高等数学第十一章无穷级数习题课

合集下载

《高等数学B》第十一章 无穷级数 第4节 泰勒级数与幂级数

《高等数学B》第十一章 无穷级数   第4节  泰勒级数与幂级数

当 x 1 时 , 发散 ;
收敛域
( 1 , 1 ) ; 发散域
( , 1 ] [1 , ) ;
定理 1 (Abel定理)
如果级数 a n x n 在 x x 0 ( x 0 0 ) 处收敛 , 则它在
n0
满足不等式
x x0

的一切 x 处绝对收敛 ;
n
;
n
(3)

n1

n!

n1

( 1)
n
2
(x n
1 2
) .
n

(1 )
lim
a n1 an

n
lim
n
n n1
n
1

R 1,
当 x 1时 , 当 x 1 时 ,
级数为

n1
( 1) n

,
,
该级数收敛 该级数发散
级数为

n1
1 n
( 1)
n1
n1
x
ln( 1 x )
( 1 x 1)
n
n
f ( x)
a n ( x x0 )
n 0

存在幂级数在其收敛域内 以 f (x) 为和函数
问题 :
1. 如果能展开 , a n 是什么? 2. 展开式是否唯一? 3. 在什么条件下才能展开成幂级数?
n
x R , R
(其中 c n a 0 b n a 1 b n 1 a n b 0 )
1 a 0 b0
a 1b0
a 2 b0 a 3 b0

高等数学第11章 无穷级数

高等数学第11章 无穷级数
n→∞
un
=
lim
n→∞
1 n
=
0.

推论3 若 un →/ 0, 则级数 ∑ un必发散 .
n=1
小结:
un → 0
un →/ 0

∑ u n 收敛
n=1 ∞
∑ u n 发散
n=1
二、典型例题
例1
判别级数


ln
n
+
1
的敛散性.
n=1 n
解 部分和
Sn
= ln 2 1
+ ln 3 2
+ ln 4 3
第十一章 无穷级数
本章基本要求
1. 理解无穷级数收敛、发散以及和的概念,了 解无穷级数的基本性质和收敛的必要条件。
2.了解正项级数的比较审敛法以及几何级数与 p—级数的敛散性,掌握正项级数的比值审敛法。
3.了解交错级数的莱布尼茨定理,会估计交错 级数的截断误差。了解绝对收敛与条件收敛的概 念及二者的关系。
设收敛级数
S=

∑ un,σ =

∑ vn,则
n=1
n=1

∑(un ±vn) 也收敛, 其和为 S ± σ .
n=1
注 1º 收敛级数可逐项相加(减) .
2o

∑ ( un ± vn ) 的敛散性规律:
n=1
收收为收,收发为发,发发不一定发.
例如, 取 un = (−1)2n , vn = (−1)2n+1, 而 un + vn = 0
+
L
+
ln
n
+ n
1
拆项相消

