弹塑性力学试题集锦(很全,有答案)

弹塑性力学试题集锦(很全,有答案)
弹塑性力学试题集锦(很全,有答案)

1 / 218

弹塑性力学2008级试题

一 简述题(60分) 1)弹性与塑性

弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。

塑性:物体在引起形变的外力被除去以后有部分变

形不能恢复残留下来的这一性质。

2)应力和应力状态

应力:受力物体某一截面上一点处的内力集度。 应力状态:某点处的9个应力分量组成的新的二阶张量∑。 3)球张量和偏量

球张量:球形应力张量,即σ=0

00000m m m σσσ??????????

,其

中()1

3

m x y z σσσσ=++ 偏

x m xy xz ij yx y m yz zx zy z m S σστττσστττσσ??

-??=-????-??

,其中

2 / 218

()1

3

m x y z σσσσ=

++

5)转动张量:表示刚体位移部分,即

1102211022110

22u v u w y x z x v u v w ij x y z y w u w v x z y z W ?

?

??

??????--?? ? ? ???????

????

?

?

??????????

=-- ?

??? ? ???????????????????????-- ? ? ?????????

??

??

6)应变张量:表示纯变形部分,即

112211221122u

u v u w x y x z x v u v

v w ij x y y

z y w u w v w

x z y z z

ε??

??

???????++?

? ? ? ????????

????

?

?

?????

??????

=++ ?

??? ? ????????????

??

??

?????????++ ? ? ??????????

??

??

7)应变协调条件:物体变形后必须仍保持其整体性和连续性,因此各应变分量之间,必须要有一定得关

3 / 218

系,即应变协调条件。22

222y xy

x y x x y

εγε???+=????。

8)圣维南原理:如作用在弹性体表面上某一不大的局部面积上的力系,为作用在同一局部面积上的另一静力等效力所代替,则荷载的这种重新分布,只造离荷载作用处很近的地方,才使应力的分布发生显著变化,在离荷载较远处只有极小的影响。

9)屈服函数:在一般情况下,屈服条件与所考虑的应力状态有关,或者说,屈服条件是改点6个独立的应力分量的函数,即为()0ij f σ=,()ij f σ即为屈服函

数。

10)不可压缩:对金属材料而言,在塑性状态,物体体积变形为零。

11)稳定性假设:即德鲁克公社,包括:1.在加载过程中,应力增量所做的功D dW 恒为正;2.在加载与卸载的整个循环中,应力增量所完成的净功D dW 恒为非负。

12)弹塑性力学的基本方程:包括平衡方程、几何方程和本构方程。

13)边界条件:边界条件可能有三种情况:1.在边界

4 / 218

上给定面力称为应力边界条件;2.在边界上给定位移称为位移边界条件;3. 在边界上部分给定面力,部分给定位移称为混合边界条件。

14)标量场的梯度:其大小等于场在法向上的导数,其指向为场值增大的方向并垂直于场的恒值面的一个矢量。

17)塑性铰:断面所受弯矩达到极限弯矩后,不增加弯矩,该断面转角仍不断增加,称此断面形成了塑性铰。塑性铰是单向铰,只能沿弯矩增大方向发生有限转动。

二 求010100000?? ?

? ???

的主值和主方向 (10分)

解:

解之得:1λ=0 2λ=1

3λ=-1,即主应力分

别为1σ=1 2σ=0

()111213212223313333 0

..0

0101000

ij j j

ij j ij j ij

ij j n n n n n σλσλδσ

λδσλσσσσλσσσσλ

λλλ

=-=-=--=---=-令那么 即:

5 / 218

3σ=-1 当

1

σ=1时,

()()

1111

12121313

1112

131011010.110.00

001110n n n n n n n n n λλλ---=-=--=解之得:主方向1:

同理可得:主方向2:()()2122

23001n n n =

主方向3:()()31

3233110n n n =-

四 论述(15分)

1)本构方程遵从的一般原理 2)弹塑性本构关系

答:1)本构方程遵从的一般原理:1.决定性原理,与时间历程相关的;2.局部作用原理;3.坐标无关性;4.空间各向同性原理;5.时间平移的无关性。 2)课本第四章。

一、问答题:(简要回答,必要时可配合图件答题。每小题5分,共10分。)

1、简述固体材料弹性变形的主要特点。

2、试列出弹塑性力学中的理想弹塑性力学模型(又称弹性完全塑性模型)的应力与应变表达式,并绘出应力应变曲线。

6 / 218

二、填空题:(每空2分,共8分)

1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。(参照oxyz 直角坐标系)。

2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。

三、选择题(每小题有四个答案,请选择一个正确的结果。每小题4分,共16分。)

1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。裂纹展布的方向是:_________。

A 、沿圆柱纵向(轴向)B

、沿圆柱横向(环向)

C 、与纵向呈45°

角D 、与纵向呈30°角

2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。该板危险点的最大拉应力是无孔板最大拉应力__________倍。

A 、2

B 、

3

C 、

4

D 、5

3、若物体中某一点之位移u 、v 、w 均为零(u 、v 、w 分别为物体内一点,沿x 、y 、z 直角坐标系三轴线方向上的位移分量。)则在该点处的应变_________。

A 、一定不为零

B 、一定为零

C 、可能为零

D 、

不能确定

4、以下________表示一个二阶张量。

A、B 、C、D、

四、试根据下标记号法和求和约定展开下列各式:(共8分)

1、;(i ,j = 1,2,3 );

2、;

五、计算题(共计64分。)

1、试说明下列应变状态是否可能存在:

;()上式中c为已知常数,且。

2、已知一受力物体中某点的应力状态为:

7 / 218

式中a为已知常数,且a>0,试将该应力张量分解为

球应力张量与偏应力张量之和。为平均应力。并说明这样分解的物理意义。

3、一很长的(沿z轴方向)直角六面体,上表面受均布压q 作用,放置在绝对刚性和光滑的基础上,如图所示。若选取

=ay2做应力函数。试求该物体的应力解、应变解和位移解。

(提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。)

