;(2)几何体的表面积圆锥的侧面积+长方体的表面积圆的面积.【考点】简单组合体的三视图【分析】(1)根据从不同角度看得到的视图都是都是平面图形,可得答案;(2)根据几何体的表面积是几何体表面的面积,可得图形的表面积是圆锥的侧面积与长方体的表面积的和减去圆锥覆盖的面积,可得答案.24.【答案】解:【考点】作图-三视图【分析】主视图列正方形从左往右的个数依次为,;左视图列正方形从左往右的个数依次为,,;俯视图列正方形从左往右的个数依次为,;依此画出相应图形即可.25.【答案】解:如图所示:【考点】作图-三视图由三视图判断几何体【分析】利用已知主视图以及左视图观察角度,进而得出图形即可.26.【答案】解:观察主视图得:该六棱柱的底面是正六边形,半径为,∴底边长半径,∴边心距为,∴底面积为:,侧面积为:,∴表面积为:.【考点】由三视图判断几何体【分析】观察主视图知道该六棱柱的底面是正六边形,半径为,计算其底面积加上侧面积即可求得其表面积27.【答案】解:(1)如图,是木杆在阳光下的影子;(2)如图,点是影子的光源,就是人在光源下的影子.【考点】平行投影中心投影【分析】(1)根据平行投影的特点作图:过木杆的顶点作太阳光线的平行线;(2)分别过标杆的顶点及其影子的顶点作射线,两条射线的交点即为光源的位置.28.【答案】解:(1)如图(一),它是由个同样大小的正方体摆成的几何体.将正方体①移走后,新几何体的三视图与原几何体的三视图相比,左视图没有发生改变;(2)如图甲所示:(3)如图乙所示;(4)如图丙所示:【考点】作图-三视图简单组合体的三视图由三视图判断几何体【分析】(1)根据三视图观察的角度得出新几何体的三视图与原几何体的三视图相比,左视图没有发生改变;(2)利用已知图形结合观察角度得出俯视图即可;(3)利用已知图形得出立体图形的组成进而得出主视图;(4)利用俯视图以及主视图以及组成个数,可得出左视图有两行两列.答案第21页,总21页。

人教版数学九年级下学期第29章《投影与视图》测试题含答案

人教版数学九年级下学期第29章《投影与视图》测试题含答案

人教版数学九年级下学期第29章《投影与视图》测试题(测试时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.如图所示几何体的主视图是().A. B. C. D.2.如图所示的几何体的俯视图是()A. B. C. D.3.如图用6个同样大小的立方体摆成的几何体,将立方体①移走后,所得几何体与原来几何体的()A.主视图改变,左视图改变 B.俯视图不变,左视图不变C.俯视图改变,左视图改变 D.主视图改变,左视图不变4.下列四个几何体中,它们的主视图、左视图、俯视图都是正方形的是()A. B. C. D.5.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()A. B. C. D.6.如图所示是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是().A. B. C. D.7.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是( ) 8.如图,按照三视图确定该几何体的全面积为(图中尺寸单位:cm)()A.128πcm2 B.160πcm2 C.176πcm2 D.192πcm29.如图所示的几何体的左视图是()A. B. C. D.10.如图,在房子屋檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区是()A.△ACE B.△ADF C.△ABD D.四边形BCED二、填空题(每小题3分,共30分)11.苏轼的诗句“横看成岭侧成峰,远近高低各不同”把此诗句用在视图上,说明的现象是________.12.如图,请写出图,图,图是从哪个方向可到的:图________;图________;图________.13.图是一个几何体的主视图、左视图和俯视图,则这个几何体是________.(填序号)14.如图,②是①中图形的________视图.②15.下列投影:①阳光下遮阳伞的影子;②灯光下小明读书的影子;③阳光下大树的影子;④阳光下农民锄地的影子;⑤路灯下木杆的影子.其中属于平行投影的是_______,属于中心投影的是_____.(填序号) 16.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是_________.17.有两根大小、形状完全相同的铁丝,甲铁丝与投影面的夹角是45°,乙铁丝与投影面的夹角是30°,那么两根铁丝在投影面的正投影的长度的大小关系是:甲____乙(填“>”“<”或“=”).18.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,那么线段AC在AB上的正投影是___,线段CD在AB上的正投影是___,线段BC在AB上的正投影是___.19.如图,是一个包装盒的三视图,则这个包装盒的表面积是(结果保留π)20.如图,小明同学在非洲旅游期间想自己测出金字塔的高度,首先小明在阳光下测量出了长1 m的木杆CD的影子CE长1.5m;其次测出金字塔中心O到影子的顶部A的距离为201m。

人教版九年级数学下册《第二十九章投影与视图》单元检测卷及答案

人教版九年级数学下册《第二十九章投影与视图》单元检测卷及答案

人教版九年级数学下册《第二十九章投影与视图》单元检测卷及答案【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( )A.物体在太阳光下产生的投影是物体的正投影B.正投影一定是平行投影C.物体在灯光下产生的投影是物体的正投影D.正投影可能是中心投影2.由大小相同的正方体搭成的几何体如图所示,其左视图是( )A. B. C. D.3.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把球向下移时,圆形阴影的大小变化情况是( )A.越来越小B.越来越大C.大小不变D.不能确定4.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( )A. B.C. D.5.如图,这是由两个完全相同的小正方体与一个长方体搭成的几何体,则它的俯视图为( )A. B.C. D.6.如图是嘉淇在室外用手机拍下大树的影子随太阳转动情况的照片(上午8时至下午5时之间),这五张照片拍摄的时间先后顺序是( )A.①②③④⑤B.②④①③⑤C.⑤④①③②D.⑤③①④②7.如图为某几何体的三种视图,这个几何体可以是( )A. B. C. D.a的小正方体摆放成如图的形状,则这个图形的表面积是( )8.将20个棱长为cmA.22100cm a B.2260cm a C.2230cm a D.2216cm a9.一个由若干个大小相同的小正方体搭成的几何体,它的主视图和左视图如图所示,那么组成该几何体所需小正方体的个数最少是( )A.6B.5C.4D.310.已知某几何体的三视图如图所示,则该几何体的体积是( )A.233B.232π3+C.232πD.23π二、填空题(每小题4分,共20分)11.早在多年前的宋朝,手影就已经作为民间一种有趣的游戏而存在.诗人释惠明在《手影戏》中写到:“三尺生绡作戏台,全凭十指送诙谐.有时明月灯窗下,一笑还从掌握来”.手影戏全凭手影艺人的十指借光弄影,表演各色人物、花草虫鱼、飞禽走兽甚至是寓言故事.如图,手影戏中的手影属于____________(填“平行投影”或“中心投影”).100012.如图是某几何体的三视图,该几何体是_____.13.一根长为m的木棒在平行光线上形成的正投影为3,则m的取值范围为______.14.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个+=_____.小正方体组成,m n15.如图所示是某几何体的三视图,根据图中数据计算,这个几何体的侧面积为_______.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)如图,正三棱柱的面EFDC平行于投影面P,且2===,AB=6.AE EF AF(1)三棱柱在投影平面P 上的正投影的图形是_________. A.一条线段 B.矩形 C.平行四边形 D.等腰梯形(2)求正投影的面积.17.(8分)(1)画出下列几何体的三种视图.(2)若小立方体的边长为2cm ,试求露出部分(含底面)的几何体的面积.18.(10分)用小立方块搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中的字母表示在该位置小立方块的个数.试回答下列问题:(1)a ,b ,c 各表示几?(2)这个几何体最少由几个小立方块搭成?最多呢?(3)当1d e ==,2f =时,画出这个几何体的左视图.19.(10分)小红想利用阳光下的影长测量学校旗杆AB 的高度,如图,他在某一时刻在地面上竖直立一个2m 长的标杆CD ,测得其影长0.4m DE =.(1)请在图中画出此时旗杆AB 在阳光下的投影BF ;(2)如果 1.8m BF =,求旗杆AB 的高.20.(12分)如图,路灯下竖立的一根木杆(用线段AB 表示)的影子BC ,小明(用线段DE 表示)的影子是EF .(1)请在图中画出路灯的位置(用点P 表示);(2)若此路灯距地面高8米,小红的身高1.6米在距离灯的底部左侧6米N 处,此时小红沿NM 方向向左直走,求当小红的影长是5米时,她所走的路程.21.(12分)在一节数学课上,小红画出了某四棱柱的三视图如图所示,其中主视图和左视图为矩形,俯视图为等腰梯形ABCD ,已知该四棱柱的侧面积为(232162cm +.(1)三视图中,有一图未画完,请在图中补全;(2)根据图中给出的数据,俯视图中AB 的长度为________cm ;(3)左视图中矩形的面积为________2cm ;(4)这个四棱柱的体积为________3cm .参考答案及解析1.答案:B解析:A.物体在太阳光下产生的投影不一定是物体的正投影,错误,不合题意;B.正投影一定是平行投影,正确,符合题意;C.物体在灯光下产生的投影不一定是物体的正投影,错误,不合题意;D.正投影是平行投影,错误,不合题意.故选:B.2.答案:B解析:左视图如图:故选B.3.答案:A解析:当把球向下平移时,圆形阴影的大小的变化情况是:越来越小故选:A.4.答案:D解析:A.影子的方向不相同,故本选项错误;B.影子的方向不相同,故本选项错误;C.相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误;D.影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;故选:D.5.答案:C解析:从上面看得该几何体的俯视图是:故选:C.6.答案:B解析:一天中太阳位置的变化规律是:从东到西.太阳的高度变化规律是:低→高→低.影子位置的变化规律是:从西到东,影子的长短变化规律是:长→短→长.根据影子变化的特点,按时间顺序给这五张照片排序是②④①③⑤.故选:B.7.答案:A解析:根据几何体的三视图,只有A选项符合题意;故选:A. 8.答案:B解析:从上面看,露在外面的小正方体的面一共有10个从下面看露在外面的小正方体的面一共有10个从左面看,露在外面的小正方体的面一共有10个从右面看,露在外面的小正方体的面一共有10个从正面看,露在外面的小正方体的面一共有10个从后面看,露在外面的小正方体的面一共有10个∴该几何体露在外面的面一共有60个小立方体的棱长为cm a∴这个几何体的表面积为26060cm a a a ⋅⋅=故选:B.9.答案:B解析:根据左视图和主视图,这个几何体的底层最少有1113++=个小正方体第二层最少有1个小正方体因此组成这个几何体的小正方体最少有314+=个.故选B.10.答案:D解析:由三视图知该几何体是三棱柱与半圆柱的组合体,且三棱柱的底面是边长为2的正三角形,三棱柱的高为2;半圆柱的底面半径为1,高为2该几何体的体积为211232π1223π22+⨯⨯⨯=.故选D.11.答案:中心投影解析:由图像可得手影戏中的手影属于中心投影故答案为:中心投影.12.答案:圆柱解析:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱.故答案为:圆柱.13.答案:3m ≥解析:当木棒与光线平行时,正投影为一条线段,长度为3,此时3m =;当木棒与光线不平行时,正投影为一条线段,长度为3,此时3m >;故答案为: 3.m ≥14.答案:16解析:易得第一层有4个正方体,第二层最多有3个正方体,最少有2个正方体,第三层最多有2个正方体,最少有1个正方体4329m =++= 4217n =++=所以9716m n +=+=.故答案为:16.15.答案:12π解析:根据该几何体的三视图得:这个几何体为圆锥 根据题意得:该圆锥的侧长为()22442+=62⎛⎫ ⎪⎝⎭ 所以这个几何体的侧面积为46=122ππ⨯⨯. 故答案为:12π16.答案:(1)B(2)12解析:(1)B(2)正投影的面积为2612EFDC S =⨯=矩形.17.答案:(1)见详解,(2)2112cm解析:(1)三视图如下 (2)该几何体的表面积为()22262+42+42112cm ⨯⨯⨯⨯=18.答案:(1)3,1,1(2)9,11(3)见解析解析:(1)3a = 1b = 1c =.(2)这个几何体最少由4239++=(个)小立方块搭成,最多由62311++=(个)小立方块搭成.(3)左视图如图所示.19.答案:(1)见解析(2)旗杆AB 的高为9m解析:(1)连接CE ,过A 点作//AF CE 交BD 于F ,则BF 为所求,如图.(2)//AF CE∴AFB CED ∠=∠而90ABF CDE ∠=∠=︒∴ABF CDE ∽△△ ∴AB BF CD DE =,即 1.820.4AB =∴9m AB =.答:旗杆AB 的高为9m .20.答案:(1)见解析(2)14米解析:(1)如图,点P 即为所求;(2)如图,过点P 作PH CM ⊥于点H ,设当小红的影长是5米时,到达点M ',KM '表示小红的身高,SM '表示此时的影长,则 1.6KM '=米,5SM '=米//KM PH ' ∴SKM SPH '∽△△∴KM SM PH SH ''= ∴1.6585HM ='+∴20HM '=米∴20614NM '=-=米即当小红的影长是5米时,她所走的路程14米.21.答案:(1)见解析(2)2(3)8(4)32解析:(1)BC 所在的面在前,AD 所在的面在后∴主视图中应补充两条虚线∴补充完整如图所示:(2)俯视图为等腰梯形ABCDAB CD ∴=该四棱柱的侧面积为(232162cm +42446432162AB CD ∴+⨯++⨯=+22cm AB CD ∴==故答案为:2;(3)如图,作AE BC ⊥于E ,DF BC ⊥于F俯视图为等腰梯形ABCDAB CD ∴= //AD BCAE BC ⊥ DF BC ⊥90AEF DFE AEB DFC ∴∠=∠=∠=∠=︒ //AD BC90EAD ∴∠=︒∴四边形ADFE 是矩形2cm EF AD ∴== AE DF =()Rt Rt HL ABE DCF ∴≌△△BE CF ∴=6cm BE EF CF BC ++==622cm 2BE CF -∴===()22222222cm AE DF AB BE ∴==-=-= ∴左视图中矩形的面积为:2248cm ⨯= 故答案为:8; (4)由题意得:这个四棱柱的体积为()31262432cm 2+⨯⨯= 故答案为:32.。