无穷级数习题课含解答

无穷级数习题课含解答

无穷级数习题课1.判别级数的敛散性:(1)(2)(3)(4)(5)()211ln1nn n¥=+å()41tan1nn p¥=+å363663666-+-++×××+-++×××++×××21sinlnnnnp¥=æö+ç÷èøå()211lnnnn n¥=--å解:(1)为正项级数,当时, ,根据比较审敛准则,与有相同敛散性,根据积分审敛准则,与反常积分有相同敛散性, 而发散,故发散.()211ln 1n n n ¥=+ån ®¥()2111~2ln ln 1n u n n n n =+()211ln 1n n n ¥=+å21ln n n n ¥=å21ln n n n¥=å21ln dx x x +¥ò21ln dx x x +¥ò()211ln 1n n n ¥=+å(2)为正项级数,当时,,而收敛,根据比较审敛准则,收敛.()41tan 1n n p¥=+ån ®¥()422421tan1tan~21n u n n n n npp p =+-=++211n n ¥=å()41tan1n n p¥=+å(3)为正项级数, 令,其中,易证单调递增且,故收敛;令,由,两边取极限得,,(舍去);,,根据达朗贝尔比值审敛法,该级数收敛.363663666-+-++×××+-++×××++×××3n n u a =-666n a =++×××+{}n a 3n a <{}n a lim n n a a ®¥=16n n a a -=+6a a =+Þ260a a --=3a =2a =-111113311333n n n n n n n a a u u a a a +++++-+=×=-++1111lim lim 136n n n nn u u a +®¥®¥+==<+(4)看成交错级数,单调递减趋于0,根据Leibniz 定理,该级数收敛; 其绝对值级数发散(这是因为当时,,而且),故级数条件收敛. ()2211sin 1sin ln ln n n n n n n p ¥¥==æö+=-ç÷èøåå1sin ln n ìüíýîþ21sin ln n n ¥=ån ®¥11sin ~ln ln n n 1lim ln n n n®¥×=+¥(5)为交错级数,其绝对值级数为,当时,, 所以,该级数绝对收敛.()211ln nn n n¥=--å211ln n n n ¥=-ån ®¥2211~ln n n n-2. 设,且,证明级数条件收敛. ()01,2,n u n ¹= lim 1n nn u ®¥=()111111n n n n u u ¥-=+æö-+ç÷èøå证明:设级数的部分和为,则 ,因为,所以,于是 ,即级数收敛;其绝对值级数为,因为, 所以级数发散,故原级数条件收敛.()111111n n n n u u ¥-=+æö-+ç÷èøån s ()()211223111111111111n n n n n n n s u u u u u u u u ---+æöæöæöæö=+-+++-++-+ç÷ç÷ç÷ç÷èøèøèøèø()111111n n u u -+=+-lim1n nn u ®¥=()()1111111lim 1lim 101n n n n n n n u u n --®¥®¥+++-=-×=+()1111111lim lim 1n n n n n s u u u -®¥®¥+éù=+-=êúëû()111111n n n n u u ¥-=+æö-+ç÷èøå1111n n n u u ¥=++å11111lim lim 21n n n n n n n n nn u u u u n ®¥®¥+++×+=+×=+1111n n n u u ¥=++å3. 填空(1) _____(2) 设幂级数在处收敛, 则级数__收敛__.(收敛还是发散)(3) 设幂级数在处条件收敛,则幂级数在处( 绝对收敛 ),在处( 发散 ); (4)设,, ,则________;________.11(1)2n n n -¥=-=å130(1)nn n a x ¥=-å12x =-0(1)n n n a ¥=-å1()nn x a n ¥=-å2x =-1()2nn n x a ¥=+åln 2x =-x p =11,02()1,12x f x x x ì£<ïï=íï ££ïî1()sin nn s x bn xp ¥==å102()sin n b f x n xdx p =ò3()2s =34-5()2s =344. 求幂级数的收敛域2112sin 22nn x n x ¥=+æöæöç÷ç÷-èøèøå 解:令,原级数变为变量t的幂级数.因为,所以收敛半径.又时级数发散,时级数收敛, 故收敛域为;再由,解得, 原函数项级数的收敛域为.122xt x +=-21sin 2n n t n ¥=æöç÷èøå ()11sin21limlim 11sin2n n n nn a a n+®¥®¥+==1R =1t=21sin 2n n ¥=å1t=-()211sin 2nn n ¥=-å21sin 2n n t n ¥=æöç÷èøå [)1,1-12112x x +-££-133x -£<2112sin 22nn x n x ¥=+æöæöç÷ç÷-èøèøå 13,3éö-÷êëø5.求下列级数的和函数(1) (2)221212n n n n x ¥-=-å()()()201123!nn n n x n ¥=-++å解:(1).令,,所以收敛半径. 当时,级数发散,所以幂级数的收敛域为.设级数的和函数为,对幂级数逐项积分得,, 对上式两边求导得, .221212n n n n x ¥-=-å212n n n a -=11lim 2n n n a a +®¥=1212R ==2x =±()2,2D =-()s x ()212200112122n xx n n n n n n x s x dx x dx -¥¥-==-==ååòò222212xx x x ==--()2,2x Î-()()2222222x x s x x x ¢+æö==ç÷-èø-()2,2x Î-(2). 易求该幂级数的收敛域为;设级数的和函数为,,, 两边取积分,逐项求积分得, ()()()201123!nnn n x n ¥=-++å(),-¥+¥()s x ()()()()201123!nn n n s x xn ¥=-+=+å()()()()2101123!nn n n xs x x n ¥+=-+=+å()()()()()()21220000111123!223!nnxx n n n n n xs x dx x dx x n n ¥¥++==-+-==++ååòò当时,,求导得 , 当时,由所给级数知.因此. 0x ¹()()()()230111sin 223!2nxn n xs x dx x x x x n x¥+=-==-+åò()2sin 1sin cos 22x x x x xxs x x x ¢--æö==ç÷èø()3sin cos 2x x x s x x -=0x =()106s =()3sin cos ,021,06x x xx xs x x -ì¹ïï=íï=ïî6.