8 / 218

题五、3图

4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作用。设管内各点处的应力状

态均相同,且设在加载过程中始终保持,(采用

柱坐标系,r为径向,θ为环向,z为圆管轴向。)材料的屈服极限为=400MPa。试求此圆管材料屈服时(采用Mises屈

服条件)的轴向载荷P和轴矩M s。

(提示:Mises屈服条件:

;)

填空题

9 / 218

6

平衡微分方程

选择 ABBC

1、解:已知该点为平面应变状态,且知:

k为已知常量。则将应变分量函数代入相容

方程得:2k+0=2k 成立,故知该应变状态可能存在。

2、解:

球应力张量作用下,单元体产生体变。体变仅为弹性变

10 / 218

形。偏应力张量作用下单元体只产生畸变。塑性变形只有在畸变时才可能出现。关于岩土材料,上述观点不成立。

3、解:,满足,是应力函数。相应的应力分量为:

,,;①应力边界条件:在x = h处,②将式①代入②得:,故知:

,,;③由本构方程和几何方程得:

④积分得:⑤

⑥在x=0处u=0,则由式⑤得,f1(y)= 0;在y=0处v=0,则由式⑥得,f2(x)=0;

11 / 218

因此,位移解为:

4、解:据题意知一点应力状态为平面应力状态,如图示,且知

,则

,且= 0。

代入Mises屈服条件得:

即:

解得:200 MPa;

轴力:P= = 2×50×10-3×3×10-3×200×106=188.495kN

扭矩:M= = 2×502×10-6×3×10-3×200×106=9.425 kN· m

12 / 218

综合测试试题二

一、问答题:(简要回答,必要时可配合图件答题。每小题5分,共10分。)

1、试简述弹塑性力学理论中变形谐调方程(即:相容方程或变形连续方程)的物理意义。

2、简述Tresea屈服条件的基本观点和表达式,并画出其在π平面上的屈服轨迹。

二、填空题:(每空2分,共10分)

1、关于正交各向异性体、横观各向同性体和各向同性体,在它们各自的弹性本构方程中,独立的弹性参数分别只有-------个、--------个和-------个。

2、判别固体材料在复杂应力状态作用下,是否产生屈服的常用屈服条件(或称屈服准则)分别是------和-------。

三、选择题(每小题有四个答案,请选择一个正确的结果。每小题4分,共16分。)

1、受力物体内一点处于空间应力状态(根据OXYZ坐标系),一般确定一点应力状态需______独立的应力分量。

A、18

个B、9

个C、6

个D、2个

2、弹塑性力学中的几何方程一般是指联系____________的关系式。

13 / 218

14 / 218

A 、应力分量与应变分量

B 、面力分量与应力分量

C 、应变分量与位移分量

D 、位移分量和体力分量

3、弹性力学中简化应力边界条件的一个重要原理是____________。

A 、圣文南原理

B 、剪应力互等定理

C 、叠加原理

D 、能量原理

4、一点应力状态一般有三个主应力 。相应的

三个主应力方向彼此______。

A 、平行

B 、斜交

C 、无关

D 、正交

四、试根据下标记号法和求和约定展开下列各式(式中i 、j = x 、y 、z ):(共10分) ①

② ;

五、计算题(共计54分。)

1、在平面应力问题中,若给出一组应力解为:

,,,

式中a、b、c、d、e和f均为待定常数。且已知该组应力解满足相容条件。试问:这组应力解应再满足什么条件就是某一弹性力学平面应力问题的应力解。(15分)

2、在物体内某点,确定其应力状态的一组应力分量为:

=0,=0,=0,=0,=3a ,=4a ,知。

试求:(16分)

①该点应力状态的主应力、和;

②主应力的主方向;

③主方向彼此正交;

3、如图所示,楔形体OA、OB边界不受力。楔形体夹角为2α,集中力P与y轴夹角为β。试列出楔形体的应力边界条件。(14分)

15 / 218

题五、3图

4、一矩形横截面柱体,如图所示,在柱体右侧面上作用着均布切向面力q,在柱体顶面作用均布压力p。试选取:

做应力函数。式中A、B、C、D、E为待定常数。试求:(16分)

(1)上述式是否能做应力函数;

(2)若可作为应力函数,确定出系数A、B、C、D、E。

(3)写出应力分量表达式。(不计柱体的体力)

16 / 218

题五、4图

5、已知受力物体内一点处应力状态为:

(Mpa)

且已知该点的一个主应力的值为2MPa。试求:(15分)

①应力分量的大小。

②主应力、和。

9 5 2 Tresca 屈服条件Mises屈服条 CCAD

17 / 218

1、解:应力解应再满足平衡微分方程即为弹性力学平面应力问题可能的应力解,代入平衡微分方程得:

则知,只要满足条件a=-f,e=-d,b和c可取任意常数。若给出一个具体的弹性力学平面应力问题,则再满足该问题的应力边界条件,该组应力分量函数即为一个具体的弹性力学平面应力问题的应力解。

2、解:由式(2—19)知,各应力不变量为

、,

代入式(2—18)得:

也即(1)

因式分解得:

(2)则求得三个主应力分别为。

18 / 218

设主应力与xyz三坐标轴夹角的方向余弦为

、、。

将及已知条件代入式(2—13)得:

(3)

由式(3)前两式分别得:

(4)

将式(4)代入式(3)最后一式,可得0=0的恒等式。再由式(2—15)得:

则知

19 / 218

;(5)同理可求得主应力的方向余弦、、和主应力的

方向余弦、、,并且考虑到同一个主应力方向可表示成两种形式,则得:

主方向为:

;(6)

主方向为:

;(7)

主方向为:

;(8)

