第二十三届希望杯全国数学邀请赛初二第2试试题及答案标准版
第二十四届“希望杯”全国数学邀请赛 初二(八年级)第2试试题及答案
第24届“希望杯”全国数学邀请赛初二 第二试2013年4月15日 上午8:30至10:30一、 选择题(本大题共10小题,每小题4分,菜40分。
)以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内。
1、红丝带是关注艾滋病防治问题的国际性标志,人胶将红丝带剪成小段,并用别针将折叠好的红丝带加紧在胸前,如图1所示,红丝带重叠部分形成的图形是( ) (A )正方形 (B )矩形 C )菱形 (D )梯形2、设a 、b 、C 是不为零的实数,那么||||||a b c x a b c =+-的值有( ) (A )3种 (B )4种 (C )5种 (D )6种3、ABC ∆的边长分别是21a m =-,21b m =+,()20c m m =>,则ABC ∆是( ) (A )等边三角形 (B )钝角三角形 (C )直角三角形 (D )锐角三角形4、古人用天干和地支记序,其中天干有10个;甲乙丙丁戊己庚辛壬癸,地支有12个;子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字对应排列成如下两行; 甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸甲乙丙丁…… 子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅……,我国的农历纪年就是按这个顺序得来的,如公历2007年是农历丁亥年,那么从今年往后,农历纪年为甲亥年的那一年在公历中( )(A )是2019年, (B )是2031年, (C )是2043年, (D )没有对应的年号5、实数 a 、b 、m 、n 满足a<b, -1<n<m, 若1a mb M m +=+,1a nbN n+=+,则M 与N 的大小关系是( )(A )M>N (B)M=N (C)M<N (D)无法确定的。
6、若干个正方形和等腰直角三角形拼接成如图2所示的图形,若最大的正方形的边长是7cm ,则正方形A 、B 、C 、D 的面积和是( )(A )214cm (B )242cm (C )249cm (D )264cm7、已知关于x 的不等式组230320a x a x +>⎧⎨-≥⎩恰有3个整数解,则a 的取值范围是( )(A )23≤a ≤32 (B)43≤a ≤32 (C)43<a ≤32 (D)43≤a <328 、The number of intersection point of the graphs of function||k y x=and function (0)y kx k =≠ is( ) (A)0 (B)1 (C)2 (D)0 or 2.9、某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图3所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,则服药一次治疗疾病有效的时间为( ) (A )16小时 (B )7158小时 (C )151516小时 (D )17小时 )10、某公司组织员工一公园划船,报名人数不足50人,在安排乘船时发现,每只船坐6人,就剩下18人无船可乘;每只船坐10人,那么其余的船坐满后内参有一只船不空也不满,参加划船的员工共有( )(A )48人 (B )45人 (C )44人 (D )42人二、填空题(本大题共10小题,每小题4分,共40分)11、已知a b c ⋅⋅o 为ABC ∆三边的长,则化简|a b c -+|+2()a b c -+的结果是___ 12、自从扫描隧道显微镜发明后,世界上便诞生了一间新科学,这就是“纳米技术”,已知1毫米微米,1微米纳米,那么2007纳米的长度用科学记数法表示为__米。
第3届希望数学邀请赛初二第2试试题答案 word版下载
希望杯第三届(1992年)初中二年级第二试试题答案与提示一、选择题提示:5.等式2x+x2+x2y2+2=-2xy化简为(x+1)2+(xy+1)2=0.∴x+1=0,xy+1=0.解之得x=-1,y=1.则x+y=0.∴应选(B).6.由题设得:xy=1,x+y=4n+2由2x2+197xy+2y2=1993,得2(x+y)2+193xy=1993.将xy=1,x+y=4n+2代入上式得:(4n+2)2=900,即4n+2=30.∴n=7.∴应选(A).7.由∠A=36°,AB=AC,可得∠B=∠C=72°.∴∠ABD=∠CBD=36°,∠BDC=72°.∴AD=BD=BC.由题意,1=(AB+AD+BD)-(BD+BC+CD)=AB-CD=AC-CD=AD=BD.∴应选(B).8.原方程化为(x2-2x+1)-5|x-1|+6=0.即|x-1|2-5|x-1|+6=0.∴|x-1|=2,或|x-1|=3.∴x1=-1,x2=3,x3=-2,x4=4.则x1+x2+x3+x4=4.∴应选(D).9.连结CB',∵AB=BB',∴S△BB'C=S△ABC=1,又CC'=2BC∴S△B'CC'=2S△BB'C=2.∴S△BB'C'=3.同理可得S△A'CC'=8,S△A'B'A=6.∴S△A'B'C'=3+8+6+1=17.∴应选(D).10.原方程为|3x|=ax+1.(1)若a=3,则|3x|=3x+1.当x≥0时,3x=3x+1,不成立.(2)若a>3.综上所述,a≥3时,原方程的根是负数.∴应选(B).另解:(图象解法)设y1=|3x|,y2=ax+1。
分别画出它们的图象.从图87中看出,当a≥3时,y1=|3x|的图象直线y2=ax+1的交点在第二象限.二、填空题提示:1.∵49=7×7,∴所求两数的最大公约数为7,最小公倍数为42.设a=7m,b=7n,(m <n),其中(m,n)=1.由ab=(a,b)·[a,b].∴7m·7n=7·42,故mn=6.又(m,n)=1,∴m=2,n=3,故a=14,b=21.经检验,142+212=637.∴这两个数为14,21.2.∴1993=1×1993=(-1)×(-1993),(1993为质数).而x1·x2=1993,且x1,x2为负整数根,∴x1=-1,x2=-1993.或x1=-1993,x2=-1.则4.设S△BOC=S,则S△AOB=6-S,S△COD=10-S,S△AOD=S-1.由于S·(S-1)=(6-S)(10-S),解之得S=4.6.∵432=1849<1900<1936=442,又1936<1993<2025=452.其他都不合适.此时所求方程为14x2-53x+14=0.8.过E作EH⊥BC于H.∵AD⊥BC.∴EH∥AD.又∠ACE=∠BCE,EA⊥AC,EH⊥BC.∴EA=EH,∠AEC=∠HEC.∵EH∥AD,∴∠HEC=∠AFE,∴∠AEF=∠AFE.∴AE=AF,∴EH=AF.即可推出△AGF≌△EHB.∴AG=EB=AB-AE=14-4=10.∴BG=AB-AG=14-10=4.10.设初一获奖人数为n+1人,初二获奖人数为m+1人(n≠m).依题意有3+7n=4+9m,即7n=9m+1 ①由于50<3+7n≤100,50<4+9m≤100.得n=7,8,9,10,11,12,13.m=6,7,8,9,10.但满足①式的解为唯一解:n=13,m=10.∴n+1=14,m+1=11.获奖人数共有14+11=25(人).三、解答题1.解:若不考虑顺序,所跑的路线有三条:OABCO(或OCBAO),OACBO(或OBCAO),OBACO(或OCABO).其中OABCO的距离最短.记d(OABCO),d(OACBO),d(OBACO)分别为三条路线的距离.在AC上截取AB'=AB,连结OB'.则△ABO≌△AB'O.∴BO=B'O.d(OABCO)-d(OACBO)=(OA+AB+BC+CO)-(OA+AC+CB+BO)=AB+CO-AC-BO=AB+CO-AB'B'CB'O=CO-(B'C+B'O)<0同理可得,d(OABCO)-d(OBACO)<0.所以路线OABCO的距离最短.因此x与y是关于t的方程解二:由已知条件得两边加上a4+1,得显然0<a<1,0<a2<1.。
Intermediate_23_1_2
第二十三届 希望杯 全国数学邀请赛初一㊀第2试试题一㊁选择题(每小题4分,共40分.)1.下面四个命题:(1)若两个角是同旁内角,则这两个角互补.(2)若两个角互补,则这两个角是同旁内角.(3)若两个角不是同旁内角,则这两个角不互补.(4)若两个角不互补,则这两个角不是同旁内角.其中错误的命题的个数是()(A )1.(B )2.(C )3.(D )4.2.若两位自然数a b 是质数,且交换数字后的两位数b a 也是质数,则称a b 为绝对质数.于是两图1位数中的所有绝对质数的乘积的个位数字是().(A )1.(B )3.(C )7.(D )9.3.如图1,将边长为4c m 的等边әA B C 沿边B C 向右平移2c m 得әD E F ,D E 与A C 交于点G ,则S 四边形A B F D ʒS әA B C =()(A )3ʒ2.(B )2ʒ1.(C )5ʒ2.(D )3ʒ1.4.有理数a ,b ,c 在数轴上的位置如图2所示,O 为原点,则代数式图2|a +b |-|b -a |+|a -c |+c =()(A )-3a +2c .(B )-a -a b -2c .(C )a -2b .(D )3a .5.T h e p e r i m e t e r o f a t r i a n g l e i s 18,w h i l e e a c h s i d e i s a n i n t e g e r .I f t h e l o n g e s t s i d e i s n o t a p r i m en u m b e r ,t h e n t h en u m b e r o f s u c h t r i a n g l e i s ()(A )4.(B )5.(C )6.(D )7.(英汉小词典:p e r i m e t e r o f a t r i a n g l e 三角形的周长;pr i m en u m b e r 质数)6.77可以表示成n (n ȡ2)个连续自然数的和,则n 的值的个数是()(A )1.(B )2.(C )3.(D )4.图37.如图3,әA B C 中,øB C A =90ʎ,点E 在边C A 上,点D 和F 在边B A 上,若B C =C D =D E =E F =F A ,则øA =()(A )20ʎ.(B )18ʎ.(C )15ʎ.(D )12ʎ.8.已知x ,y 是非负整数,且使x -12=4-y 3是整数,那么这样的数对(x ,y )有()个.(A )1.(B )2.(C )3.(D )2012.9.身高两两不同的30个学生面向老师站成一排.其中恰有11个学生高于自己左侧相邻的同学,那么高于自己右侧相邻同学的学生有()人.(A )11.(B )12.(C )18.(D )19.10.若x +y =3,x y =1,则x 5+y 5=()(A )33.(B )231.(C )123.(D )312.二㊁填空题(每小题4分,共40分.)11.计算:20123+20112-2013ˑ2012ˑ2011-2013ˑ2011=.12.已知әA B C 中,A B =2,B C =9,若A C 的长是奇数,则A C =.13.若自然数x 除以3余2,除以4余3,除以5余4,则x 除以15所得余数是.14.I f 4x 2n +3y 2m a n d -7x m +2y 6n a r e s i m i l a r t e r m s ,t h e n (m +n )ˑm n =.图415.如图4,在四边形A B C D 中,A D ʊB C ,点E 在A D 上,点F ㊁G 在B C 上,并且A E =E D =B F =F G =G C .以A ㊁B ㊁C ㊁D ㊁E ㊁F ㊁G 这7个点中的三个为顶点的三角形中,面积最小的三角形有个;面积最大的三角形有个.16.用黑㊁白两种颜色的1ˑ1正方形瓷砖,按图5所示的方式铺地板:(图(1)中有3ˑ5块瓷砖,以后各图都比前一个加铺2ˑ5块瓷砖),则有2014块黑色瓷砖的是图5中的第个图.图5图617.图6是用若干个同样的小正方体拼成的立体的俯视图,若此立体最高有三层,则此立体最少有个小正方体,最多有个小正方体.18.1900年以后出生的人,他出生年份的最后两个数字组成的两位数(如果末两位数字为00或01,则看成两位数00或01,其余类推),加上这个人今年的年龄数,所得的结果是或.(注:今年的年龄数=2012-出生年份)19.已知正n 边形A 1A 2A 3 A n -1A n 的面积是60,若四边形A 1A 2A k A k +1是一个面积为20的矩形,则这个正n 边形的一个内角是度.20.设P (x )=15x 5+12x 4+13x 3-130x ,则13[P (2)-P (-2)]=.三、解答题每题都要写出推算过程.21.(本题满分10分)已知a ,b ,c 都是整数,如果对任意整数x ,代数式a x 2+b x +c 的值都能被3整除.证明:a b c 可被27整除.22.(本题满分15分)某公司以每吨500元的价格收购了100吨某种药材.若直接在市场上销售,每吨的售价是1000元.该公司决定加工后再出售,相关信息如下表所示:工艺每天可加工药材的吨数出品率售价(元/吨)粗加工1480%5000精加工660%11000注:①出品率指加工后所得产品的质量与原料的质量的比值.②加工后的废品不产生效益.受市场影响,该公司必须在10天内将这批药材加工完毕,现有3种方案:(A )全部粗加工;(B )尽可能多地精加工,剩余的直接在市场上销售;(C )部分粗加工,部分精加工,恰好10天完成.问:哪个方案获得的利润最大?是多少?23.(本题满分15分)有一系列数,前两个数是1,2,从第三个数起,每个数都等于它前面相邻的两个数的和的个位数字.请回答以下问题:(1)在这列数中能否依次出现相邻的2,0,1,2这四个数?说明理由.(2)这列数中的第2012个数字是什么?说明理由.。
