偏光显微镜法观察聚合物的结晶形态

合集下载

偏光显微镜法观察聚合物结晶形态实验报告

偏光显微镜法观察聚合物结晶形态实验报告

实验三偏光显微镜法观察聚合物结晶形态聚合物的各种性能是由其结构在不同条件下所决定的。

研究聚合物晶体结构形态主要方法有电子显微镜、偏光显微镜和小角光散射法等。

其中偏光显微镜法是目前实验室中较为简便而实用的方法。

一、实验目的要求1、了解偏光显微镜的结构及使用方法。

2、观察聚合物的结晶形态,估算聚丙烯球晶大小。

二、实验原理根据聚合物晶态结构模型可知:球晶的基本结构单元是具有折叠链结构的片晶(晶片厚度在100埃左右)。

许多这样的晶片从一个中心(晶核)向四面八方生长,发展成为一个球状聚集体。

电子衍射实验证明了在球晶中分子链(c轴)总是垂直于球晶的半径方向,而b轴总是沿着球晶半径的方向(参考图3-1和图3-2)。

在正交偏光显微镜下,球晶呈现特有的黑十字消光图案,这是球晶的双折射现象。

分子链的取向排列使球晶在光学性质上具有各向异性,即在不同的方向上有不同的折光率。

当在正交偏光显微镜下观察时,分子链取向与起偏器或检偏器的偏振面相平行就产生消光现象。

有时,晶片会周期性地扭转,从一个中心向四周生长(如聚乙烯的球晶),结果在偏光显微镜中就会观察到一系列消光同心圆环。

图3-1 片晶的排列与分子链的取向图3-2 球晶形状三、仪器与试样1、仪器偏光显微镜及附件、载玻片、盖玻片、电炉和油浴锅。

2、试样聚丙烯(颗粒状),工业级。

四、实验步骤1、制备样品(1)将少许聚丙烯树脂颗粒料放在已于260℃电炉上恒温的载玻片上,待树脂熔融后,加上盖玻片,加压成膜。

保温2分钟,然后迅速放入140一150℃甘油浴中,结晶2小时后取出。

(2)将少量聚乙烯粒料用以上同样的方法熔融加压法制得薄膜,然后切断电炉电源,使样品缓慢冷却到室温。

2、熟悉偏光显微镜的结构及使用方法(参阅本实验的附录及仪器说明书)。

3、显微镜目镜分度尺的标定将带有分度尺的目镜插入镜筒内,把载物台显微尺放在载物台上,调节到二尺基线重合。

载物台显微尺长1.00毫米,等分为100格,所以每格为0.01毫米。

用偏光显微镜(POM)观察聚合物结晶形态测试过程PPT课件

用偏光显微镜(POM)观察聚合物结晶形态测试过程PPT课件
位置1:光波平行于c轴入射到a,b组成的平面,因为na=nb,此时相当于
各向同性物体,不发生双折射,所以没有光从目镜中透出,视野 黑暗;此时与(1)到晶核相同距离处的微晶都处于同样的状态, 故观察到的是一圈黑环。 位置2:此时,光波垂直于b,c面入射,由于nc≠nb,发生双折射,有光 从检偏晶投射出来,视野明亮;同理,以晶核为原点,以(2) 到晶核的距离为半径的圆周上都是明亮的,所以为亮环。 位置3: 重复位置1,为暗环。 在晶片扭曲的方向如此周期性重复,形成明暗交替的消光环。且 螺旋的螺距与同心环间的距离是一致的。
2
自然 光源
起偏 镜P1
偏振光 强度为I0
检偏 镜P2
偏振光 强度为I
两偏振光强度间的关系可用马吕斯定律描述:
I I0cos2α
α为P1,P2间的夹角
当P2∥P1 即α =0,偏振光可顺利通过P2,I=I0; 当P2⊥P1 即α =90,偏振光不能通过P2,I=0。
凡装有两个偏光镜,且其振动方向相互垂直的显微镜就叫做正交偏 光显微镜。
图5 聚丙烯(PP)球晶
8
I A2Si2n2ψห้องสมุดไป่ตู้i2n
2
式中,A为偏振光的振幅,定值; δ 为两束折射光的 相位差,定值;所以, ➢ 当ψ=(n-1)π/2,光强度I=0,视野黑暗; ➢ ψ=(2n-1)π/4,I为极大值,视野明亮。 这里,n为正整数。
9
用偏光显微镜观察聚合物球晶,在一定条件下,球晶呈现出更复 杂的环状图案,即在特征的黑十字消光图象上还重叠着明暗相间的消 光同性圆环, 这可能是晶片周期性扭转产生的,见图3。
12
三、实验仪器和样品
1. 偏光显微镜: SL-100型(NIKON)
2. 2.封闭电炉、控温仪 3. 样品:PE,PP 4. 其他:载玻片,盖玻片,

偏光显微镜观察聚合物的结晶形态

偏光显微镜观察聚合物的结晶形态

偏光显微镜观察聚合物的结晶形态一、实验目的1、了解偏光显微镜的结构及使用方法;2、学习用熔融法制备高聚合物球晶;3、观察聚丙烯的结晶形态,估算聚丙烯球晶大小;二、原理球晶的基本结构单元是具有折叠结构的片厚度在100A 左右。

