线性规划题型大全

合集下载

线性规划五类经典题型-精选.pdf

线性规划五类经典题型-精选.pdf
线性规划五类经典题型
类型一:一般线性规划题 类型二:构造 类型三:待定系数法 类型四:整点问题
类型五:含参数线性规划问题
类型一:一般线性规划题
4 已知实数 x, y 满足线性约束条件
2x- y≥ 0, x+y- 4≥ 0, x≤3,
( 1) z=2x-3y 的最大值和最小值;
(2) z=x2+y2- 10y+25 的最小值;
17
b
zx 过点 C 2, 2 时, zmax= 7,故 a∈ [e,7] .
2 已知函数 f ( x) 1 x3 1 ax2 bx c 在 x1处取得极 大值,在 x2 处取得极小值,满足
32
x1
( 1,0), x2
a (0,1) ,则
2b
4 的取值范围是 ________.
a2
3、 已知
ABC 的三边长 a, b,c 满足 b
所以,不等式组
x- y+5≥0, x+ y≥0, x≤3
表示的平面区域如图所示.
5 结合图中可行域得 x∈ -2, 3 ,y∈ [ - 3,8] .
(2) 由图形及不等式组知
- x≤ y≤x+ 5, 5
- 2≤ x≤3,且 x∈Z,
当 x=3 时,- 3≤ y≤8,有 12 个整点;
当 x=2 时,- 2≤ y≤7,有 10 个整点; 当 x=1 时,- 1≤ y≤6,有 8 个整点; 当 x=0 时, 0≤ y≤5,有 6 个整点; 当 x=- 1 时, 1≤ y≤4,有 4 个整点; 当 x=- 2 时, 2≤ y≤3,有 2 个整点; ∴平面区域内的整点共有 2+ 4+ 6+ 8+ 10+12= 42( 个 ) .
1( 2012 江苏高考 ) 已知正数 a, b, c 满足: 5c- 3a≤ b≤4c- a,cln b≥ a+ cln c,则 a的 取值范围是 ________.

线性规划的常见题型

线性规划的常见题型

线性规划的常见题型一、基础能力【一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]【二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.技能掌握1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值,间接求出z 的最值.(2)距离型:形一:如z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离;形二:z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离的平方.(3)斜率型:形如z =y x ,z =ay -b cx -d ,z =ycx -d ,z =ay -b x ,此类目标函数常转化为点(x ,y )与定点所在直线的斜率.二、题型分解题型一:求线性目标函数的最值1.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z =x +6y 的最大值为( )A .3B .4C .18D .403.若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( ) A .-6 B .-2 C .0D .2题型二:求非线性目标的最值4.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM斜率的最小值为( )A .2B .1C .-13D .-125.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1的取值范围 . 6.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2的取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]7.设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.8.设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,|AB |的最小值等于( )A .285B .4C .125D .2题型三:求线性规划中的参数9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是A .73B .37C .43D .3410.若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C .12D .-1211.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为A .12或-1B .2或12C .2或1D .2或-112.在约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤s ,y +2x ≤4.下,当3≤s ≤5时,目标函数z =3x +2y 的最大值的取值范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]13.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1的最小值为32,则a 的值为________.题型四:线性规划的实际应用14.A,B两种规格的产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A产品需要在甲机器上加工3小时,在乙机器上加工1小时;B产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A产品每件利润300元,B产品每件利润400元,则这两台机器在一个工作日内创造的最大利润是________元.15.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x与骑兵个数y表示每天的利润w(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?三、练习巩固一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)2.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 的最小值是( )A .-3B .0C .32D .33.已知O 为坐标原点,A (1,2),点P 的坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧x +|y |≤1,x ≥0,则z =OA →·OP →的最大值为( )A .-2B .-1C .1D .24.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是( )A .⎣⎡⎦⎤53,5B .[0,5]C .⎣⎡⎭⎫53,5D .⎣⎡⎭⎫-53,5 5.如果点(1,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取的整数值为( ) A .2 B .1 C .3D .06.已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 的取值范围是( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)7.在平面直角坐标系xOy 中,P 为不等式组⎩⎪⎨⎪⎧y ≤1,x +y -2≥0,x -y -1≤0,所表示的平面区域上一动点,则直线OP 斜率的最大值为( )A .2B .13C .12D .18.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1C .12D .149.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为4,则ab的取值范围是( )A .(0,4)B .(0,4]C .[4,+∞)D .(4,+∞)10.设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为( )A .πB .2πC .3πD .4π11.变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥-1,x -y ≥2,3x +y ≤14,若使z =ax +y 取得最大值的最优解有无穷多个,则实数a 的取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}12.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-313.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,恒有ax +by ≤1,则由点P (a ,b )所确定的平面区域的面积是( )A .12B .π4C .1D .π214.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 的取值范围是( )A .⎝⎛⎭⎫-∞,43B .⎝⎛⎭⎫-∞,13 C .⎝⎛⎭⎫-∞,-23D .⎝⎛⎭⎫-∞,-53 15.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,则a 的取值范围是 ( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞)16.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .4917.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k (x -1)-1表示一个三角形区域,则实数k 的取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)18.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 的最大值为( )A .4B .6C .8D .1019.当变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x x +3y ≤4x ≥m 时,z =x -3y 的最大值为8,则实数m 的值是( )A .-4B .-3C .-2D .-120.已知O 为坐标原点,A ,B 两点的坐标均满足不等式组⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≤0,x -1≥0,则tan ∠AOB 的最大值等于( )A .94B .47C .34D .12二、填空题21.不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.22.若实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1,则x +y 的取值范围是________.23.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为____.24.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8的最小值为________.25.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM |的最小值是________.26.某企业生产甲、乙两种产品,已知生产每吨甲产品要用水3吨、煤2吨;生产每吨乙产品要用水1吨、煤3吨.销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元,若该企业在一个生产周期内消耗水不超过13吨,煤不超过18吨,则该企业可获得的最大利润是______万元.27.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:________亩. 28.若A 为不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________.29.当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.30.已知动点P (x ,y )在正六边形的阴影部分(含边界)内运动,如图,正六边形的边长为2,若使目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,则k 的值为________.31.设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +my 的最大值小于2,则m 的取值范围 .32.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,若目标函数z =x -y 的最小值的取值范围是[-2,-1],则目标函数的最大值的取值范围是________.33.给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.34.已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为__________.35.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +4y -13≤02y -x +1≥0x +y -4≥0且有无穷多个点(x ,y )使目标函数z =x +my 取得最小值,则m =________.。