求级数的和.()22112n n n ¥=-å解:考虑幂级数,收敛区间,设和函数为, 则当且时,,. ()2211nn x n ¥=-å()1,1-()s x 11x -<<0x ¹()()222211121211nnnn n n x x s x x n n n ¥¥¥=====--+-ååå112212121n n n n x x x n x n -+¥¥===--+åå11220121212n n n n x x x x x n x n -+¥¥==æö=---ç÷-+èøåå()11ln 12224x x x x æö=--++ç÷èø()2211311153ln ln 2242288412nn s n ¥=æö==++=-ç÷-èøå()()211ln 1ln 1222x x x x x x éù=-------êúëû7.设,试将展开成的幂级数.()111ln arctan 412x f x x x x +=+--()f x x 解:,取0到x 的定积分,幂级数逐项求积分, .()241111111114141211f x x x x x¢=++-=-+-+-44011n n n n x x ¥¥===-=åå()11x -<<()()()4410111041xx nn n n f x f f x dx x dx x n ¥¥+==¢=+==+ååòò1x <8.设在上收敛,试证:当时,级数必定收敛. ()0nn n f x a x ¥==å[]0,1010a a ==11n f n ¥=æöç÷èøå证明: 由已知在上收敛,所以,从而有界. 即存在,使得 ,所以,;级数收敛,根据比较审敛准则,级数绝对收敛.()0n n n f x a x ¥==å[]0,1lim 0n n a ®¥={}n a 0M>n a M£()1,2,n = 0123232323111111f a a a a a a n n n n n n æö=++++=++ç÷èø()2231111111n M M M n n n n næö£++==ç÷-èø- ()2n ³()211n n n ¥=-å11n f n ¥=æöç÷èøå9.已知为周期是的周期函数,(1)展开为傅立叶级数; (2)证明;(3)求积分的值.[)2(),0,2f x x x p =Î2p ()f x ()1221112n n np -¥=-=å()10ln 1x dx x +ò解:(1)在处间断,其它点处都连续.所以由Dirichlet 收敛定理,时,级数收敛于,所以当时,有,亦即:.()f x ()20,1,2,x k k p ==±± ()()22220011183a f x dx f x dx x dx pppp pp pp-====òòò222022014cos ,14sin ,1,2,n n a x nxdx n b x nxdx n npp p p p ====-=òò ()()221414cos sin 20,1,2,3n f x nx nx x k k nn p p p ¥=æö=+-¹=±±ç÷èøå ()22214114cos sin ,0,23n x nx nx x nn p p p ¥=æö=+-Îç÷èøå()20,1,2,x k k p ==±± ()()2002022f f p p ++-=()20,1,2,x k k p ==±± 222141423n np p ¥=+=å22116n n p ¥==å(2)是连续点,所以即:;x p =()f x 2221414cos ,3n n np p p ¥==+å()221112nn n p¥=-=-å()1221112n n n p-¥=-Þ=å(3)积分是正常积分,不是瑕点, 对,令,.()10ln 1x dx x +ò0x=()1,1t "Î-()()()()111112000111ln 1111n n n tt tn n nn n n x dx x dx x dx tx n nn---¥¥¥--===+---===åååòòò1t -®()10ln 1x dx x +ò()01ln 1lim t t x dx x -®+=ò()12111lim n n t n t n --¥®=-=å()12111lim n n t n t n --¥®=-=å()1221112n n np -¥=-==å10.证明下列展开式在上成立:(1);(2).并证明. []0,p ()221cos 26n nxx x n pp ¥=-=-å()()()31sin 21821n n xx x n p p¥=--=-å()()133113221n n n p -¥=-=-å证明:将函数展开为余弦级数和正弦级数.(1) 对作偶延拓,再作周期延拓,得到的周期函数处处连续,根据Dirichlet 定理,时,的余弦级数处处收敛于.,()()f x x x p =-[]0,x p Î()f x []0,x p Î()f x ()f x ()()0022a f x dx x x dx ppp p p==-òò23202233x x pp p p æö=-=ç÷èø, ,所以在上,.()()022cos cos n a f x nxdx x x nxdx ppp p p==-òò()()()()200022sin 2sin 2cos x x nx x nxdx x d nx n n pppp p p ppéù=---=-êúëûòò()2211nn éù=--+ëû()()202112cos 11cos 26n n n n a f x a nx nx n p ¥¥==éù=+=--+ëûåå221cos 26n nxnp ¥==-å[]0,x p Î[]0,p ()221cos 26n nxx x n p p ¥=-=-å(2)对作奇延拓,再作周期延拓,得到的周期函数处处连续,根据Dirichlet 定理,时,的正弦级数处处收敛于. , ()f x []0,x p Î()f x ()f x ()()0022sin sin n b f x nxdx x x nxdx p pp p p ==-òò()()()()200022cos 2cos 2sin x x nx x nxdx x d nx n n p p p p p p p p éù=----=-êúëûòò()3411n n p éù=--ëû, 所以在上,. 令,有. ()()3114sin 11sin n n n n f x b nx nx n p ¥¥==éù==--ëûåå()()31sin 21821n n x n p ¥=-=-å[]0,x p Î[]0,p ()()()31sin 21821n n xx x n p p ¥=--=-å2x p =()()23181sin 214221n n n p p p ¥==--åÞ()()133113221n n n p -¥=-=-å。