许多这样的晶片从一个中心(晶核)向四面八方生长,发展成为一个球状聚集体。

图1-1 球晶内晶片的排列与分子链取向图1-2 球晶中双折射示意图图1-1示意地说明球晶中分子链是垂直球晶半径的方向排列的。

分子链的取向排列使球晶在光学性质上是各向异性的,即在平行于分子链和垂直于分子链的方向上有不同的折光率。

在正交偏光显微晶下观察时,在分子链平行于起偏镜或检偏镜或检偏镜的方向上将产生消光现象。

呈现出球晶特有的黑十字消光图案(称为Maltase 十字)。

球晶在正交偏光显微镜下出现Maltase 十字的现象可以通过图1-2来理解。

图中起偏镜的方向垂直于检偏镜的方向(正交)。

设通过起偏镜进入球晶的线偏振光的电矢量OR ,即偏振光方向沿OR 方向。

图1-2 绘出了任意两个方向上偏振光的折射情况, 偏振光OR 通过与分子链发生作用,分解为平行于分子链η 和分子链ε两部分,由于折光率不同,两个分量之间有一定的相差。

显然ε和η不能全部通过检偏镜,只有振动方向平行于检偏镜方向的分量OF 和OE 能够通过检偏镜。

由此可见,在起偏镜的方向上,η为零,OR =ε;在检偏镜方向上,ε为零,OR =η;在这些方向上分子链的取向使偏振光不能透过检偏镜,视野呈黑暗,形成Maltase 十字。

此外,在有的情况下,晶片会周期性地扭转,从一个中心向四周生长,这样,在偏光显中就会看到由此而产生的一系列消光同心圆环。

三、仪器和试样1、偏光显微镜及附件:照明条件:波长λ=0.55微米媒质:空气n=1.000物镜:放大倍数:25×(可选用不同倍数的物镜)数值孔径a=0.4分辨率:a λδ=目镜放大倍数10×2、载玻片和盖玻片;电炉热台;重锤;镊子。

偏光显微镜法观察聚合物球晶形态

偏光显微镜法观察聚合物球晶形态

一、实验目的1.了解偏光显微镜的结构及使用方法。

2.了解球晶黑十字消光图案的形成原理。

3.观察聚合物的结晶形态,理解影响聚合物球晶大小的因素。

二、实验原理用偏光显微镜研究聚合物的结晶形态是目前实验室中较为简便而实用的方法。

随着结晶条件的不用,聚合物的结晶可以具有不同的形态,如:单晶、树枝晶、球晶、纤维晶及伸直链晶体等。

而球晶是聚合物结晶中一种最常见的形式。

在从浓溶液中析出或熔体冷却结晶时,聚合物倾向于生成这种比单晶复杂的多晶聚集体,通常呈球形,故称为“球晶”。

球晶的大小取决于聚合物的分子结构及结晶条件,因此随着聚合物种类和结晶条件的不同,球晶尺寸差别很大,直径可以从微米级到毫米级,甚至可以大到厘米。

球晶尺寸主要受冷却速度、结晶温度及成核剂等因素影响。

球晶具有光学各向异性,对光线有折射作用,因此能够用偏光显微镜进行观察,该法最为直观,且制样方便、仪器简单。

聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图象。

有些聚合物生成球晶时,晶片沿半径增长时可以进行螺旋性扭曲,因此还能在偏光显微镜下看到同心圆消光图象。

对小于几微米的球晶则可用电子显微镜进行观察或采用激光小角散射法等进行研究。

结晶聚合物材料、制品的实际使用性能(如光学透明性、冲击强度等)与材料内部的结晶形态、晶粒大小及完善程度有着密切的联系。

如较小的球晶可以提高材料冲击强度及断裂伸长率;球晶尺寸对于聚合物材料的透明度影响则更为显著:聚合物晶区的折光指数大于非晶区,球晶的存在将产生光的散射而使透明度下降,球晶越小透明度越高,当球晶尺寸小到与光的波长相当时可以得到透明的材料。

因此,对聚合物结晶形态与尺寸等的研究具有重要的理论和实际意义。

球晶的生长以晶核为中心,从初级晶核生长的片晶,在结晶缺陷点繁盛支化,形成新的片晶,它们在生长时发生弯曲和扭转,并进一步分支形成新的片晶,如此反复,最终形成以晶核为中心,三维向外发散的球形晶体。