20 / 218

弹塑性力学习题题库加答案汇编

第二章 应力理论和应变理论 2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及 30106.768 6.77() 104sin 2cos 2sin 602cos 60 221 32 3.598 3.60() 22 x y xy MPa MPa σστατα= --=----+=?+=?-=-?-?=-- 代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τxy = +2 3030( )cos 2sin 22 2 1041041cos 602sin 6073222226.768 6.77()104 sin 2cos 2sin 602cos 60 22132 3.598 3.60() 2 x y x y xy x y xy MPa MPa σσσσσατα σστατα+-= ++---+= ++=--?+?=----+=-?+=-?+=+?= 由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。 2—6. 悬挂的等直杆在自重W 作用下(如图所示)。材料比重为γ弹性模量为 E ,横截面面积为A 。试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。 解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得: 题图 1-3

c 截面的内力:N z =γ·A ·z ; c 截面上的应力:z z N A z z A A γσγ??= ==?; 所以离下端为z 处的任意一点c 的线应变εz 为: z z z E E σγε= = ; 则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为: ()2 2z z z z z z z z y z z l d l d d zd E E E γγ γε=???=??=? = ?= ; 显然该杆件的总的伸长量为(也即下端面的位移): ()2 222l l A l l W l l d l E EA EA γγ?????=??= = =  ;(W=γAl ) 2—9.己知物体内一点的应力张量为:σij =500300800300 03008003001100-???? +-?? ??--? ? 应力单位为kg /cm 2 。 试确定外法线为n i (也即三个方向余弦都相等)的微分斜截面上的总应力n P 、正应力σn 及剪应力τn 。 题—图 16

弹塑性力学试题

考试科目:弹塑性力学试题 班号 研 班 姓名 成绩 一、概念题 (1) 最小势能原理等价于弹性力学平衡微分方程和静力边界条件,用最小势能原理求解弹性力学近似解时,仅要求位移函数满足已知位移边界条件。 (2) 最小余能原理等价于 应变协调 方程和 位移 边界条件,用最小余能原理求解弹性力学近似解时,所设的应力分量应预先满足平衡微分方程 和静力边界条件。 (3) 弹性力学问题有位移法和应力法两种基本解法,前者以位移为基本未知量,后者以 应力为基本未知量。 二、已知轴对称的平面应变问题,应力和位移分量的一般解为: ,)11(2)11(10,2,222 2=?? ????--+-+--==+-=+= θθθμμμμμτσσu Cr r A E u C r A C r A r r r 利用上述解答求厚壁圆筒外面套以绝对刚性的外管,厚壁圆筒承受内压p 作用,试求该问题的应力和位移分量的解。 解:边界条件为: a r =时:p r -=σ;0=θτr b r =时:0=r u ;0=θu 。 将上述边界条件代入公式得: ??? ? ???=?????--+-+--=-=+=0)11(2)11(122 2μμμμb C b A E u p C a A b r r 解上述方程组得: ()()()??? ? ???+-- =+---=]21[22121222 2222a b pa C a b b pa A μμμ 则该问题的应力和位移分量的解分别为:

()()()()()()??? ???? ? ? ??? ???=?? ???????? ??---+-???? ??-+-+--==+--+--=+--+---=??011)]21([11)]21([)21(10 21121212112121222222 222 22 222222 22 22222θθθμμμμμμμμτμμμσμμμσu b a pra b a r b pa E u a b pa r a b b pa a b pa r a b b pa r r r 三、已知弹性半平面的o 点受集中力 2 2222 222 2 223 )(2)(2)(2y x y x P y x xy P y x x P xy y x +- =+-=+- =πτπσπσ 利用上述解答求在弹性半平面上作用着n 个集中力i p 构成的力系, 这些力到所设原点的距离分别为i y ,试求应力xy y x τσσ,,的一般表达式。 解:由题设条件知,第i 个力i p 在点(x ,y )处产生的应力将为: y y

武汉大学弹塑性力学简答题以及答案

弹塑性力学简答题 2002年 1什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 3两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 4虚位移原理等价于哪两组方程?推导原理时是否涉及到物理方程?该原理是否适用于塑性力学问题? 平衡微分方程和静力边界条件。不涉及物理方程。适用于塑性力学问题。 5应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量、、不是互相独立的,而是相关,否则导致位移不单值,不连续。 6什么是加载?什么是卸载?什么是中性变载?中性变载是否会产生塑性变形?加载:随着应力的增加,应变不断增加,材料在产生弹性变形的同时,还会产生新的塑性变形,这个过程称之为加载。

卸载:当减少应力时,应力与应变将不会沿着原来的路径返回,而是沿接近于直线的路径回到零应力,弹性变形被恢复,塑性变形保留,这个过程称之为卸载。 中性变载:应力增量沿着加载面,即与加载面相切。应力在同一个加载面上变化,内变量将保持不变,不会产生新的塑性变形,但因为应力改变,会产生弹性应变。 7用应力作为未知数求解弹性力学问题时,应力除应满足平衡方程外还需要满足哪些方程?协调方程和边界条件。 8薄板弯曲中,哪些应力和应变分量较大?哪些应力和应变分量较小? 平面内应力分量最大,最主要的是应力,横向剪应力较小,是次要的应力;z方向的挤压应力最小,是更次要的应力。 9什么是滑移线?物体内任意一点沿滑移线的方向的剪切应力是多少? 在塑性区内,将各点最大剪应力方向作为切线而连接起来的线,称之为滑移线。 剪切应力是最大剪应力。 10什么是随动强化?试用单轴加载的情况加以解释? 2004 1对于各项同性线弹性材料,应用广义胡克定律说明应力与应变主轴重合? ,当某个面上的剪切应力为零时,剪应变也为零,这说明应力的主方向与应变的主方向重合。 2应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3虚位移原理等价于哪两组方程?这说明了什么?