小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
26届希望杯答案
26届希望杯答案【篇一:第26届希望杯初二第1试试题word版及详细解答】s=txt>初二第1试试题2015年3月15日上午8:30至10:00 一、选择题(每小题4分,共40分)1.若a+b=10,ab=24,则a2+b2的值是()(a) 48 (b)76 (c)58(d)522.若一次函数y=x+5的图像经过点p(a,b)和q(c,d),则ad+bc-ac-bd的值是() (a) 9(b)16 (c)25(d)-25 3.已知为的平方根,则满足此关系的x的值得个数是()(a) 4(b)3 (c)2 (d)14.suppose a is an integer ,solutions to the equationax+5=4x+1 are positive integers.then thenumber of a is( )(a) 2 (b)3(c)4(d)5(d)126.如图1所示,点m,n,p,q分别是边长为1的正方形abcd各边的中点,则阴影部分的面积是() (a)(b)(c) (d)7.如图2所示,字母a到g分别代表1到7中的一个自然数,若a+g+d,b+g+e,c+g+f分别被3除,都余1,则g是() (a) 1或4(b) 1或7 (c ) 4或7 (d)1或4或7 8.下列说法:①平行四边形包含矩形、菱形和正方形②平行四边形是中心对称图形③平行四边形的任一条角平分线可把平行四边形分成两个全等的三角形④平行四边形两条对角线把平行四边形分成四个面积相等的三角形其中正确说法的序号是( )(a) ①②④(b) ①③④(c ) ①②③ (d) ①②③④ 9.有一列数:10,2,5,2,1,2,x,(x是正整数),若将这列数的平均数、中位数及众数依照大小次序排列,恰好中间的数是左、右两个数的平均数,则x可能取得值得和是() (a) 3(b)9(c)17 (d)2010.对于自然数m,如果m能够整除13232223(m-1),那么称m为“公除数”,则4到20(包括4和20)的自然数中,“公除数”的个数是()(a) 9(b) 10(c ) 11(d) 12二、 a组填空题(每小题4分,共40分) 11.若,,则,则a+b=_____________12.已知a,b都是有理数,且13.已知a+b+c=1.14.已知m,n是实数,且当x2015时,15.设a,b,c都是正整数,且1abc,abc=2015,那么16.若关于x,y的方程组与方程组的解相同,则a+b=___________17.as shown in the fig.3,b and c are points on ad in △aed.ab=cd,eb=ec=10,bc=12. the perimeter of △aed is twice the perimeter of △ebc. then.( s△aed represents the area of △aed, s△ebc represents the area of △ebc) .(英汉小词典;perimeter 周长,area 面积) 18.若19.如图4所示,四边形abcd中,对角线ac平分∠bad, 且ab=21,ad=9,bc=dc=10,则ac=_______ 20.已知三、b组填空题(每小题8分,共40分)21.若xy0,则点(x,y)在直角坐标系中位于第_____象限或第_____象限 22.已知,则x+y的值等于______或_________根据数阵排列的规律,第5行从左向右第5个数位________,第n (n≥3,且n是整数)行从左向右第5个数是_____(用含n的代数式表示)25.长为的三条线段可以构成三角形,则自然数n=_____或________.答案详细解析2015年3月15日上午8:30至10:00 三、选择题(每小题4分,共40分)1.若a+b=10,ab=24,则a2+b2的值是()(a) 48 (b)76 (c)58(d)52解析:因为(a+b)2=a2+b2+2ab,代入得 102=a2+b2+48,a2+b2=100-48=52这是完全平方公式(a+b)2=a2+b2+2ab 公式得变式应用,把a+b ,a2+b2,ab 看做一个整体,知道其中2个求第三个式子都可以,只要把其中2个值代入即可求得,这是数学的整体思想。
第二十三届“希望杯”全国数学邀请赛(初二 第二试)
第二十三届“希望杯”全国数学邀请赛初二第2试2016年4月8日上午9:00至11:00得分一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在后面的圆括号内。
1. 实数d c b a ,,,满足:○1d c b a +=+;○2c b d a +<+;○3d c <,则d c b a ,,,的大小关系是( )(A )b d c a <<< (B )a d c b <<<(C )b a d c <<< (D )a b d c <<< 2.下列等式中不恒成立的是( ) (A)bba ab a b b a a b a +∙+=+++ (B)1111+∙+=+-+b ba ab b a a (C )11222-∙=-+a aa a a a(D ))()(3333b a a ba b a a b a -++=-++ 3.一组数据由五个正整数组成,中位数是4,且唯一的众数是7,则这五个正整数的平均数等于( )(A )4.2或4.4 (B )4.4或4.6 (C )4.2或4.6 (D )4.2或4.4或4.6 4.化简:=--+7474( ) (A )1(B )2(C )3(D )25.Put 8 identical balls into 3 different boxes, each box has at least 2 balls. How many different ways to put the balls?( )(A)6 (B)12 (C)18 (D)36(英汉词典:identical 完全相同)6.如图1,在平面直角坐标系内,A 、B 、C 三点的坐标分别是(0,0),(4,0),(3,-2),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点不可能在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限7.如图2,设点A 、B 是反比例函数xky =图象上的两点,AC 、BD 都垂直于y 轴,垂足分别是C 、D 。
历届“希望杯”全国数学邀请赛八年级真题及答案
希望杯第一届(1990年)初中二年级第一试试题一、选择题:(每题1分,共10分)1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°.B .75°.C .55°.D .65°2.2的平方的平方根是 ( )A .2.B .?2.C .±2.D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( )A .0B .a 0.C .a 1D .a 0-a 1 4. ΔABC,若AB=π27则下列式子成立的是( )A .∠A >∠C >∠B;B .∠C >∠B >∠A;C .∠B >∠A >∠C;D .∠C >∠A >∠B5.平面上有4条直线,它们的交点最多有( )A .4个B .5个.C .6个.D .76.725-的立方根是[ ](A )12-. (B )21-.(C ))12(-±. (D )12+.7.把二次根式aa 1-⋅化为最简二次根式是[ ] (A) a . (B)a -. (C) a --. (D) a -8.如图1在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( )A .2组B .3组.C .4组D .5组。
9.已知 1112111222222--÷-+++-⨯--++x y x y xy y y x y xy x 等于一个固定的值, 则这个值是( )A .0.B .1.C .2.D .4. 把f 1990化简后,等于( ) A .1-x x . B.1-x. C.x 1. D.x.二、填空题(每题1分,共10分) 1..________6613022=-2.().__________125162590196.012133=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+÷- 3.89850-+=________.4.如图2,∠A=60°,∠1=∠2,则∠ABC 的度数是______.5.如图3,O 是直线AB 上一点,∠AOD=117°,∠BOC=123°,则∠COD 的度数是____度.6.△ABC 中,∠C=90°,∠A 的平分线与∠B 的平分线交于O 点,则∠AOB的度数是______度.7.计算下面的图形的面积(长度单位都是厘米)(见图4).答:______.8.方程x 2+px+q=0,当p >0,q <0时,它的正根的个数是______个.9.x ,y ,z 适合方程组则1989x-y+25z=______.10.已知3x 2+4x-7=0,则6x 4+11x 3-7x 2-3x-7=______.答案与提示一、选择题提示:1.因为所求角α=5(90°-α),解得α=75°.故选(B).2.因为2的平方是4,4的平方根有2个,就是±2.故选(C).3.以x=1代入,得a 0-a 1+a 0-a 1-a 1+a 1-a 0+a 1-a 0+a 1=2a 0-3a 1+3a 1-2a 0=0.故选(A).<3,根据大边对大角,有∠C >∠B >∠A .5.如图5,数一数即得.又因原式中有一个负号.所以也不可能是(D),只能选(A).7.∵a <0,故选(C).8.有△ABE ,△ABM ,△ADP ,△ABF ,△AMF 等五种类型.选(D).9.题目说是一个固定的值,就是说:不论x ,y 取何值,原式的值不变.于是以x=y=0代入,得:故选(B).故选(A).二、填空题提示:4.∠ADC=∠2+∠ADB=∠1+∠ADB=180°--∠A=120°所以∠ADC的度数是120度.5.∠COD度数的一半是30度.8.∵Δ=p2-4q>p2.9.方程组可化简为:解得: x=1,y=-1,z=0.∴1989x-y+25z=1990.10.∵6x4+11x3-7x2-3x-7=(3x2+4x-7)(2x2+x+1)而3x2+4x-7=0.希望杯第一届(1990)第二试试题一、选择题:(每题1分,共5分)1.等腰三角形周长是24cm,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是[ ] A.7.5 B.12. C.4. D.12或42.已知P=2)1988-+⨯,那么P的值是[ ]⨯⨯+198919891(19901991A.1987 B.1988. C.1989 D.19903.a>b>c,x>y>z,M=ax+by+cz,N=az+by+cx,P=ay+bz+cx,Q=az+bx+cy,则[ ]A.M>P>N且M>Q>N. B.N>P>M且N>Q>MC.P>M>Q且P>N>Q. D.Q>M>P且Q>N>P4.凸四边形ABCD中,∠DAB=∠BCD=900, ∠CDA∶∠ABC=2∶1,AD∶CB=1,则∠BDA=[ A.30°B.45°. C.60°. D.不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割[ ]A.是不存在的. B.恰有一种. C.有有限多种,但不只是一种.D.有无穷多种二、填空题:(每题1分,共5分)1.△ABC中,∠CAB?∠B=90°,∠C的平分线与AB交于L,∠C的外角平分线与BA的延长线交于N.已知CL=3,则CN=______.22(2)0ab +-=,那么111(1)(1)(1990)(1990)ab a b a b ++++++的值是_____. 3.已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4.ΔABC 中, ∠B=300三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______. 5.设a,b,c 是非零整数,那么a b c ab ac bc abc a b c ab ac bc abc++++++的值等于_________.三、解答题:(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD 和A 'B 'C 'D ',且正方形A 'B 'C 'D '的顶点A '在正方形ABCD 的中心.当正方形A 'B 'C 'D '绕A '转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n 之和被7除余数都不为1,将所有满足上述条件的自然数n 由小到大排成一列n 1<n 2<n 3<n 4……,试求:n 1·n 2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D). 又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即a?b=k×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即a?b=177.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.是一个定值.2.如图9,重合部分面积SA'EBF证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A 'B '与A 'B 重合时,必有A 'D '与A 'C 重合,故知∠EA 'B=∠FA 'C .