实验证实,球晶中分子链垂直球晶的半径方向。

偏光显微镜法观察聚合物球晶形态

偏光显微镜法观察聚合物球晶形态

一、实验目的了解偏光显微镜的结构及使用方法。

了解球晶黑十字消光图案的形成原理。

观察聚合物的结晶形态,理解影响聚合物球晶大小的因素。

二、实验原理用偏光显微镜研究聚合物的结晶形态是目前实验室中较为简便而实用的方法。

随着结晶条件的不用,聚合物的结晶可以具有不同的形态,如:单晶、树枝晶、球晶、纤维晶及伸直链晶体等。

而球晶是聚合物结晶中一种最常见的形式。

在从浓溶液中析出或熔体冷却结晶时,聚合物倾向于生成这种比单晶复杂的多晶聚集体,通常呈球形,故称为“球晶”。

球晶的大小取决于聚合物的分子结构及结晶条件,因此随着聚合物种类和结晶条件的不同,球晶尺寸差别很大,直径可以从微米级到毫米级,甚至可以大到厘米。

球晶尺寸主要受冷却速度、结晶温度及成核剂等因素影响。

球晶具有光学各向异性,对光线有折射作用,因此能够用偏光显微镜进行观察,该法最为直观,且制样方便、仪器简单。

聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图象。

有些聚合物生成球晶时,晶片沿半径增长时可以进行螺旋性扭曲,因此还能在偏光显微镜下看到同心圆消光图象。

对小于几微米的球晶则可用电子显微镜进行观察或采用激光小角散射法等进行研究。

结晶聚合物材料、制品的实际使用性能(如光学透明性、冲击强度等)与材料内部的结晶形态、晶粒大小及完善程度有着密切的联系。

如较小的球晶可以提高材料冲击强度及断裂伸长率;球晶尺寸对于聚合物材料的透明度影响则更为显著:聚合物晶区的折光指数大于非晶区,球晶的存在将产生光的散射而使透明度下降,球晶越小透明度越高,当球晶尺寸小到与光的波长相当时可以得到透明的材料。

因此,对聚合物结晶形态与尺寸等的研究具有重要的理论和实际意义。

球晶的生长以晶核为中心,从初级晶核生长的片晶,在结晶缺陷点繁盛支化,形成新的片晶,它们在生长时发生弯曲和扭转,并进一步分支形成新的片晶,如此反复,最终形成以晶核为中心,三维向外发散的球形晶体。

实验证实,球晶中分子链垂直球晶的半径方向。

偏光显微镜法观察聚合物结晶形态实验报告

偏光显微镜法观察聚合物结晶形态实验报告

偏光显微镜法观察聚合物结晶形态实验报告下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!偏光显微镜法是一种广泛应用于材料科学领域的观察和研究工具。

偏光显微镜法观察聚合物球晶形态

偏光显微镜法观察聚合物球晶形态

一、实验目的1.了解偏光显微镜的结构及使用方法。

2.了解球晶黑十字消光图案的形成原理。

3.观察聚合物的结晶形态,理解影响聚合物球晶大小的因素。

二、实验原理用偏光显微镜研究聚合物的结晶形态是目前实验室中较为简便而实用的方法。

随着结晶条件的不用,聚合物的结晶可以具有不同的形态,如:单晶、树枝晶、球晶、纤维晶及伸直链晶体等。

而球晶是聚合物结晶中一种最常见的形式。

在从浓溶液中析出或熔体冷却结晶时,聚合物倾向于生成这种比单晶复杂的多晶聚集体,通常呈球形,故称为“球晶”。

球晶的大小取决于聚合物的分子结构及结晶条件,因此随着聚合物种类和结晶条件的不同,球晶尺寸差别很大,直径可以从微米级到毫米级,甚至可以大到厘米。

球晶尺寸主要受冷却速度、结晶温度及成核剂等因素影响。

球晶具有光学各向异性,对光线有折射作用,因此能够用偏光显微镜进行观察,该法最为直观,且制样方便、仪器简单。

聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图象。

有些聚合物生成球晶时,晶片沿半径增长时可以进行螺旋性扭曲,因此还能在偏光显微镜下看到同心圆消光图象。

对小于几微米的球晶则可用电子显微镜进行观察或采用激光小角散射法等进行研究。

结晶聚合物材料、制品的实际使用性能(如光学透明性、冲击强度等)与材料内部的结晶形态、晶粒大小及完善程度有着密切的联系。

如较小的球晶可以提高材料冲击强度及断裂伸长率;球晶尺寸对于聚合物材料的透明度影响则更为显著:聚合物晶区的折光指数大于非晶区,球晶的存在将产生光的散射而使透明度下降,球晶越小透明度越高,当球晶尺寸小到与光的波长相当时可以得到透明的材料。

因此,对聚合物结晶形态与尺寸等的研究具有重要的理论和实际意义。

球晶的生长以晶核为中心,从初级晶核生长的片晶,在结晶缺陷点繁盛支化,形成新的片晶,它们在生长时发生弯曲和扭转,并进一步分支形成新的片晶,如此反复,最终形成以晶核为中心,三维向外发散的球形晶体。

实验证实,球晶中分子链垂直球晶的半径方向。

实验一 偏光显微镜法观察聚合物球晶形态

实验一 偏光显微镜法观察聚合物球晶形态

=0.64,根据 [] K M求 出
。M
29
高分子材料专业实验
六、回答问题及讨论
• 1.乌贝路德粘度计中支管C有何作用?除去支管C是 否可测定粘度?
• 2.粘度计的毛管太粗或太细有什么缺点? • 3.用乌氏粘度计测量溶液的流出时间时,为什么要
打开C管的夹子使毛细管末端通大气?如果不打开, 对流出时间测定会有什么影响?影响流出时间测定 准确性的因素有哪些? • 4.利用粘度法测定高聚物分子量的局限性如何?适 用的分子量范围是多大?
高分子材料专业实验
四、实验步骤
• 3.聚丙烯的结晶形态观察 • 将制备好的样品放在载物台上,在正交偏
振条件下观察球晶形态,读出相邻两球晶 中心连线在分度尺上所占的格数,将格数 乘以mm/格(已经过显微尺标定)即可估算 出球晶直径。
高分子材料专业实验
四、实验步骤
聚丙烯颗粒
以45°斜角 盖上另外一 片载玻片
30
高分子材料专业实验
实验三 GPC法测聚合物的分子量 及分布
一、实验目的 二、实验原理 三、仪器与试剂 四、实验步骤 五、数据处理 六、回答问题及讨论
高分子材料专业实验
一、实验目的
• 1. 了解凝胶渗透色谱法(GPC)的基本原理。 • 2. 掌握GPC法测定聚合物的分子量及分子
量分布的实验技术及数据处理。
26
高分子材料专业实验
四、实验步骤
• 5.整理工作 • 倒出粘度计中的溶液,倒入纯溶剂,将其吸
至a线上方小球的一半清洗毛细管,反复几 次,倒挂毛细管粘度计以待后用。
27
高分子材料专业实验
五、数据处理
l.测得数据记入下表
记录 t0
t
r