应用弹塑性力学李同林第四章

应用弹塑性力学李同林第四章 这是变形理论。这个理论首先由亨斯基提出,然后由前苏联的伊留申进一步完善。问题提出得更清楚了,并且给出了使用条件。因此,这个理论也被称为亨奇-伊柳辛理论。伊柳欣的变形理论应该满足几个条件: (1)外载荷(包括体力)成比例增加,变形体处于主动变形过程中(即应力强度无中间卸载); (2)材料所用体积不可压缩,采用泊松比μ = 1/2进行计算;(3)材料的应力-应变曲线具有幂强化形式,即 或者 ; 在变形过程中 (4)满足小弹塑性变形的各种条件,塑性变形和弹性变形大小相同。满足上述条件后,变形理论将给出正确的结果。如果负载没有成比例地增加,则外部负载成比例地增加是简单负载的必要条件。这样不仅不能保证物体内部的简单加载状态,而且物体表面也不能满足简单加载条件。体积不可压缩性和泊松比μ=1/2的假设不仅简化了具体计算,而且与实验结果基本一致,因此变形理论的物理关系主要表现为应力挠度和应变挠度之间的关系,这是令人满意的。 法律。 使用幂强化模型可以避免区分弹性区和塑性区,但实际上该模型对不同材料的限制很小,因为各种材料都可以通过选择公式中常数a的指

数m来拟合拉伸曲线。采用小变形条件是因为平衡方程和几何方程是在小变形条件下推导出来的,物理关系也是小变形条件下的关系。伊柳辛不仅明确规定了亨奇变形理论的适用条件,而且证明了简单加载定理。他提出,在小的弹塑性变形条件下,总应变与应力挠度成正比,即: 如果使用主应力,有 等效应变的表达式为: 从这里 因此,Hench-Ilyushin理论的应力-应变关系可以写成如下: 展开等式(4-84): 根据胡克定律(4-33),弹性应变为: 因为塑性应变是总应变和弹性应变之间的差,所以它由方程(4-85)和(1)获得: 公式(4-86)可以缩写为: 实施例4-3众所周知,具有封闭端的薄壁圆筒的平均半径为R,平均直径为D,壁厚为T,圆筒长度为L,并且承受内压P以产生塑性变形。材料是各向同性的。尝试找到: (1)如果忽略弹性应变,周向、轴向和径向应变之比在圆筒壁上的一点处增加; (2)如果材料是不可压缩的,即μ=1/2,圆柱壁上一点的周向、轴向和径向应变总量之比。 因为t/r1是解,所以可以近似地考虑圆柱壁中每个点的径向应力ζr=0。

弹塑性力学复习思考题 (1)

研究生弹塑性力学复习思考题 1. 简答题: (1) 什么是主平面、主应力、应力主方向?简述求一点主应力的步骤? (2) 什么是八面体及八面体上的剪应力和正应力有何其特点 (3) 弹性本构关系和塑性本构关系的各自主要特点是什么? (4) 偏应力第二不变量J 2的物理意义是什么? (5) 什么是屈服面、屈服函数?Tresca 屈服条件和Mises 屈服条件的几何 与物理意义是什么? (6) 什么是Drucker 公设?该公设有何作用?(能得出什么推论?) (7) 什么是增量理论?什么是全量理论? (8) 什么是单一曲线假定? (9) 什么是平面应力问题?什么是平面应变问题?在弹性范围内这两类问题之间有 和联系和区别? (10) 论述薄板小挠度弯曲理论的基本假定? 二、计算题 1、For the following state of stress, determine the principal stresses and directions and find the traction vector on a plane with unit normal (0,1,1)n = 3 111 021 2 0ij σ?? ??=?????? 2、In suitable units, the stress at a particular point in a solid is found to be 2 141 404 01ij σ-?? ??=????-?? Determine the traction vector on a surface with unit normal (cos ,sin ,0)θθ,where θ is a general angle in the range 0θπ≤≤。Plot the variation of the magnitude of the traction vector n T as a function of θ.

应用弹塑性力学习题解答

应用弹塑性力学习题解答 目录 第二章习题答案 设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。 解该平面的法线方向的方向余弦为 而应力矢量的三个分量满足关系 而法向分量满足关系最后结果为 利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。 解求出后,可求出及,再利用关系

可求得。 最终的结果为 已知应力分量为,其特征方程为三次多项式,求。如设法作变换,把该方程变为形式,求以及与的关系。 解求主方向的应力特征方程为 式中:是三个应力不变量,并有公式 代入已知量得 为了使方程变为形式,可令代入,正好项被抵消,并可得关系 代入数据得,, 已知应力分量中,求三个主应力。 解在时容易求得三个应力不变量为, ,特征方程变为 求出三个根,如记,则三个主应力为 记 已知应力分量 ,是材料的屈服极限,求及主应力。 解先求平均应力,再求应力偏张量,, ,,,。由此求得 然后求得,,解出 然后按大小次序排列得到 ,,

已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。 解特征方程为记,则其解为,,。对应于的方向余弦,,应满足下列关系 (a) (b) (c) 由(a),(b)式,得,,代入(c)式,得 ,由此求得 对,,代入得 对,,代入得 对,,代入得 当时,证明成立。 解 由,移项之得 证得 第三章习题答案 取为弹性常数,,是用应变不变量表示应力不变量。

解:由,可得, 由,得 物体内部的位移场由坐标的函数给出,为, ,,求点处微单元的应变张量、转动张量和转动矢量。 解:首先求出点的位移梯度张量 将它分解成对称张量和反对称张量之和 转动矢量的分量为 ,, 该点处微单元体的转动角度为 电阻应变计是一种量测物体表面一点沿一定方向相对伸长的装置,同常利用它可以量测得到一点的平面应变状态。如图所示,在一点的3个方向分别粘贴应变片,若测得这3个应变片的相对伸长为,,,,求该点的主应变和主方向。 解:根据式先求出剪应变。考察方向线元的线应变,将,,,,,代入其 中,可得 则主应变有 解得主应变,,。由最大主应变可得上式只有1个方程式独立的,可解得与轴的夹角为 于是有,同理,可解得与轴的夹角为。 物体内部一点的应变张量为 试求:在方向上的正应变。