在△A 'FC 和△A 'EB 中,∴S A 'EBF =S △A 'BC .∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n .又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n .即 n 1=4,n 2=7∴ n 1×n 2=4×7=28.第二届(1991年)初中二年级第一试试题一、选择题:(每题1分,共15分)1.如图1,已知AB=8,AP=5,OB=6,则OP 的长是[ ]A .2;B .3;C .4;D .52.方程x 2-5x+6=0的两个根是[ ] A .1,6 ; B .2,3; C .2,3; D .1,63.已知△ABC 是等腰三角形,则[ ]A .AB=AC;B .AB=BC;C .AB=AC 或AB=BC;D .AB=AC 或AB=BC 或AC=BC(1)B O344134b c-==+,则a,b,c的大小关系是[ ]A.a>b>c B.a=b=c C.a=c>b D.a=b>c5.若a≠b,则[ ]6.已知x,y都是正整数,那么三边是x,y和10的三角形有[ ]A.3个B.4个; C.5个D.无数多个7.两条直线相交所成的各角中,[ ]A.必有一个钝角;B.必有一个锐角;C.必有一个不是钝角;D.必有两个锐角8.已知两个角的和组成的角与这两个角的差组成的角互补,则这两个角[ ]A.一个是锐角另一个是钝角;B.都是钝角;C.都是直角;D.必有一个角是直角9.方程x2+|x|+1=0有[ ]个实数根.A.4; B.2; C.1; D.010.一个两位数,用它的个位、十位上的两个数之和的3倍减去-2,仍得原数,这个两位数是[ ]A.26; B.28; C.36; D.3811.若11个连续奇数的和是1991,把这些数按大小顺序排列起来,第六个数是[ ]A.179; B.181; C.183; D.18512.1,>+[ ]A.2x+5 B.2x-5; C.1 D.113.方程2x5+x4-20x3-10x2+2x+1=0有一个实数根是[ ]14.当a<-1时,方程(a3+1)x2+(a2+1)x-(a+1)=0的根的情况是 [ ] A.两负根;B.一正根、一负根且负根的绝对值大C.一正根、一负根且负根的绝对值小;D.没有实数根15.甲乙二人,从M地同时出发去N地.甲用一半时间以每小时a公里的速度行走,另一半时间以每小时b公里的速度行走;乙以每小时a公里的速度行走一半路程,另一半路程以每小时b公里的速度行走.若a≠b时,则[ ]到达N地.A.二人同时; B.甲先;C.乙先; D.若a>b时,甲先到达,若a<b时,乙先二、填空题:(每题1分,共15分)1.一个角的补角减去这个角的余角,所得的角等于______度.2.有理化分母=______________.3.0x=的解是x=________.4.分解因式:x3+2x2y+2xy2+y3=______.5.若方程x2+(k2-9)x+k+2=0的两个实数根互为相反数,则k的值是______.6.如果2x2-3x-1与a(x-1)2+b(x-1)+c是同一个多项式的不同形式,那么a bc+=__.7.方程x2-y2=1991有______个整数解.8.当m______时,方程(m-1)x2+2mx+m-3=0有两个实数根.9.如图2,在直角△ABC中,AD平分∠A,且BD∶DC=2∶1,则∠B等于______度.(2) (3) (4) 10.如图3,在圆上有7个点,A,B,C,D,E,F,和G,连结每两个点的线段共可作出__条.11.D,E分别是等边△ABC两边AB,AC上的点,且AD=CE,BE与CD交于F,则∠BFC 等于__度.12.如图4,△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是△ABD的角平分线,DF∥AB交AE延长线于F,则DF的长为______.13.在△ABC中,AB=5,AC=9,则BC边上的中线AD的长的取值范围是______.14.等腰三角形的一腰上的高为10cm,这条高与底边的夹角为45°,则这个三角形的面积是______.15.已知方程x2+px+q=0有两个不相等的整数根,p,q是自然数,且是质数,这个方程的根是______.答案与提示一、选择题提示:1.∵OP=OB-PB=OB-(AB-AP)=6-(8-5)=3.∴选(B).2.∵以2,3代入方程,适合.故选(B).3.∵有两条边相等的三角形是等腰三角形.∴选(D).4.∵a=1,b=-1,c=1.∴选(C).6.∵x=y>5的任何正整数,都可以和10作为三角形的三条边.∴选(D).7.两直线相交所成角可以是直角,故而(A),(D)均不能成立.∴选(C).8.设两个角为α,β.则(α+β)+(α-β)=180°,即α=90°.故选(D).9.∵不论x为何实数,x2+|x|+1总是大于零的.∴选(D).即7a=2b+2,可见a只能为偶数,b+1是7的倍数.故取(A).11.设这11个连续奇数为:2n+1,2n+3,2n+5,…,2n+21.则(2n+1)+(2n+3)+(2n+5)+…+(2n+21)=1991.即 11(2n+11)=1991.解得n=85.∴第六个数是2×85+11=181.故选(B).∴选(A).13.原方程可化为(2x5-20x3+2x)+(x4-10x2+1)=0.即 (2x+1)(x4-10x2+1)=0.即 x4-10x2+1=0.故取(C).14.a<-1时,a3+1<0,a2+1>0,a+1<0.而若方程的两根为x1,x2,则有15.设M,N两地距离为S,甲需时间t1,乙需时间t2,则有∴t1<t2,即甲先.另外:设a=1,b=2,则甲走6小时,共走了9公里,这时乙走的时间为从这个计算中,可以看到,a,b的值互换,不影响结果.故取(B).二、填空题提示:1.设所求角为α,则有(180°-α)-(90°-α)=90°.4.x3+2x2y+2xy3+y3=(x3+y3)+(2x2y+2xy2)=(x+y)(x2-xy+y2)+2xy(x+y)=(x+y)(x2+xy+y2)5.设二根为x1,-x1,则x1+(-x1)=-(k2-9).即k2-9=0.即k=±3.又,要有实数根,必须有△≥0.即 (k2-9)2-4(k+2)>0.显然 k=3不适合上面的不等式,∴k=-3.6.由2x2-3x-1=a(x+1)2+b(x-1)+c是恒等式,故由x=1代入,得c=-2;x2项的系数相等,有a=2,这时再以x=0代入,得-1=a-b+c.即b=1.7.x2-y2=1991,(x-y)(y+x)=11×181可以是9.BD∶DC=2∶1,故有AB∶AC=2∶1,直角三角形斜边与直角边之比为2∶1,则有∠B=30°.10.从A出发可连6条,从B出发可连5条,(因为BA就是AB),从C出发可连4条,…,从F出发可连一条.共计1+2+3+4+5+6=21(条).另法:每个点出发均可连6条,共有42条.但每条都重复过一次,11.如图28.∠F=∠1+∠A+∠2.又:△ADC≌△CEB.∴∠1=∠3.∴∠F=∠3+∠A+∠2=∠B+∠A=120°.12.△ABC是等腰三角形,D为底边的中点,故AD又是垂线,又是分角线,故∠BAD=60°,∠ADB=90°.又:AE是分角线,故∠DAE=∠EAB=30°.又:DF∥AB,∴∠F=∠BAE=30°.在△ADF中,∠DAF=∠F=30°.∴AD=DF.而在△ADB中,AB=9,∠B=30°.13.∵4<BC<14.∴当BC为4时,BD=CD=2,AD<7.当BC=14时,BC=CD=7,有AD>2.∴2<AD<7.14.等腰三角形一腰上的高与底边的夹角是45°,则顶角是90°,高就是腰,其长为10cm.15.设两根为x1,x2.则x1+x2=-p① x1x2=q②由题设及①,②可知,x1,x2均为负整数.q为质数,若q为奇数,则x1,x2均为奇数.从而p为偶数,而偶质数只有2,两个负整数之和为-2,且不相等,这是不可能的.若q为偶数(只能是2),两个负整数之积为2,且不相等,只能是-1和-2.∴方程的根是-1和-2.希望杯第二届(1991年)初中二年级第二试试题一、选择题:(每题1分,共10分)1.如图29,已知B是线段AC上的一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q为MA的中点,则MN∶PQ等于( )A.1 ; B.2; C.3; D.42.两个正数m ,n 的比是t(t >1).若m+n=s ,则m ,n 中较小的数可以表示为( ) A.ts; Bs-ts; C.1ts s +; D.1s t+.3.y>0时( )4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a ,b ,c 的关系可以写成( )A .a <b <c.B .(a-b)2+(b-c)2=0.C .c <a <b.D .a=b ≠c5.如图30,AC=CD=DA=BC=DE .则∠BAE 是∠BAC 的 ( )A .4倍.B .3倍.C .2倍.D .1倍6.D 是等腰锐角三角形ABC 的底边BC 上一点,则AD ,BD ,CD 满足关系式( )A.AD 2=BD 2+CD 2. B .AD 2>BD 2+CD 2. C .2AD 2=BD 2+CD 2. D .2AD 2>BD 2+CD 27.方程2191()1010x x -=+的实根个数为( ) A .4 B .3. C .2 D .18.能使分式33x y y x-的值为的x 2、y 2的值是( )A.x 2y 2;B. x 2y 2;C. x 2y 2;D. x 2y 2.9.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为( )A .17B .15.C .13D .1110.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b a a b +等于( ) A.2213; B.5821; C.240249; D.36538. 二、填空题(每题1分,共10分)1.1989××.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________. 5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______. 6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒 出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______.8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______. 9.2243x x +++的最小值的整数部分是______.10.已知两数积ab ≠1.且2a 22a b=______. 三、解答题:(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1. 已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO ∥FK ,OH ∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF 改成直的.(即两边都是直线)但进水口EF 的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC 边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989××(1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2的一个根,b是方程3y2的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>2?b,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH ,FG .②过O 作EH 平行线交AB 于N ,过K 作FG 平行线交于AB 于M .③连结EN 和FM ,则EN ,FM 就是新渠的两条边界线.又:EH ∥ON∴△EOH 面积=△FNH 面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。
第二十四届希望杯初二第2试试题及答案解析
第二十四届“希望杯”全国数学邀请赛初二 第2试试题2013年4月14日 上午9:00至11:00竞赛结束时,只交答题卡,试卷可带走。
答案于今日11:00在以下网站和微博公布:“希望杯”官方网站:http ://www .hopecup .org “希望杯”微博:http ://e .weibo .com /xiwangbei 《数理天地》官方网站:http ://www .mpw 《数理天地》微博:http ://e .weibo .com /shulitiandi 未经“希望杯”组委会授权,任何单位和个人均不准翻印或销售此试卷,也不准以任何形式(包括网络)转载。