线性规划题及答案

线性规划题及答案

线性规划题及答案一、问题描述某公司生产两种产品A和B,每一个产品的生产需要消耗不同的资源,并且每一个产品的销售利润也不同。

公司希翼通过线性规划来确定生产计划,以最大化利润。

已知产品A每一个单位的生产需要消耗2个资源1和3个资源2,每一个单位的销售利润为10元;产品B每一个单位的生产需要消耗4个资源1和1个资源2,每一个单位的销售利润为15元。

公司目前有10个资源1和12个资源2可供使用。

二、数学建模1. 假设生产产品A的数量为x,生产产品B的数量为y。

2. 根据资源的消耗情况,可以得到以下约束条件:2x + 4y ≤ 10 (资源1的消耗)3x + y ≤ 12 (资源2的消耗)x ≥ 0, y ≥ 0 (生产数量为非负数)3. 目标是最大化利润,即最大化销售收入减去生产成本:最大化 Z = 10x + 15y三、线性规划求解1. 将目标函数和约束条件转化为标准形式:目标函数:最大化 Z = 10x + 15y约束条件:2x + 4y ≤ 103x + y ≤ 12x ≥ 0, y ≥ 02. 通过图形法求解线性规划问题:a. 绘制约束条件的图形:画出2x + 4y = 10和3x + y = 12的直线,并标出可行域。

b. 确定可行域内的顶点:可行域的顶点为(0, 0),(0, 2.5),(4, 0),(2, 3)。

c. 计算目标函数在每一个顶点处的值:分别计算Z = 10x + 15y在(0, 0),(0, 2.5),(4, 0),(2, 3)四个顶点处的值。

Z(0, 0) = 0Z(0, 2.5) = 37.5Z(4, 0) = 40Z(2, 3) = 80d. 比较所有顶点处的目标函数值,确定最优解:最优解为Z = 80,即在生产2个单位的产品A和3个单位的产品B时,可以获得最大利润80元。

四、结论根据线性规划的结果,公司在资源充足的情况下,应该生产2个单位的产品A和3个单位的产品B,以最大化利润。

线性规划练习题

线性规划练习题

线性规划练习题一、选择题1. 线性规划问题中,目标函数的最优值是:A. 最大化B. 最小化C. 既可能最大化也可能最小化D. 不确定2. 下列哪个不是线性规划的基本假设?A. 目标函数是线性的B. 约束条件是线性的C. 约束条件是连续的D. 约束条件是不等式的3. 线性规划问题的图形解法中,可行域的边界条件是:A. 等式B. 不等式C. 既可能是等式也可能是不等式D. 无法确定4. 单纯形法是解决线性规划问题的哪种算法?A. 图形解法B. 枚举法C. 迭代法D. 直接法5. 以下哪个条件不是线性规划问题的基本假设?A. 目标函数是线性的B. 约束条件是线性的C. 目标函数和约束条件都是线性的D. 约束条件是确定的二、填空题6. 线性规划问题中,目标函数的最优解可能位于可行域的_________。

7. 单纯形法中,如果目标函数的系数在所有基变量上的系数都是_________,则该基可行解是最优解。

8. 线性规划问题中,如果目标函数是最大化问题,当可行域是无界的,则最优解是_________。

9. 线性规划问题中,如果约束条件中存在_________,则该问题可能没有可行解。

10. 单纯形法中,如果某一非基变量的系数在目标函数中为_________,则该变量在当前基可行解中为零。

三、简答题11. 解释线性规划问题中,为什么需要引入松弛变量?12. 描述单纯形法的基本步骤,并说明每一步的目的。

13. 线性规划问题中,如果目标函数是最大化问题,当可行域有界时,最优解可能出现在哪些位置?14. 解释线性规划问题中的对偶问题,并说明对偶问题与原问题之间的关系。

15. 什么是退化现象?在单纯形法中如何避免退化现象?四、计算题16. 考虑以下线性规划问题:Max Z = 3x + 4ys.t.2x + y ≤ 10x + 2y ≤ 8x, y ≥ 0求该问题的最优解,并给出最优值。

17. 假设你有一个生产问题,需要决定生产两种产品A和B的数量,以最大化利润。

线性规划常见题型及解法 均值不等式(含答案)

线性规划常见题型及解法 均值不等式(含答案)