弹塑性力学理论及其在工程上的应用

弹塑性力学理论及其在工程上的应用 摘要:弹塑性力学理论在工程中应用十分的广泛,是工程中分析问题的一个重要手段,本文首先是对弹塑性力学理论进行了阐述,然后讨论了它在工程上面的应用。 关键词:弹塑性力学;工程;应用 第一章 弹塑性力学的基本理论 (一)应力理论 1、 应力和应力张量 在外力作用下,物体将产生应力和变形,即物体中诸元素之间的相对位置发生变化,由于这种变化,便产生了企图恢复其初始状态的附加相互作用力。用以描述物体在受力后任何部位的内力和变形的力学量是应力和应变。本章将讨论应力矢量和某一点处的应力状态。 为了说明应力的概念,假想把受—组平衡力系作 用的物体用一平面A 分成A 和B 两部分(图1.1)。如 将B 部分移去,则B 对A 的作用应代之以B 部分对A 部分的作用力。这种力在B 移去以前是物体内A 与B 之间在截面C 的内力,且为分布力。如从C 面上点P 处取出一包括P 点在内的微小面积元素S ?,而S ?上 的内力矢量为F ?,则内力的平均集度为F ?/S ?, 如令S ?无限缩小而趋于点P ,则在内力连续分布的条件下F ?/S ?趋于一定的极限σo ,即 σ=??→?S F S 0lim 2、二维应力状态与平面问题的平衡微分方程式 上节中讨论应力概念时,是从三维受力物体出发的,其中点P 是从一个三维空间中取出来约点。为简单起见,首先讨论平面问题。掌提了平面问题以后.再讨论空间问题就比较容易了。

当受载物体所受的面力和体力以及其应力都与某—个坐标轴(例如z 轴)无 关。平面问题又分为平面应力问题与平面应变问题。 (1) 平面应力问题 如果考虑如图所示物体是一个很薄的 平板,荷载只作用在板边,且平行于板面,即 xy 平面,z 方向的体力分量Z 及面力分量z F 均 为零,则板面上(2/δ±=z 处)应力分量为 0) (2=±=δσz z 0)()(22==±=±=δ δ ττz zy z zx 图2.2平面应力问题 因板的厚度很小,外荷载又沿厚度均匀分布, 所以可以近似地认为应力沿厚度均匀分布。由此, 在垂直于z 轴的任一微小面积上均有 0=z σ, 0==zy zx ττ 根据切应力互等定理,即应力张量的对称性,必然有0==xz yx ττ。因而对于平面应力状态的应力张量为 ???? ??????=00000y yx xy x ij σττσσ 如果z 方向的尺寸为有限量,仍假设0=z σ,0==zy zx ττ,且认为x σ,y σ和xy τ(yx τ)为沿厚度的平均值,则这类问题称为广义平面应力问题。 (2)平面应变问题 如果物体纵轴方向(oz 坐标方向)的尺寸很长,外荷载及体力为沿z 轴均匀分 布地作用在垂直于oz 方向,如图1.4所示的水坝是这类问题的典型例子。忽略端部效应,则因外载沿z 轴方向为一常数,因而可以认为,沿纵轴方向各点的位

应用弹塑性力学 李同林 第四章

第四章弹性变形·塑性变形·本构方程 当我们要确定物体变形时其内部的应力分布和变形规律时,单从静力平衡条件去研究是解决不了问题的。因此,弹塑性力学研究的问题大多是静不定问题。要使静不定问题得到解答,就必须从静力平衡、几何变形和物性关系三个方面来进行研究。考虑这三个方面,就可以构成三类方程,即力学方程、几何方程和物性方程。综合求解这三类方程,同时再满足具体问题的边界条件,从理论上讲就可使问题得到解答。 在第二、三两章中,我们已经分别从静力学和几何学两方面研究了受力物体所应满足的各种方程,即平衡微分方程式(2-44)和几何方程式(3-2)等。所以,现在的问题是,必须考虑物体的物性,也即考虑物体变形时应力和应变间的关系。应力应变关系在力学中常称之为本构关系或本构方程。本章将介绍物体产生变形时的弹性和塑性应力应变关系。 大量实验证实,应力和应变之间的关系是相辅相成的,有应力就会有应变,而有应变就会有应力。对于每一种具体的固体材料,在一定条件下,应力和应变之间有着确定的关系,这种关系反映了材料客观固有的特性。下面我们以在材料力学所熟知的典型塑性金属材料低碳钢轴向拉伸试验所得的应力应变曲线(如图4-1所示)为例来说明和总结固体材料产生弹性变形和塑性变形的特点,并由此说明塑性应力应变关系比弹性应力应变关系要复杂的多。 在图4-1中,OA段为比例变形阶段。在这一阶段中,应力和应变之间的关系是线性的,即可用虎克定律来表示: ζ=Eε(4-1) 式中E为弹性模量,在弹性变形过程中,E为常数。A点对应的应力称为比例极限,记作ζP。由A点到B 点,已经不能用线性关系来表示,但变形仍是弹性的。B点对应的应力称为弹性极限,记作ζr。对于许多材料,A点到B点的间距很小,也即ζP与ζr数值非常接近,通常并不加以区分,而均以ζr表示,并认为当应力小于ζr时,应力和应变之间的关系满足式(4-1)。在当应力小于ζr时,逐渐卸去载荷,随着应力的减小,应变也渐渐消失,最终物体变形完全得以恢复。若重新加载则应力应变关系将沿由O到B的原路径重现。BF段称为屈服阶段。C点和D点对应的应力分别称为材料的上屈服极限和下屈服极限。应力到达D点时,材料开始屈服。一般来说,上屈服极限受外界因素的影响较大,如试件截面形状、大小、加载速率等,都对它有影响。因此在实际应用中一般都采用下屈服极限作为材料的屈服极限,并记作ζs。有些材料的屈服流动阶段是很长的,应变值可以达到0.01。由E点开始,材料出现了强化现象,即试件只有在应力增加时,应变才能增加。如果在材料的屈服阶段或强化阶段内卸去载荷,则应力应变不会顺原路径返回,而是沿着一条平行于OA线的MO'''(或HO'、KO'')路径返回。这说明材料虽然产生了塑性变形,但它的弹性性质却并没有变化。如果在点O'''(或O'、O'')重新再加载,则应力应变曲线仍将沿着O'''MFG (或O'HEFG、O''KFG)变化,在M点(或H点、K点)材料重新进入塑性变形阶段。显然,这就相当于提高了材料的屈服极限。经过卸载又加载,使材料的屈服极限升高,塑性降低,增加了材料抵抗变形能力的现象,称为强化(或硬化)。