一、选择题(每小题4分,共40分)1.在无理数5、6、7、8中,介于8+12与26+12之间的数有( ) (A )1个. (B )2个. (C )3个.(D )4个. 2.已知x +1x =6(0<x <1),则x -1x的值是( ) (A )-5. (B )-2. (C )5. (D )2.3.有3个正整数a ,b ,c ,并且a >b >c ,从中任取2个,有3种不同的取法,将每一种取法取出的2个数分别作和及作差,得到如下6个数:42,45,64,87,109,151,则a 2+b 2+c 2的值是( )(A )12532 . (B )12533. (C )12534 . (D )12535.4.已知有理数a ,b ,x ,y 满足ax +by =3,ay -bx =5,那么(a 2+b 2)(x 2+y 2)的值是( )(A )225. (B )75. (C )54. (D )34.5.Among all the following points ,which one is on the graph of function y =x 2-2x -3?( )(A )(1,-3) (B )(0,3) (C )(-1,0) (D )(-2,1)6.下列命题中,正确的是( )(A )如果三角形三个内角的度数比是3:4:5,那么这个三角形是直角三角形.(B )如果直角三角形的两条直角边的长分别是a 和b ,那么斜边的长是a 2+b 2.(C )如果三角形三条边长的比是1:2:3,那么这个三角形是直角三角形.(D )如果直角三角形的两条直角边的长分别是a 和b ,斜边长是c ,那么斜边上的高的长是ab c. 7.甲、乙、丙、丁4名跑步运动员的速度依次是v 1,v 2,v 3,v 4 ,且v 1>v 2>v 3>v 4>0,他们沿直跑道进行追逐赛,规则如下:①4人在同一起跑线上,同时同向出发;②经过一段时间后,甲、乙、丙同时反向,谁先遇到丁谁就是冠军.则( )(A )冠军是甲. (B )冠军是乙. (C )冠军是丙. (D )甲、乙、丙同时遇到丁.8.已知直线y =kx +b (k ≠0)与x 轴的交点在x 的正半轴上,则( )(A )k >0,b >0. (B )k <0,b <0. (C )kb >0. (D )kb <0.9.如图1,函数y 1=k 1x +b 和y 2=k 2x 的图象交于点(-1,-2),则关于x 的不等式k 1x +b >k 2x 的解集是( )(A )x >-1. (B )x <-1. (C )x <-2. (D )x >-2.10.设q =mn ,p =q +n +q -m ,其中m ,n 是两个连续的自然数(m <n ).则p ( )(A )总是奇数. (B )总是偶数.(C )有时是奇数,有时是偶数. (D )有时是有理数,有时是无理数.二、填空题(每小题4分,共40分) 11.已知a =5+2,b =5-2,则a 2+b 2+7的平方根的值是 .12.60名学生参加英语测试,若优秀的学生占45%,则在统计图中,表示优秀的扇形的圆心角是 图1度;若表示良好的扇形的圆心角是120°,则良好的学生有 人.13.若x 1,x 2都满足|2x -1|+|2x +3|=4,且x 1<x 2,则x 1-x 2的取值范围是 .14.若直线y =2x +b 与坐标轴围成的三角形的面积是4,则b = .15.已知a ,b 都是有理数,若不等式(2a -b )x +3a -b <0的解集是x >14,则不等式(a +3b )x +a -2b >0的解集是 .16.如图2,点P 在正方形ABCD 内,△PBC 是正三角形,若△BPD 的面积是3-1,则正方形ABCD 的边长是 . 17.直线y =x -1与x 轴、y 轴分别交于A 、B 两点,点C 在坐标轴上,△ABC 是等腰三角形,则满足条件的点C 有 个.18.已知x 2-x -1=0,则x 3+x +1x 4= . 19.如图3,矩形纸片ABCO 平放在xOy 坐标系中,将纸片沿对角线CA向左翻折,点B 落在点D 处,CD 交x 轴于点E .若CE =5,直线AC 的解析式为y =-12x +m ,则点D 的坐标的坐标是 . 20.已知正整数x ,y 满足59<y x <35,则x -y 的最小值是 . 三、解答题每题都要写出推算过程.21.(本题满分10分)已知m 2=n +2,n 2=m +2(m ≠n ),求m 3-2mn +n 3的值.22.(本题满分15分)As in Figure 4 ,both ∠D =∠E =90° in trapezoid ABCD .△ABC is an equilateraltriangle with C on DE .If AD =7 and BE =11,find the area of △ABC .(英汉词典:trapezoid 梯形;equilateral 等边三角形;area 面积)23.(本题满分15分)有n (n ≥2)个整数a 1<a 2<a 3<…<a n ,它们满足下列条件:①如果对于其中的任意一个整数a m 都有-a m 不在这n 个整数中,则称这n 个整数满足性质P ; ②若在这n 个整数中选两个不同的整数a i ,a j ,使它们成为一个有序整数对(a i ,a j ),并恰好a i +a j 也在这n 个整数中,则这样的整数对为“和整数对”;③若在这n 个整数中选两个不同的整数a i ,a j ,使它们成为一个有序整数对(a i ,a j ),并恰好a i -a j 也在这n 个整数中,则这样的整数对为“差整数对”.回答下列问题:⑴3个整数-1,2,3是否满足性质P ?如果满足性质P ,请写出其中所有的“和整数对”和“差整数对”;⑵若n (n ≥2)个整数a 1<a 2<a 3<…<a n 满足性质P ,其中“差整数对”有k 个,试证明k ≤12n (n -1); ⑶若n (n ≥2)个整数a 1<a 2<a 3<…<a n 满足性质P ,其中“和整数对”有l 个,“差整数对”有k 个,试证明l =k图2图3Fig .4第二十四届“希望杯”全国数学邀请赛初二第2试答案与解析一、选择题(每小题4分,共40分)1.选:D ;【解析】8+12<9+12=2与26+12>25+12=3 2.选:B ;【解析】∵0<x <1,则x -1x <0,(x -1x )2= x +1x -2=4,x -1x =-2 3.选:C ;【解析】分析大小可得a +b 最大,即a +b =151,a +c 第二大,即a +c =109,而a -b 和b -c 都可能最小,由于a -b 与a +b 具有相同的奇偶性,所以a -b =45,可解得,a =98,b =53,c =114.选:D ;【解析】(ax +by )2=9,(ay -bx )2=25,两式相加得:a 2x 2+b 2y 2+ a 2y 2+b 2x 2=34,而(a 2+b 2)(x 2+y 2)= a 2x 2+b 2y 2+ a 2y 2+b 2x 2.5.选:C ; 6.选:D ;7.选:C ;【解析】同时反向跑的时候,从前向后依次是丙、乙、甲,而它们三人应该同时相遇于出发地.所以在遇上丁时,丙还在前面.8.选:D ;【解析】-b k>0,kb <0;9.选:B ; 10.选:A ;【解析】p =q +n +q -m =mn +n +mn -m = n (m +1)+m (n -1) = n 2+m 2=m +n ,连续整数的和一定是奇数.二、填空题(第小题4分,共40分)11.±5; 12.162,20;13.-2≤x 1-x 2<0;【解析】|x -12|+|x +32|=2,|x -12|+|x +32|可以表示数轴上表示x 的点与12和-32的两点距离的和.而12和-32的距离是2,所以-32≤x ≤12,所以,x ≥-32-12=-2,又因为x 1<x 2,x 1-x 2<0,所以-2≤x 1-x 2<014.±4;【解析】与两轴的交点为(0,b ),(,0),12×|b |×|-12b |=4,14b 2=4,b =±4 15.x >2347;【解析】由题意得,2a -b <0,b -3a 2a -b =14,b =145a ,2a -145a <0,a >0, (a +3b )x +a -2b >0,475ax -235a >0,x >234716.2;【解析】设正方形的边长为a ,S △BDP = S △BCP + S △CDP -S △BCD =34a 2+14a 2-12a 2=3-1,a 2=4,a =2 17.7;18.1;【解析】x 2= x +1,x 3+x +1x 4 = x (x +1)+x +1(x +1)2 = (x +1)2(x +1)2= 1 19.(245,-125);【解析】OC =m ,OA =2m ,AE =CE =5,由m 2+(2m -5)2=52,得m =4,AD =OC =4,DE =EO =3,可得D (245,-125) 20.3;【解析】59x <y <35x ,当x =1时,59<y <35,y 无整数解;当x =2时,119<y <115,y 无整数解;当x =3时,123<y <145,y 无整数解;当x =4时,229<y <225,y 无整数解;当x =5时,279<y <3,y 无整数解;当x =6时,313<y <335,y 无整数解;当x =7时,379<y <415, y =4,x -y =3 三、解答题每题都要写出推算过程.21.(本题满分10分)解:⎩⎨⎧m 2=n +2……①n 2=m +2……② ①-②=(m -n )(m +n )=n -m ,∵m ≠n ,∴m +n =-1 m 3-2mn +n 3=m (n +2)-2mn +n (m +2)=2m +2n =-222.(本题满分15分)解:作AF ⊥BE 于F ,DC =x ,CE =y .∵AB =AC =BC ,根据勾股定理:x 2+72=y 2+112=(x +y )2+42 ⎩⎨⎧2xy +y 2=33……①2xy +x 2=105……② ①×35-②×11得:35x 2+48xy -11y 2=0,(5y -x )(7y +11x )=0,∵x >0,y >0∴x =5y 代入:得y 2=3,y =3,x =53,AB 2=(63)2+42=124,S △ABC =34AB 2=31 3 23.(本题满分15分)解:⑴ -1,2,3的相反数分别是1,-2,-3,它们都不在这3个整数中,所以满足性质P .其中“和整数对”为(-1,3)和(3,-1);“差整数对”为(2,-1)和(2,3)⑵ 设a m 是这n 个整数中的任意一个,(a m ,a p )是一个有序数对,其中p ≠m ,这样的数对共有n -1个.所以,这n 个数一共有n (n -1)个有序数对.若(a m ,a p )是一个差整数对,则(a p ,a m )一定不是差整数对,否则不满足性质P .所以,差整数对至多有12 n (n -1),即k ≤12n (n -1) ⑶ 若任意a m 、a n 、a p 是这n 个整数中的三个,且满足a m +a n =a p ,则(a m ,a n )、(a n ,a m )是两个和整数对记为一组,而(a p ,a m )、(a p ,a n )是对应的两个差整数对也记为一组,那么每一组和整数对都对应着一组差整数对,若和整数对有x 组,l =2x ,则差整数对也一定有x 组,k =2x ,所以l =k 图5。
第20届希望杯全国数学邀请赛初二年级组第2试试题及答案解析
第19届“希望杯”全国数学邀请赛初二第2试试题一、选择题(以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后面的圆括号内.)1.篆刻是中国独特的传统艺术,篆刻出来的艺术品叫印章,印章的文字刻成凸状的称为“阳文”,刻成凹状的称为“阴文”.如图1的“希望”即为阳文印章在纸上盖出的效果,此印章是下列选项中的(阴影表示印章中的实体部分,白色表示印章中镂空的部分) A 。
B 。
C 。
D 。
2.如果1x y <<-,那么代数式11y yx x+-+的值是() A .0B .正数C .负数D .非负数 图1 3.将x 的整数部分记为[]x ,x 的小数部分记为()x ,易知[]{}{}()01x x x x =+<<.若3535x =--+,那么[]x 等于() A .-2 B .-1C .0D .14.某种产品由甲、乙、丙三种元件构成.根据图2,为使生产效率最高,在表示工人分配的扇形图中,生产甲、乙、丙元件的工人的数量所对应的扇形的圆心角的大小依次是()组装一件成品需要的元件的数量1名工人1小时生产某种元件的数量202040305050种类丙乙甲数量A .12018060︒︒︒,,B .108144108︒︒︒,,C .9018090︒︒︒,,D .7221672︒︒︒,,5.面积是48的矩形的边长和对角线的长都是整数,则它的周长等于( )A .20B .28C .36D .406.In the rectangular coordinates ,abscissa and ordinate of the intersection point of the lines y x k =- and 2y kx =+ are integers for integer k ,then the number of the possible values of k is ()A .4B .5C .6D .7(英汉词典:abscissa 横坐标,ordinate 纵坐标,intersection point 交点,integer 整数) 7.将一张四边形纸片沿两组对边的中点连线剪开,得到四张小纸片,如图3所示.用这四张小纸片一定可拼成一个( ) A .梯形 B .矩形 C .菱形D .平行四边形8.若不等式组4101x m x x m -+<+⎧⎨+>⎩,的解集是4x >,则()A .92m ≤B .5m ≤C .92m =D .5m =9.如图4所示,四边形ABCD 中,90A C ∠=∠=︒,60ABC ∠=︒,410AD CD ==,,则BD 的长等于()A .413B .83C .12D .10310.任何一个正整数n 都可以写成两个正整数相乘的形式,对于两个乘数的差的绝对值最小的一种分解()n p q p q =⨯≤可称为正整数n 的最佳分解,并规定()pF n q=.如:12=1⨯12=2⨯6=3⨯4,则3(12)4F =. 则以下结论图3104DCBA图4①1(2)2F =; ②3(24)8F =;③若n 是一个完全平方数,则()1F n =;④若n 是一个完全立方数,即3n a =(a 是正整数),则1()F n a=.中,正确的结论有( )A .4个B .3个C .2个D .1个二、填空题11.