线性规划常见题型及解法一.基础知识:(一)二元一次不等式表示的区域二元一次不等式0>++C By Ax 表示直线0=++C By Ax 某一侧的所有点组成的区域,把直线画成虚线表示不包括边界, 0≥++C By Ax 所表示的区域应包括边界,故边界要画成实线.由于在直线0=++C By Ax 同一侧的所有点(x,y ),把它的坐标(x,y )代入C By Ax ++,所得的符号相同,所以只需在此直线的某一侧取一个特殊点(0,0y x ),从C By Ax ++00的正负即可判断0≥++C By Ax 表示直线哪一侧的平面区域。

通常代特殊点(0,0)。

(二)线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =A x +B y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =A x +B y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(4)用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值. (5) 利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数.然后,用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解. 最后,还要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解.线性规划是新教材中新增的内容之一,由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下常见题型。

线性规划题及答案

线性规划题及答案

线性规划题及答案引言概述:线性规划是运筹学中的一种数学方法,用于寻觅最优解决方案。

在实际生活和工作中,线性规划问题时常浮现,通过对问题进行建模和求解,可以得到最优的决策方案。

本文将介绍一些常见的线性规划题目,并给出详细的答案解析。

一、生产规划问题1.1 生产规划问题描述:某工厂生产两种产品A和B,产品A每单位利润为100元,产品B每单位利润为150元。

每天工厂有8小时的生产时间,产品A每单位需要2小时,产品B每单位需要3小时。

问工厂每天应该生产多少单位的产品A 和产品B,才干使利润最大化?1.2 生产规划问题答案:设产品A的生产单位为x,产品B的生产单位为y,则目标函数为Max Z=100x+150y,约束条件为2x+3y≤8,x≥0,y≥0。

通过线性规划方法求解,得出最优解为x=2,y=2,最大利润为400元。

二、资源分配问题2.1 资源分配问题描述:某公司有两个项目需要投资,项目A每万元投资可获得利润2万元,项目B每万元投资可获得利润3万元。

公司总共有100万元的投资额度,问如何分配投资额度才干使利润最大化?2.2 资源分配问题答案:设投资项目A的金额为x万元,投资项目B的金额为y万元,则目标函数为Max Z=2x+3y,约束条件为x+y≤100,x≥0,y≥0。

通过线性规划方法求解,得出最优解为x=40,y=60,最大利润为240万元。

三、运输问题3.1 运输问题描述:某公司有两个仓库和三个销售点,每一个销售点的需求量分别为100、150、200,每一个仓库的库存量分别为80、120。

仓库到销售点的运输成本如下表所示,问如何安排运输方案使得总成本最小?3.2 运输问题答案:设从仓库i到销售点j的运输量为xij,则目标函数为Min Z=∑(i,j) cij*xij,约束条件为每一个销售点的需求量得到满足,每一个仓库的库存量不超出。

通过线性规划方法求解,得出最优的运输方案,使得总成本最小。

四、投资组合问题4.1 投资组合问题描述:某投资者有三种投资标的可选择,预期收益率和风险如下表所示。

(完整word)线性规划题型总结,推荐文档

(完整word)线性规划题型总结,推荐文档

线性规划题型总结一、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x 【类型一:已知线性约束条件,探求线性目标关系最值问题】例1.求y x z 32+=的最大值.【类型二:已知线性约束条件,探求分式目标关系最值问题】例2.求112++=y x z 的取值范围.【类型三:已知线性约束条件,探求平方和目标关系最值问题】例3.求22)2(-+=y x z 的最值,以及此时对应点的坐标.【类型四:已知线性约束条件,探求区域面积与周长问题】例4.试求所围区域的面积与周长.【类型五:已知最优解,探求目标函数参数问题】例5.已知目标函数z ax y =+(其中0<a )仅在(3,4)取得最大值,求a 的取值范围.【类型六:已知最优解,探求约束条件参数问题】 例6.设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+≥-≤-122y x m y x y x ,目标函数y x z 32+=在(4,6)取得最大值,求m .二、线性规划的实际应用线性规划的实际应用题型大体有两类,一类是一项任务确定后,如何统一安排,做到以最少的人力物力完成任务;另一类是在人力物力一定的条件下,如何安排使得最大化的发挥效益.两类题型是同一个问题的两面,主要依据以下步骤:1.认真分析实际问题的数学背景,将对象间的生产关系列成表格;2.根据问题设未知量,并结合表格将生产关系写出约束条件;3.结合图形求出最优解.例1.配制A 、B 两种药剂,需要甲、乙两种原料,已知配一剂A 种药需甲料3 mg ,乙料5 mg ;配一剂B 种药需甲料5 mg ,乙料4 mg.今有甲料20 mg ,乙料25 mg ,若A 、B 两种药至少各配一剂,问共有多少种配制方法?例2. 某汽车公司有两家装配厂,生产甲、乙两种不同型号的汽车,若A 厂每小时可完成1辆甲型车和2辆乙型车;B 厂每小时可完成3辆甲型车和1辆乙型车.今欲制造40辆甲型车和20辆乙型车,问这两家工厂各工作几小时,才能使所费的总工作时数最少?针对练习一、选择题1.下列四个命题中真命题是( )A .经过点P (x o ,y o )的直线都可以用方程y -y o =k (x -x o )表示;B .经过任意两不同点P 1(x 1,y 1), P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示;C .不经过原点的直线都可以用方程1=+by a x 表示; D .经过定点A (0,b )的直线都可以用方程y =kx +b 表示2.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ).A 1=+b a .B 1=-b a .C 0=+b a .D 0=-b a3.下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A.(02), B.(20)-,C.(02)-, D.(20), 4.若变量x 、y 满足约束条件 1.0.20.y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则z =x-2y 的最大值为A.4B.3C.2D.15.在约束条件0024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35s ≤≤时,目标函数32z x y =+最大值的变化范围是( ) A.[6,15] B. [7,15] C. [6,8] D. [7,8]6.在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是()A. B.4C. D.27.某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件⎪⎩⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x 则1010z x y =+的最大值是( )A.80B.85C. 90D.958.已知变量x y ,满足约束条件20170x y x x y -+⎧⎪⎨⎪+-⎩≤,≥,≤,则y x 的取值范围是( ).A ⎥⎦⎤⎢⎣⎡6,59 .B [)965⎛⎤-∞+∞ ⎥⎝⎦U ,, .C (][)36-∞+∞U ,, .D [36],二、填空题9.已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 ;10.若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为 ;11.已知变量x ,y 满足约束条件1422x y x y ≤+≤⎧⎨-≤-≤⎩。