弹塑性力学习题及答案

1 本教材习题和参考答案及部分习题解答 第二章 2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。 答案 (1)pi iq qj jk pk δδδδδ=; 答案 (2)pqi ijk jk pq qp e e A A A =-; 解:(3)()ijp klp ki lj ik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。 2.2证明:若ij ji a a =,则0ijk jk e a =。 (需证明) 2.3设a 、b 和c 是三个矢量,试证明: 2[,,]??????=???a a a b a c b a b b b c a b c c a c b c c 证:因为1 231 111232221 2 33 3 3i i i i i i i i i i i i i i i i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ?? ???? ??????=?????????????????? , 所以 1 231111232221 2 33 3 3 1 231 1112322212 333 3det det()i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ?? ??????????==??? ??????????????? 即得 123111 2 123222123333 [,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ??????=???==a a a b a c b a b b b c a b c c a c b c c 。 2.4设a 、b 、c 和d 是四个矢量,证明: ()()()()()()???=??-??a b c d a c b d a d b c 证明:()()??=a b c d ?

弹塑性力学简答题

弹塑性力学简答题

弹塑性力学简答题 第一章 应力 1、 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2、应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系? 相同。110220330 S S S σσσσσσ=+=+=+。 4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。 5、解释应力空间中为什么应力状态不能位于加载面之外? 保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 6、Pie 平面上的点所代表的应力状态有何特点? 该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。 固体力学解答必须满足的三个条件是什么?可否忽略其中一个? 第二章 应变 1、从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 3、应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么? 满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。 5、应变协调方程的物理意义是什么? 对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。 6、已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?

(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论 2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。己求得应力解为: σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ; 试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。 解:首先列出OA 、OB 两边的应力边界条件: OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0 代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0; OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0 cos sin 0x xy yx y σβτβτβσβ+=??+=?……………………………… (a ) 将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得: ()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=?? ? --+-=?? L L L L L L L L L L L L L L L L L L 化简(b )式得:d =γ1ctg 2β; 化简(c )式得:c =γctg β-2γ1 ctg 3β 2—17.己知一点处的应力张量为3 1260610010000Pa ??????????? 试求该点的最大主应力及其主方向。 解:由题意知该点处于平面应力状态,且知:σx =12× 103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得: (()() 3 1.2333 3 121010 2217.0831******* 6.082810 4.9172410x y Pa σσσ?++?=±=????=?=±?=? 则显然: 3312317.08310 4.917100Pa Pa σσσ=?=?= σ1 与x 轴正向的夹角为:(按材力公式计算) ()22612 sin 226 12102 cos 2xy x y tg τθθσσθ--?-++ = = ==+=--+ 显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376° 题图 1-3

弹塑性力学博士生考题03答案

2003年结构工程博士研究生入学考试 弹塑性力学试卷答案 第一道题答案: 圣维南原理可以这样陈述:如果把作用在物体表面一小部分边界上的面力,被分布不同但静力等效的面力(主矢量相同,对同一点的主矩也相同)所代替,那么,近处的应力分布将有显著的改变,但远处所受的影响小得可以忽略不计。 圣维南原理也可以这样陈述:如果物体一小部分边界上的面力是一自相平衡的力系(主矢量及主矩都等于零),那么,这个面力就只会在靠近受力表面附近产生显著的应力,远处(与受力表面之尺寸相较)产生的应力可以忽略不计。 上面两种陈述是一致的,因为,静力等效的两组面力,它们的差异是一个平衡力系。 正确理解和运用圣经南原理的关键是弄清“一小部分”,“静力等效”,“近处与远处”的概念。 实践应用中,圣维南原理可提供: 1.我们知道,弹性力学问题在数学上被称为边值问题,其待求的未知量(应力、位移、应变)完全满足基本方程并不困难,但是,要求在全部边界上都逐点地满足边界条件,往往会发生很大困难。为了使问题得到简化或有解,在符合圣维市原理的那部分边界上,可以放弃严格的逐点边界条件,而改为满足另一组静力等效的以合力形式表示的整体边界条件。这对于离边界较远处的应力状态,并无显著的误差。这已经为理论分析和实验所证实。 2.当物体的一小部分边界,仅仅知道物体所受外力的合力,而不能确知其分布方式时,就不能逐点地写出面力的边界条件,因而难以求解或无法求解。根据圣维南原理,可以在这一小部分边界,直接写合力条件进行求解。 3.当物体一小部分边界上的位移边界条件不能精确满足时,有时也可以应用圣维南原理得到有用的解答。 4.在工程结构的受力分析中,根据圣维南原理,有时可近似地判断应力分布和应力集中的情况。 第三道题答案:

弹塑性力学试题集锦(很全,有答案)

1 / 218 弹塑性力学2008级试题 一 简述题(60分) 1)弹性与塑性 弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。 塑性:物体在引起形变的外力被除去以后有部分变 形不能恢复残留下来的这一性质。 2)应力和应力状态 应力:受力物体某一截面上一点处的内力集度。 应力状态:某点处的9个应力分量组成的新的二阶张量∑。 3)球张量和偏量 球张量:球形应力张量,即σ=0 00000m m m σσσ?????????? ,其 中()1 3 m x y z σσσσ=++ 偏 量 : 偏 斜 应 力 张 量 , 即 x m xy xz ij yx y m yz zx zy z m S σστττσστττσσ?? -??=-????-?? ,其中