人教版九年级下《第二十九章投影与视图》单元测试题(含答案).docx

人教版九年级下《第二十九章投影与视图》单元测试题(含答案).docx

第二十九章投影与视图一、选择题(本大题共7小题,每小题5分,共35分)1.下列结论中正确的有()① 同一地点、同一时刻,不同物体在阳光照射下,影子的方向是相同的; ② 不同物体在任何光线照射下影子的方向都是相同的; ③ 同一物体在路灯照射下,影子的方向与路灯的位置有关; ④ 物体在光线照射下,影子的长短仅与物体的长短有关.如图29-Z-1是某零件的直观图,则它的主视图为()图 29-Z-1如图29-Z-3是水平放置的圆柱形物体,物体中间有一根细木棒,则此几何体的左视图是()图 29-Z-45. 一个正方体被截去四个角后得到一个几何体(如图29-Z-5),它的俯视图是A. 1个B. 2个C ・3个D. 4个2. 圆形物体在阳光下的投影不可能是() A. 圆形B.线段C.矩形D.椭圆3. B C 图 29-Z-24. 正面AD止面图 29-Z-3ABCD6. 由一些大小相同的小正方体组成的几何体的三视图如图29-Z-7所示,那么组成这个几何体的小正方体有(左视图图 29-Z-7A ・4个 B. 5个 C. 6个 D. 7个7. 一个几何体的三视图如图29-Z-8所示,则这个几何体的侧面积为()图 29-Z-8 A • 2兀 cnT B • 4兀 cnT C. 8兀 cm 2 D• I671 cm 2二、填空题(本大题共6小题,每小题5分,共30分)8. 写出一个在三视图中俯视图与主视图完全相同的儿何体: _________ ・ 9. 如图29-Z-9是由四个小正方体组成的几何体,若每个小正方体的棱长都是1,则该几何体的俯视图的面积是A 图 29-Z-5图 29-Z-6D主视图 俯视图图29-Z-910. 一个几何体的三视图如图29-Z-10所示(其中标注的a, b, C 为相应的边长),则这个几何体的体积是 ________ •图 29-Z-1011. 已知小明同学身高1.5 m,经太阳光照射,在地上的影长为2 m,若此时测得一座塔在地上的影长为60 m,则塔高为 _________ m.12. 已知某正六棱柱的主视图如图29-Z-11所示,则该正六棱柱的表面积为60 f―> 1010图 29-Z-1113. 在桌面上摆放着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图29-Z-12所示,设组成这个几何体的小正方体的个数为弘则n 的最小值为三、解答题(本大题共3小题,共35分)14. (9分)画出如图29—Z —13所示几何体的三视图.图 29-Z-1315. (12分)如图29-Z-14,已知线段AB=2cm,投影面为P,太阳光线与投影面垂直.(1)当AB 垂直于投影面P 时(如图①),请画出线段AB 的投影;b主视图图 29-Z-12(2)当AB平行于投影面P吋(如图②),请画出它的投影,并求出正投影的长;(3)在(2)的基础上,点A不动,线段AB绕点A在垂育于投影面P的平面内逆时针旋转30。

九年级数学下册第29章投影与视图测试卷(附答案新人教版)

九年级数学下册第29章投影与视图测试卷(附答案新人教版)

第二十九章投影与视图29.1 投影01基础题知识点1平行投影1.由下列光源产生的投影,是平行投影的是(A)A.太阳B.路灯C.手电筒D.台灯2.平行投影中的光线是(A)A.平行的B.聚成一点的C.不平行的D.向四面发散的3.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是(D)4.在同一时刻,两根长度不等的竿子置于阳光之下,但它们的影长相等,那么这两根竿子的相对位置是(C) A.两根都垂直于地面B.两根平行斜插在地上C.两根竿子不平行D.一根倒在地上5.将一个三角形放在太阳光下,它所形成的投影是三角形或线段.知识点2中心投影6.如图,晚上小亮在路灯下散步,他从A处向着路灯灯柱方向径直走到B处,这一过程中他在该路灯灯光下的影子(A)A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短7.小飞晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说,广场上的大灯泡一定位于两人中间的上方.8.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.(1)请你在图中画出路灯灯泡所在的位置;(用点P表示)(2)画出小华此时在路灯下的影子.(用线段EF表示)解:如图所示.知识点3正投影9.一根笔直的小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是(D) A.AB=CD B.AB≤CDC.AB>CD D.AB≥CD10.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是(D)11.如图是一个三棱柱,它的正投影是下图中的②.(填序号)02中档题12.皮皮拿着一块正方形纸板在阳光下做投影实验,正方形纸板在投影面上形成的投影不可能是(D) A.正方形B.长方形C.线段D.梯形13.如图,某小区内有一条笔直的小路,路的正中间有一路灯,晚上小华由A处走到B处,她在灯光照射下的影长l与行走的路程s之间的变化关系,用图象刻画出来,大致图象是(C)14.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序进行排列,正确的是(C)A .③①④②B .③②①④C .③④①②D .②④①③15.如图,在水平地面上竖立着一面墙AB ,墙外有一盏路灯D.光线DC 恰好通过墙的最高点B ,且与地面形成37°角.墙在灯光下的影子为线段AC ,并测得AC =5.5 m .(1)求墙AB 的高度;(结果精确到0.1 m .参考数据:tan 37°≈0.75,sin 37°≈0.60,cos 37°≈0.80) (2)如果要缩短影子AC 的长度,同时不能改变墙的高度和位置,请你写出两种不同的方法.解:(1)在Rt △ABC 中,AC =5.5 m , ∠C=37°,tan C =AB AC,∴AB=AC·tan C≈5.5×0.75≈4.1(m ).(2)要缩短影子AC 的长度,增大∠C 的度数即可.因此第一种方法:增加路灯D 的高度;第二种方法:使路灯D 向墙靠近.03 综合题16.如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1 m 长的影子,已知窗框的影子DE 到窗下墙脚的距离CE =3.9 m ,窗口底边离地面的距离BC =1.2 m ,试求窗口(即AB)的高度.解:由于阳光是平行光线,即AE∥BD, ∴∠AEC=∠BDC.又∵∠BCD 是公共角, ∴△AEC∽△BDC. ∴AC BC =EC DC. 又∵AC=AB +BC ,DC =EC -ED ,EC =3.9 m ,ED =2.1 m ,BC =1.2 m ,∴AB+1.21.2=3.93.9-2.1.解得AB=1.4.答:窗口的高度为1.4 m.29.2 三视图第1课时几何体的三视图01基础题知识点1三视图的有关概念1.(2018·安徽)一个由圆柱和圆锥组成的几何体如图水平放置,其主视图为(A)2.(2018·菏泽)如图是两个等直径圆柱构成的“T”形管道,其左视图是(B)3.(2018·黄石)如图,该几何体的俯视图是(A)4.下列四个立体图形中,左视图为矩形的是(B)A.①③B.①④ C.②③ D.③④5.(2018·十堰)今年“父亲节”佳佳给父亲送了一个礼盒,该礼盒的主视图是(C)6.(2018·咸宁)用4个完全相同的小正方体搭成如图所示的几何体,该几何体的(A)A.主视图和左视图相同B.主视图和俯视图相同C.左视图和俯视图相同D.三种视图都相同7.如图的立体图形的左视图可能是(A)知识点2三视图的画法8.画出如图所示物体的三视图.解:如图所示.02中档题9.如图所示的几何体,其主视图是(A)A B C D 10.(2018·成都)如图所示的正六棱柱的主视图是(A)11.桌面上放着1个长方体和1个圆柱体,按下图所示的方式摆放在一起,其左视图是(C)12.如图所示的几何体的俯视图是(B)13.(2018·泰州)下列几何体中,主视图与俯视图不相同的是(B)面正中间放置)摆在讲桌上,请你画出这个几何体的三视图.解:如图.03综合题15.某娱乐节目要求选手按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为下列几何体中的哪一个?选择并说明理由.解:比较各几何体的三视图,考虑是否有矩形,圆及三角形即可.对于A,三视图分别为矩形、三角形、圆(含直径),符合题意;对于B,三视图分别为三角形、三角形、圆(含圆心),不符合题意;对于C,三视图分别为正方形、正方形、正方形,不符合题意;对于D,三视图分别为三角形、三角形、矩形(含对角线),不符合题意,故选A.第2课时由三视图确定几何体01基础题知识点由三视图确定几何体1.(2017·新疆)某几何体的三视图如图所示,则该几何体是(D)A.球B.圆柱C.三棱锥D.圆锥2.(2017·宜昌)一个几何体的三视图如图所示,则这个几何体是(A)A.圆柱B.圆锥C.长方体D.球3.如图是某个几何体的三视图,则该几何体的形状是(D)A.长方体B.圆锥C.圆柱D.三棱柱4.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是(C) A.圆柱B.圆锥C.球D.正方体5.(2018·襄阳)一个几何体的三视图如图所示,则这个几何体是(C)6.图中的三视图所对应的几何体是(B)7.如图是一个几何体的三视图,则这个几何体是(B)A.正方体B.长方体C.三棱柱D.三棱锥8.一个几何体的三视图如图所示,那么这个几何体是(D)9.如图是一个几何体的俯视图,则该几何体可能是(B)10.(2018·河北)图中三视图对应的几何体是(C)11.某几何体的主视图和左视图完全一样,均如图所示,则该几何体的俯视图不可能是(C)方体的个数,则该几何体的左视图是(D)A B C D13.(2018·武汉)一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是(C)14.根据如图所示的几何体的三视图描述物体的形状.解:几何体的形状为:03综合题15.某个长方体的主视图是边长为1 cm的正方形.沿这个正方形的对角线向垂直于正方形的方向将长方体切开,截面是一个正方形.那么这个长方体的俯视图是(D)第3课时由三视图确定几何体的表面积或体积01基础题知识点1几何体的展开图1.如下左图是一个长方体包装盒,则它的平面展开图是(A)2.(2018·河南)某正方体的每个面都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是(D)A.厉B.害C.了D.我3.(2018·无锡)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是(C)4.如图是一个几何体的三视图,则这个几何体的展开图可以是(A)知识点2由三视图确定几何体的表面积或体积5.(2018·孝感)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为16πcm2.6.如图,这是一个长方体的主视图和俯视图,由图示数据(单位:cm)可以得出该长方体的体积是18cm3.7.如图是某几何体的展开图.(1)这个几何体的名称是圆柱;(2)画出这个几何体的三视图;(3)求这个几何体的体积.(π取3.14)解:(2)三视图为:(3)体积为:πr2h=3.14×52×20=1 570.02中档题8.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为(B)A.60πB.70πC.90πD.160πA.90° B.120°C.135° D.150°的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭的几何体拼成一个大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要19个小正方体,王亮所搭几何体表面积为48.11.(教材P 99例5变式)(2018·白银)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为108.12.(2017·滨州)如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为12+15π.13.(教材P 101练习T 2变式)如图是某几何体的三视图,根据图中数据,14.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为4 cm ,3 cm , ∴菱形的边长为(32)2+(42)2=52(cm ), 棱柱的侧面积为52×8×4=80(cm 2).03 综合题15.如图是一个几何体的三视图(单位:cm ).(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个线路的最短路程.解:(1)圆锥.(2)S表=S扇形+S圆=πrl+πr2=12π+4π=16π(cm2).(3)如图,将圆锥侧面展开,线段BD为所求的最短路程.由条件,得∠BAB′=120°,∵C为BB′的中点,AB=6 cm,∴BD=3 3 cm.即蚂蚁爬行路线的最短距离为3 3 cm.小专题(十一) 三视图的几种常见考查方式方式1 由几何体识别视图1.(2018·嘉兴)下列几何体中,俯视图为三角形的是(C )2.如图所示的几何体的俯视图为(D )A B C D 3.如图,该几何体主视图是(B )A B C D4.如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是(B )A .俯视图与主视图相同B .左视图与主视图相同C .左视图与俯视图相同D .三个视图都相同5.如图是一个空心圆柱体,它的左视图是(B )A B C D6.如图,由四个正方体组成的几何体的左视图是(B )A B C D7.如图,两个等直径圆柱构成如图所示的T 型管道,则其俯视图正确的是(B )A B C D8.如图所示的几何体的主视图正确的是(D )A B C D方式2 由视图还原几何体9.(2017·武汉)某物体的主视图如图所示,则该物体可能为(A )A B C D10.一个几何体的三视图如图所示,则这个几何体是(B )A .三棱锥B .三棱柱C .圆柱D .长方体 11.(2017·河南)某几何体的左视图如图所示,则该几何体不可能是(D )A B C D12.如图是一个几何体的三视图,则这个几何体是(B )A B C D方式3由视图确定小正方体的个数13.由若干边长相等的小正方体构成的几何体的主视图、左视图、俯视图如图所示,则构成这个几何体的小正方体有(B)A.5 B.6 C.7 D.814.(2017·威海)一个几何体由n个大小相同的小正方体搭成,其左视图、俯视图如图所示,则n的最小值是(B)A.5 B.7 C.9 D.1015.由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体最多是7个.方式4由视图确定几何体的表面积或体积16.(2017·湖州)如图是按1∶10的比例画出的一个几何体的三视图,则该几何体的侧面积是(D)A.200 cm2B.600 cm2C.100πcm2D.200πcm217.(2017·荆州)如图是某几何体的三视图,根据图中的数据,求得该几何体的体积为(D)A.800π+1 200B.160π+1 700C.3 200π+1 200D.800π+3 00018.(2018·威海)下图是某圆锥的主视图和左视图,该圆锥的侧面积是(C)A.25πB.24πC.20πD.15π章末复习(四) 投影与视图01分点突破知识点1投影1.如图所示,夜晚路灯下同样高的旗杆,离路灯越近,它的影子(B)A.越长B.越短C.一样长D.无法确定2.如图所示,分别是两棵树及其影子的情形.(1)哪个图反映了阳光下的情形?哪个图反映了路灯下的情形?你是用什么方法判断的?试画图说明;(2)在两幅图中画出人的影子.AB解:(1)A图是路灯下的情形;B图是阳光下的情形.如图所示作出光线,光线互相平行,说明是阳光下的投影;光线交于一点,说明是路灯下的投影.(2)人的影子如图所示.知识点2三视图3.如图是由六个相同的小正方体搭成的几何体,这个几何体的主视图是(B)4.(2017·泰安)下面四个几何体:其中,俯视图是四边形的几何体个数是(B)A.1 B.2 C.3 D.45.如图所示,该几何体的左视图是(D)A B C D 6.(2017·广安)如图所示的几何体,上下部分均为圆柱体,其左视图是(C)A B C D7.一个几何体的三视图如图所示,则该几何体的表面积为(D)A.4πB.3πC.2π+4D.3π+402中考题型演练8.(2018·广州)如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是(B)9.(2018·聊城)如图所示的几何体,它的左视图是(D)10.(2018·泰安)如图是下列哪个几何体的主视图与俯视图(C)11.(2018·临沂)如图是一个几何体的三视图(图中尺寸单位:cm).根据图中所示数据求得这个几何体的侧面积是(C)A.12 cm2B.(12+π)cm2C.6πcm2D.8πcm2A.认B.真C.复D.习13.如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是(C)A.5或6或7 B.6或7C.6或7 或8 D.7或8或914.如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为(B)A.236πB.136πC.132πD.120π15.一根电线杆的接线柱部分AB 在阳光下的投影CD 的长为1.2米,太阳光线与地面的夹角∠ACD=60°,则AB 的长为(C )A .1.2米B .0.6米C .653米 D .253米16.晚饭后,小聪和小军在社区广场散步.小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ 移动,如图,当小聪正好站在广场的A 点(距N 点5块地砖长)时,其影长AD 恰好为1块地砖长;当小军正好站在广场的B 点(距N 点9块地砖长)时,其影长BF 恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC 为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE 的长.(结果精确到0.01米)解:由题意,得∠CAD =∠MND=90°,∠CDA=∠MDN.∴△CAD∽△MND. ∴CA MN =AD ND. ∴1.6MN =1×0.8(5+1)×0.8. ∴MN=9.6.又∵∠EBF=∠MNF=90°,∠EFB=∠MFN, ∴△EBF∽△MNF. ∴EB MN =BF NF. ∴EB 9.6=2×0.8(2+9)×0.8. ∴EB≈1.75.∴小军的身高约为1.75米.。