线性规划基本题型

线性规划基本题型

例5
(2023年北京-7)设不等式组
3x表x达y旳y平1面13
0 0
区(A域)(1为,D3,] 若(B指)数[2,函3数] y=(aCx旳) (1图,像2上] 存在(D区)[域35D,x上+旳∞3]点y,则9a旳0取值范围是
解:作出可行域如右图所示绿色
区域. 0<a<1 时 , x>0 时 , 0<ax<1 , y=ax
离旳平方旳最值问题.
题型三 求非线性目旳函数旳最值—斜率型
例3
x+y-6≥0, 已知实数 x,y 满足4x-3y+12≥0,
x≤4.
求xy的最大值与最小值.
【解】
x+y-6≥0, 作出不等式组4x-3y+12≥0,
x≤4
平面区域,如图所示.
表示的
(1)令 z=xy,则 y=zx.故求xy的最大值与最小值就是求 不等式组所表示的平面区域内的点与原点连线的斜率的 最大值与最小值,由图易知,kOC 最小,kOA 最大.
联立2x+x+2yy= =4500 ,得xy==2100 , ∴A(10,20). ∴z=3x+2y 的最大值为 z=3×10+2×20=70.
题型二 求非线性目旳函数旳最值—距离型
若目旳函数不是线性函数,我们可先将目旳函数变形找 到它旳几何意义,再利用解析几何知识求最值.
例2
x-y+2≥0 已知x+y-4≥0 ,求:
的交点(4,6)时,目标函数 z=ax+by(a>0,
b>0)取得最大值 12,即 4a+6b=12,即 2a+3b=6,而2a+3b=(2a+3b)2a+6 3b=163+(ba+ab)≥163+2= 265,故2a+3b的最小值为265.
检测:

线性规划的12种题型

线性规划的12种题型

线性规划的12种题型线性规划是高考必考的知识点,学生对这个知识点认识多数停留在简单应用阶段,现将常见题型归纳如下:一、 考查不等式表示的平面区域:例1、不等式0x y ->所表示的平面区域是( ) A. B. C. D.分析:法一:代入特殊点验证;法二:看系数的符号,若x 系数为正数,则左小右大,选B练习1、不等式()20y x y +-≥在平面直角坐标系中表示的区域(用阴影部分表示)是 ( )选C2、已知点()3,1-和()4,3--在直线320x y a -+=的同侧,则a 的取值范围是__________.【答案】611a a ><-或二、 判断可行域形状例2、不等式组 (5)()0,03x y x y x -++≥⎧⎨≤≤⎩表示的平面区域是( ) A.矩形 B.三角形 C.直角梯形 D.等腰梯形分析:画图可知为等腰梯形,选D练习2、已知约束条件400x k x y x y ≥⎧⎪+-≤⎨⎪-≤⎩表示面积为1的直角三角形区域,则实数k 的值为( )A.0B.1C.1或3D.3选B三、 最值型简单线性规划例3、设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤+≥-041y y x y x ,则目标函数y x z 42+=的最大值为( )A .2B .4C .8D .11分析:1.画可行域,2画l 0:2x+4y=0,3平移到可行域的最右侧确定最优解的位置,4联立求出最优解坐标,4代入目标函数求最大值11选D练习3、若实数,x y 满足1000x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则23x y z +=的最小值为.答案:1四、最优解问题例4、如图所示的坐标平面的可行域(阴影部分且包括边界)内,目标函数ay x z -=2取得最大值的最优解有无数个,则a 为( )A.-2B.2C.-6D.6分析:因为x 的系数为正,所以目标函数与BC 重合时,取最大值,最优解有无数个 代入B 、C 的坐标两式相等,求出a=-2选A五、斜率型线性规划例5、若x 、y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则1y x -的最大值为 . 分析:1y x -相当于P (x,y )与Q (0,1)连线的斜率,直线最陡时,斜率最大,P 取(1,3)答案:2练习:5、设,x y 满足约束条件04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩,且231x y z x ++=+,则z 的取值范围是( ) A.[3,11] B.[2,10] C.[2,6] D.[1,5]选A六、距离型例6、设实数,x y 满足约束条件250403100x y x y x y --≤⎧⎪+-≤⎨⎪+-≥⎩,则22z x y =+的最小值为 ( )10 C.8 D.5分析:所求式子相当于原点与可行域内点距离的平方,利用点到直线距离公式可求 选B练习6、设x ,y 满足0,10,3220,y ax y x y ≥⎧⎪+-≤⎨⎪--≤⎩若210z x x y =-+2的最小值为12-,则实数a的取值范围是( )A .32a <B .32a <-C .12a ≥D .12a ≤- 选D七、含绝对值型例7、实数y x ,满足⎪⎩⎪⎨⎧≤≥-++≤20222x y x x y ,则||y x z -=的最大值是( )A .2B .4C .6D .8分析:先求出z=x-y 的最值,再取绝对值选B八、向量型例8、已知()21A ,,()00O ,,点()M x y ,满足12222x y x y ≤≤⎧⎪≤⎨⎪-≤⎩,则z OA AM =的最大值为( )A .1B .0 C.1- D .5-分析:先将向量化简,再求最值选A九、变换型例9、已知点(),M a b 在由不等式组002x y x y ≥⎧⎪≥⎨⎪+≤⎩确定的平面区域内,则点(),N a b a b +-所在平面区域的面积是( )A .1B .2C .4D .8分析:设x=a+b,y=a-b,求出x,y 满足的关系式,再求解选C练习9设变量x ,y 满足1,0,0,x y x y +≤⎧⎪≥⎨⎪≥⎩则点(,)P x y x y +-所在区域的面积为( )A .2B .1C .12D .14 选B十、隐含型例10、已知关于x 的方程2(1)210x a x a b +++++=的两个实根分别为1x ,2x ,且101x <<,21x >,则b a的取值范围是( ) A .1(1,)4-- B .1(1,]4-- C .(1,)-+∞ D .1(,)4-∞- 分析:根据条件,利用根的分布列出关系式,提供约束条件,再求解选A练习10、若关于的方程22222(6)2410x a b b x a b a b -+-+++-+=的两个实数根1x ,2x 满足1201x x ≤≤≤,则224a b a ++的最大值和最小值分别为( ) A.12和5+ B.72-和5+ C.72-和12 D.12-和15-选B十一、含参型例11、设1m >,变量x ,y 在约束条件,,1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值为2,则m =_________.分析:画大致图像,确定最优解位置,解方程组,代入求解1m =+练习1、当x ,y 满足不等式组22,4,72x y y x x y +≤⎧⎪-≤⎨⎪-≤⎩时,22kx y -≤-≤恒成立,则实数k 的取值范围是( )A .[]1,1-B .[]2,0-C .13,55⎡⎤-⎢⎥⎣⎦D .1,05⎡⎤-⎢⎥⎣⎦练习2、已知变量y x ,满足约束条件⎪⎩⎪⎨⎧≥-≤-≤+1236x y x y x ,则目标函数(0,0)z ax by a b =+>>的最小值为2,则b a 11+的最小值为( )A .2B .4C .53+D .223+十二、曲线型例12已知实数,x y 满足401010x y y x +-≤⎧⎪-≥⎨⎪-≥⎩,则2y z x =的最大值是 A .13B .9C .2D .11 分析:所求函数变形后为抛物线,代最高点取最大值【答案】B练习12已知P (x,y)的坐标满足021,x y x y x ≤⎧⎪>⎨⎪<+⎩________ 分析:可转化为向量夹角余弦,再画图求解答案:((注:可编辑下载,若有不当之处,请指正,谢谢!)。