2 / 218 ()1 3 m x y z σσσσ= ++ 5)转动张量:表示刚体位移部分,即 1102211022110 22u v u w y x z x v u v w ij x y z y w u w v x z y z W ? ? ?? ??????--?? ? ? ??????? ???? ? ? ?????????? =-- ? ??? ? ???????????????????????-- ? ? ????????? ?? ?? 6)应变张量:表示纯变形部分,即 112211221122u u v u w x y x z x v u v v w ij x y y z y w u w v w x z y z z ε?? ?? ???????++? ? ? ? ???????? ???? ? ? ????? ?????? =++ ? ??? ? ???????????? ?? ?? ?????????++ ? ? ?????????? ?? ?? 7)应变协调条件:物体变形后必须仍保持其整体性和连续性,因此各应变分量之间,必须要有一定得关

弹塑性力学总结

应用弹塑性力学读书报告 姓名: 学号: 专业:结构工程 指导老师:

弹塑性力学读书报告 弹塑性力学是固体力学的一个重要分支,是研究可变形固体变形规律的一门学科。研究可变形固体在荷载(包括外力、温度变化等作用)作用时,发生应力、应变及位移的规律的学科。它由弹性理论和塑性理论组成。弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。弹塑性力学也是连续介质力学的基础和一部分。弹塑性力学包括:弹塑性静力学和弹塑性动力学。 弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。 1 基本思想及理论 1.1科学的假设思想 人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来,在这个过程中就要从众多个体事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学问题的研究离不开数学工具,如果要考虑材料的所有性质,那么一些问题的解答将无法进行下去。所以,在弹塑性力学中,根据具体研究对象的性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,使问题得到简化。 1.1.1连续性假定 假设物体是连续的。就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。 1.1.2线弹性假定(弹性力学) 假设物体是线弹性的。就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料服从虎克定律,应力与应变成正比。

(整理)弹塑性力学答案

一、简答题 1答:(1)如图1所示,理想弹塑性力学模型: e s s e E E σε εεσεσεε=≤==>当当 (2)如图2所示,线性强化弹塑性力学模型: () 1e s s e E E σε εεσσεεεε=≤=+->当当 (3)如图3所示,幂强化力学模型:n A σε= (4)如图4所示,钢塑性力学模型:(a )理想钢塑性: s s εσσεσσ=≤=>当不确定 当 (b )线性强化钢塑性: ()0 /s s s E εσσεσσσσ=≤=->当当 图1理想弹塑性力学模型 图2线性强化弹塑性力学模型 图 3幂强化力学模型 (a ) (b ) 图4钢塑性力学模型 2答:

3答:根据德鲁克公设, ()00,0p p ij ij ij ij ij d d d σσεσε-≥≥。在应力空间中,可将0ij ij σσ-作为向量ij σ与向量0 ij σ之差。由于应力主轴与应变增量主轴是重合的,因此,在应力空间 中应变增量也看作是一个向量。利用向量点积的定义: ()0 0cos 0p p ij ij ij ij ij ij d σ σεσσε?-=-≥,?为两个向量的夹角。由于0ij ij σσ-和p ij ε都是 正值,要使上式成立,?必须为锐角,因此屈服面必须是凸的。 4 答:逆解法就是先假设物体内部的应力分布规律,然后分析它所对应的边界条件,以确定这样的应力分布规律是什么问题的解答。 半逆解法就是针对求解的问题,根据材料力学已知解或弹性体的边界形状和受力情况,假设部分应力为某种形式的函数,从而推断出应力函数,从而用方程和边界条件确定尚未求出的应力分量,或完全确定原来假设的尚未全部定下来的应力。如果能满足弹性力学的全部条件,则这个解就是正确的解答。否则需另外假定,重新求解。 二、计算题 1解:对于a 段有:0N a a a a F A E a a σσεε==?= ,对b 段有:0 N b b b b P F A E b b σσεε-==?= 又a b ?=? 则N bP F a b = + 2解:代入公式,116I =,227I =-,30I = 故117.5MPa σ=,20MPa σ=, 3 1.5MPa σ=- ()0123/3 5.33MPa σσσσ=++= 08.62MPa τ= = 3解:(1)代入公式,110I =,2200I =-,30I = 故主应力:120MPa σ=,20MPa σ=, 310MPa σ=-

弹塑性力学试题答案完整版

弹塑性力学2008、2009级试题 一、简述题 1)弹性与塑性 弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。 塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。 2)应力和应力状态 应力:受力物体某一截面上一点处的内力集度。 应力状态:某点处的9个应力分量组成的新的二阶张量∑。 3)球张量和偏量(P25) 球张量:球形应力张量,即σ=0 00000m m m σσσ?????????? ,其中()13m x y z σσσσ=++ 偏量:偏斜应力张量,即x m xy xz ij yx y m yz zx zy z m S σστττσστττσσ?? -?? =-????-? ?,其中()13 m x y z σσσσ=++ 4)描述连续介质运动的拉格朗日法和欧拉法 拉格朗日描述也被称为物质描述,同一物质点在运动过程中的坐标值不变,物质体变形表现为坐标轴变形、基矢量的随体变化。 采用拉格朗日描述时,在变形过程中网格节点和积分点始终与物质点一致,便于精确描述材料特性、边界条件、应力和应变率; 欧拉描述也被称为空间描述。在欧拉描述中,当前构形被离散化,初始构形(参考构形)是未知的。由于采用了物质对固定网格的相对运动,它具有以下优点: 欧拉描述便于对固定空间区域特别是包含流动、大变形和物质混合问题的建模。 5)转动张量:表示刚体位移部分,即 1102211022110 22u v u w y x z x v u v w ij x y z y w u w v x z y z W ? ? ?? ??????--?? ? ? ??????? ???? ? ? ?????????? =-- ? ??? ? ??????????? ????????????-- ? ? ????????? ?? ?? 6)应变张量:表示纯变形部分,即