将一根钢筋锯成a 段,需要b 分钟,按此速度将同样的钢筋锯成c 段(a b c ,,都是大于1的自然数),需要__________________分钟.(用a b c ,,表示)12.给机器人下一个指令[]()00s A s A ︒︒,,≥≤≤180,它将完成下列动作: ①先在原地向左旋转角度A ;②再朝它面对的方向沿直线行走s 个单位长度的距离.现以机器人站立的位置为坐标原点,取它面对的方向为x 轴的正方向,取它的左侧为y 轴的正方向.要想让机器人移动到点(-5,5)处,应下指令:___________________. 13.已知实数x y z ,,满足1233x y z x y zx y z ++===+++,则x y z ++=_________________或______________.14.已知实数x y ,满足234x y -=,并且01x y ,≥≤,则x y -的最大值是_____________,最小值是_________________.15.汽车燃油价税费改革从2009年元旦起实施:取消养路费,同时汽油消费税每升提高0.8元.若某车一年的养路费是1440元,百千米耗油8升,在“费改税”前后该车的年支出与年行驶里程的关系分别如图5中的12l l 、所示,则1l 与2l 的交点的横坐标m =___________.(不考虑除养路费和燃油费以外的其他费用)16.Given 32()f x ax bx cx d =+++,if when x takes the value of its inverse number ,theOl 1l 2m 图5年支出/元1440年行驶里程/千米corresponding value of ()f x is also the inverse number ,and (2)f =0,thenc da b+=+_______________. (英汉词典:inverse number 相反数)17.8人参加象棋循环赛,规定胜1局得2分,平1局得1分,败者不得分,比赛结果是第二名的得分与最后4名的得分之和相同,那么第二名得__________________分. 18.若正整数a b ,使等式()()12a b a b a ++-+=2009成立,则a =____________,b =_____________.19.如图6所示,长为2的三条线段'AA ,''BB CC ,交于O 点,并且'''60B OA C OB A OC ∠=∠=∠=︒,则三个三角形的面积的和123S S S ++_______________3.(填“<”、“=”或“>”) 20.已知正整数x y ,满足2249x y +=,则x =_____________,y=________________.三、解答题(每题都要写出推算过程.)21.在分母小于15的最简分数中,求不等于25但与25最接近的那个分数.22.如图7哀兵必胜示,一次函数33y x =-+的图像与x 轴、y 轴分别交于点A B ,,以线段AB 为直角边在第一象限内作Rt ABC △,且使30ABC ∠=︒.⑴求ABC △的面积;图6S 3S 2S 1O C'C AB'BA'yxPO CBA30°图7⑵如果在第二象限内有一点32P m ⎛⎫⎪ ⎪⎝⎭,, 试用含m 的代数式表示四边形AOPB 的面积,并求当APB △与ABC △面积相等时m 的值; ⑶是否存在使QAB △是等腰三角形并且在坐标轴上的点Q ?若存在,请写出点Q 所有可能的坐标;若不存在,请说明理由.23.点(40)(03)A B ,,,与点C 构成边长分别是3,4,5的直角三角形,如果点C 在反比例函数ky x=的图像上,求k 可能取的一切值.参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案 DCABBADCAC提 示1.印章在纸上盖出的效果与印章的图形成镜面对称,如图8所示,右侧的印章图形沿轴翻转180︒后,将与左侧的效果重合.故选D .2.因为 1x y <<-, 所以 0100x x x y <+<-<,,, 则101(1)(1)y y xy x xy y x yx x x x x x ++----==<+++, 即该代数式的值是负数,选C .3.因为()2516255135222±±±±===,所以 515122 1.41222x -+-=-==-≈-,所以 []2x =-,选A .4.为使生产效率最高,在相同的时间内生产甲、乙、两两件的数量之比是5:4:2,而1名工人在单位时间内生产这三种元件的数量之比是5:3:2,所以生产甲、乙、丙元件的工人数量之比是542::532,即41::13,也即3:4:3,在扇形图中对应的扇形的圆心角依次是108︒,144︒,108︒.故选B .5.5.设矩形的边长分别是a b ,,对角线的长是c ,则222a b c +=已知矩形的面积是44832ab ==⨯,a b ,都是整数,不妨设a b ,≤则()a b ,可能是 (1,48),(2,24),(3,16),(4,12),(6,8),分别代入222a b c +=,只有当68a b ==,时,c 才是整数10,其他情况得到的c 的值都不是整数. 所以,矩形的边长分别是6,8,周长是28,选B .。
第希望杯初二第2试试题及答案
第二十一届“希望杯”全国数学邀请赛初二第 2 试一、选择题(每题 4 分,共 40 分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后边圆括号内.1.计算21259,得数是()A.9 位数B.10 位数C. 11 位数D.12 位数2.若xy 1 ,则代数式9xy18的值()239x y18A.等于7B.等于5C.等于5或不存在D.等于7或不存在57753( x a) 2 ≥ 2(1 2x a)3. The integer solutions of the inequalities about x :x b b x are 1,2,332then the number of integer pairs(a,b)is()A. 32B.35C. 40D.48(英汉字典: integer整数)4.已知三角形三个内角的度数之比为x : y : z ,且 x y z ,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形 D .等腰三角形5.如图 1 ,三个凸六边形的六个内角都是120 ,六条边的长分别为 a ,b ,c ,d ,e, f ,则以下等式中建立的是()bacf de图1A.a b c d e f B.a c e b d fB . a b d eC . a c b d6.在三边互不相等的三角形中,最长边的长为 a ,最长的中线的长为 m ,最长的高线的长为 h ,则()A . a m hB . a h mC . m a hD . h m a7.某次足球竞赛的计分规则是:胜一场得 3 分,平一场得 1 分,负一场得 0 分,某球队参赛 15场,积 33 分,若不考虑竞赛次序,则该队胜、平、负的状况可能有()A .15 种B .11 种C .5 种D .3 种8.若 xy0 ,x y0 ,11与 x y 成反比,则 x y2与 x 2 y 2 ()x yA .成正比B .成反比C .既不可正比,也不可反比D .关系不确立9.如图 2,已知函数 y2 k ,点 A 在正 y 轴上,过点 A 作 BC ∥ x 轴,交两个函( x 0) ,y(x 0)xx数的图象于点 B 和 C ,若 AB : AC 1:3 ,则 k 的值是()yCABO x图2A . 6B .3C . 3D . 610 .10 个人围成一圈做游戏,游戏的规则是:每一个人内心都想一个数,并把自己想的数告诉与他相邻的两个人, 而后每一个人将与他相邻的两个人告诉他的数的均匀数报出来,若报出来的数如图 3所示,则报出来的数是3 的人内心想的数是( )A .2B . 2C .4D . 4110 29384756图 3二、填空题(每题4 分,共 40 分)11 .若 x 2 2 7 x 2 0 , 则 x 4 24x 2.12 .如图 4 ,已知点 A( a ,b) , O 是原点, OAOA 1 ,OA OA 1 ,则点 A 1 的坐标是.yA ( a ,b )A 1O x图 413 .已知 ab0 ,而且 a b 0 ,则ab1 1 b 22____________.(填“ ”、“ ”、“≥ ”或“ ≤ ”)aab14 .若 a 2b 2a 2 b2 0 ,则代数式 a a b b a b的值是.15 .将代数式 x 3 2a 1 x 2 a 2 2a 1 x a 2 1 分解因式,得16 . A 、B 、C 三辆车在同一条直路上同向行驶,某一时辰, A 在前, 10 分钟后, C 追上 B ;又过了 5 分钟, C 追上 A .则再过.C 在后, B 在 A 、C 正中间,分钟, B 追上 A .17 .边长是整数,周长等于 20 的等腰三角形有 种,此中面积最大的三角形底边的长是.18 .如图 5 ,在 △ ABC 中, AC BD ,图中的数听说明 ABC .A30°B40° CD 图519 .如图 6,直线 y31 与 x 轴、 y 轴分别交于 A 、B ,以线段 AB 为直角边在第一象限内作x3等腰直角 △ ABC , BAC90 .在第二象限内有一点P a , 1,且 △ABP 的面积与 △ ABC 的面积2相等,则 △ ABC 的面积是; a ___________________yCBPO Ax 图 620 .Given the area of△ ABC is S 1 ,and the length of its three sides are311,9 3,101313respectively . And the perimeter of △ABCis 18 ,its area is S 2 .Then the relationship between S 1 and S 2 isS 1S 2 .( fill in the blank with“ ”,“= ”or “ ”)(英汉字典: area 面积; length长度; perimeter 周长)三、解答题每题都要写出计算过程.21 .(此题满分 10 分)解方程:2 x34 4 x 3 .42 x 334 x【分析】 令2x 3a ,4xb ,43则a1 b 1 ,ab 整理得ab 10 ,aab所以 a b 或 ab1,即3x 34 x , ①4 3或2 x3 4 x 1 ,②43由①得x7 ,10由②得 x0 或 x52经查验,知7 ,0,5都是原方程的解.10222.(此题满分15分)如图7,等腰直角△ABC 的斜边 AB 上有两点 M、N ,且知足MN 2BN 2AM 2,将△ABC绕着 C 点顺时针旋转90 后,点M、N的对应点分别为T、S .⑴请画出旋转后的图形,并证明△MCN△MCS⑵求MCN 的度数.BBNN MC AM SC A r图 7【分析】⑴将△ ABC 绕着C点顺时针旋转90,如图.依据旋转前后的对应关系,可知BN AS ,CN CS , NBC SAC45所以MAS MAC SAC90.由色股定理,得MS 2AM 2AS2AM 2BN 2MN2,所以M N.M S又因为CN CS ,CM 是公共边,所以△MCN △MCS .⑵因为 CN 顺时针旋转 90后获得 CS ,所以NCS90,上边已证得△MCN △MCS ,故MCN MCS 145.NCS223 .(此题满分 15 分)已知长方形的边长都是整数,将边长为 2 的正方形纸片放入长方形,要求正方形的边与长方形的边平行或重合,且随意两个正方形重叠部分的面积为0,放入的正方形越多越好.⑴假如长方形的长是4,宽是 3 ,那么最多能够放入多少个边长为 2 的正方形?长方形被覆盖的面积占整个长方形面积的百分比是多少?⑵假如长方形的长是 n(n ≥ 4) ,宽是 n 2 ,那么最多能够放入多少个边长为2 的正方形?长方形被覆盖的面积占整个长方形面积的百分比是多少?⑶关于随意知足条件的长方形,使长方形被覆盖的面积小于整个长方形面积的55% 求长方形边长的全部可能值.(已知0.55 0.74 )【分析】 ⑴ 最多能够放入 2 个正方形,长方形被覆盖的面积占整个长方形面积的百分比是2 22 2 .4 366.7%3⑵当 n 是偶数时, n 2 也是偶数,最多能够放入1 个正方形,长方形被覆盖的面n( n 2)4 积占整个长方形面积的百分比是 100% .当 n 是奇数时, n2 也是奇数,最多能够放入1 3) 个正方形,长方形被覆盖的(n 1)(n4面积占整个长方形面积的百分比是 n 1 n 3n n2100% .⑶设长方形的宽与长分别是x ,y .若 x ,y 都是偶数,则长方形被覆盖的面积占整个长方形面积的100% ,不切合题意.若 x ,y 中一个是偶数 2a ,一个是奇数 2b 1 ( a ,b 是正整数),则4ab 4ab2b0.55 .xy2a (2b 1) 2b 1解得 b 0.61.没有知足此结果的正整数b ,这类状况也不切合题意.所以, x ,y 都是奇数.x 2a 1 ,令 y 2b 1 , a ≤ b ,a ,b 是正整数,则有4ab0.55 .2a 1 2ba4ab4a4a2因为2a2a 1 2b a11,12a12a 12a22ba22a所以0. 55.2a 12a得0. 7 ,4a 1.,42a 1因为 a 是正整数,所以 a 1代入①式,得4b0. 55, 3 ( 2b1)解得 b 2.4 ,因为 b 是正整数,所以 b 1 或 2故有x 3 ,y3或 5.即长方形长为 5,宽为 3,或长与宽都是 3.第二十一届“希望杯”全国数学邀请赛参照答案及评分标准初二第 2 试一、选择题(每题4 分.)题号1 21 3 4 5 6 7 8 9 10答案BDBCCADADB二、填空题(每题 4 分,第 17 、19 题,每空 2 分.)题号111213141516 17 1819 20答案 -4b ,a≥1x 1 x a 1 x a 115 4;6402;3421. 