高考数学线性规划常见题型及解法[1]

高考数学线性规划常见题型及解法[1]

高考数学线性规划常见题型与解法线性规划问题是高考的重点,也是常考题型,属于中等偏简单题,易得分,高考中要求会从实际问题中建立一格二元线性规划的模型,使实际问题得到解决。

现就常见题型与解决方法总结如下: 一、求线性目标函数的最值;例题:(2012年广东文5)已知变量,x y 满足条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最小值为 A.3 .1 C5 6解析:利用线性规划知识求解。

可行域如图阴影所示,先画出直线01:2l y x =-,平移直线0l ,当直线过点A 时,2z x y =+的值最小,得110,x x y =-⎧⎨--=⎩12,x y =-⎧⎨=-⎩min (1,2),12(2)5A z ∴--∴=-+⨯-=- 探究提高:本题主要考查线性规划求最值,同时考查学生的作图能力,数形结合思想与运算求解能力,难度适中。

二、求目标函数的取值范围;例题:(2012山东文6)设变量,x y 满足约束条件2224,41x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是解析:作出不等式组表示的区域,如图阴影部分所示,作直线30x y -=,并向上、向下平移,由图可得,当直线过点C 时,目标函数取得最大值,当直线过点A 是,目标函数取得最小值,由210,(2,0)240x y A x y ++=⎧⎨+-=⎩得;由4101,(,3)2402x y x y -+=⎧⎨+-=⎩得B 探究提高:本题设计有新意,作出可行域,寻求最优解条条件,取得目标函数的最大(小)值,进一步确定取值范围 三、求约束条件中参数的取值;例题:(2012福建文10)若直线2x y =上存在点(,)x y 满足条件-30-2-30,x y x y x m +≥⎧⎪≤⎨⎪≥⎩则实数m 的最大值为( )解析:在同一直角坐标系中函数2x y =的图像与30230x y x y +-≤⎧⎨--≤⎩,所表示的平面区域图阴影部分所示。

线性规划经典例题

线性规划经典例题

线性规划经典例题引言概述:线性规划是一种数学优化方法,被广泛应用于经济、管理、工程等领域。

本文将介绍几个经典的线性规划例题,通过这些例题的详细阐述,匡助读者更好地理解线性规划的原理和应用。

一、背包问题1.1 背包问题的定义和目标1.2 线性规划模型的建立1.3 求解背包问题的方法二、产销平衡问题2.1 产销平衡问题的背景和目标2.2 线性规划模型的建立2.3 求解产销平衡问题的方法三、投资组合问题3.1 投资组合问题的定义和目标3.2 线性规划模型的建立3.3 求解投资组合问题的方法四、生产计划问题4.1 生产计划问题的背景和目标4.2 线性规划模型的建立4.3 求解生产计划问题的方法五、运输问题5.1 运输问题的定义和目标5.2 线性规划模型的建立5.3 求解运输问题的方法正文内容:一、背包问题1.1 背包问题是指在给定的一组物品中,选择一些物品放入背包中,使得背包的总分量不超过限定值,同时使得背包中物品的总价值最大化。