人教版九年级数学下册第二十九章-投影与视图综合测评试卷(含答案解析)

人教版九年级数学下册第二十九章-投影与视图综合测评试卷(含答案解析)

人教版九年级数学下册第二十九章-投影与视图综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,该几何体的俯视图是A.B.C.D.2、如图,一路灯距地面5.6米,身高1.6米的小方从距离灯的底部(点O)5米的A处,沿OA所在的直线行走到点C时,人影长度增长3米,小方行走的路程AC=()A.7.2 B.6.6 C.5.7 D.7.53、一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为()A.12 B.16 C.18 D.244、如图几何体的主视图是()A.B.C.D.5、一个几何体从不同方向看到的图形如图所示,这个几何体是( )A.球B.圆柱C.圆锥D.立方体6、如图所示的几何体的左视图是()A.B.C.D.7、一个由若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则小正方体的最少个数为()A.6 B.7 C.8 D.98、如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是()A.B.C.D.9、下列哪种光线形成的投影是平行投影()A.太阳B.探照灯C.手电筒D.路灯10、如图是由4个相同的正方体组成的立体图形,它的左视图是()A. B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、由若干个相同的小正方体搭成的几何体的三视图相同,如图所示.至少再加_____个小正方体,该几何体可成为一个正方体.2、一个几何体由若干大小相同的小正方体搭成,如图分别是从它的正面、上面看到的形状图,若组成这个几何体的小正方体最少需要m个,最多需要n个,则m﹣n=____.3、如图所示是一个几何体的三视图,这个几何体的名称是___________4、当你晨练时,你的影子总在你的正后方,则你是在向正__方跑.5、某立体图形的三视图中,主视图是矩形,请写出一个符合题意的立体图形名称:_________.三、解答题(5小题,每小题10分,共计50分)1、如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请画出这个几何体的左视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么请画出添加小正方体后所得几何体所有可能的主视图.2、如图,是公园的一圆形桌面的主视图,表示该桌面在路灯下的影子.(1)请你在图中找出路灯的位置(要求保留画图痕迹,光线用虚线表示);(2)若桌面直径和桌面与地面的距离均为1.2m,测得影子的最大跨度为2m,求路灯O与地面的距离.3、马路边上有一棵树AB,树底A距离护路坡CD的底端D有3米,斜坡CD的坡角为60度,小明发现,下午2点时太阳光下该树的影子恰好为AD,同时刻1米长的竹竿影长为0.5米,下午4点时又发现该树的部分影子落在斜坡CD上的DE处,且BE CD,如图所示.(1)树AB的高度是________米;(2)求DE的长.4、一个几何体由大小相同的立方块搭成,从上面看到的形状如图所示,其中小正方形中的数字表示在该位置的立方块个数.(1)在所给的方框中分别画出该儿何体从正面,从左面看到的形状图;(2)若允许从该几何体中拿掉部分立方块,使剩下的几何体从正面看到的形状图和原几何体从正面看到的形状图相同,则最多可拿掉个立方块.5、画出从3个方向看如图所示几何体的形状图.---------参考答案-----------一、单选题1、D【分析】根据俯视图是从物体上面向下面正投影得到的投影图,即可求解.【详解】解:根据题意得:D选项是该几何体的俯视图.故选:D【点睛】本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.2、D【分析】设出影长AB的长,利用相似三角形可以求得AB的长,然后在利用相似三角形求得AC的长即可.【详解】解:∵AE⊥OD,OG⊥OD,∴AE//OG ,∴∠AEB =∠OGB ,∠EAB =∠GOB ,∴△AEB ∽△OGB , ∴AE AB OG BO =,即 1.65.65AB AB =+, 解得:AB =2m ;∵OA 所在的直线行走到点C 时,人影长度增长3米,∴DC =AB +3=5m ,OD =OA+AC+CD =AC+10,∵FC∥GO ,∴∠CFD =∠OGD ,∠FCD =∠GOD ,△DFC ∽△DGO , ∴FC CD GO DO=, 即1.655.610AC =+, 解得:AC =7.5m .所以小方行走的路程为7.5m .故选择:D .【点睛】本题主要考查的是相似三角形在实际中的中心投影的应用,掌握相似三角形判断与性质,利用对应边成比例是解答本题的关键.3、A【分析】由主视图所给的图形可得到俯视图的对角线长为的体积公式底面积乘以高即为这个长方体的体积.【详解】解:设俯视图的正方形的边长为a.∵其俯视图为正方形,正方形的对角线长为,∴a2+a2=()2,解得a2=4,∴这个长方体的体积为4×3=12.故选A.【点睛】本题主要是考查三视图的基本知识以及长方体体积计算公式.解决本题的关键是理解长方体的体积公式为底面积乘高,难点是利用勾股定理得到长方体的底面积.4、A【分析】根据题意可得:从正面看,主视图是两个长方形,即可求解.【详解】解:从正面看,主视图是两个长方形.故选:A【点睛】本题主要考查了几何体的三视图,熟练掌握几何体的三视图的特征是解题的关键.5、B【分析】根据各个几何体的三视图,依次判别即可;【详解】解:A、球的三视图均为圆形;B、圆柱的三视图与题图相符;C、圆锥的主视图和左视图为等腰三角形;D、立方体的三视图均为四边形.故选:B.【点睛】本题考查了由三视图判断几何体,熟悉相关性质是解题的关键.6、B【分析】根据左视图是从左面看到的图形判定则可.【详解】解:从左边看,是一个正方形,正方形的右上角有一条虚线.故选:B.【点睛】本题主要考查了几何体的三种视图和学生的空间想象能力,正确掌握观察角度是解题关键.7、B【分析】根据几何体的三视图特点解答即可.【详解】解:根据俯视图,最底层有4个小正方体,由主视图知,第二层最少有2个小正方体,第三层最少有1个小正方体,∴该几何体最少有4+2+1=7个小正方体组成,故选:B.【点睛】本题考查几何体的三视图,掌握三视图的特点是解答的关键.8、B【分析】根据既可以堵住圆形空洞,又可以堵住方形空洞从物体的三视图中即有圆形又有正方形的物体可以堵住空洞,然后对各选项的视图进行一一分析即可.【详解】解:∵既可以堵住圆形空洞,又可以堵住方形空洞,∴从物体的三视图来看,三视图中具有圆形和方形的可以堵住带有圆形空洞和方形空洞的小木板,A.正方体的三视图都是正方形,没有圆形,不可以是选项A;B.圆柱形的直径与高相等时的正视图与左视图都是正方形,俯视图是圆形,具有圆形与正方形,可以是选项B,C.圆锥的正视图与左视图都是三角形,俯视图数圆形,没有方形,不可以是选项C;D.球体的三视图都是圆形,没有方形,不可以是选项D.故选择B.【点睛】本题考查物体能堵住圆形空洞和方形空洞,实际上是考查物体的视图,掌握物体三视图中找出具有圆形和方形的物体是解题关键.9、A【分析】中心投影是指把光由一点向外散射形成的投影,平行投影是在一束平行光线照射下形成的投影,根据定义逐一分析即可得到答案.【详解】解:太阳光线形成的投影是平行投影,探照灯,手电筒,路灯形成的投影是中心投影,故选A【点睛】本题考查的是平行投影与中心投影的含义及应用,根据定义熟练判断中心投影与平行投影是解题的关键.10、A【分析】从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数判断出左视图图形即可.【详解】从左面看所得到的图形为A选项中的图形.故选A【点睛】本题考查了几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.二、填空题1、4【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,依此可得有几个小正方体,再用8减去小正方体的个数即可求解.【详解】解:根据三视图可得第一层有3个正方体,第二层有1个正方体,共有4个小正方体,8﹣4=4(个).故至少再加4个小正方体,该几何体可成为一个正方体.故答案为:4.【点睛】本题主要考查三视图,能够根据三视图想象出立体图是解题的关键.2、﹣4【解析】【分析】由主视图和俯视图,判断最多的正方体的个数即可解决问题.【详解】解:由主视图和俯视图可确定所需正方体个数多时的俯视图为:最多的小正方形个数时:∴n=1+2+2+2+3+3=13,最少的小正方形个数时:∴m=1+1+1+2+1+3=9,∴m-n=9-13=﹣4,故答案为:﹣4【点睛】此题主要考查了由三视图判断几何体,根据主视图和俯视图画出所需正方体个数最多和最少的俯视图是关键.3、圆柱体##圆柱【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得此几何体为圆柱体.故答案为:圆柱体.【点睛】本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了空间想象能力.4、东【解析】利用平行投影的性质,得出影子的位置,即可得出答案.【详解】当你晨练时,太阳从东方,人的影子向西,所以当你的影子总在你的正后方,则你是在向正东方跑.故答案为:东.【点睛】本题主要考查了平行投影的性质,得出影子与太阳的位置关系是解题关键.5、圆柱【解析】【分析】根据三视图的定义求解即可.【详解】解:圆柱的主视图是矩形,故答案为:圆柱.【点睛】本题考查三视图,解题的关键是掌握三视图的定义.三、解答题1、(1)见解析;(2)5种【分析】(1)由已知条件可知,左视图有2列,每列小正方数形数目分别为3、1,俯视图有3列,每列小正方数形数目分别为2、1、1,据此可画出图形;(2)左视图和俯视图不变得出:主视图的第一列不能变化,第2列加一个,第3列加一个或两个,共5种情况.(1)画图如下:(2)左视图和俯视图不变得出:主视图的第一列不能变化,第2列加一个,第3列加一个或两个,共5种情况.【点睛】本题考查了几何体的三视图画法.由立体图形,可知主视图、左视图、俯视图,并能得出有几列以及每一列上的数字.2、(1)见解析;(2)路灯O与地面的距离为3m【分析】MA NB并延长,两条线的交点就是灯光的位置;(1)由题意连接,,(2)作OF⊥MN交AB于E,证明△OAB∽△OMN,再利用相似三角形的对应高的比等于相似比建立方程求解即可.【详解】解:(1)如图,点即为为所求;(2)作OF ⊥MN 交AB 于E ,如图,AB =1.2m ,EF =1.2m ,MN =2m ,∵AB MN ∥,∴△OAB ∽△OMN ,∴AB :MN =OE :OF , 即1.2 1.2=2OF OF,解得OF =3(m ). 经检验:符合题意答:路灯O 与地面的距离为3m .【点睛】本题考查的是中心投影的性质,相似三角形的判定与性质,掌握“相似三角形的对应高的比等于相似比”是解题的关键.3、(1)6;(2)−32)米【分析】(1)根据在同一时刻物高和影长成正比,即可求出结果;(2)延长BE 交AD 延长线于F 点,根据30度角的直角三角形即可求出结果.【详解】解:(1)∵同时刻1米长的竹竿影长为0.5米,AD =3米,∴树AB 的高度是6米;故答案为:6;(2)如图,延长BE ,交AD 于点F ,∵AB =6,∠CDF =60°,BE ⊥CD ,∴∠DFE =30°,∴AF =tan30AB =︒63, ∴DF =AF AD -=63−3,∴DE =12DF =12 (63−3)=(33−32)米.【点睛】本题考查了解直角三角形的应用以及平行投影.解决本题的关键是作出辅助线得到AB 的影长.4、(1)见详解;(2)6【分析】(1)根据从正面看得到的图形是主视图,从正面看分左中右三列,左列有3个正方形,中间列有3个正方形,右边列有2个正方形,画出主视图从左边看到的图形是左视图,分三行前中后三行,从右边数前行有3个正方形,中行由3个正方形,后行1个正方形可画出左视图即可;(2)根据立体图形的遮挡主视图、俯视图不变在俯视图中得出拿去的小正方体的个数.【详解】解:(1)从正面看得到的图形是主视图,从正面看分左中右三列,左列有3个正方形,中间列有3个正方形,右边列有2个正方形,可画出主视图从左边看到的图形是左视图,分三行前中后三行,从右边数前行有3个正方形,中行由3个正方形,后行1个正方形可画出左视图该几何体从正面,从左面看到的图形如图所示:(2)拿掉后,剩下的几何体从正面看到的形状图和原几何体从上面看到的形状图相同,则最多可拿掉6个左列前行2个正方形,中列中行2个正方形,中列后行1个小正方形,右列中行1个正方形,共6个正方形,如图故答案为:6.【点睛】本题考查简单几何体的三视图,正确想象出几何体的形状是解题关键,画三视图时注意“长对正,宽相等,高平齐”.5、见解析【分析】从正面看有3列,每列小正方形数目分别为1,3,1;从左面有1列,小正方形数目为3;从上面看有3列,每行小正方形数目分别为1,1,1;【详解】解:如图所示:【点睛】本题考查了实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.。