偏光显微镜法观察聚合物球晶形态

偏光显微镜法观察聚合物球晶形态

偏光显微镜法观察聚合物球晶形态一、实验目的1.了解偏光显微镜的结构及使用方法。

2.了解球晶黑十字消光图案的形成原理。

3.观察聚合物的结晶形态,理解影响聚合物球晶大小的因素。

二、实验原理用偏光显微镜研究聚合物的结晶形态是目前实验室中较为简便而实用的方法。

随着结晶条件的不用,聚合物的结晶可以具有不同的形态,如:单晶、树枝晶、球晶、纤维晶及伸直链晶体等。

而球晶是聚合物结晶中一种最常见的形式。

在从浓溶液中析出或熔体冷却结晶时,聚合物倾向于生成这种比单晶复杂的多晶聚集体,通常呈球形,故称为“球晶”。

球晶的大小取决于聚合物的分子结构及结晶条件,因此随着聚合物种类和结晶条件的不同,球晶尺寸差别很大,直径可以从微米级到毫米级,甚至可以大到厘米。

球晶尺寸主要受冷却速度、结晶温度及成核剂等因素影响。

球晶具有光学各向异性,对光线有折射作用,因此能够用偏光显微镜进行观察,该法最为直观,且制样方便、仪器简单。

聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图象。

有些聚合物生成球晶时,晶片沿半径增长时可以进行螺旋性扭曲,因此还能在偏光显微镜下看到同心圆消光图象。

对小于几微米的球晶则可用电子显微镜进行观察或采用激光小角散射法等进行研究。

结晶聚合物材料、制品的实际使用性能(如光学透明性、冲击强度等)与材料内部的结晶形态、晶粒大小及完善程度有着密切的联系。

如较小的球晶可以提高材料冲击强度及断裂伸长率;球晶尺寸对于聚合物材料的透明度影响则更为显著:聚合物晶区的折光指数大于非晶区,球晶的存在将产生光的散射而使透明度下降,球晶越小透明度越高,当球晶尺寸小到与光的波长相当时可以得到透明的材料。

因此,对聚合物结晶形态与尺寸等的研究具有重要的理论和实际意义。

球晶的生长以晶核为中心,从初级晶核生长的片晶,在结晶缺陷点繁盛支化,形成新的片晶,它们在生长时发生弯曲和扭转,并进一步分支形成新的片晶,如此反复,最终形成以晶核为中心,三维向外发散的球形晶体。

偏光显微镜法观察聚合物的结晶形态

偏光显微镜法观察聚合物的结晶形态

偏光显微镜法观察聚合物的结晶形态在使用偏光显微镜观察聚合物结晶形态时,首先要准备好样品,一般采用水介质,将溶解的聚合物结晶用滴定的方法滴入载玻片干燥,形成薄膜。

然后,需要在偏光显微镜上对样品进行观察,首先调整好聚光条件,将偏光片从镜头上取下,用螺旋状不锈钢螺丝将其损坏,然后将偏光片再放回到镜头上。

之后,用滤目镜盒进行调节,使镜头聚光,将样品放在镜头上,通过调节聚光条件,将样品放大,调整显微镜下文字的叠层状况,将样品清晰地显示在显微镜投影仪上。

最后,用偏光镜进行观察,调节偏光片,使聚合物结晶形态的细微特征清晰可见,以获得更加准确的信息。

偏光显微镜法观察聚合物球晶结构

偏光显微镜法观察聚合物球晶结构

实验一:偏光显微镜法观察聚合物熔体结晶用偏光显微镜研究聚合物的结晶形态是目前实验室中较为简便而实用的方法。

随着结晶条件的不用,聚合物的结晶可以具有不同的形态,如:单晶、树枝晶、球晶、纤维晶及伸直链晶体等。

而球晶是聚合物结晶中一种最常见的形式。

在从浓溶液中析出或熔体冷却结晶时,聚合物倾向于生成这种比单晶复杂的多晶聚集体,通常呈球形,故称为“球晶”。

球晶的大小取决于聚合物的分子结构及结晶条件,因此随着聚合物种类和结晶条件的不同,球晶尺寸差别很大,直径可以从微米级到毫米级,甚至可以大到厘米。

球晶尺寸主要受冷却速度、结晶温度及成核剂等因素影响。

球晶具有光学各向异性,对光线有折射作用,因此能够用偏光显微镜进行观察,该法最为直观,且制样方便、仪器简单。

聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图象。

有些聚合物生成球晶时,晶片沿半径增长时可以进行螺旋性扭曲,因此还能在偏光显微镜下看到同心圆消光图象。

对小于几微米的球晶则可用电子显微镜进行观察或采用激光小角散射法等进行研究。

结晶聚合物材料、制品的实际使用性能(如光学透明性、冲击强度等)与材料内部的结晶形态、晶粒大小及完善程度有着密切的联系。

如较小的球晶可以提高材料冲击强度及断裂伸长率;球晶尺寸对于聚合物材料的透明度影响则更为显著:聚合物晶区的折光指数大于非晶区,球晶的存在将产生光的散射而使透明度下降,球晶越小透明度越高,当球晶尺寸小到与光的波长相当时可以得到透明的材料。