1.2 线性规划模型可以通过引入决策变量和约束条件来描述背包问题。

决策变量表示选择放入背包的物品,约束条件包括背包总分量不超过限定值以及每一个物品的数量限制。

1.3 求解背包问题可以使用线性规划的求解算法,如单纯形法或者内点法。

通过对目标函数和约束条件进行线性化处理,可以将背包问题转化为标准的线性规划问题进行求解。

二、产销平衡问题2.1 产销平衡问题是指在给定的一组产品和市场需求的情况下,确定各个产品的生产量和销售量,使得总利润最大化。

2.2 线性规划模型可以通过引入决策变量和约束条件来描述产销平衡问题。

决策变量表示各个产品的生产量和销售量,约束条件包括生产能力限制和市场需求限制。

条件进行线性化处理,可以将产销平衡问题转化为标准的线性规划问题进行求解。

三、投资组合问题3.1 投资组合问题是指在给定的一组投资标的中,确定各个标的的投资金额,使得投资组合的风险最小或者收益最大。

3.2 线性规划模型可以通过引入决策变量和约束条件来描述投资组合问题。

高考线性规划必考题型非常全)

高考线性规划必考题型非常全)

线性规划专题一、命题规律讲解1、 求线性(非线性)目标函数最值题2、 求可行域的面积题3、 求目标函数中参数取值范围题4、 求约束条件中参数取值范围题5、 利用线性规划解答应用题一、线性约束条件下线性函数的最值问题线性约束条件下线性函数的最值问题即简单线性规划问题,它的线性约束条件是一个二元一次不等式组,目标函数是一个二元一次函数,可行域就是线性约束条件中不等式所对应的方程所表示的直线所围成的区域,区域内的各点的点坐标(),x y 即简单线性规划的可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即简单线性规划的最优解。

例1 已知4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,2z x y =+,求z 的最大值和最小值例2已知,x y 满足124126x y x y x y +=⎧⎪+≥⎨⎪-≥-⎩,求z=5x y -的最大值和最小值二、非线性约束条件下线性函数的最值问题高中数学中的最值问题很多可以转化为非线性约束条件下线性函数的最值问题。

它们的约束条件是一个二元不等式组,目标函数是一个二元一次函数,可行域是直线或曲线所围成的图形(或一条曲线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。

例3 已知,x y 满足,224x y +=,求32x y +的最大值和最小值例4 求函数4y x x=+[]()1,5x ∈的最大值和最小值。

三、线性约束条件下非线性函数的最值问题这类问题也是高中数学中常见的问题,它也可以用线性规划的思想来进行解决。

它的约束条件是一个二元一次不等式组,目标函数是一个二元函数,可行域是直线所围成的图形(或一条线段),区域内的各点的点坐标(),x y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标(),x y 即最优解。

例5 已知实数,x y 满足不等式组10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,求22448x y x y +--+的最小值。

最新八种 经典线性规划例题(超实用)

最新八种 经典线性规划例题(超实用)

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、若x、y满足约束条件222xyx y≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A二、求可行域的面积例2、不等式组260302x yx yy+-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选 B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0) x y x yx y x yx y x yx y x y+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件5503x yx yx+≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D五、求非线性目标函数的最值例5、已知x、y满足以下约束条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2C、13,45D、解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为45,选 C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于230 230x y mx y m-++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩ ,故0<m <3,选 C七·比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

高中数学线性规划练习题及讲解

高中数学线性规划练习题及讲解

高中数学线性规划练习题及讲解线性规划是高中数学中的一个重要概念,它涉及到资源的最优分配问题。

以下是一些线性规划的练习题,以及对这些题目的简要讲解。

### 练习题1:资源分配问题某工厂生产两种产品A和B,每生产一件产品A需要3小时的机器时间和2小时的人工时间,每生产一件产品B需要2小时的机器时间和4小时的人工时间。

工厂每天有机器时间100小时和人工时间80小时。

如果产品A的利润是每件50元,产品B的利润是每件80元,工厂应该如何安排生产以获得最大利润?### 解题思路:1. 首先,确定目标函数,即利润最大化。

设生产产品A的数量为x,产品B的数量为y。

2. 目标函数为:\( P = 50x + 80y \)。

3. 根据资源限制,列出约束条件:- 机器时间:\( 3x + 2y \leq 100 \)- 人工时间:\( 2x + 4y \leq 80 \)- 非负条件:\( x \geq 0, y \geq 0 \)4. 画出可行域,找到可行域的顶点。

5. 计算每个顶点的目标函数值,选择最大的一个。

### 练习题2:成本最小化问题一家公司需要生产两种产品,产品1和产品2。

产品1的原材料成本是每单位10元,产品2的原材料成本是每单位15元。

公司每月有原材料预算3000元。

如果公司希望生产的产品总价值达到最大,应该如何分配生产?### 解题思路:1. 设产品1生产x单位,产品2生产y单位。

2. 目标函数为产品总价值最大化,但题目要求成本最小化,所以实际上是求成本最小化条件下的产品组合。

3. 约束条件为原材料成本:\( 10x + 15y \leq 3000 \)4. 非负条件:\( x \geq 0, y \geq 0 \)5. 画出可行域,找到顶点。