九年级数学(下)第二十九章《投影与视图》全章测试题含答案

九年级数学(下)第二十九章《投影与视图》全章测试题含答案

九年级数学(下)第二十九章《投影与视图》全章测试题一、选择题1.平行投影中的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散2.正方形在太阳光下的投影不可能是( )A.正方形B.一条线段C.矩形D.三角形3.如图1,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是( )4.由一些完全相同的小立方块搭成的几何体的三视图如图所示,那么搭成这个几何体所用的小立方块的个数是( )第4题图A.8 B.7 C.6 D.5 5.如图是某几何体的三视图及相关数据,则判断正确的是( )第5题图A.a>c B.b>cC.4a2+b2=c2D.a2+b2=c26.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是( )A.2 B.3C.4 D.5二、填空题7.一个圆柱的俯视图是______,左视图是______.8.如果某物体的三视图如图所示,那么该物体的形状是______.第8题图9.一空间几何体的三视图如图所示,则这个几何体的表面积是______cm2.第9题图10.如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于______.三、解答题11.楼房、旗杆在路灯下的影子如图所示.试确定路灯灯炮的位置,再作出小树在路灯下的影子.(不写作法,保留作图痕迹)12.画出图中的九块小立方块搭成几何体的主视图、左视图和俯视图.13.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请画出这个几何体的主视图和左视图.14.如图是一个几何体的主视图和俯视图,求该几何体的体积( 取3.14).15.拿一张长为a,宽为b的纸,作一圆柱的侧面,用不同的方法作成两种圆柱,画出图形并求这两种圆柱的表面积.答案与提示第二十九章 投影与视图全章测试1.A . 2.D . 3.A . 4.A . 5.D . 6.B . 7.圆;矩形. 8.三棱柱. 9.48π. 10.24. 11.如图:12.如图:13.如图:14.体积为π×102×32+30×25×40≈40 048(cm 3).15.第一种:高为a ,表面积为;π221b ab S +=第二种:高为b ,表面积为⋅+=π222a ab S。

九年级数学下册第二十九章《投影与视图》综合测试(含答案解析)

九年级数学下册第二十九章《投影与视图》综合测试(含答案解析)