因此,对聚合物结晶形态与尺寸等的研究具有重要的理论和实际意义。

一、实验目的和要求1.了解偏光显微镜的结构及使用方法。

2.了解球晶黑十字消光图案的形成原理。

3.观察聚合物的结晶形态,理解影响聚合物球晶大小的因素。

二、实验原理球晶是以晶核为中心对称向外生长而成的。

在生长过程中不遇到阻碍时形成球形晶体;如在生长过程中球晶之间因不断生长而相碰则在相遇处形成界面而成为多面体,在二度空间下观察为多边体结构。

偏光显微镜法观察聚合物的结晶形态

偏光显微镜法观察聚合物的结晶形态
当 P2∥P1 即α=0,偏振光 I 可顺利通过 P2,I=I 0; 当 P2⊥P1 即α=90,偏振光 I 不能通过 P2,I=0 。 凡装有两个偏光镜 ,且其振动方向相互垂直的显微镜 就叫做正交偏光显微镜。
二、实验原理
正交偏光显微镜的三种工作状态
1. 当载物台上无样品时,目镜视域完全黑暗; 2. 当载物台上样品为各向同性时,由于各向同 性物体只有一个折射率,即不发生双折射,也 不改变入射偏振光的振动方向,同 1 ,视野黑 暗;
四、实验要求
3. 注意事项
样品尺寸:为绿豆粒大小即可; 制样时:应尽量将样品压薄且缓慢冷却至室温以 使结晶完善便于观察;压片时,应垂直施加压力, 防止盖玻片破裂或样品厚度不匀造成结晶尺寸变 化太大; 调焦时,切忌让载玻片碰撞目镜以防损坏镜头; 观察完毕,将光源调至最弱,关闭电源。
四、实验要求
4 结果分析
P1
不能透过,而∥ P2的光可全透过, 并相互干涉到目镜。
二、实验原理
正交 PLM 下的球晶形态
球晶是一种多晶,其 最基本结构 单元是折叠链晶片 。这些晶片中 的大分子沿与球晶半径相切的方 向择优排列,如图所示。
● 球晶的 Maltase 黑十字
当一束偏振光通过球晶时,即在平行于分子链和垂直于 分子链的方向上有不同的折光率发生双折射,分成两束 电矢量相互垂直的偏振光,即这两束光分别平行和垂直 于球晶半径的方向。由于两方向的折射率不同,两束光 通过样品的速度是不等的,必然产生一定的相位差而发 生干涉现象。通过球晶的部分光可以通过与起偏镜处于 正交位置的检偏镜,另一部分区域的光线不能通过,最 后形成亮暗区域,呈现出球晶特有的黑十字消光图案 (称为 Maltase 十字)。
三、仪器和试剂
1. Olympus BX51型热台偏光显微镜显 微镜、 LinkamTMS94 热台、电脑。 2.球晶聚合物试样:聚乳酸。

偏光显微镜观察聚合物结晶形.

偏光显微镜观察聚合物结晶形.

偏光显微镜观察聚合物结晶形态一、实验目的和要求(1)掌握使用偏光显微镜观察聚合物结晶形态的方法;(2)理解结晶成核剂与球晶尺寸的关系;二、实验重点和难点(1)聚合物结晶形态与结晶条件的关系;(2)制备聚合物结晶样品时结晶条件的控制;三、提问和互动设计(1)聚合物的结晶形态有哪些?它们各与何种结晶条件相对应?研究球晶的重要意义?(2)使用偏光显微镜观察聚合物球晶的实验原理?(3)等温结晶和非等温结晶条件下影响结晶速度和球晶大小的因素?四、实验讲解(原理、操作步骤)全同聚丙烯(PP)是一种性能优良、应用广泛的结晶聚合物,具有机械性能好、无毒、密度低、耐热、耐化学品、易于加工成型等优点。

但是在聚丙烯的一些实际应用中,经常遇到改善聚丙烯的光学透明性、提高制品的力学性能(刚性和韧性)和耐热性能、缩短加工成型周期等要求。

这些问题涉及到聚丙烯的结晶速度、结晶度和结晶形态。

聚丙烯由晶区和非晶区两部分组成,而晶区则往往是由球晶的多晶聚集体所组成,球晶的尺寸一般在0.5-100μ之间。

由于晶区和非晶区的密度和折光率不同,而且晶区的尺寸通常大于可见光的波长,所以光线通过聚丙烯将在两相的界面上发生折射和反射,导致聚丙烯制品透明性下降。

加入结晶成核剂是提高聚丙烯透明性的主要改性技术,在结晶聚合物中添加结晶成核剂,通过其异相成核作用可以大大增加成核密度,导致球晶尺寸明显降低,聚合物的透明性得到改善。