6. 根据实际情况,可能需要考虑产品1和产品2的市场价格,以确定最大价值。

### 练习题3:运输问题一个农场有三种作物A、B和C,需要运输到三个市场X、Y和Z。

线性规划练习题及解答

线性规划练习题及解答

线性规划练习题及解答线性规划是数学中一种常见的优化方法,它广泛应用于实际问题的解决中。

本文将提供一些线性规划的练习题及解答,以帮助读者更好地理解和运用线性规划。

练习题1:某公司生产两种产品:甲品和乙品。

每天可用于生产的原料数量分别为A和B。

已知每单位甲品所需的原料A和B的消耗量分别为a1和b1,每单位乙品所需的原料A和B的消耗量分别为a2和b2。

假设甲品和乙品的利润分别为p1和p2,求解出该公司在给定原料限制下能获得的最大利润。

解答:设甲品的生产量为x,乙品的生产量为y,则目标函数为最大化利润,即maximize p1 * x + p2 * y。

受限条件为原料A的消耗量限制 a1 * x + a2 * y <= A,原料B的消耗量限制 b1 * x + b2 * y <= B。

另外,x和y的取值范围为非负数(x >= 0,y >= 0)。

这样,我们可以得出完整的线性规划模型如下:maximize p1 * x + p2 * ysubject to:a1 * x + a2 * y <= Ab1 * x + b2 * y <= Bx >= 0y >= 0练习题2:某工厂生产三种产品:甲、乙、丙。

已知每单位甲、乙、丙产品的利润分别为p1、p2、p3,每天需要的原材料A、B的数量为a和b,每单位甲、乙、丙产品消耗的原材料A、B的数量分别为a1、b1和a2、b2以及a3、b3。

现在要求在给定的原材料数量限制下,求解出最大化利润的生产方案。

解答:设甲、乙、丙产品的生产量分别为x、y、z,则目标函数为最大化利润,即maximize p1 * x + p2 * y + p3 * z。

受限条件为原材料A和B的数量限制,分别为 a1 * x + a2 * y + a3 * z <= a 和 b1 * x + b2 * y + b3 * z <= b。

另外,x、y、z的取值范围为非负数(x >= 0,y >= 0,z >= 0)。

线性规划经典例题

线性规划经典例题

线性规划经典例题引言概述:线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。

本文将介绍几个经典的线性规划例题,以匡助读者更好地理解和应用线性规划的原理和方法。

一、问题一:生产计划问题1.1 生产目标:某公司希翼最大化其利润。

1.2 生产约束:公司有两种产品A和B,每周生产时间有限,每一个产品的生产时间和利润有限制。

1.3 数学建模:设产品A和B的生产时间分别为x和y,利润分别为p和q,则目标函数为Maximize p*x + q*y,约束条件为x + y ≤ 40,3x + 2y ≤ 120,x ≥ 0,y ≥ 0。

二、问题二:资源分配问题2.1 目标:某公司希翼最大化其销售额。

2.2 约束:公司有三个部门,每一个部门需要的资源不同,且资源有限。

2.3 建模:设三个部门分别为A、B和C,资源分别为x、y和z,销售额为p、q和r,则目标函数为Maximize p*x + q*y + r*z,约束条件为x + y + z ≤ 100,2x + y + 3z ≤ 240,x ≥ 0,y ≥ 0,z ≥ 0。

三、问题三:投资组合问题3.1 目标:某投资者希翼最大化其投资组合的收益。

3.2 约束:投资者有多个可选的投资项目,每一个项目的收益和风险不同,且投资金额有限。

3.3 建模:设投资项目分别为A、B和C,收益分别为p、q和r,风险分别为a、b和c,投资金额为x、y和z,则目标函数为Maximize p*x + q*y + r*z,约束条件为x + y + z ≤ 100,a*x + b*y + c*z ≤ 50,x ≥ 0,y ≥ 0,z ≥ 0。

四、问题四:运输问题4.1 目标:某物流公司希翼最小化运输成本。

4.2 约束:公司有多个供应地和多个销售地,每一个供应地和销售地之间的运输成本和需求量不同,且供应量和销售量有限。

4.3 建模:设供应地和销售地分别为A、B和C,运输成本为p、q和r,需求量为x、y和z,供应量为a、b和c,则目标函数为Minimize p*x + q*y + r*z,约束条件为x + y + z ≤ a + b + c,x ≤ a,y ≤ b,z ≤ c,x ≥ 0,y ≥ 0,z ≥ 0。

线性规划题及答案

线性规划题及答案

线性规划题及答案引言概述:线性规划是一种数学优化方法,用于在一组线性约束条件下寻觅使目标函数取得最大(最小)值的变量值。

在实际生活和工作中,线性规划往往被用于资源分配、生产计划、运输问题等方面。

本文将介绍一些常见的线性规划题目,并给出相应的答案。

一、资源分配问题1.1 问题描述:某公司有两个生产部门A和B,每天生产产品X和Y。

部门A 每天生产产品X需要消耗3个单位的资源,生产产品Y需要消耗2个单位的资源;部门B每天生产产品X需要消耗2个单位的资源,生产产品Y需要消耗4个单位的资源。

公司每天有20个单位的资源可供分配,如何分配资源才干使得产出最大化?1.2 解答:设部门A每天生产产品X的数量为x,生产产品Y的数量为y;部门B每天生产产品X的数量为u,生产产品Y的数量为v。