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,是由-些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块最后搭成一个大的长方体,至少还需要添加()个小立方块.A.26 B.38 C.54 D.562.如图是由大小相同的小正方体搭成的几何体,将其中的一个小正方体①去掉,则三视图不发生改变的是()A.主视图B.俯视图C.左视图D.俯视图和左视图3.桌面上放着长方体和圆柱体各1个,按下图所示的方式摆放在一起,其左视图是()A.B.C.D.4.如图,是由一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体最多块数是()A.9 B.10 C.11 D.125.下面几何体的左视图是( )A.B.C.D.6.如图是由一些相同的小正方体构成的立体图形的三视图.构成这个立体图形的小正方体的个数是()A.6 B.7 C.4 D.57.从上面看下图能看到的结果是图形()A.B.C.D.8.如图所示立体图形,从上面看到的图形是()A.B.C.D.9.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是( )A.(1)(2)(3)(4) B.(4)(3)(2)(1) C.(4)(3)(1)(2) D.(2)(3)(4)(1)10.下列几何体中,其主视图、俯视图和左视图分别是图中三个图形的是()A.B.C.D.11.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体().A.6个B.5个C.4个D.3个12.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.13.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A.B.C.D.14.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是()A .12πB .6πC .12π+D .6π+二、填空题15.已知:如图是由若干个大小相同的小正方体所搭成的几何体从正面、左面和上面看到的形状图,则搭成这个几何体的小正方体的个数是_______.16.由几个相同的小正方体搭成的一个几何体如图所示,这个几何体的主视图可以看到5个小正方体的面,则俯视图与左视图能看到的小正方体的面的个数和为______.17.广场上一个大型艺术字板块在地上的投影如图所示,则该投影属于_____.(填写“平行投影”或“中心投影”)18.如图,圆柱形容器高为18cm ,底面周长为24cm ,在杯内壁离杯底4cm 的点B 处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A 处,则蚂蚁从外币A 处到达内壁B 处的最短距离为_______.19.如图,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB=2m ,CD=6m ,点P 到CD 的距离是2.7m ,则点P 到AB 间的距离是________.20.如图,是某一个几何体的俯视图,主视图、左视图,则这个几何体是________.21.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是____.22.如图所示,是从不同方向看到的由一些小立方块搭成的几何体的形状图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以便搭成一个大正方体,则至少还需要______个小立方块.23.如图,一棵树(AB)的高度为7.5米,下午某一个时刻它在水平地面上形成的树影长(BE)为10米,现在小明想要站这棵树下乘凉,他的身高为1.5米,那么他最多可以离开树干多少米才可以不被阳光晒到?____.24.如图,小军、小珠之间的距离为2.8m,他们在同一盏路灯下的影长分别为1.7m,1.5m,已知小军、小珠的身高分别为1.7m,1.5m,则路灯的高为________m.25.一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为____.26.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是________.三、解答题27.如图,若干个完全相同的小正方体堆成一个几何体.(1)请在图中方格中画出该几何体的左视图和俯视图.(2)用若干小立方体搭一个几何体,使得它的左视图和俯视图与你在方格中所画的一致,则这样的几何体最多要个小立方块.(3)若小正方体的棱长为1cm,如果将图1中几何体的表面(不含几何体之间叠合部分及与地面接触的底面)喷上油漆,求需喷漆部分的面积.28.如图所示是由几个小立方体所组成几何体从上面看到的形状,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体从正面和从左面看到的形状.A B,且木棒AB的长为8cm. 29.已知木棒AB垂直投射于投影面a上的投影为11A B长;(1)如图(1),若AB平行于投影面a,求11A B长.(2)如图(2),若木棒AB与投影面a的倾斜角为30,求这时1130.如图各图是棱长为1cm的小正方体摆成的,如图①中,从正面看有1个正方形,表面积为6cm2;如图②中,从正面看有3个正方形,表面积为18cm2;如图③,从正面看有6个正方形,表面积为36cm2;…(1)第6个图中,从正面看有多少个正方形?表面积是多少?(2)第n个图形中,从正面看有多少个正方形?表面积是多少?【参考答案】一、选择题1.A2.C3.C4.C5.C6.A7.D8.C9.C10.A11.C12.A13.D14.B二、填空题15.【分析】根据主视图和俯视图判断几何体的底层的正方体的个数根据主视图和左视图判断几何体的第二和第三层的正方体的个数计算即可【详解】解:从主视图和俯视图可知几何体的底层有4个正方体从主视图和左视图可知几16.7【分析】左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别为121据此计算即可【详解】解:根据题意可得左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别17.中心投影【解析】【分析】找出光源即可得出结果【详解】如图可知该投影属于中心投影故答案为:中心投影【点睛】平行投影与中心投影之间的区别是平行投影的投影线互相平行而中心投影的投影线交于一点主要从形成投影18.20cm【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A关于EF的对称点A′连接A′B则A′B即为最短距离根据勾股定理19.09m【分析】根据AB∥CD易得△PAB∽△PCD根据相似三角形对应高之比等于对应边之比列出方程求解即可【详解】∵AB∥CD∴△PAB∽△PCD∴假设P到AB距离为x则=x=09故答案为09m【点睛20.圆柱【解析】解:这个几何体是圆柱故答案为:圆柱21.8【解析】试题分析:根据从上边看得到的图形是俯视图可知从上边看是一个梯形:上底是1下底是3两腰是2周长是1+2+2+3=8故答案为8考点:1简单组合体的三视图;2截一个几何体22.19【分析】先由主视图左视图俯视图求出原来的几何体共有8个立方块再根据搭成的大正方体的共有3×3×3=27个小立方块即可得出答案【详解】解:由主视图可知原来的几何体有三层且有3列;由左视图可知搭成的23.8【分析】设小明这个时刻在水平地面上形成的影长为x米利用同一时刻物体的高度与影长成正比得到=解得x=2然后计算两影长的差即可【详解】解:设小明这个时刻在水平地面上形成的影长为x米根据题意得=解得x=24.3【分析】如图由题意证明AB=EBAB=BF推出DB=AB﹣17BN=AB﹣15根据DN=28构建方程求解即可【详解】解:如图由题意可得:在Rt△CDE中CD=DE=17m在Rt△MNF中MN=NF25.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC中作AD⊥BC于D则26.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键三、解答题27.28.29.30.【参考解析】一、选择题1.A解析:A【分析】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×3×3=36个小正方体,即可得出答案.【详解】解:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,∴搭成的大正方体的共有4×3×3=36个小正方体,∴至少还需要36-10=26个小正方体.故选:A.【点睛】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.2.C解析:C【分析】利用结合体的形状,结合三视图可得出主视图没有发生变化.【详解】解:主视图由原来的三列变为两列;俯视图由原来的三列变为两列;左视图不变,依然是两列,左起第一列是两个小正方形,第二列底层是一个小正方形.故选:C.【点睛】本题考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题的关键.3.C解析:C【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查三视图的知识,左视图是从物体的左面看得到的视图.4.C解析:C【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据主视图与俯视图得出答案.【详解】解:根据几何体的主视图和俯视图,可以得出那个主视图看最少5个,那个俯视图看,最左边正方形前后可以有三列,分别有三个⨯+个.故最多有332=11故选C.【点睛】本题考查了三视图的应用,根据从俯视图看,最左边正方形前后可以有三列,分别有三个从而得出答案是解决问题的关键.5.C解析:C【分析】根据三视图的定义,从左边观察可得.【详解】从左面看可得到左边有2个正方形,右边有1个正方形.故选:C.【点睛】考核知识点:三视图.注意观察的方向.6.A解析:A【分析】利用三视图的观察角度不同得出行数与列数,结合主视图得出答案.【详解】解:如图所示:由左视图可得此图形有3行,由俯视图可得此图形有3列,由主视图可得此图形最左边一列有4个小正方体,中间一列有1个小正方体,最右边一列有1个小正方体,故构成这个立体图形的小正方体有6个.故选:A.【点睛】此题主要考查了由三视图判断几何体,利用三视图得出几何体的形状是解题关键.7.D解析:D【分析】先细心观察原立体图形中的圆锥体和长方体的位置关系,结合四个选项选出答案.【详解】从上面往下看到左边一个长方形,右边一个圆,因此只有D的图形符合这个条件.故选:D.【点睛】本题考查了三视图的知识,解题的关键是熟知俯视图是从上面往下的视图.8.C解析:C【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【详解】从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点睛】本题考查了简单组合体的三视图,解决本题的关键是得到3列正方形具体数目.9.C解析:C【分析】根据平行投影的规律:早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长可得.【详解】根据平行投影的规律知:顺序为(4)(3)(1)(2).故选C.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.10.A解析:A【解析】分析:根据三视图想象立体图形,从主视图可以看出左边的一列有两个,左视图可以看出右边一列有两个,俯视图中左边的一列有两个,综合起来可得解.详解:从主视图可以看出左边的一列有两个,右边的两列只有一行(第二行);从左视图可以看出右边的一列有两个,左边的一列只有一行(第二行);从俯视图可以看出左边的一列有两个,右边的两列只有一行(第一行).故选A..做这类题时要借助三种视图表示物体的特点,从主点睛:本题考查由三视图想象立体图形视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.11.C解析:C【分析】这些正方体分前、后两排,左、右两行.后排左边是一列2个正方体,右边一个正方体;前排1个正方体,与后排右列对齐.【详解】如图搭成此展台共需这样的正方体(如下图)共需4个这样的正方体.故选C.【点睛】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.12.A解析:A【分析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.13.D解析:D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】从正面看易得第一层左侧有1个正方形,第二层有3个正方形.故选D.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.14.B解析:B【解析】【分析】根据三视图确定该几何体是圆柱体,再根据主视图上的数据计算圆柱体的侧面积即可.【详解】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1,高是3.所以该几何体的侧面积为2π×1×3=6π.故选:B.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.二、填空题15.【分析】根据主视图和俯视图判断几何体的底层的正方体的个数根据主视图和左视图判断几何体的第二和第三层的正方体的个数计算即可【详解】解:从主视图和俯视图可知几何体的底层有4个正方体从主视图和左视图可知几解析:6【分析】根据主视图和俯视图判断几何体的底层的正方体的个数,根据主视图和左视图判断几何体的第二和第三层的正方体的个数,计算即可.【详解】解:从主视图和俯视图可知,几何体的底层有4个正方体,从主视图和左视图可知,几何体的第二和第三层各一个正方体,则搭成这个几何体的小正方体的个数为:4+1+1=6,故答案为:6.【点睛】本题考查的是由三视图判断几何体,掌握几何体的主视图、左视图和俯视图的概念是解题的关键.16.7【分析】左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别为121据此计算即可【详解】解:根据题意可得左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别解析:7【分析】左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为1,2,1.据此计算即可.【详解】解:根据题意可得左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为1,2,1.∴俯视图与左视图能看到的小正方体的面的个数和为:2+1+1+2+1=7.故答案为:7【点睛】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.17.中心投影【解析】【分析】找出光源即可得出结果【详解】如图可知该投影属于中心投影故答案为:中心投影【点睛】平行投影与中心投影之间的区别是平行投影的投影线互相平行而中心投影的投影线交于一点主要从形成投影解析:中心投影【解析】【分析】找出光源即可得出结果.【详解】如图可知,该投影属于中心投影.故答案为:中心投影【点睛】平行投影与中心投影之间的区别是平行投影的投影线互相平行,而中心投影的投影线交于一点.主要从形成投影的光线来比较两者的区别.18.20cm【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A关于EF的对称点A′连接A′B则A′B即为最短距离根据勾股定理解析:20 cm.【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得2222A B A D BD121620'='+=+=(cm).故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.19.09m【分析】根据AB∥CD易得△PAB∽△PCD根据相似三角形对应高之比等于对应边之比列出方程求解即可【详解】∵AB∥CD∴△PAB∽△PCD∴假设P 到AB距离为x则=x=09故答案为09m【点睛解析:0.9m【分析】根据AB∥CD,易得,△PAB∽△PCD,根据相似三角形对应高之比等于对应边之比,列出方程求解即可.【详解】∵AB∥CD,∴△PAB∽△PCD,∴ 2.7ABx CD=,假设P到AB距离为x,则2.7x=26,x=0.9.故答案为0.9m.【点睛】考查了相似三角形的性质和判定.本题考查了相似三角形的判定和性质,常用的相似判定方法有:平行线,AA,SAS,SSS;常用到的性质:对应角相等;对应边的比值相等;相似三角形对应高之比等于对应边之比;面积比等于相似比的平方.解此题的关键是把实际问题转化为数学问题(三角形相似问题).20.圆柱【解析】解:这个几何体是圆柱故答案为:圆柱解析:圆柱【解析】解:这个几何体是圆柱.故答案为:圆柱.21.8【解析】试题分析:根据从上边看得到的图形是俯视图可知从上边看是一个梯形:上底是1下底是3两腰是2周长是1+2+2+3=8故答案为8考点:1简单组合体的三视图;2截一个几何体解析:8【解析】试题分析:根据从上边看得到的图形是俯视图,可知从上边看是一个梯形:上底是1,下底是3,两腰是2,周长是1+2+2+3=8,故答案为8.考点:1、简单组合体的三视图;2、截一个几何体22.19【分析】先由主视图左视图俯视图求出原来的几何体共有8个立方块再根据搭成的大正方体的共有3×3×3=27个小立方块即可得出答案【详解】解:由主视图可知原来的几何体有三层且有3列;由左视图可知搭成的解析:19【分析】先由主视图、左视图、俯视图求出原来的几何体共有8个立方块,再根据搭成的大正方体的共有3×3×3=27个小立方块,即可得出答案.【详解】解:由主视图可知,原来的几何体有三层,且有3列;由左视图可知,搭成的几何体共有3行;由俯视图易得最底层有5个小立方体,第二层有2个小立方体,第三层有1个小立方块,共有5+2+1=8个小立方块,∵搭成的大正方体的共有3×3×3=27个小立方块,∴至少还需要27−8=19个小立方块.故答案为:19.【点睛】本题考查了三视图,重点培养学生的空间想象能力,解题的关键是求出原来的几何体及搭成的大正方体共有多少个小立方块.23.8【分析】设小明这个时刻在水平地面上形成的影长为x米利用同一时刻物体的高度与影长成正比得到=解得x=2然后计算两影长的差即可【详解】解:设小明这个时刻在水平地面上形成的影长为x米根据题意得=解得x=解析:8【分析】设小明这个时刻在水平地面上形成的影长为x 米,利用同一时刻物体的高度与影长成正比得到1.5x =107.5,解得x =2,然后计算两影长的差即可. 【详解】解:设小明这个时刻在水平地面上形成的影长为x 米, 根据题意得1.5x =107.5,解得x =2, 小明这个时刻在水平地面上形成的影长为2米,因为10﹣2=8(米),所以他最多离开树干8米才可以不被阳光晒到.故答案为:8.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.同一时刻物体的高度与影长成正比.24.3【分析】如图由题意证明AB =EBAB =BF 推出DB =AB ﹣17BN =AB ﹣15根据DN =28构建方程求解即可【详解】解:如图由题意可得:在Rt △CDE 中CD =DE =17m 在Rt △MNF 中MN =NF解析:3【分析】如图,由题意证明AB =EB ,AB =BF ,推出DB =AB ﹣1.7,BN =AB ﹣1.5,根据DN =2.8,构建方程求解即可.【详解】解:如图,由题意可得:在Rt △CDE 中,CD =DE =1.7m ,在Rt △MNF 中,MN =NF =1.5m ,∵∠CDE =∠MNF =90°,∴∠E =∠F =45°,∵AB ⊥EF ,∴AB =EB =BF ,∴DB =AB ﹣1.7,BN =AB ﹣1.5,∵DN =2.8m ,∴2AB ﹣1.7﹣1.5=2.8,∴AB =3(m ),即路灯的高为3米.故答案为:3.【点睛】本题考查了中心投影和等腰直角三角形的判定和性质,属于常考题型,熟练掌握上述知识是解题的关键.25.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC 中作AD ⊥BC 于D 则 解析:1823+ 【分析】 先判断出几何体为正三棱柱,求出三棱柱的底面积,最后求表面积即可. 【详解】 解:由三视图得,几何体为正三棱柱,上下底为边长为2的等边三角形,侧面积为长为3,宽为2的矩形.如图,等边三角形ABC 中,作AD ⊥BC 于D ,则BD=1BC=12, 在t ABD R △中,2222AD=AB -BD =21=3-;∴11=BC AD=23=322ABC S ⨯⨯⨯⨯△, ∴三棱柱的表面积为23323=18+23⨯⨯+⨯.故答案为: 183+【点睛】本题考查了三视图,等边三角形的面积计算等知识,根据三视图判断出几何体形状是解题关键.26.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键解析:18【分析】这个几何体的表面积是主视图、左视图、俯视图的面积和的2倍.【详解】(3+3+3)×2=18.故答案为18.【点睛】本题考查了几何体的表面积的计算方法,将问题转化为三视图面积和的2倍是解决问题的关键.三、解答题27.30cm(1)见解析;(2)14;(3)2【分析】(1)从上面看得到从左往右3列正方形的个数依次为3,2,1,依此画出图形即可;从左面看得到从左往右3列正方形的个数依次为3,2,1,;依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最多个数相加即可;(3)数一数有多少个正方形露在外面即可求得面积.【详解】解:(1)如图所示:(2)由俯视图易得最底层有6个小立方块,第二层最多有5个小立方块,第三层最多有3个小立方块,所以最多有6+5+3=14个小立方块.故答案为:14;(3)若将图1中几何体的表面(不含几何体之间叠合部分及与地面接触的底面)喷上油漆,30cm,则需要喷6×2+6×2+6=30个小正方形,面积为230cm.故需喷漆部分的面积为2【点睛】本题考查了作图-三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形,俯视图决定底层立方块的个数,易错点是由左视图得到其余层数里最多的立方块个数.。

人教版数学九年级下学期第29章 投影与视图(A卷)

人教版数学九年级下学期第29章 投影与视图(A卷)