21259 23 109 8 109 ,∴得数是 10 位数.2.∵xy 1 ,∴ y 3 x 32 329x 33 189 x y 18 x21x42 7 x22将其代入代数式,得315x 30 5 x 29 x y 189x3 18x2当 x2 时,原式7;当 x 2 时,原式的值不存在.53x 3a 2 ≥ 4 x 2 2ax ≥ 1a113.原不等式7 b2 x 2b 3b 3x1 7a ≤ xx 5b5于是 01a ≤ 1 , 31b≤ 4所以 a 有 7个不一样的取值, b 有 5 个不一样的取值,75于是整数对 a , b 共有7535个.4.∵x y z ,∴x y z 2 z ,即1802z,∴z90,三角形为钝角三角形.5.如图,补三个等边三角形,则 a b c c d e a f e ,于是a b d e.a b ca cdfee6.利用直角三角形中斜边大于直角边易得结论a m h .7.设该球队胜、平、负的场数分别为x 、y、 15 x y ,则 3x y33 .x ≥ 0y ≥ 0 x ,于是 0 ≤ y ≤ 6 ,又y能整除 3 ,于是 y 0 , 3 , 6 .y ≤ 153x y 33对应的 x 11 , 10 , 9 ,共3种状况.8.∵11与 x y 成反比,∴x y11m ,此中 m 为非零常数.x y x y于是yx m 2 ,所以y为定值.x y x2y2而 x y22y y1, x2y2x2 1 ,联合y为定值xxx x x所以 x y2与x2y2成正比.9. B 与 C 的纵坐标相等,即k2,∴k2AC6AC AB AB10.假定报出来的数是 3 的人内心想的数是 x ,则报出来的 12345678910数4 x x8 x 4 x12 x内心想的数于是 4x 12x20 ,解得 x2 .11. x 4 24x 22 7 x 224 2 7 x 228 x 28 7 x4 48 7x 4828x 2 56 7x 5222 8 2 x7 25 6x 752.412. 过 A 、 A 1 作 x 轴的垂线,利用弦图简单获得A 1 b , a .aba 2ba 211a b13.a bba b∵b 2a 2b 2aba 2,ab11ba2222而a2b2 ≥ 2 a 2 b 22bab a∴ab a b ≥1 1a b ,即ab1 1 .b 2a 2a bb 2 a 2 ≥ a b14. ∵a 2 b 2a 2 b 2a 2b21 , b 1110 ,∴a于是 a a b b a b 12 10 1 .15.x 3 2 a 1 x 2 a 2 2 a 1 x2a 1x 3 2ax 2 a 2 1 x x 2 2ax a 2 1x 1 x 22axa1 a 1x 1 x a 1 x a116. 设当 B 在 A 、C 正中间是 ABBC1,则 C 相对 B 的速度为1,C 相对 A 的速度为 2 ,1015所以 B 相对 A 的速度为1,故 B 追上 A 需要时间为 30 分钟.30于是再过 15 分钟, B 追上 A .17. 设等腰三角形的腰长为x ,则底边长为 20 2x ,于是 0 20 2xxx ,有 5 x 10 ,∴x 的可能取值有 6 , 7 , 8 , 9,共 4 种.其面积为10 1022 x10 ,∴当 x7 时三角形面积最大,此时底边长为6 .x18. 在 BC 上取一点 E ,使得 CE CA ,简单证明 △ AEB ≌△ ADC ,于是 ABC 40 .19. ∵ A 3 , 0 ,B 0,1,∴ AB 2于是 S △ ABC 12AB22∵S△ ABP1 1 1 a1 3 11 3 a 12 ,解得 a3 4 .2 2222220. △ ABC 的面积不小于三边长分别为 3 , 9 , 10 的三角形面积,于是S △ABC ≥ 11 11 3 11 9 11 10262 ;而 △A B C 的面积不大于周长为 18 的正三角形面积,于是3 2S 2 ≤18243 .49 33∴S 1 S 2 .。
第十六届“希望杯”全国数学邀请赛初二 第2试
个循 环小数 , 么 a的取值有 哪几 个 ? 那 2 . 图 6 正三 角形 A C的边长 为 a D 3如 , B ,
B
图5
是B C的 中点, P是 A C边上 的点 , 连结 船 和
P D得到AP D. : B 求
() 点 P运 动 到 A 1当 C的 中 点 时 , B 的 AP D
2 . 果正整 数 有 以下 性质 : 的八分之 0如
一
是 平方 数 , 的九分 之一是 立方数 , 它的二 .
十 五分之 一是五 次方数 , 么 就 称为 “ 那 希望 数 ” 则 最小 的希望数 是 ,
出推 算过程 . )
三、 解答题 ( 每题 1 分 , 3 分 . 0 共 0 要求 : 写 2. 5 1图 是一个 长为 4 0 的环形 跑道 , 0米 其
( 中版 ) 初
维普资讯
数海泛舟
印
q
。
7 :
2.) 21如果 是小于2 ( 0的质数, 且÷可化
“
为一 个循环 小数 , 么 的取 值有哪 几个 ? 那
仁
一
1
( 如果 2 ) 是小于2 的 0 合数, 且÷可化为
所 以P g的最 小值 为 g= 2 P= 4 , , . 此时, 乙跑 过 的路 程 为 2 0×4+ 2 0= 10 ( ) 5 0 20米 . 所 以乙跑 了 10 2 0米后 , 两人 首次在 点处相遇 . 2. ) 2( 小于 2 1 0的质数有 2 3、, , 1 1 ,7 1 . , , 7 1 ,3 1 ,9除了 2和 5以外 , 余各数 的倒 数均可化 为 5 其 循环 小数 .
数海泛舟
{yvl— 2一。。 IY + X + I + l . Z x l一 z l + 一 —, +b 一 Lz 一 2
历年初中希望杯数学竞赛试题大全
历年初中希望杯数学竞赛试题大全 ][真诚为您服务试试题希望杯”全国数学邀请赛初二第2· 2009年第20届“次· 161· [4-30]★详细简介请参考下载页]· [竞赛 2试试题届“希望杯”全国数学邀请赛初一第年第· 200920 次· 153· [4-28]详细简介请参考下载页★]· [竞赛数学大赛初赛试卷(扫描版)届5“希望杯”年湖北省黄冈市第· 2009 · 76次· [4-17]★详细简介请参考下载页]· [竞赛试试题”全国数学邀请赛初二第1· 2009年第20届“希望杯次· 133· [4-7]对不起,尚无简介☆]竞赛· [ 试试题全国数学邀请赛初一第1届“希望杯”20· 2009年第· 122次· [4-7]详细简介请参考下载页★]· [竞赛全国数学邀请赛初二训练题”第十四届“希望杯·次· 44· [9-9]详细简介请参考下载页★]竞赛· [ 2试试题“希望杯”全国数学邀请赛初一第19· 2008年第届次· 203· [9-4]详细简介请参考下载页★]· [竞赛 1”“19· 2008年第届希望杯全国数学邀请赛初一第试试题次· 169· [9-4]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第219年第届“希望杯”· 2008 次· 156· [9-2]详细简介请参考下载页★]· [竞赛 1试试题希望杯”全国数学邀请赛初二第“· 2008年第19届· 146次· [9-2]详细简介请参考下载页★]竞赛· [ 2试试题”届“希望杯全国数学邀请赛初二第18· 2007年第· 101次· [9-2]详细简介请参考下载页★]竞赛· [ 1全国数学邀请赛初二第试试题”“18· 2007年第届希望杯次· 95· [9-2]详细简介请参考下载页★]竞赛· [ 试试题”全国数学邀请赛初二第2· 2006年第17届“希望杯次· 76· [9-2]详细简介请参考下载页★]竞赛· [ 1试试题“希望杯”全国数学邀请赛初二第届· 2006年第17 · 76次· [9-2]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第2希望杯· 2005年第16届“”次· 65· [9-1]详细简介请参考下载页★]· [竞赛 1试试题全国数学邀请赛初二第届· 2005年第16“希望杯”次· 52· [9-1]详细简介请参考下载页★]· [竞赛试试题全国数学邀请赛初二第希望杯”2· 2004年第15届“次· 47· [9-1]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第115届“希望杯”年第· 2004 次· 38· [9-1]详细简介请参考下载页★]· [竞赛 2试试题希望杯”全国数学邀请赛初二第届· 2003年第14“次· 30· [9-1]详细简介请参考下载页★]竞赛· [ 1试试题希望杯届“”全国数学邀请赛初二第年第· 200314 · 26次· [9-1]详细简介请参考下载页★]竞赛· [ 2试试题全国数学邀请赛初二第希望杯届年第· 200213“”· 31次· [9-1]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第1”年第13届“希望杯· 2002 次· 23· [9-1]详细简介请参考下载页★]竞赛· [ 2试试题“希望杯”全国数学邀请赛初二第· 2001年第12届· 17次· [9-1]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第112年第届“希望杯”· 2001 · 17次· [9-1]详细简介请参考下载页★]竞赛· [ 试试题2“届希望杯”全国数学邀请赛初二第11· 2000年第次· 15· [9-1]★详细简介请参考下载页]· [竞赛试试题”全国数学邀请赛初二第1“· 2000年第11届希望杯次· 15· [9-1]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第210届“希望杯”· 1999年第次· 13· [9-1]详细简介请参考下载页★]· [竞赛试试题1希望杯”全国数学邀请赛初二第· 1999年第10届“次· 15· [9-1]详细简介请参考下载页★]竞赛· [ 2试试题“希望杯”全国数学邀请赛初二第9· 1998年第届次· 11· [8-29]详细简介请参考下载页★]· [竞赛 1”“9· 1998年第届希望杯全国数学邀请赛初二第试试题次· 10· [8-29]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第28年第届“希望杯”· 1997 次· 13· [8-29]详细简介请参考下载页★]· [竞赛 1试试题希望杯”全国数学邀请赛初二第“· 1997年第8届· 10次· [8-29]详细简介请参考下载页★]竞赛· [ 2试试题”届“希望杯全国数学邀请赛初二第7· 1996年第· 11次· [8-29]详细简介请参考下载页★]竞赛· [ 1全国数学邀请赛初二第试试题”“7· 1996年第届希望杯次· 10· [8-29]详细简介请参考下载页★]· [竞赛试试题”希望杯全国数学邀请赛初二第2· 1995年第6届“次· 14· [8-29]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第16届“希望杯”· 1995年第次· 14· [8-29]★详细简介请参考下载页]· [竞赛 2试试题希望杯”全国数学邀请赛初二第5· 1994年第届“次· 12· [8-29]详细简介请参考下载页★]竞赛· [ 1试试题“届希望杯”全国数学邀请赛初二第· 1994年第5 · 12次· [8-29](每一、选择题 :年第五届希望杯全国数学邀请赛1994 初中二年级第一试试题 [] Ax 1.303小题分,共分)使等式成立的的值是.是]· [竞赛试试题初二第2”年第4届“希望杯全国数学邀请赛· 1993 次· 9· [8-29]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第14届“希望杯”· 1993年第次· 10· [8-29]详细简介请参考下载页★]· [竞赛试试题2希望杯”全国数学邀请赛初二第· 1992年第3届“次· 11· [8-29]详细简介请参考下载页★]竞赛· [ 1试试题“希望杯”全国数学邀请赛初二第3· 1992年第届次· 9· [8-29]详细简介请参考下载页★]· [竞赛 2”“2· 1991年第届希望杯全国数学邀请赛初二第试试题· 14次· [8-28]详细简介请参考下载页★]· [竞赛试试题”全国数学邀请赛初二第1年第· 19912届“希望杯次· 12· [8-28]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初二第21届“希望杯”· 1990年第· 13次· [8-28]详细简介请参考下载页★]· [竞赛试试题”全国数学邀请赛初二第1希望杯· 1990年第1届“次· 11· [8-28]分,(每题1 ”全国数学邀请赛初二第一试一、选择题:“1990年第一届希望杯() 倍,那么这个角是 1.一个角等于它的余角的5分)共10]竞赛· [ 2试试题全国数学邀请赛初一第希望杯届年第· 200718“”· 94次· [8-28]详细简介请参考下载页★]竞赛· [ 试试题全国数学邀请赛初一第118届“希望杯”· 2007年第次· 42· [8-28]详细简介请参考下载页★]· [竞赛试试题”希望杯全国数学邀请赛初一第2· 2006年第17届“次· 41· [8-28]详细简介请参考下载页★]竞赛· [ 试试题1希望杯”全国数学邀请赛初一第“· 2006年第17届次· 43· [8-28]试第1全国数学邀请赛初一希望杯年第十七届2006“”……中考资源网,竞赛试题任你选!更多数学竞赛试题请点击。
2014年奥数希望杯第二试初二试卷及参考答案
在 Rt△ADG 和 Rt△MNF 中,
∠NMF = ∠3= ∠1
= ∠DAG,
MN =BA =AD ,
所以 △ADG ≌ △MNF,
AG =MF.