根据题目描述,可以建立如下线性规划模型:Maximize Z = 3x + 2y + 2u + 4vSubject to:3x + 2y + 2u + 4v <= 20x, y, u, v >= 0通过线性规划求解器可以得到最优解。

二、生产计划问题2.1 问题描述:某工厂有两个生产车间,每天生产产品P和Q。

车间1每天生产产品P需要花费5个单位的时间,生产产品Q需要花费3个单位的时间;车间2每天生产产品P需要花费4个单位的时间,生产产品Q需要花费6个单位的时间。

工厂每天有40个单位的时间可供分配,如何安排生产计划才干使得产量最大化?2.2 解答:设车间1每天生产产品P的数量为x,生产产品Q的数量为y;车间2每天生产产品P的数量为u,生产产品Q的数量为v。

根据题目描述,可以建立如下线性规划模型:Maximize Z = 5x + 3y + 4u + 6vSubject to:5x + 3y + 4u + 6v <= 40x, y, u, v >= 0通过线性规划求解器可以得到最优解。

三、运输问题3.1 问题描述:某公司有两个仓库和三个销售点,每一个仓库有一定数量的产品可供销售点购买。

线性规划题及答案

线性规划题及答案

线性规划题及答案1. 问题描述假设一家餐馆每天供应两种菜品:A和B。

每份A菜品的成本为2美元,每份B菜品的成本为3美元。

餐馆每天有100美元的预算用于购买这两种菜品。

餐馆估计每天能卖出20份A菜品和30份B菜品。

每份A菜品的售价为5美元,每份B 菜品的售价为4美元。

餐馆希翼最大化每天的利润。

2. 线性规划模型设变量:x1:购买的A菜品的份数x2:购买的B菜品的份数目标函数:最大化利润:Z = 5x1 + 4x2约束条件:成本约束:2x1 + 3x2 ≤ 100供应约束:x1 ≤ 20x2 ≤ 30非负约束:x1, x2 ≥ 03. 求解线性规划问题为了求解该线性规划问题,我们可以使用各种数学软件或者线性规划求解器。

下面是使用一个线性规划求解器得到的最优解。

x1 = 20x2 = 26.67Z = 186.67解释:根据最优解,餐馆应该购买20份A菜品和26.67份B菜品以最大化每天的利润。

在这种情况下,每天的利润为186.67美元。

4. 灵敏度分析灵敏度分析用于确定目标函数系数或者约束条件右侧值的变化对最优解的影响。

下面是对目标函数系数和约束条件右侧值进行灵敏度分析的结果。

目标函数系数灵敏度:如果A菜品的售价增加1美元,即目标函数系数从5变为6,则最优解不变,仍然是购买20份A菜品和26.67份B菜品。

如果B菜品的售价增加1美元,即目标函数系数从4变为5,则最优解不变,仍然是购买20份A菜品和26.67份B菜品。

约束条件右侧值灵敏度:如果成本约束从100美元增加到120美元,则最优解不变,仍然是购买20份A菜品和26.67份B菜品。

如果A菜品供应约束从20份增加到25份,则最优解不变,仍然是购买20份A菜品和26.67份B菜品。

如果B菜品供应约束从30份减少到25份,则最优解不变,仍然是购买20份A菜品和26.67份B菜品。

根据线性规划模型的最优解和灵敏度分析的结果,我们可以得出以下结论:- 餐馆应该购买20份A菜品和26.67份B菜品以最大化每天的利润。

线性规划题及答案

线性规划题及答案

线性规划题及答案引言概述:线性规划是一种数学优化方法,用于在给定约束条件下寻找使目标函数最大或最小的变量值。

在实际生活和工作中,线性规划经常被应用于资源分配、生产计划、运输问题等方面。

本文将介绍一些常见的线性规划题目,并给出相应的答案。

一、资源分配问题1.1 约束条件:某公司有两种产品A和B,生产一单位产品A需要耗费2个单位的资源X和1个单位的资源Y,生产一单位产品B需要耗费1个单位的资源X和3个单位的资源Y。

公司每天可用资源X和资源Y分别为10个单位和12个单位。

假设产品A的利润为3万元,产品B的利润为4万元,问如何分配资源才能使公司利润最大化?1.2 目标函数:设生产产品A的单位数为x,生产产品B的单位数为y,则目标函数为Maximize 3x + 4y。

1.3 答案:通过线性规划计算,最优解为生产产品A 4个单位,生产产品B 2个单位,公司利润最大化为20万元。

二、生产计划问题2.1 约束条件:某工厂生产两种产品C和D,生产一单位产品C需耗费2个单位的资源M和3个单位的资源N,生产一单位产品D需耗费4个单位的资源M和2个单位的资源N。

工厂每天可用资源M和资源N分别为8个单位和10个单位。

产品C的利润为5万元,产品D的利润为6万元,问如何安排生产计划以最大化利润?2.2 目标函数:设生产产品C的单位数为x,生产产品D的单位数为y,则目标函数为Maximize 5x + 6y。

2.3 答案:经过线性规划计算,最佳生产计划为生产产品C 2个单位,生产产品D 2个单位,工厂利润最大化为22万元。

三、运输问题3.1 约束条件:某公司有三个仓库分别存储产品E、F和G,每个仓库的存储容量分别为100、150和200个单位。

产品E、F和G的单位运输成本分别为2元、3元和4元,需求量分别为80、120和150个单位。

问如何安排运输计划以最小化总成本?3.2 目标函数:设从仓库i运输产品j的单位数为xij,则目标函数为Minimize2x11 + 3x12 + 4x13 + 2x21 + 3x22 + 4x23 + 2x31 + 3x32 + 4x33。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档