《第二十九章投影与视图》测试卷(A卷)(测试时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列四个几何体中,主视图是三角形的是()A.B.C.D.2.如图,当投影线由物体的前方射到后方时,下列一组几何体的正投影是圆的是()A.B.C.D.3.如图,空心卷筒纸的高度为12cm,外径(直径)为10cm,内径为4cm,在比例尺为1:4的三视图中,其主视图的面积是()A.cm2B.cm2C.30cm2D.7.5cm24.个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.5.同一时刻,两根长度不等的竿子置于阳光之下,如果影长相等,那么这两根竿子的相对位置是()A.两根都垂直于地面B.两根平行斜插在地面上C.两根竿子不平行D.两根都倒在地上6.如左图是由4个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.7.如图所示的几何体的俯视图是().A.B.C.D.8.当棱长为20cm正方体的某个面平行于投影面时,这个面的正投影的面积为()A.20cm2B.300cm2C.400cm2D.600cm29.如图,从小区的某栋楼的A,B,C,D四个位置向对面楼方向看,所看到的范围的大小顺序是()A.A>B>C>D B.D>C>B>A C.C>D>B>A D.B>A>D>C10.由一些相同的立方体搭成某几何体,这个几何体的主视图和俯视图如图所示,请问搭这样一个几何体最多需要多少小立方体?()A.4B.5C.6D.7二、填空题(每小题3分,共30分)11.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多是.12.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为cm.13.下列四个立体图形中,左视图为矩形的是.14.如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是个15.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的左视图的面积是.16.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为.17.下图是某天内,电线杆在不同时刻的影长,按先后顺序应当排列为.18.如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么它的左视图的高是.19.如图,某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为_________米.20.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为cm2.三、解答题(共60分)21.(6分)画出该几何体的三视图:22.(6分)确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.23.(6分)一个几何体由大小相同的小立方体搭成,从上面看到的几何体的形状如图所示.小正方形中的数字表示该位置的小立方块的个数.请你画出从正面和从左面看到的这个几何体的形状图.24.(6分)一个几何体由大小相同的小立方块搭成,从上面看到几何体的形状如图所示,其中小正方形中的数字表示该位置的小立方块的个数,请画出从正面和从左面看到这个几何体的形状.25.(9分)晚饭后,小林和小京在社区广场散步,两人在灯下沿直线NQ移动,如图,当小林正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小京正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小林的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小京身高BE的长.(结果精确到0.01米)26.(9分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.27.(9分)如图,小华在晚上由路灯A 走向路灯B.当他走到点P 时,发现他身后影子的顶部刚好接触到路灯A 的底部;当他向前再步行12m 到达点Q 时,发现他身前影子的顶部刚好接触到路灯B 的底部.已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB.(1)求两个路灯之间的距离.(2)当小华走到路灯B 的底部时,他在路灯A 下的影长是多少?28.(9分)如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6m 的小明落在地面上的影长为BC=2.4m.(1)、请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG;(2)、若小明测得此刻旗杆落在地面的影长EG=16m,请求出旗杆DE 的高度.C ABDE(测试时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列四个几何体中,主视图是三角形的是()A.B.C.D.【答案】D【解析】主视图是三角形的一定是一个锥体,只有D是锥体.故选D.2.如图,当投影线由物体的前方射到后方时,下列一组几何体的正投影是圆的是()A.B.C.D.【答案】D3.如图,空心卷筒纸的高度为12cm,外径(直径)为10cm,内径为4cm,在比例尺为1:4的三视图中,其主视图的面积是()A.cm2B.cm2C.30cm2D.7.5cm2【答案】D【解析】试题分析:12×=3(cm),10×=2.5(cm),3×2.5=7.5(cm2).故其主视图的面积是7.5cm2.故选D.4.个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【答案】C【解析】根据三视图的画法可得:A为主视图,D为俯视图,C为左视图,故本题选C.5.同一时刻,两根长度不等的竿子置于阳光之下,如果影长相等,那么这两根竿子的相对位置是() A.两根都垂直于地面B.两根平行斜插在地面上C.两根竿子不平行D.两根都倒在地上【答案】C6.如左图是由4个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.【答案】C【解析】这个组合体左视图是两个竖着的正方形,主视图是上面一个正方形,下面三个正方形,俯视图是三个横着的正方形,所以选C.7.如图所示的几何体的俯视图是().A.B.C.D.【答案】C8.当棱长为20cm正方体的某个面平行于投影面时,这个面的正投影的面积为()A.20cm2B.300cm2C.400c m2D.600cm2【答案】C【解析】由题意可得该正方体的投影是边长为20cm的正方形,面积为:20×20=400cm2.故选C.9.如图,从小区的某栋楼的A,B,C,D四个位置向对面楼方向看,所看到的范围的大小顺序是()A.A>B>C>D B.D>C>B>A C.C>D>B>A D.B>A>D>C【答案】A【解析】由图可知:从小区的某栋楼的A,B,C,D四个位置向对面楼方向看,所看到的范围的大小顺序是:A>B>C>D.10.由一些相同的立方体搭成某几何体,这个几何体的主视图和俯视图如图所示,请问搭这样一个几何体最多需要多少小立方体?()A.4B.5C.6D.7【答案】B二、填空题(每小题3分,共30分)11.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多是.【答案】5【解析】结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.12.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为cm.【答案】18.【解析】∵DE∥BC,∴△AED∽△ABC,∴AE DEAC BC=,设屏幕上的小树高是x,则2062040x=+,解得x=18cm.故答案为:18.13.下列四个立体图形中,左视图为矩形的是.【答案】④14.如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是个【答案】6.【解析】综合三视图可知,这个几何体的底层有3个小正方体,第2层有1个小正方体,第3层有1个小正方体,第4层有1个小正方体,因此搭成这个几何体所用小正方体的个数是3+1+1+1=6个.故选A.15.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的左视图的面积是.【答案】18cm216.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为.【答案】5.【解析】主视图如图所示,∵由6个棱长均为1的正方体组成的几何体,∴主视图的面积为5×12=5,故答案为:5.17.下图是某天内,电线杆在不同时刻的影长,按先后顺序应当排列为.【答案】DABC【解析】根据北半球上太阳光下的影子变化的规律,从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.可得顺序为DABC.18.如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么它的左视图的高是.【答案】23.19.如图,某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为_________米.【答案】9【解析】∵DE∥AB,DF∥AC,∴△DEF∽△ABC,∴DF EFAC BC=,即1.516AC=,∴AC=6×1.5=9米.20.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为cm2.【答案】4π三、解答题(共60分)21.(6分)画出该几何体的三视图:【答案】作图见解析【解析】如图所示:.22.(6分)确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.【答案】作图见解析【解析】如图所示23.(6分)一个几何体由大小相同的小立方体搭成,从上面看到的几何体的形状如图所示.小正方形中的数字表示该位置的小立方块的个数.请你画出从正面和从左面看到的这个几何体的形状图.【答案】答案见解析【解析】从正面看和从左面看得到的图形如图所示.24.(6分)一个几何体由大小相同的小立方块搭成,从上面看到几何体的形状如图所示,其中小正方形中的数字表示该位置的小立方块的个数,请画出从正面和从左面看到这个几何体的形状.【答案】作图见解析【解析】如图所示:25.(9分)晚饭后,小林和小京在社区广场散步,两人在灯下沿直线NQ移动,如图,当小林正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小京正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小林的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小京身高BE的长.(结果精确到0.01米)【答案】小京身高约为1.75米.又∵∠EBF=∠MNF=90°,∠EFB=∠MFN,∴△EFB~△MFN,∴EB BF MN NF,∴20.8 9.6110.8 EB⨯=⨯∴EB≈1.75米.答:小京身高约为1.75米.26.(9分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.【答案】(1)平行;(2)7米.过程见解析.27.(9分)如图,小华在晚上由路灯A走向路灯B.当他走到点P时,发现他身后影子的顶部刚好接触到路灯A的底部;当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路灯B的底部.已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB.(1)求两个路灯之间的距离.(2)当小华走到路灯B的底部时,他在路灯A下的影长是多少?【答案】(1)18m;(2)3.6m∵NQ∥AC,∴△BNQ∽△BCA,∴BQ QNAB AC=,即1.69.6BQAB=,∴BQ=16AB,而AP+PQ+BQ=AB,∴16AB+12+16AB=AB,∴AB=18.答:两路灯的距离为18m;(2)如图2,他在路灯A下的影子为BN,∵BM∥AC,∴△NBM∽△NAC,∴BN BMAN AC=,即1.6189.6BNBN=+,解得BN=3.6.答:当他走到路灯B时,他在路灯A下的影长是3.6m.28.(9分)如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6m的小明落在地面上的影长为BC=2.4m.(1)、请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG;(2)、若小明测得此刻旗杆落在地面的影长EG=16m,请求出旗杆DE的高度.【答案】(1)、作图见解析;(2)、DE=32 3m.【解析】(1)、影子EG如图所示(2)、由题意可知:△ABC∽△DGE,∴AB DEBC GE=又∵AB=1.6BC=2.4GE=16CABD EC A BDE G∴1.62.416DE=∴323DE=∴旗杆的高度为323m.。

人教版九年级数学下册第29章《投影与视图》测试带答案解析

人教版九年级数学下册第29章《投影与视图》测试带答案解析
A.圆柱B.五棱柱C.长方体D.五棱锥
7.下列几何体中,主视图为等腰三角形的是()
A. B. C. D.
8.如图,一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是圆,关于这个几何体的说法错误的是()
A.该几何体是圆柱B.几何体底面积是
C.主视图面积是4D.几何体侧面积是
9.如图,在直角坐标系中,点P(2,2)是一个光源.木杆AB两端的坐标分别为(0,1),(3,1).则木杆AB在x轴上的投影长为()
参考答案:
1.C
【分析】根据常见几何体的主视图特征判断即可;
【详解】解:A.主视图为圆,不符合题意;
B.主视图为等腰梯形,不符合题意;
C.主视图为长方形,符合题意;
D.主视图为三角形,不符合题意;
故选:C.
【点睛】本题考查了主视图:在正面内得到的由前向后观察物体的视图,叫做主视图;掌握常见几何体的三视图特征是解题关键.
【详解】如图所示:

【点睛】本题考查简单组合体的三视图,掌握三视图的画法是画出三视图的关键.
18.图见解析.
【分析】根据几何体的三视图,可得从正面看有3列,每列小方形数目为2,1,3;从左面看有2列,每列小方形数目为2,3;从上面看有3列,每列小方形数目为1,1,2;分别画出即可求解.
【详解】解:如图所示.
16.如图,这是一个底面为等边三角形的正三棱柱和它的主视图、俯视图,则它的左视图的面积是___________.
三、解答题(共9个小题,17、18每小题8分,19-25每小题10分,共86分)
17.一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状图,小正方形中的数字表示在该位置的小正方块儿的个数,请在相应网格中画出从正面和左面看到的几何体的形状图.

人教版数学九年级下册第二十九章 投影与视图 达标测试卷(含答案)

人教版数学九年级下册第二十九章 投影与视图 达标测试卷(含答案)

第二十九章投影与视图达标测试卷(本试卷满分120分)一、选择题(每小题3分,共30分)1.下列几何体的左视图为长方形的是()A B C D2.下列图形能表示两根立柱所形成的投影是平行投影的是()A B C D3.如图是一个正三棱柱的三视图,则这个三棱柱摆放方式正确的是()A B C D第3题图第5题图第6题图4.下列结论:①同一地点、同一时刻,不同物体在阳光照射下影子的方向是相同的;②不同物体在任何光线照射下影子的方向都是相同的;③同一物体在路灯照射下影子的方向与路灯的位置有关;④物体在光线照射下影子的长短仅与物体的长短有关.其中正确的有()A.1个B.2个C.3个D.4个5.如图,两个等直径圆柱构成如图所示的T形管道,则其俯视图是()A B C D6.如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是()A.主视图B.俯视图C.左视图D.主视图和俯视图7.与图中所示的三种视图相对应的几何体是()A B C D 第7题图8.在同一天的四个不同时刻,某学校旗杆的影子如图所示,下列选项中按时间先后顺序排列正确的是()A.②④③①B. ②③④①C. ③④①②D. ④③①②第8题图9.应县木塔是中国现存最高最古的一座木构塔式建筑,主要借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼.如图,甲构件带有榫头,乙构件带有卯眼,两个构件恰好可以完全咬合,根据图中标示的方向,乙构件的主视图是()A B C D第9题图第10题图10.如图是一个几何体的三视图,其中主视图与左视图完全一样,则这个几何体的表面积是()A.80﹣2πB.80+4πC.80 D.80+6π二、填空题(每小题3分,共18分)11.如果一个几何体的主视图、左视图都是等腰三角形,俯视图为圆,那么我门可以确定这个几何体是.12.如图是一个球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会_________.(填“逐渐变大”或“逐渐变小”)第12题图第13题图第14题图13.一圆柱按如图所示方式放置,若其左视图的面积为48,则该圆柱的侧面积为_______.14.如图,晚上小红由路灯A走向路灯B,当她走到点P时,发现她的影子顶部正好接触到路灯B的底部,此时她与路灯A的距离为20 m,与路灯B的距离为5 m.如果小红的身高为1.2 m,那么路灯A的高度是___________m.15.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.第15题图第16题图16.如图,甲楼AB高18米,乙楼CD坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是1:2,已知两楼相距20米,那么甲楼的影子落在乙楼上的高DE为米.(结果保留根号)三、解答题(本大题共8小题,共72分)17.(6分)画出如图所示几何体的三视图.第17题图第18题图18.(6分)如图是小明与爸爸(线段AB)、爷爷(线段CD)在同一路灯下的情景(粗线分别表示三人的影子).请根据要求,进行作图.(不写画法,但要保留作图痕迹).(1)在图中画出灯泡所在的位置;(2)在图中画出小明的身高.19.(8分)(1)由大小相同的小立方块搭成的几何体如图,请在如图的方格中画出该几何体的俯视图和左视图;第19题图(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在方格中所画的图一致,则这样的几何体最多要个小立方块.20. (8分)如图所示为一几何体的三视图.(1)这个几何体的名称为__________;(2)画出它的任意一种表面展开图;(3)若主视图是长方形,其长为10 cm,俯视图是等边三角形,其边长为4 cm,求这个几何体的侧面积.第20题图第21题图21.(8分)如图,在Rt△ABC中,∠ACB=90°,投影线方向如图所示,点C在斜边AB上的正投影为点D. (1)试写出边AC,BC在AB上的投影;(2)试探究线段AC,AB和AD之间的关系;(3)线段BC,AB和BD之间也有类似的关系吗?请直接写出结论.22.(10分)某几何体的主视图和俯视图如图所示(单位:mm),求该几何体的体积.第22题图第23题图23.(12分)在一个阳光明媚的上午,数学陈老师组织学生测量小山坡上一棵大树CD的高度,山坡OM与地面ON的夹角为30°(∠MON=30°),同一时刻站在水平地面上身高1.7米的小明AB在地面的影长BP为1.2米,此刻大树CD在斜坡上的影长DQ为5米,求大树的高度.24.(14分)如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他(EF)在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).第24题图(1)请在图中画出灯光光源O的位置及小明位于点F时在这一灯光下的影长FM(不写画法);(2)求小明原来的速度.投影与视图达标测试卷一、1.C 2.B 3.B 4.B 5.B 6.C 7.D 8.B 9.C 10.B二、11.圆锥 12.逐渐变大 13.48π 14.6 15.108 16.18-102三、17.解:如图所示:第17题图18.解:(1)如图所示,点O即为灯泡所在的位置.(2)如图所示,EF即为小明的身高.第18题图19. 解:(1)如图所示:第19题图(2)7 提示:由俯视图可知最底层有4个小立方块,第二层最多有3个小立方块,所以最多要4+3=7(个)小立方块.20. 解:(1)该几何体是三棱柱.(2)展开图如图所示(答案不唯一):第20题图(3)三棱柱的侧面展开图是长方形,长方形的长是等边三角形的周长即4×3=12(cm).由题意,知主视图的长是三棱柱的高,所以三棱柱侧面展开图的面积为12×10=120(cm2). 所以这个几何体的侧面积是120 cm2.21. 解:(1)边AC,BC在AB上的投影分别为AD,BD.(2)因为点C在斜边AB上的正投影为点D,所以CD⊥AB.所以∠ADC=90°.因为∠A=∠A,∠ADC=∠ACB,所以△ADC∽△ACB.所以AC ADAB AC=,即AC2=AD•AB.(3)BC2=BD•AB.提示:同(2)可证△BCD∽△BAC,所以BC BDBA BC=,即BC2=BD•AB.22.解:由主视图和俯视图可知,该几何体是上下两个圆柱的组合图形.所以该几何体的体积为16×π×2162⎛⎫⎪⎝⎭+4×π×282⎛⎫⎪⎝⎭=1088π(mm3).23. 解:过点Q作QE⊥DC于点E.由题意,得△ABP∽△CEQ,所以AB BPCE EQ=.所以AB CEBP EQ=,即1.71.2CEEQ=.因为EQ∥NO,所以∠1=∠2=30°.因为QD=5,所以DE=52,EQ=532.所以1.71.2532CE=,解得CE=85324.所以CD=CE+DE=52+85324=6085324+(米).答:大树的高度为6085324+米.第23题图24.解:(1)灯光光源O,影长FM如图所示:第24题图(2)设小明原来的速度为x 米/秒,则AD=DF=CE=2x,AM=AF-MF=2x+2x-1.2=4x-1.2,EG=FH=2×1.5x=3x,MB=AB-AM=12-(4x-1.2)=13.2-4x.因为点C,E,G在一条直线上,CG∥AB,所以∠OCE=∠A,∠OEC=∠OMA,∠OEG=∠OMB,∠OCE=∠B.所以△OCE∽△OAM,△OEG∽△OMB.所以CE OEAM OM=,EG OEMB OM=.所以CE EGAM MB=,即234 1.213.24x xx x=--,解得x=1.5.经检验,x=1.5为原分式方程的根. 答:小明原来的速度为1.5米/秒.。