(10 分 )
在 Rt△MCG 和 Rt△ECG
图1
中,
∠MGC = ∠3= ∠2= ∠EGC, CG =CG,
所以 △MCG ≌ △ECG,GM =GE,
3 2
17
1
1007
三 、解 答 题
于是
AG -GF =MF -GF
21.(1)在y =kx +2中,令x =0,得
y =2,
所以
点 D(0,2).
(4 分 )
=GM =GE. (15分) 23.在 △ABC 中,令 ∠B=36°.分情况讨论: (1)分割线不过点 B
(2)因为 OD =2,DB =2OD =4,
设分割 线 是 AD ,
由S△PBD =4,可得 BP =2,
而
OB =OD +DB =6,
此 时,△BAD 的 三 个 内 角 是 (36°,72°,
所以
点 P (2,6).
将 P(2,6)分别代入y=kx +2与y=xm ,可得
k=2,m =12.
(8 分 )
(3)由图 象 可 知,当 x > 0 时,使 一 次 函
第二十五届“希望杯”全国数学邀请赛
参考答案及评分标准
一 、选 择 题 (每 小 题 4 分 .)
初二 第2试
题号
1
2
3
4
5
6
7
8
9
10
答案
A
B
C
2012年第二十三届“希望杯”初一第2试试题及答案
ADCBFEcbaO第二十三届“”全国数学邀请赛初二第2试一、选择题每小题4分共40分1下面四个命题1若两个角是同旁内角则这两个角互补2若两个角互补则这两个角是同旁内角. 3若两个角不是同旁内角则这两个角不互补4若两个角不互补则这两个角不是同旁内角其中错误的命题的个数是A1 B2 C3. D4. 2.若两位自然数ab是质数且交换数字后的两位数ba也是质数则称ab为绝对质数.于是两位数中的所有绝对质数的乘积的个位数字是A1 B3 C7 D9 3.如图l将边长为4cm的等边△ABC沿边BC向右平移2cm得△DEFDE与AC交于点G则ABCABFDSS四边形A3:2 B2:1 C5:2 D3:1 4有理数abc在数轴上的位置如图2所示O为原点则代数式ab-b-aa-cc A-3a2c. B –a-ab-2c. C a-2b. D 3a. 5. The perimeter of a triangle is 18 while each side is an integer. If the longest side is not a prime number then the number of such triangle is A 4. B 5. C 6. D 7. 英汉小词典perimeter of a triangle三角形的周长prime number质数6.77可以表示成nn≥2个连续自然数的和则n的值的个数是A4 B2 C3 D4 7.如图3. △ABC中∠BCA90�0�2点E在边CA上点D和F 在边BA上若BCCDDEEFFA则∠A A20�0�2 B18�0�2C15�0�2 D12�0�2 8已知x、y是非负整数且使3421yx是整数那么这样的数对xy有个A1 B2 C3 D2012 9身高两两不同的30个学生向老师站成一排其中恰有l1个学生高于自己左侧相邻的同学那么高于自己右侧相邻的学生有人. A11 B12 C18. D19 10.若xy3xy1则x5y5 A33 8231 C123. D312.二、填空题每小题4分共40分11计算2012320112-2013×2012×2011-2013×2011_________________ ______ 12已知△ABC中AB2BC9若AC的长是奇数则AC_____________ 13若自然数x除以3余2除以4余3除以5余4则x除以15所得余数是___________ 14If 4x2n3y2mand 一7xm2y6n are similar then mn×mn___________________. 15如图4在四边形ABCD中AD‖BC点E在AD上点F、G在BC上并且AEEDBFFGGC.以A、B、C、D、E、F、G这7个点中的三个为顶点的三角形中面积最小的三角形有______个面积最大的三角形有______个16用黑、白两种颜色的1×1最方形瓷砖按翻5所示的方式铺地板图1中有3×5块瓷砖以后各图都比前一个加铺2×5块磁砖则有2014块黑色瓷砖的是图5中的第____________个图17图6是用若干个同样的小正方体拼成的立体的俯视图若此立体最高有三层则此立体最少有_________个小正方体最多有___________个小正方体181900年以后出生的人他出生年份的最后两个数字组成的两位数如果末两位数字为00或01则看成两位00或01其余类推加上这个人今年的年龄数所得的结果是______________或____________注今年的年龄数201 2一出生年份19已知正n边形A1A2A3�6�7An-1An的面积是60若四边形A1A2AkAk1是一个面积为20的矩形则这个正n边形的一个内角是_____________度20设xxxxxP301312151345则2231PP_______________. 三、解答题每题都要写出推过程21本题满分10分已知abc都是整数如果对任意整数x代数式ax2bxc的值都能被3整除证明abc可被27整除22本题满分15分某公司以每吨500元的价格收购了100吨某种药材若直接在市场上销售每吨的售价是1000元该公词决定加工后再出售相关信息如下表所示注①出品率指加工后所得产品的质量与原料的质量的比值. ②加工后的废品不产生效益. 受市场影响该公司必须在10天内将这批药材加工完毕现有3种方案A全都粗加工B尽可能多地精加工剩余的直接在市场上销售C部分粗加工部分精加工恰好l0天完成问哪个方案获得的利润最大是多少工艺每天可加工药材的吨数出品率售价元吨粗加工14 80 5000 精加工6 60 11000 23.本题满分15分有一系列数前两个数是12从第三个数起每个数都等于它前面相邻的两个数的和的个位数数字.请回答以下问题1在这列数中能否依次出现相邻的20l2这四个数说明理由. 2这列数中的第2012个数字是什么说明理由. 答案选择题填空题21.提示令x1 x-1 x0 22. A35000元B: 386000元C428000元23.1不能202的个位数字不是1. 2写出一系列数不难发现60个数一循环2012除以60的余数为32.第2012个数为8. 1 2 3 4 5 67 8 9 10 D B B A B C B B C C 11 12 13 14 15 16 17 18 19 20 -2010 9 14 12 173 671 818 11212 150 6。
2010-2012年第21-23届-“希望杯”全国数学邀请赛-初一-第2试-试题与答案(word版)
第二十一届“希望杯”全国数学邀请赛初一第2试2010年4月11日上午9:00至11:00 得分一、选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后面的圆括号内.1.若a-b的相反数是2b-a,则b=( )(A)-1. (B)0. (C)1. (D)2.2.某工厂3月份的产值比2月份增加10%,4月份的产值比3月份减少10%,则( )(A)4月份的产值与2月份相等.(B)4月份的产值比2月份增加.(C)4月份的产值比2月份减少. (D)4月份的产值比2月份减少.3.如图1,△ABC中,∠A、∠B、∠C的外角分别记为α,β,γ,.若α:β:γ,=3:4:5,则∠A:∠B:∠C=( )(A)3:2:1. (B)1:2:3. (C)3:4:5. (D)5:4:3.4.若m=,则m是( )(A)奇数,且是完全平方数. (B)偶数,且是完全平方数.(C)奇数,但不是完全平方数. (D)偶数,但不是完全平方数.5.有两个两位数的质数,它们的差等于6,且它们平方的个位数字相同,这样的两位质数的组数是( )(A)1. (B)2. (C)3. (D)4.6.As in figure 2,the area of square ABCD is l69cm2,and the area ofthombus BCPQ is 156cm2. Then the area of the shadow part is ( )(A) 23cm2. (B) 33cm2. (C) 43cm2. (D) 53cm2.(英汉词典:square正方形;thombus菱形)7.要将40kg浓度为16%的盐水变为浓度为20%的盐水,则需蒸发掉水( )(A) 8kg. (B) 7kg. (C) 6kg. (D) 5kg.8.如图3,等腰直角△△ABC绕C点逆时针旋转90。
则线段AB扫过的面积是( )9.若一个两位数恰等于它的各位数字之和的4倍,则这个两位数称为“巧数”.则不是“巧数”的两位数的个数是( )(A)82. (B)84. (C)86. (D)88.10.如果在一个正方体的每个面内写一个正整数,然后,在每个顶点处再写一个数,该数等于过这个顶点的三个面内的数的乘积,那么当该正方体各个顶点处的数之和是290时,各个面内的数之和等于( )(A)34. (B)35. (C)36. (D)37.二、填空题(每小题4分,共40分.)11.甲、乙两车从A向B行驶,甲比乙晚出发6小时,甲、乙的速度比是4:3.甲出发6小时后,速度提高1倍,甲、乙两车同时到达B.则甲从A到B共走了小时.12.若有理数x,y,岁满足方程,则13.图4是一个六角星,其中14.加工某种工件,须顺次进行三道工序,工作量的比依次是2:1:4.甲完成1个工件与第二个工件的前两道工序,所用时间为t.已知甲和乙的加工效率比是6:7,则乙完成一个工件,需要的时间是f的____倍.15. -个直四棱柱的三视图及有关数据如图5所示,它的俯视图是菱形,则这个直四棱柱的侧面积为16.有这样一种衡量体重是否正常的算法:一个男生的标准体重(单位:千克)等于其身高(单位:厘米90%和110%之间(舍边界)时,就认为该男生的体重为正常体重,已知男生甲的身高是161厘米,实称体重是55千克.根据上述算法判定,甲的体重正常体重(填“是”或“不是”).17. If a2 -a+l and az +a -3 are opposite numbers to each other,and themverse number of a is less than the opposite number of a,then=(英汉词典:inverse number倒数;opposite相反的)18.从长度为1的线段开始,第一次操作将其三等分,并去掉中间的一段;第二次操作将余下的线段各三等分,并去掉所分线段中间的一段.此后每次操作都按这个规则进行.图6是最初几次操作的示意图,当完成第六次操作时,余下的所有线段的长度之和为19.已知m,n都是正整数,且是整数.若的最大值是a,最小值是6,则a+b=20.从最小的质数算起,若连续n(n是大于1的自然数)个质数的和是完全平方数,则当n最小时,三、解答题每题都要写出推算过程.21.(本题满分10分)设a=,证明:a是37的倍数.22.(本题满分15分)(1)已知平面内有4条直线a,b,c和d.直线a,b和c相交于一点.直线b,c和d也相交于一点,试确定这4条直线共有多少个交点?并说明你的理由.(2)作第5条直线e与(1)中的直线d平行,说明:以这5条直线的交点为端点的线段有多少条?23.(本题满分15分)轨道AB长16.8米,从起点站A到终点站B,每2.4米设一站点.甲、乙两个机器人同时从A站点出发,到达B站点后,再返回,在A和B两站点之间反复运动.甲、乙运动的速度都是0.8米/秒,甲每到达一个站点就休息1秒钟,而乙从不休息,若甲、乙从A站点出发后2分钟结束运动,问:它们出发后,曾几次同时到达同一站点(包括起点站和终点站)?第二十二届”希望杯”全国数学邀请赛初一 第2试2011年4月10日 上午9:00至11:00 得分____一、选择题(每小题4分,共40分。
第19届“希望杯”全国数学邀请赛初二第2试(含答案)