弹塑性力学试卷

一、问答题:(简要回答,必要时可配合图件答题。每小题5分,共10分。) 1、简述固体材料弹性变形的主要特点。 2、试列出弹塑性力学中的理想弹塑性力学模型(又称弹性完全塑性模型)的应力与应变表达式,并绘出应力应变曲线。 二、填空题:(每空2分,共8分) 1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。(参照oxyz直角坐标系)。 2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。 三、选择题(每小题有四个答案,请选择一个正确的结果。每小题4分,共16分。) 1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。裂纹展布的方向是:_________。 A、沿圆柱纵向(轴向) B、沿圆柱横向(环向) C、与纵向呈45°角 D、与纵向呈30°角 2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。该板危险点的最大拉应力是无孔板最大拉应力__________倍。 A、2 B、3 C、4 D、5 3、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。)则在该点处的应变_________。 A、一定不为零 B、一定为零 C、可能为零 D、不能确定 4、以下________表示一个二阶张量。 A、B、C、D、 四、试根据下标记号法和求和约定展开下列各式:(共8分) 1、;(i ,j = 1,2,3 ); 2、;

五、计算题(共计64分。) 1、试说明下列应变状态是否可能存在: ;() 上式中c为已知常数,且。 2、已知一受力物体中某点的应力状态为: 式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量 之和。为平均应力。并说明这样分解的物理意义。 3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。若选取=ay2做应力函数。试求该物体的应力解、应变解和位移解。 (提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。) 题五、3图

应用弹塑性力学习题解答

应用弹塑性力学习题 解答 Revised on November 25, 2020

应用弹塑性力学习题解答 目录 第二章习题答案 设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。 解该平面的法线方向的方向余弦为 而应力矢量的三个分量满足关系 而法向分量满足关系最后结果为 利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。

解求出后,可求出及,再利用关系 可求得。 最终的结果为 已知应力分量为,其特征方程为三次多项式,求。如设法作变换,把该方程变为形式,求以及与的关系。 解求主方向的应力特征方程为 式中:是三个应力不变量,并有公式 代入已知量得 为了使方程变为形式,可令代入,正好项被抵消,并可得关系 代入数据得,, 已知应力分量中,求三个主应力。 解在时容易求得三个应力不变量为, ,特征方程变为 求出三个根,如记,则三个主应力为 记 已知应力分量 ,是材料的屈服极限,求及主应力。 解先求平均应力,再求应力偏张量,,

,,,。由此求得 然后求得,,解出 然后按大小次序排列得到 ,, 已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。 解特征方程为记,则其解为,,。对应于的方向余弦,,应满足下列关系 (a) (b) (c) 由(a),(b)式,得,,代入(c)式,得 ,由此求得 对,,代入得 对,,代入得 对,,代入得 当时,证明成立。 解 由,移项之得 证得

第三章习题答案 取为弹性常数,,是用应变不变量表示应力不变量。 解:由,可得, 由,得 物体内部的位移场由坐标的函数给出,为, ,,求点处微单元的应变张量、转动张量和转动矢量。 解:首先求出点的位移梯度张量 将它分解成对称张量和反对称张量之和 转动矢量的分量为 ,, 该点处微单元体的转动角度为 电阻应变计是一种量测物体表面一点沿一定方向相对伸长的装置,同常利用它可以量测得到一点的平面应变状态。如图所示,在一点的3个方向分别粘贴应变片,若测得这3个应变片的相对伸长为,, ,,求该点的主应变和主方向。 解:根据式先求出剪应变。考察方向线元的线应变,将,,,,,代入其中,可得 则主应变有

弹塑性力学题目

弹塑性力学试题 考试时间:2小时 考试形式:笔试,开卷 一﹑是非题(下列各题,你认为正确的在括号内打“√”,错误的打“×”。每小 题3分,共21分) 1.应力状态不变量与坐标系的选取有关。() 2.若受力物体中取出的微元体处于平衡状态,则整个物体也处于平衡状态。() 3.在与三个应力主轴成相同角度的斜面上,正应力3/)(321σσσσ++=N 。( )4.弹性力学物理方程利用了连续性、线弹性、各向同性三个假设条件。( ) 5.塑性力学假设屈服准则与静水压力无关。( )6.平面问题中应力函数?的量纲为[FL]。()7.Ritz 法和Galerkin 法解薄板小挠度弯曲问题时,都设∑=m m m w C w ,但Ritz 法中m w 必 须满足全部边界条件,Galerkin 法中m w 只需满足几何边界条件。( )二﹑填空及简答题(填空每小题3分,共24分) 1.求解塑性问题,可将应力——应变曲线理想化,分为5种简单模型,它们分别是( )。2.空间问题物理方程:e G y y λεσ+=2,式中λ称为( ),其值为(),e 称为(),其值为()。3.图示弹性体(平面问题)边界12 在极坐标系中的应力边界条件为()。4.简述求解薄板小挠度弯曲问题的思路。(5分) 5.简述弹性力学中逆解法和半逆解法成立所依据的原理。(5分) 6.弹性力学空间问题,物体内任一点有6个应力、6个应变、3个位移共15个未知函数,弹性力学从哪些方面来建立这些未知函数之间的关系?(5分) 1o 301q 2q x y 243

三﹑计算题(共55分) 1.试求平面应变问题的Tresca 屈服条件的表达式。(8分) 2.一圆环内半径为a ,外半径为b 。在极坐标系中设函数2 21ln r C r C +=?,式中C 1,C 2均为常数。1)?是否可作为应力函数?2)写出应力分量表达式。3)内外边界上对应着怎样的边界条件?(10分) 3.图示矩形薄板,边长分别为a ,b ,取挠度222222)4/()4/(b y a x C w --=,(C 为常数), 试求: (1)板面上的荷载),(y x q ; (2)板内的最大弯矩()()max max y x M M 、; (3)矩形薄板所应满足的边界条件。(12分) 4.圆形薄板,半径为a ,边界简支,在上板面中心受集中荷载P 作用,下板面中心有一刚度为k 的弹簧弹性支承,求挠度w 及内力r M 、θM 。(10分) 5.一均质空心厚壁圆筒内外半径分别为a 和b ,受内压q 作用,该圆筒由不可压缩的理想材料制成,处于平面应变状态,q 增加时满足简单加载定理,本构方程为3εσA =(A 为常数),求应力分布θσσ,r 。(15分)

相关文档
最新文档