人教版九年级数学下册第二十九章达标测试卷含答案

人教版九年级数学下册第二十九章达标测试卷含答案

人教版九年级数学下册第二十九章达标测试卷一、选择题(每题2分,共20分)1.一个矩形木框在太阳光的照射下,在地面上的投影不可能是()2.下列关于投影与视图的说法正确的是()A.平行投影中的光线是聚成一点的B.线段的正投影还是线段C.三视图都是大小相同的圆的几何体是球D.正三棱柱的俯视图是正三角形3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯,如图,甲木构件带有榫头,乙木构件带有卯,两个构件可完全咬合,则乙木构件的俯视图是()4.如图,树AB在路灯O的照射下形成投影AC,若树高AB=2 m,树影AC=3 m,树与路灯的水平距离AP=4.5 m,则路灯的高度OP是()A.3 m B.4 m C.5 m D.6 m5.一个几何体的三视图如图所示,则这个几何体是()6.如图,在房檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区是()A.△ACE B.△ADF C.△ABD D.四边形BCED7.如图,太阳光线与地面成60°的角,照射在放置在地面上的一个皮球上,皮球在地面上的投影长是20 3,则皮球的直径是()A.15 B.8 3 C.10 3 D.30(第7题)(第9题)(第10题)8.在平面直角坐标系中,点P(2,4)是一个光源,木杆AB两端的坐标分别是(1,2),(4,1),则木杆AB在x轴上的投影A′B′的长是()A.4 B.143 C.92D.59.如图,将由6个棱长为1的小正方体组成的几何体在桌面上顺时针旋转90°后,左视图的面积为()A.3 B.4 C.5 D.610.如图是某风车的示意图,其大小、形状相同的四个叶片均匀分布,点M在旋转中心O的正下方.某一时刻,太阳光恰好垂直照射叶片OA,OB,叶片影子为线段CD,测得MC=8.5米,CD=13米,此时垂直于地面的标杆EF与它的影子FG的长度之比为23(其中点M,C,D,F,G在同一直线上),则OM的长为()A.10米B.13米C.13米D.20米二、填空题(每题3分,共18分)11.广场上,一个大型字母宣传牌垂直于地面放置,其投影如图所示,则该投影属于____________.(填“平行投影”或“中心投影”)(第11题)(第13题) (第14题)12.在①长方体、②球、③圆锥、④圆柱、⑤正方体、⑥三棱柱这六种几何体中,其主视图、左视图、俯视图可以完全相同的是__________(填序号).13.一个几何体的主视图和俯视图如图所示,若这个几何体最多由m个小正方体组成,最少由n个小正方体组成,则m+n=________.14.公元前6世纪,古希腊学者泰勒斯用图①的方法巧测金字塔的高度.如图②,小明仿照这个方法,测量圆锥形小山包的高度,已知圆锥底面周长为62.8 m.先在小山包旁边立起一根木棒,当木棒影子的长度等于木棒高度时,测得AB的长为23 m(直线AB过圆锥底面圆的圆心),则圆锥形小山包的高度约为________m(π取3.14).15.如图是一个三棱柱的三视图,在△EFG中,EF=6 cm,EG=10 cm,∠EGF =30°,则AB的长为________cm.(第15题) (第16题)16.在同一时刻两根垂直于水平地面的木杆在太阳光下的影子如图所示,其中木杆AB=2.5 m,它的影子BC=2 m,木杆PQ的影子有一部分落在了墙上(MN),PM=1.6 m,MN=1 m,则木杆PQ的长度为________.三、解答题(17题6分,18~21题每题8分,22,23题每题10分,24,25题每题12分,共82分)17.(6分)把下图中的几何体与它们对应的三视图用线连接起来.18.(8分)如图所示的图形是一个水平放置的直三棱柱被斜着截去一部分后形成的,请画出它的主视图、左视图和俯视图.19.(8分)一个几何体的三视图如图所示.(1)写出这个几何体的名称;(2)求这个几何体侧面展开图的圆心角;(3)求这个几何体的全面积.20.(8分)如图是某时刻的太阳光线,光线与水平面的夹角为45°.小星身高1.6米.(1)若小星正站在水平地面上的点A处,则他的影长为多少米?(2)若小星来到一个倾斜角为30°的坡面底端B处,则他在坡面上前进多少米时,他的影子恰好都落在坡面上?21.(8分)学校食堂厨房的桌子上整齐地摆放着若干个相同规格的菜碟,每一摞菜碟的高度与菜碟的个数的关系如表所示.菜碟的个数菜碟的高度(单位:cm)1 323+1.833+3.643+5.4……(1)把x个菜碟放成一摞时,这一摞菜碟的高度为________(用含x的式子表示);(2)如图所示,是几摞菜碟的三视图,厨师想把它们整齐地叠成一摞,求叠成一摞后的高度.22.(10分)如图,两栋居民楼之间的距离CD=45 m,楼AC和BD均为11层,每层楼高为3 m.上午某时刻,太阳光线GB与水平面的夹角为30°,此刻楼BD的影子会遮挡到楼AC的第几层?(参考数据:3≈1.7,2≈1.4)23.(10分)如图所示,有4张除了正面图案不同,其余都相同的卡片,将这4张卡片背面朝上洗匀.(1)若小李从中抽一张卡片,求抽到的卡片上所示的立体图形的主视图为矩形的概率;(2)若小李先从中随机抽出一张后放回并洗匀,小张再随机抽出一张,请用列表法或画树状图法求两人抽到的卡片上所示的立体图形的主视图都是矩形的概率.24.(12分)按要求完成下列问题.(1)如图①,它是由6个同样大小的正方体摆成的几何体.将正方体①移走后,新几何体的三视图与原几何体的三视图相比,哪一个视图没有发生改变?(2)如图②,请你借助虚线网格(甲)画出该几何体的俯视图.(3)如图③,它是由几个小正方形组成的俯视图,小正方形上的数字表示该位置上的正方体的个数,请你借助虚线网格(乙)画出该几何体的主视图.(4)如图④,它是由8个大小相同的正方体组成的几何体的主视图和俯视图,请你借助虚线网格(丙)画出该几何体的左视图.25.(12分)如图①是一个直四棱柱,如图②是它的三视图,其俯视图是等腰梯形.(1)根据图②中给出的数据,可得俯视图(等腰梯形)的高为________,腰长为________;(2)主视图和左视图中a=________,b=________,c=________,d=________;(3)请你根据图①②和问题(1)中的结果,计算这个直四棱柱的侧面积.(结果可保留根号)答案一、1.B 2.C 3.C 4.C 5.D 6.C7.D8.B9.B10.A点拨:如图,过点O作OP∥BD,交MG于P,过P作PN⊥BD于N,则OB=PN.∵AC∥BD∥EG,∴AC∥OP∥BD∥EG,∴OAOB=CPPD,∠EGF=∠OPM,∴tan∠EGF=tan∠OPM.∵OA=OB,∴CP=PD=12CD=6.5米,∴MP=CM+CP=8.5+6.5=15(米),∴EFFG=OMMP=23,∴OM=23×15=10(米).二、11.中心投影12.②⑤13.1614.3315.5点拨:如图,过点E作EH⊥FG交FG于点H.∵EH⊥FG,∠EGF=30°,EG=10 cm,∴EH=12×EG=12×10=5(cm),由题中三视图可得,AB=EH=5 cm,故答案为5.16.3 m点拨:如图,过点N作ND⊥PQ于点D,则易知四边形DPMN是矩形.∴DN=PM,PD=MN.由题知,BCAB=DNQD,∵AB=2.5 m,BC=2 m,DN=PM=1.6 m,∴QD=AB·DNBC=2.5×1.62=2(m),∴PQ=QD+DP=QD+NM=2+1=3(m).三、17.解:如图所示.18.解:如图所示.19.解:(1)该几何体为圆锥.(2)由题图上数据知圆锥的底面圆的直径为4,母线长为6,设这个几何体的侧面展开图的圆心角为n°,则π×4=nπ×6 180,所以n=120,所以这个几何体侧面展开图的圆心角为120°.(3)该几何体的全面积为S侧+S底=π×42×6+π×⎝⎛⎭⎪⎫422=16π.20.解:(1)如图,由题意得AD=1.6米,∠DCA=45°,AD⊥CA,∴AC=AD=1.6米.答:他的影长为1.6米.(2)如图,由题意得EF=1.6米.∵∠FBG=30°,FG⊥BG,∴设FG =x 米,则BF =2x 米,∴BG =3x 米, ∴EG =EF +FG =(x +1.6)米, 在Rt △EBG 中,∠EBG =45°,∴BG =EG ,∴3x =1.6+x ,解得x =45(3+1), ∴BF =2x =2×45(3+1)=85(3+1)(米).答:他在坡面上前进85(3+1)米时,他的影子恰好都落在坡面上. 21.解:(1)(1.8x +1.2)cm(2)由题中三视图可知,共有7+4+3=14(个)菜碟, 所以叠成一摞后的高度是1.8×14+1.2=26.4(cm).22.解:设太阳光线GB 交AC 于点F ,过F 作FH ⊥BD 于点H ,如图.由题意知,AC =BD =3×11=33(m),易知四边形FCDH 是矩形,∠BFH =30°,∴FH =CD =45 m , 在Rt △BFH 中,tan ∠BFH =BH FH =BH 45=33,∴BH =45×33=15 3≈25.5(m), ∴FC =HD =BD -BH ≈33-25.5=7.5(m). ∵7.5÷3=2.5,∴在2层的上面,即第3层, ∴此刻楼BD 的影子会遮挡到楼AC 的第3层.23.解:(1)∵球的主视图为圆,长方体的主视图是矩形,圆锥的主视图为等腰三角形,圆柱的主视图为矩形,每张卡片被抽到是等可能的,∴小李从中抽一张卡片,抽到的卡片上所示的立体图形的主视图为矩形的概率为 24=12.(2)列表可得,小张小李A B C DA (A,A) (A,B) (A,C) (A,D)B (B,A) (B,B) (B,C) (B,D)C (C,A) (C,B) (C,C) (C,D)D (D,A) (D,B) (D,C) (D,D)由表可知,共有16种等可能的结果,其中两人抽到的卡片上所示的立体图形的主视图都是矩形的结果有4种,所以两人抽到的卡片上所示的立体图形的主视图都是矩形的概率为416,即14.24.解:(1)将正方体①移走后,新几何体的三视图与原几何体的三视图相比,左视图没有发生改变.(2)如图甲所示.(3)如图乙所示.(4)如图丙所示.25.解:(1)6;4 3(2)2 3;3 3;2 3;6(3)这个直四棱柱的侧面积为3 3×20+7 3×20+2×4 3×20=60 3+1403+160 3=360 3.11。