研究聚合物结晶形态的主要方法有电子显微镜法、偏光显微镜法、小角光散射法等,偏光显微镜法是目前实验室中较为简便而使用的方法。

球晶中聚合物分子链的取向排列引起了光学的各向异性,在分子链轴平行于起偏器或检偏器的偏振面的位置将发生消光现象。

在球晶生长过程中晶片以径向发射状生长,导致分子链轴方向总是与径向垂直,因此在显微镜的视场中有四个区域分子链轴的方向与起偏器或检偏器的偏振面平行,形成十字形消光图象。

所以在正交偏光显微镜下,球晶呈现特有的黑十字消光图案,有时在球晶的偏光显微镜照片上,还可以清晰地看到在黑十字消光图象上重叠有一系列明暗相间的同心圆环,那是由于球晶中径向发射堆砌的条状晶片按一定周期规则地扭转的结果。

实验18 -偏光显微镜观察结晶聚合物形态

实验18 -偏光显微镜观察结晶聚合物形态

实验18偏光显微镜法观察聚合物球晶结构结晶聚合物材料的实际使用性能(如光学透明性、冲击强度等)与材料内部的结晶形态、晶粒大小及完善程度有着密切的关系,因此,对于聚合物结晶形态等的研究有重要的理论和实际意义。

随着结晶条件的不同,聚合物的结晶可以具有不同的形态,如单晶、树枝晶、球晶、纤维晶及伸直链晶体等,而球晶是聚合物结晶中一种最常见的形式。

在从浓溶液析出或熔体冷却结晶时,聚合物倾向于生成比单晶更为复杂的多晶聚集体,通常呈球形,故称为球晶。

球晶可以长的很大,直径甚至可以达到厘米数量级。

对于几微米以上的球晶,用普通的偏光显微镜(POM)就可以方便地进行观测,对小于几微米的球晶,则需要用电子显微镜或小角光散射法进行研究。

一、实验目的1、了解偏光显微镜的结构及使用方法;2、掌握用偏光显微镜观察聚合物的球晶形态的方法;3、掌握用偏光显微镜测量聚合物球晶大小及增长速率、结晶熔点的方法。

二、实验原理图18-1偏光显微镜示意图1—目镜;2—透镜;3—检偏镜;4—物镜;5—载物台;6—聚光镜;7—起偏镜;8—反光镜图18-2Zeiss Axioskop40Pol偏光显微镜(附Linkam EC600冷热台)球晶是的晶片从一个中心(晶核)向四面八方生长,发展成为一个球状聚集体而成,在生长过程中不遇到阻碍时便形成球形晶体并因此而得名。

分子链的取向排列使球晶在光学性质上是各向异向的,因此在径向和切向的折光率不同。

在正交偏光显微镜下观察时,其透射115116光强如下式所示:)(sin 2sin 2220λπϕ∆⋅=E I (1)式中I 、E 0、φ、Δ分别为透射光强、入射偏振光电场分量的振幅、球晶径向与入射光偏振方向的夹角和径向与切向透射光的光程差,因此在0º、90º、180º和270º时透射光强为0,产生消光现象,可以看到球晶特有的黑十字消光图案(称为Maltase 十字)。

图18-3i PS 的Maltase十字正光性球晶负光性球晶图18-4正负球晶如果半径方向上的折光指数n r 大于垂直于半径方向(切线方向)的折光指数n i ,球晶为正球晶,反之则称为负球晶。

偏光显微镜法观察聚合物球晶形态

偏光显微镜法观察聚合物球晶形态

一、实验目的1.了解偏光显微镜的结构及使用方法。

2.了解球晶黑十字消光图案的形成原理。

3.观察聚合物的结晶形态,理解影响聚合物球晶大小的因素。

二、实验原理用偏光显微镜研究聚合物的结晶形态是目前实验室中较为简便而实用的方法。

随着结晶条件的不用,聚合物的结晶可以具有不同的形态,如:单晶、树枝晶、球晶、纤维晶及伸直链晶体等。

而球晶是聚合物结晶中一种最常见的形式。

在从浓溶液中析出或熔体冷却结晶时,聚合物倾向于生成这种比单晶复杂的多晶聚集体,通常呈球形,故称为“球晶”。

球晶的大小取决于聚合物的分子结构及结晶条件,因此随着聚合物种类和结晶条件的不同,球晶尺寸差别很大,直径可以从微米级到毫米级,甚至可以大到厘米。

球晶尺寸主要受冷却速度、结晶温度及成核剂等因素影响。

球晶具有光学各向异性,对光线有折射作用,因此能够用偏光显微镜进行观察,该法最为直观,且制样方便、仪器简单。

聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图象。

有些聚合物生成球晶时,晶片沿半径增长时可以进行螺旋性扭曲,因此还能在偏光显微镜下看到同心圆消光图象。

对小于几微米的球晶则可用电子显微镜进行观察或采用激光小角散射法等进行研究。

结晶聚合物材料、制品的实际使用性能(如光学透明性、冲击强度等)与材料内部的结晶形态、晶粒大小及完善程度有着密切的联系。

如较小的球晶可以提高材料冲击强度及断裂伸长率;球晶尺寸对于聚合物材料的透明度影响则更为显著:聚合物晶区的折光指数大于非晶区,球晶的存在将产生光的散射而使透明度下降,球晶越小透明度越高,当球晶尺寸小到与光的波长相当时可以得到透明的材料。