第19届“希望杯”全国数学邀请赛初二第2试试题(2008年4月13日上午9:00—11:00)一、选择题(每小题4分,满分40分) 1.将数字“6”旋转1800,得到数字“9”;将数字“9”旋转1800,得到数字“6”;那么将两位数“69”旋转1800,得到的数字是( ) A 、69 B 、96 C 、66 D 、99 2.关于y x ,的方程组⎩⎨⎧=+-=++012,01y bx ay x 有无数组解,则b a ,的值为( )A 、0,0==b aB 、1,2=-=b aC 、1,2-==b aD 、1,2==b a 3.在平面直角坐标系内,有等腰三角形AOB ,O 是坐标原点,点A 的坐标是),(b a ,底边AB 的中线在1、3象限的角平分线上,则点B 的坐标为( ) A 、),(a b B 、),(b a -- C 、),(b a - D 、),(b a -4.给出两列数:(1)1,3,5,7,…,2007;(2)1,6,11,16,…,2006,则同时出现在两列数中的数的个数为( )A 、201B 、200C 、199D 、1985.If one side of a triangle is 2 times of another side and it has the largest possible area, then the ratio of its three sides is ( )A 、3:2:1B 、2:1:1C 、2:3:1D 、5:2:1(英汉小词典:possible 可能的;area 面积;ratio 比率、比值) 6.有面值为10元、20元、50元的人民币(每种至少一张),合计1000元,那么面值为20元的人民币有( )张A 、2或4B 、4C 、4或8D 、2到4之间的任意偶数7.由1,2,3这三个数字组成四位数,在每个四位数中,这三个数字至少出现一次.这样的四位数有( )A 、33个B 、36个C 、37个D 、39个 8.如图1,矩形ABCD 的长AD=9cm ,宽AB=3cm ,将它折 叠,使点D 与点B 重合,求折叠后DE 的长和折痕EF 的长分别是( )A 、cm cm 10,5B 、cm cm 3,5C 、cm cm 10,6D 、cm cm 4,59.如图2,函数m mx y 4-=的图象分别交x 轴、y 轴于点N 、M ,线段MN 上两点A 、B 在x 轴上的垂足分别为1A 、1B ,若411>+OB OA ,则A OA 1∆的面积1S 与B OB 1∆的面积2S 的大小关系是( )A 、21S S >B 、21S S =C 、21S S <D 、不确定的10.已知a 是方程0133=-+x x 的一个实数根,则直线a ax y -+=1不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限AB C D E F C′图2二、填空题(每小题4分,满分40分)11.化简:2008200820082008100435715337++⎪⎭⎫⎝⎛,得到 . 12.三位数ab 3的2倍等于8ab ,则ab 3等于 .13.当2>x 时,化简代数式1212--+-+x x x x ,得 .14.已知21111)(+-+-=x x x x f ,并且0)(=a f ,则a 等于 . 15.If the sum of a 4-digit natural number and 17,the difference between it and 72 are all square numbers ,then the 4-digit natural number is . (英汉小词典:4-digit natural number 四位自然数;difference 差;square numbers 完全平方数)16.将等腰三角形纸片ABC 的底边BC 折起,使点C 落在腰上,这时纸片的不重合部分也是等腰三角形,则∠A= .17.将100只乒乓球放在n 个盒子中,使得每个盒子中的乒乓球的上数都含有数字“8”,如当n=3时,箱子中的乒乓球的数目可以分别为8,8,84;若当n=5时,有且只有两个箱子中的乒乓球个数相同,那么各箱子中的乒乓球的个数分别是 . 18.已知一个有序数组),,,(d c b a ,现按下列方式重新写成数组),,,(1111d c b a ,使a d d d c c c ab b a a +=+=+=+=1111,,,,按照这个规律继续写出),,,(2222d c b a ,…,),,,(n n n n d c b a ,若20001000<++++++<dc b ad c b a nn n n ,则=n .19.如图3,一束光线从点O 射出,照在经过A (1,0)、B (0,1)的镜面上的点D ,经AB 反射后,反射光线又照到竖立在y 轴位置的镜面,要使最后经y 轴再反射的光线恰好通过点A ,则点D 的坐标为 .20.某条直线公路上有1121,,,A A A 共11个车站,且 )8,,3,2,1(17),9,,3,2,1(1232 =≥=≤++i km A A i km A A i i i i ,若km A A 56111=,则=+721110A A A A km .三、解答题(共3个小题,满分40分)21.(本题满分10分)如图,在ABC Rt ∆中,090=∠ACB ,AC=BC=10,CD 是射线,060=∠BCF ,点D 在AB 上,AF 、BE 分别垂直于CD (或延长线)于F 、E ,求EF 的长.图3ACD F E22.(本题满分15分)在平面直角坐标系中,ΔABC 满足:∠C=900,AC=2,BC=1,点A 、C 分别在x 轴、y 轴上,当点A 从原点开始在x 轴的正半轴上运动时,点C 随着在y 轴上运动.(1)当A 在原点时,求原点O 到点B 的距离OB ; (2)当OA=OC 时,求原点O 到点B 的距离OB ;(3)求原点O 到点B 的距离OB 的最大值,并确定此时图形应满足什么条件?23.(本题满分15分)已知)(,n m n m >是正整数. (1)若m3与n3的末位数字相同,求n m +的最小值;(2)若m 3与n3的末两位数字都相同,求n m -的最小值;第十九届“希望杯”全国数学邀请赛参考答案与评分标准初二第2试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十三届“希望杯”全国数学邀请赛初二 第2试2012年4月8日 上午9:00至11:00一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在后面的圆括号内。
1.实数d c b a ,,,满足:○1d c b a +=+;○2c b d a +<+;○3d c <,则d c b a ,,,的大小关系是( )(A )b d c a <<< (B )a d c b <<< (C )b a d c <<< (D )a b d c <<< 2.下列等式中不恒成立的是( ) (A)b b a a b a b b a a b a +∙+=+++ (B)1111+∙+=+-+b ba ab b a a (C )11222-∙=-+a a a a a a (D ))()(3333b a a b a b a a b a -++=-++ 3.一组数据由五个正整数组成,中位数是4,且唯一的众数是7,则这五个正整数的平均数等于( )(A )4.2或4.4 (B )4.4或4.6 (C )4.2或4.6 (D )4.2或4.4或4.6 4.化简:=--+7474( )(A )1 (B )2 (C )3 (D )25.Put 8 identical balls into 3 different boxes, each box has at least 2 balls. How many different ways to put the balls?( ) (A)6 (B)12 (C)18 (D)36(英汉词典:identical 完全相同)6.如图1,在平面直角坐标系内,A 、B 、C 三点的坐标分别是(0,0),(4,0),(3,-2),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点不可能在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限7.如图2,设点A 、B 是反比例函数xky =图象上的两点,AC 、BD 都垂直于y 轴,垂足分别是C 、D 。
连接OA 、OB ,若OA 交BD 于点E ,且OBF ∆的面积是2011,则梯形AEDC 的面积是( )(A )2009 (B )2010 (C )2011 (D )20128.如图3,在矩形ABCD 中,AB=6,BC=8,P 是AD 上的动点,PE ⊥BD 于F ,则PE+PF 的值是( )(A )4.6 (B )4.8 (C )5 (D )79.设b a ,是实数,且a b b a -=+-+11111,则baa b +++++1111的值是( )(A )3 (B )-3 (C ))(3a b - (D )无法确定的10.循环节长度是4的纯循环小数化成最简分数后,分母是三位数,这样的循环小数有( ) (A )798个 (B )898个 (C )900个 (D )998个 二、填空题(每小题4分,共40分) 11.若0≠a ,计算:=÷÷a a a2011201212.若以x 为未知数的方程122-=++x ax 的根是负数,则实数a 的取值范围是 13.若)0(≠n n 是以x 为未知数的方程052=--n mx x 的根,则m-n 的值是 14.正整数b a ,满足等式531513ba +=,那么=a ,=b 15.已知)10(61<<=+x x x ,则xx 1-的值是 16.已知点A (4,m ),B (-1,n )在反比例函数xy 8=的图象上,直线AB 与x 轴交于C ,如果点D 在y 轴上,且DA=DC ,则点D 的坐标是17.如图4,等腰直角ABC ∆中,90=∠A ,底边BC 的长为10,点D 在BC 上,从D 作BC 的垂线交AC 于点E ,交BA 的延长线于点F ,则DE +DF 的值是18.如图5,在边长为6的菱形ABCD 中,DE ⊥AB 于点E ,并且点E 是AB 的中点,点F 在线段AC 上运动,则EF+FB 的最小值是 ,最大值是19.若实数c b a ,,满足5,4,3=+=+=+a c ca c b bc b a ab ,则cabc ab abc++的值是20.Suppose 321abc M = is a 6-digit number, c b a ,, are three different 1-digit numbers, and not less than 4. If M is a multiple of 7, then the minimum value of M is(英汉词典:multiple 倍数)每题都要写出推算过程 21.(本题满分10分)如图6,直线)0(≠+=b b x y 交坐标轴于A 、B 两点,交双曲线xy 2=于点D ,从点D 分别作两坐标轴的垂线DC 、DE ,垂足分别为C 、E ,连接BC 、OD 。
(1) 求证:AD 平分CDE ∠。
(2) 对任意的实数)0(≠b b ,求证:AD ·BD 为定值。
(3) 是否存在直线AB ,使得四边形OBCD 为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由。
22.(本题满分15分)如图7,在一条平直的公路的前方有一陡峭的山壁,一辆汽车正以恒定的速度沿着公路向山壁驶去。
(1) 若汽车的行驶速度是30m/s ,在距离山壁925m 处时汽车鸣笛一声,则经过多长时间后司机听到回声?(2) 某一时刻,汽车第一次鸣笛,经过4.5s 再次鸣笛,若司机听到两次鸣笛的回声的时间间隔是4s ,求汽车的行驶速度。
(已知声音在空气中的传播速度是340m/s )23.生产某产品要经过三道工序,同一个人在完成这三道工序时所用的时间相同,甲、乙二人同时开始生产,一段时间后,甲恰好完成第k 个产品的生产,此时,乙正好在进行某个产品的第一道工序的操作,若甲、乙的生产效率比是6:5,问此时乙至少生产了多少产品?二、填空题三、解答题21.(1)因为A 、B 是直线)0(≠+=b b x y 和坐标轴的交点,所由⎩⎨⎧=+=0y b x y 及⎩⎨⎧=+=0x bx y得A (-b,0),B(0,b) 所以45=∠=∠OAB DAC 又DC ⊥x 轴,DE ⊥y 轴 所以∠CDE=90 因此 45=∠ADC即AD 平分CDE ∠(2)由(1)知ACD ∆和BDE ∆都是等腰直角三角形,所以DE BD CD AD 2,2==,4222=⨯=∙=∙DE CD BD AD即BD AD ∙为定值。
(3)若存在直线AB ,使得四边形OBCD 为平行四边形,则 AO=AC ,OB=CD由(1)知AO=BO ,AC=CD 。
并且B (0,b ) 所以得D (-2b,-b ) 因为1,22±=-=-b bb (正数舍去) 即存在直线AB :y=x-1,使得四边形OBCD 为平行四边形。
22.(1)如图1,设经过ts 后司机听到回声,则有30t+340t=2×925,解得t=5. 所以,经过5s 后司机听到回声。
(2)设汽车的行驶速度是1v ,声音传播的速度是2v ,汽车两次鸣笛的时间间隔是1t ∆;汽车第一次鸣笛1t 时间后,司机第一次听到回声;汽车第二次鸣笛2t 时间后,司机第二次听到回声;汽车第一次鸣笛时距离山壁为s .如图2,如果司机先听到第一次鸣笛的回声,则有⎩⎨⎧+=∆-+=2221111211)(22t v t v t v s t v t v s 两式相减,得))((2212111t t v v t v -+=∆即2111212v v t v t t +∆=-司机两次听到回声的时间间隔是121122111212)(t v v v v t t t t t t t ∆+-=--∆=-+∆=∆代入数据,得5.4340340411⨯+-=v v解得s m v /201=如图3,如果司机先听到第二次鸣笛的回声,同理,得2111212v v t v t t +∆=-司机两次听到回声的时间间隔是121211212)(t v v v v t t t t ∆+-=∆--=∆代入数据,得5.4340340411⨯+-=v v解得s m v /57801=这样的速度不切合实际。
所以,汽车的行驶速度是20m/s23.设甲生产一个产品所用的时间为t ,则乙生产一个产品所用的时间为56t 。
用[a]表示不大于a 的最大整数,{a}=a-[a],如[3.14]=3,{3.14}=0.14甲生产k 个产品所用的时间为kt ,此时乙生产了⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡6556k t kt 个产品由题知,乙正在进行某个产品的第一道工序的操作,所以31650<⎭⎬⎫⎩⎨⎧<k而⎭⎬⎫⎩⎨⎧65k 可能取值是,0,65,32,21,31,61(见下表)从表中可以看出,满足31650<⎭⎬⎫⎩⎨⎧<k 的最小的k 的值是5, 因此,乙至少已经生产了⎥⎦⎤⎢⎣⎡⨯655=4个产品。