人教版数学九年级下册 第29章 投影与视图 全真测试【含答案】

人教版数学九年级下册 第29章 投影与视图 全真测试【含答案】

《投影与视图》全真测试一、填空题:本大题共8小题,每小题3分,共24分.1.圆锥体的主视图是 ,左视图是 ,俯视图是 .2.球的三视图分别是,,.3.物体在光线的照射下,会在地面或墙壁上留下它的影子,这种现象就是 现象,投影现象中,由阳光形成的影子是 投影,由灯光形成的影子是 投影,海滩上游人的影子是 投影,晚上路旁栏杆的影子是 投影.4.一个长、宽、高都互不相等的长方体的主视图、俯视图、左视图都是 .5.如图所示,此时的影子是在 下(太阳光或灯光)的影子,理由是 .6.小明的身高是米,他的影长是米,同一时刻古塔的影长是米,则古塔的高是 1.6218米.7.小刚在高米的塔上看远方,离塔米处有一高米的障碍物,小刚看不见离塔 米远18512的地方(小刚身高忽略不计).8.如图,小明想测量电线杆的高度,发现电线杆的影子恰好落AB 在上坡的坡面和地面上,量得,,CD BC 4m CD =10m BC =与地面成角,且此时测得长的杆的影长为,则电线CD 30 1m 2m 杆的高度为m1.41≈ 1.73≈二、选择题:本大题共8小题,每小题3分,共24分.9.如图,身高为的某学生想测量一棵大树的高度,她沿着树影BA 由B 1.6m 向A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得,则树的高度为( )3.2m 0.8m BC CA ==,A.B.C.D.4.8m 6.4m 8m 10m10.下列四个条件中哪个不是平行投影( )A.中午林荫道旁树的影子B.海滩上撑起的伞的影子C.跑道上同学们的影子D.晚上亮亮的手在墙上的投影11.一个小球和一个小筒并排放在地上,若球能轻易放筒中,且放入后没有露在筒外的部分,且ADCBA.CD12.灯光下的两根小木棒和,它们竖立放置时的影子长分别为和,若.则它们A B A l B l A B l l >的高度为和满足( )A h B h A.B.C.D.不能确定A Bh h >A Bh h <A Bh h ≥1314.如图所示,灯在距地面3米的处,现有一木棒2米长,当A 处木棒绕其与地面的固定端点顺时针旋转到地面,其影子的变B 化规律是( )A.先变长,后变短B.先变短,后变长C.不变D.先变长,再不变,后变短15.若长度为3米的木杆竖立时,它在阳光下的影子长为1米,则阳光下的影子长度为10米的楼房的高度为( )A.米B.米C.米或米D.米30103301032016.如图所示,两建筑物的水平距离为米,从点测得点的俯s A D 角为,测得点的俯角为,则较低的建筑物的高为( )αC βA.米B.米tan sα tan()s βα- C.米D.米(tan tan )s βα-tan tan sβα-三、解答题:本题共6小题,共52分.17.(本小题6分)如图都是由7个小立方体搭成的几何体,从不同方向看几何体,分别画出它们的主视图、左视图与俯视图,并在小正方形内填上表示该位置的小正方体的个数.18.(本小题6分)在直角坐标系中,作出以,,为顶点的,并以(12)A ,(35)B ,(41)C ,ABC △原点为位似中心,作与它位似的,使与的对应边的比为.A B C'''△ABC △A B C '''△1:2ABCD(1)(2)(3)(4)3米19.(本小题8分)阳光下,同学们整齐地站在操场上做课间操,小明和小宇站在同一列,小明的影子正好被站在他后面的同学踩在脚下,而小宇的影子没有被他后面的同学踩在脚下,你知道他们的队列是哪个方向吗?小明和小宇哪个高?为什么?20.(本小题8分)晚上,小刚在马路的一侧散步,对面有一盏路灯,当小刚笔直地往前走一小段时,他在这盏灯下的影子也随着向前移动,小刚头顶所经过的路径是什么样的?它与小刚所走的路线有何位置关系?21.(本小题12分)高高地路灯挂在路边的上方,高傲而明亮,小明拿着一根米长的竹竿,想2量一量路灯的高度,直接量是不可能的,于是,他走到路灯旁的一个地方,竖起竹竿,这时,他量了一下竹竿的影长正好是米,他沿着影子的方向走,向远处走出两根竹竿的长度(即米),14他又竖起竹竿,这时竹竿的影长正好是一根竹竿的长度(即米).此时,小明抬头瞧瞧路灯,若2有所思地说:“噢,原来路灯有米高呀!”(如图所示)10同学们,你觉得小明的判断对吗?22.(本小题12分)有一棵高大的松树,要测出它的高度,但不能爬到树上去,也不能将树砍倒,你能说出几种方法吗?说一说你的这些方法.《投影与视图》全真测试答案一、填空题:本大题共8小题,每小题3分,共24分.1.三角形、三角形、圆 2.圆,圆,圆 3.投影;平行;中心;平行;中心4.矩形 5.太阳光,通过作图发现相应的直线是平行关系 6. 7.14.4510 8.解:延长交的延长线于,过作于,如图所示.AD BC F D DE BF ⊥E .,..4m CD =∵30DCF ∠= 2m DE =∴CE =30AD由,,FABFDE △∽△12AB DE BF EF ==,,.12AB BF =∴12DE EF =4m EF =∴,11()(104)8.738.7(m)22AB BC CE EF =++=++≈≈∴故答案为.8.7二、选择题:本大题共8小题,每小题3分,共24分.9.C 10.D 11.D 12.D 13.A 14.A 15.A 16.C三、解答题:本题共6小题,共52分.17.(本小题6分)如图.(1)18.(本小题6分)略19.(本小题8分)他们的队列是面向太阳,小明比小宇高,因为太阳光线是平行光线,身高与影长成正比例.20.(本小题8分)小刚头顶的影子所经过的路径是一条直线段,它与小刚行走的一小段路线是平行的.21.(本小题12分)解:小明的判断如图,是竹竿两次的位置,和是两次影子AE BF ,CA BD 的长.由于,所以,灯高.2()BF DB ==米DP OP ==由于,所以灯高.11()2CA AE ==米1122CP OP ==故灯高.12DC =又,,,DC DB BC =+ BC BA CA =-412BA CA BD ===米,米,米,2415()DC DB BA CA ∴=+-=+-=米灯高.∴10OP =米所以小明的判断完全正确.22.(本小题12分)解:方法一:如图,将一小木棒也立在阳光下,测量小木棒此时A B ''()A B ''的影子长和树的影子长,测量小木棒的长,B C ''BC A B ''则易知,故有,所以.ABCA B C '''△∽△AB BC A B B C =''''A B BCAB B C ''=''主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图因为,及都已经测量出来,从而可计算得到树高.A B ''BC B C ''AB 方法二:为了方便计算,还可将方法一改进一下,即不断测量小木棒的影长,直到它与B C ''相等时,此时测量树的影长,则树高恰好等于此时的影长.A B ''BC AB BC 方法三:找一根比你身体高一点的木棒,将它竖直立在地上,你沿方向,从木棒的CE DF 处往后退到点,使眼睛可以看到木棒顶端与树尖在同一条直线上,同时,测出水平方F G D A 向与木棒和树的交点,,DF AB E C HG 易知,从而,HDEHAC △∽△HE DEHC AC=故.HC DE AC HE =所以只要测出,,,就可以用上式求得,从而树高,这样,树HC DE HE AC AB AC BC =+高就可以求得了.方法四:把一面镜子放在距一定距离的点,你自己注视着镜子,同时慢慢地离开镜子,AB C 直到镜子中出现树尖的像时才止步,如图.A A '易知,且,AB A B ''=A BCEFC '△∽△从而,即.A B BC EF FC '=BC EFA B FC'= 所以,树高.BC EFAB A B FC'== 只要测出,和的长(注意:是测量者的眼睛BC FC EF EF 距离地面的高度,而不是整个人的身高),就可以求出树高了.AB ABA '。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十九章达标测试卷
一、选择题(每题3分,共30分)
1.下列几何体中,主视图和左视图都为矩形的是()
2.如图是一个长方体包装盒,则它的平面展开图可能是()
3.如图所示的几何体的俯视图是()
4.在一个晴朗的上午,乐乐拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投
影不可能
...是()
5.用四个相同的小立方体搭几何体,要求每个几何体的主视图、左视图、俯视图中至少有两种视图的形状是相同的,下列四种摆放方式中不符合要求的是()
6.如图,一个几何体由5个大小相同、棱长为1的正方体搭成,下列关于这个几何体的说法正确的是()
A.主视图的面积为5 B.左视图的面积为3
C.俯视图的面积为3 D.三种视图的面积都是4
7.如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为() A.2 cm3B.4 cm3
C.6 cm3D.8 cm3
(第7题) (第8题) (第9题) (第10题)
8.一幢4层楼房只有一个房间亮着灯,一棵小树和一根电线杆在窗口灯光下的影子如图所示,则亮着灯的房间是()
A.1号房间B.2号房间
C.3号房间D.4号房间
9.如图是某几何体的三视图,根据图中数据,可得该几何体的体积为()
A.9πB.40πC.20πD.16π
10.如图是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则组成这个几何体的小立方体的个数可能是()
A.5或6 B.5或7
C.4,5或6 D.5,6或7
二、填空题(每题3分,共24分)
11.工人师傅要制造某一工件,他想知道工件的高,他需要看三视图中的__________或__________.
12.如图,将△ABC绕AB边所在直线旋转一周所得的几何体的主视图是图中的__________(填序号).
(第12题) (第13题) (第14题)
13.某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5 m的标杆DF,如图
所示,量出DF的影子EF的长度为1 m,再量出旗杆AC的影子BC的长度为6 m,那么旗杆AC的高度为________m.
14.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是________.
15.如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是________.
(第15题) (第16题) (第17题) (第18题)
16.如图,在某一时刻,太阳光线与地面成60°的角,一只皮球在太阳光的照射下的投影长为10 3 cm,则皮球的直径是________cm.
17.如图,在平面直角坐标系内,一点光源位于A(0,5)处,线段CD⊥x轴,垂足为D,C点坐标为(3,1),则CD在x轴上的影长为________,点C的影子B的坐标为____________.18.如图,有一块边长为6 cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是________cm2.
三、解答题(19,21,22题每题10分,其余每题12分,共66分)
19.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,C D.
(1)请你在图中画出路灯灯泡所在的位置(用点P表示);
(2)画出小华此时在路灯下的影子(用线段EF表示).
20.(1)用5个棱长为1 cm的小立方块搭成的几何体如图所示,在网格图中画出它的三视图.
(2)在实物图中,再添加若干个棱长为1 cm的小立方块,使得它的左视图和俯视图不变,那么最多
可添加________个小立方块.
21.如图,棱长为a cm的正方体其上下底面的对角线AC,A1C1与平面α垂直.
(1)指出正方体在平面α上的正投影图形形状;
(2)计算投影MNPQ的面积.
22.阳光通过窗口照到教室内,在地面上留下2.1 m长的亮区,如图所示,已知亮区一边到窗下墙脚的距离CE=3.9 m,窗口底边离地面的距离BC=1.2 m,试求窗口的高度(即AB的长).
23.如图所示为一几何体的三视图:
(1)写出这个几何体的名称;
(2)任意画出这个几何体的一种表面展开图;
(3)若三视图中的长方形的长为10 cm,正三角形的边长为4 cm,求这个几何体的侧面积.
24.如图,花丛中有一根路灯杆AB,在光线下小明在点D处的影长DE=3 m,沿BD方向行走到达点G,测得DG=5 m,这时小明的影长GH=5 m.如果小明的身高为1.7 m,求路灯杆AB的高
度.
参考答案
一、1.B 2.A 3.D 4.C 5.D
6.B 点拨:由题意可知,这个几何体的主视图的面积为4,左视图的面积为3,俯视图的面积为
4,故选B.
7.A 点拨:此几何体为长方体,它的底面是边长为1 cm 的正方形,高为2 cm ,则该几何体的体
积为1×1×2=2(cm 3).
8.B
9.B 点拨:观察三视图可知,该几何体为空心圆柱,其底面内圆半径为2,外圆半径为3,高为
8,所以其体积为8×(π×32-π×22)=40π.
10.D 点拨:由俯视图易得,最底层有4个小立方体,由左视图易得,第二层最多有3个小立方
体、最少有1个小立方体,那么组成这个几何体的小立方体的个数可能是5个、6个或7个. 二、11.主视图;左视图 12.② 13.9
14.6 点拨:由正方体展开图的特点可知,2和6所在的面是相对的两个面;3和4所在的面是相
对的两个面;1和5所在的面是相对的两个面.∵2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字之和的最小值是6.
15.22 点拨:综合三视图可以得出,这个几何体的底层有3+1=4(个)小正方体,第二层有1个小
正方体,因此搭成这个几何体所用的小正方体的个数是4+1=5(个),∴这个几何体的表面积是5×6-8=22.
16.15 点拨:过点A 作AB ⊥DC 于点B ,由题意可知,AB 的长即为皮球的直径.易得∠BAC =
30°,所以AB =AC ·cos 30°=103×32=15(cm ),故皮球的直径是15 cm . 17.34;⎝⎛⎭⎫154
,0 18.92
3 点拨:如图,由正三角形的性质可以得出∠BAC =∠B =∠BCA =60°,由三个筝形全等可以得出AD =BE =BF =CG =CH =
AK ,根据折叠后是一个三棱柱可以得出DO =PE =PF =QG =QH =
OK ,四边形ODEP 、四边形PFGQ 、四边形QHKO 为矩形,且全等.连接AO 证明
△AOD ≌△AOK 就可以得出∠OAD =∠OAK =30°,设OD =x cm ,则AO =2x cm ,由勾股定理就可以求出AD =3x cm ,由矩形的面积公式就可以表示出纸盒的侧面积,由二次函数的性质就可以求出结论.
三、19.解:(1)如图,P 点即为路灯灯泡所在的位置.
(2)如图,线段EF 即为小华此时在路灯下的影子.
20.解:(1)如图所示.
(2)2
21.解:(1)该正方体在平面α上的正投影图形是矩形(中间有一条竖线).
(2)连接B D.∵该正方体的棱长为a cm ,
∴BD =a 2+a 2=2a (cm ).
∴投影MNPQ 的面积为2a ·a =2a 2(cm 2).
22.解:∵AE ∥BD ,
∴△AEC ∽△BD C.
∴AC
BC =EC
DC .
又AC =AB +BC ,DC =EC -ED ,EC =3.9,ED =2.1,BC =1.2, ∴AB +1.2
1.2= 3.9
3.9-2.1,
解得AB =1.4(m ).
答:窗口的高度为1.4 m .
23.解:(1)这个几何体是正三棱柱.
(2)如图所示.(答案不唯一)
(3)S 侧=3×4×10=120(cm 2).
24.解:由题意,得AB ⊥BH ,CD ⊥BH ,FG ⊥BH .
在Rt △ABE 和Rt △CDE 中,
∵AB ⊥BH ,CD ⊥BH ,
∴CD ∥A B.
∴Rt △ABE ∽Rt △CDE . ∴CD AB =DE
DE +BD .
同理可得Rt △ABH ∽Rt △FGH , ∴FG AB =HG
HG +GD +BD .
又∵CD =FG =1.7,
∴DE DE +BD =HG
HG +GD +BD . ∵DE =3,DG =5,GH =5, ∴3
3+BD =5
5+5+BD ,
解得BD =7.5(m ).
∴AB =CD·(DE +BD )DE =1.7×(3+7.5)3=5.95(m ).
答:路灯杆AB 的高度为5.95 m .。

相关文档
最新文档