因此,对聚合物结晶形态与尺寸等的研究具有重要的理论和实际意义。

球晶的生长以晶核为中心,从初级晶核生长的片晶,在结晶缺陷点繁盛支化,形成新的片晶,它们在生长时发生弯曲和扭转,并进一步分支形成新的片晶,如此反复,最终形成以晶核为中心,三维向外发散的球形晶体。

实验证实,球晶中分子链垂直球晶的半径方向。

偏光显微镜观察聚合物的结晶形态

偏光显微镜观察聚合物的结晶形态

实验名称:偏光显微镜观察聚合物的结晶形态一.实验目的通过偏光显微镜直接观察,了解聚合物的结晶结构或无定形结构。

二.实验原理聚合物的性能主要决定于它的结构。

高分子聚集在一起有两种主要方式,即结晶态和无定形态。

如果高分子链在空间三个方向上形成有序排列,这种有规律的排列结构称为聚合物的结晶态结构;若高分子链成为无序排列,则称为非晶相或称为无定形结构。

利用普通光学显微镜能直接观察聚合物的外观结构,如均匀性、粒子的大小及分布等。

不含填料和杂质的多数无定形聚合物,在显微镜下都是无色清澈透明的。

但普通光学显微镜只能看到聚合物中的粒子形态,不能鉴别是晶体还是非晶体,而偏光显微镜利用晶体与非晶体对偏振光有不同的反应,可以观察到粒子是晶体还是非晶体。

三.实验试剂与实验仪器1.偏光显微镜偏光显微镜的主要结构与普通光学显微镜相同,主要有目镜和物镜组成,所产生的图象是样品放大的倒像。

总的放大倍数等于目镜和物镜放大倍数的乘积。

不同的是偏光显微镜比普通光学显微镜多加了两块偏振镜。

下偏振镜位于光源与聚光镜之间,它的作用是使通过样品前的自然光变成偏振光,而上偏振镜位于目镜与物镜之间,它的物理作用与下偏振镜相同。

当光线通过上偏振镜时,如果是具有一定振动方向的偏振光,旋转上偏振镜则视场有明暗之别;如果是没有确定方向的自然光,旋转上偏振镜,光都能通过,则视场始终是明亮的,故上偏振镜又称检偏振镜。

上、下两偏振镜的偏振轴相互平行时,光线能全部通过上偏振镜,视场最亮。

上、下两偏振镜的偏振轴相互垂直时,光线完全不能通过上偏振镜,视场最暗。

因此,当固定其中一个偏振镜,把另一个偏振镜转动180º,就看到视场有明暗交替出现的现象。

上、下两偏振镜的偏振轴相互垂直,便组成所谓“正交偏光镜”,用偏光显微镜观察聚合物结晶状态时,通常是在正交偏光镜下观察。

在正交偏光镜下观察非晶态聚合物时,视场是暗的,这种现象叫消光。

把载物台旋转360º,消光现象不变,这叫永久消光或全消光(见图1 所示),永久消光是非晶态聚合物的固有特征,是区分结晶聚合物和非晶态聚合物的重要依据。

偏光显微镜观察聚合物结晶形态

偏光显微镜观察聚合物结晶形态

用偏光显微镜观察聚合物球晶,在一定条件下,球晶呈现出更复 杂的环状图案,即在特征的黑十字消光图象上还重叠着明暗相间的消
光同性圆环, 这可能是晶片周期性扭转产生的,见图3。
图6 带消光同心圆环的聚乙烯球晶的偏光显微镜照片
同心消光环
成因:球晶中折叠链晶片发生螺旋排列,使微晶 透过偏光的情况也随之发生变化: 当光波平行c/光轴入射时不发生双折射,视场黑暗; 其他方位入射可发生双折射,视场明亮。
五、数据处理
1. 画出用偏光显微镜所观察到的球晶形态示意图。
2. 将记录的格数乘以mm/格(已经显微尺标定), 计算球晶直径。
图2
球晶的Maltase黑十字
分子链的取向排列使球晶具有双折射性并呈现特殊的
Maltese黑十字(Maltese cross)消光图像,因而很容易在
偏光显微镜下观测到。
图5 聚丙烯(PP)球晶
I A Sin
2
2
2ψ Sin
2

2
式中,A为偏振光的振幅,定值;
δ为两束折射光的 相位差,定值;所以, 当ψ=(n-1)π/2,光强度I=0,视野黑暗; ψ=(2n-1)π/4,I为极大值,视野明亮。 这里,n为正整数。
聚乙烯(PE)球晶
(1)
(ห้องสมุดไป่ตู้)
(3)
半径方向
球晶中折叠链微晶的螺旋排列
位置1:光波平行于c轴入射到a,b组成的平面,因为na=nb,此时相当于 各向同性物体,不发生双折射,所以没有光从目镜中透出,视野 黑暗;此时与(1)到晶核相同距离处的微晶都处于同样的状态, 故观察到的是一圈黑环。 位置2:此时,光波垂直于b,c面入射,由于nc≠nb,发生双折射,有光 从检偏晶投射出来,视野明亮;同理,以晶核为原点,以(2) 到晶核的距离为半径的圆周上都是明亮的,所以为亮环。 位置3: 重复位置1,为暗环。 在晶片扭曲的方向如此周期性重复,形成明暗交替的消光环。 且螺旋的螺距与同心环间的距离是一致的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、实验原理
双折射( double refraction ):
光束入射到各向异性的晶体上时, 入射光分解为两束光而沿不同方 向折射的现象。它们为振动方向 互相垂直的线偏振光。
二、实验原理
1. 自然光 — 普通光源发出的光 , 在垂直于传播方向 的平面上。
2. 线偏振光 —光矢量只在某一固定的方向上振动。 3. 振动面 —光波前进方向和振动方向构成的平面。
P1
不能透过,而∥ P2的光可全透过, 并相互干涉到目镜。
二、实验原理
正交 PLM 下的球晶形态
球晶是一种多晶,其 最基本结构 单元是折叠链晶片 。这些晶片中 的大分子沿与球晶半径相切的方 向择优排列,如图所示。
● 球晶的 Maltase 黑十字
当一束偏振光通过球晶时,即在平行于分子链和垂直于 分子链的方向上有不同的折光率发生双折射,分成两束 电矢量相互垂直的偏振光,即这两束光分别平行和垂直 于球晶半径的方向。由于两方向的折射率不同,两束光 通过样品的速度是不等的,必然产生一定的相位差而发 生干涉现象。通过球晶的部分光可以通过与起偏镜处于 正交位置的检偏镜,另一部分区域的光线不能通过,最 后形成亮暗区域,呈现出球晶特有的黑十字消光图案 (称为 Maltase 十字)。
三、仪器和试剂
1. Olympus BX51型热台偏光显微镜显 微镜、 LinkamTMS94 热台、电脑。 2.球晶聚合物试样:聚乳酸。
四、实验要求
1. 预习报告
认真预习偏光显微镜工作原理;球晶黑十字 的成因;制样方法。
2. 实验步骤
放置载玻片,接通制样台电源,压片法制样, 样品冷却。 调节显微镜,观察样品结晶形态,切断电源。
当 P2∥P1 即α=0,偏振光 I 可顺利通过 P2,I=I 0; 当 P2⊥P1 即α=90,偏振光 I 不能通过 P2,I=0 。 凡装有两个偏光镜 ,且其振动方向相互垂直的显微镜 就叫做正交偏光显微镜。
二、实验原理
正交偏光显微镜的三种工作状态
1. 当载物台上无样品时,目镜视域完全黑暗; 2. 当载物台上样品为各向同性时,由于各向同 性物体只有一个折射率,即不发生双折射,也 不改变入射偏振光的振动方向,同 1 ,视野黑 暗;
四、实验要求
3. 注意事项
样品尺寸:为绿豆粒大小即可; 制样时:应尽量将样品压薄且缓慢冷却至室温以 使结晶完善便于观察;压片时,应垂直施加压力, 防止盖玻片破裂或样品厚度不匀造成结晶尺寸变 化太大; 调焦时,切忌让载玻片碰撞目镜以防损坏镜头; 观察完毕,将光源调至最弱,关闭电源。
四、实验要求
4 结果分析
线偏振光 .
起偏器
检偏器
偏振光经过旋转的检偏器后光强发生变化
自然光
. ...
P1
P2
线偏振光
.
起偏器
检偏器
偏振光经过旋转的检偏器后光强发生变化
P1
P2
自然光
. .. .
线偏振光
.
起偏器
检偏器
偏振光经过旋转的检偏器后光强发生变化
自然光
. .. .
P1
P2
线偏振光
.
起偏器
检偏器
二、实验原理
两偏振光强度间的关系可用马吕斯定律描述
球晶情况(大小均匀性、对称性、密集 情况); 消光现象:黑十字、
四、实验要求
5 实验报告 按照常规实验报告的要求分别完成偏光 显微镜实验; 附偏光显微镜实验原始记录; 写出对聚合物结晶 / 熔融行为的全面理 解和综合分析。
二、实验原理
3当放置晶体样品时
由于晶体的光学各向异性(立方晶
P2
除外),光波射后发生双折射现
象, 产生与晶体光轴∥和⊥的两种
偏光 K1和K2。
设K1、K2 的振动方向与 P2的振动 方向 AA斜交(见左图),故 K1、K2 进入 P2时再度发生分解,形成与 P2 相互的四种偏光。其中⊥ P2的偏光
传播方向
E
振动面
二、实验原理
偏振光是如何产生的? —偏振片
偏振光的产生原理: 偏振片中存在着某种特征性的方向叫做偏振化方向; 偏振片只允许∥偏振化方向的振动光通过,同时吸收 ⊥该方向振动的光; 所以,自然光经过偏振片后成为具有一定振动方向的 偏振光。
偏振光经过旋转的检偏器后光强发生变化
自然光
. ...
偏光显微镜观察聚合物结晶形态
一、实验目的
了解和掌握偏光显微镜( PLM )的结构、 原理及使用方法。 学会观察聚合物结晶形态。
各向异性: 指晶体的物理、化学等方面的性 质因方向的不同而有所变化的特性 。
二、实验原理
偏光显微镜可观察到微米( um )及以上 尺寸的晶体; 其主要实验依据为 晶体双折射效应 和 偏 振光特性。
相关文档
最新文档