辽宁工业大学高数习题课11-1

辽宁工业大学高数习题课11-1

an ≥ 0
正项级数
二,判别常数项级数收敛的解题方法
的敛散性, 判别常数项级数∑an的敛散性,应先考察是否有
n=1
liman = 0 成立.若不成立,则可判定级数发散; 成立.若不成立,则可判定级数发散;
n→∞
若成立,则需作进一步的判别. 若成立,则需作进一步的判别.
此时可将常数项级数分为两大类,即正项级数与任意项级数. 此时可将常数项级数分为两大类,即正项级数与任意项级数. 对于正项级数,可优先考虑应用比值法或根值法. 对于正项级数,可优先考虑应用比值法或根值法.若此 二方法失效,则可利用比较法(或定义)作进一步判别; 二方法失效,则可利用比较法(或定义)作进一步判别; 对于任意项级数, 是否收敛. 对于任意项级数,一般应先考虑正项级数 ∑ an 是否收敛. 若收敛,则可判定原级数收敛,且为绝对收敛; 若收敛,则可判定原级数收敛,且为绝对收敛;
n=1

问题是熟练掌握一批已知正项级数的敛散性(如几何级数, 问题是熟练掌握一批已知正项级数的敛散性(如几何级数,
p 级数等),然后根据 an 的特点,进行有针对性的放缩. 级数等), ),然后根据 的特点,进行有针对性的放缩.
a nn! 的收敛性. 【例6】判别级数 ∑ nn 的收敛性. 】 n =1
un+1 ∵ = un e >1 1 n (1 + ) n
∴ un+1 > un lim un ≠ 0
n →∞
所以,原级数发散. 所以,原级数发散. 的因子时, 注:在级数一般项 un 中,若含有形如 nk , an , n!, nn 的因子时, 适于使用比值审敛法. 适于使用比值审敛法.
1 的敛散性. 【例7】判断级数∑ [ln(n + 1)]n 的敛散性 】 n =1

大一高等数学第十一章无穷级数习题 ppt课件

大一高等数学第十一章无穷级数习题 ppt课件

n1
n1
(3) 当 l 时 , 若 v n 发散 ,则 un 发散;
n1
n1
( 3 ) 极 限 审 敛 法
设un为 正 项 级 数 ,
n1
如 果 n l i m nn ul0(或 n l i m nn u),
则 级 数 un发 散 ;
n1
如果有p1, 使得n l i mnpun存在,
则级数 un收敛.
二、典型例题
例1 判断级数敛散性 :
(1)
n1
nn
n1 (n 1)n;
nnn nn (n 1 )n
n
nn (1 1 )n ,
n2
ln i (m 1n 1 2)nln i [m 1 (n 1 2)n 2]n 1e0 1;
1
limnn
1
limxx
expli{m1lnx}
n
x
x x
n1
则 称 x0为 级 数un(x)的 收 敛 点 , 否则称为发散点.
n1
函 数 项 级 数 u n ( x ) 的 所 有 收 敛 点 的 全 体 称 为 收 敛 域 , n 1
所 有 发 散 点 的 全 体 称 为 发 散 域 .
(3) 和函数
在 收 敛 域 上 ,函 数 项 级 数 的 和 是 x的 函 数 s(x),
收敛级数的基本性质
性质1: 级数的每一项同乘一个不为零的常数, 敛散性不变. 性质2:收敛级数可以逐项相加与逐项相减.
性质3:在级数前面加上有限项不影响级数的敛 散性. 性质4:收敛级数加括弧后所成的级数仍然收敛 于原来的和.
级数收敛的必要条件: ln i mun 0.
常数项级数审敛法
一般项级数 正 项 级 数

高等数学下无穷级数习题课

高等数学下无穷级数习题课
¥ n =0
(1, 5] .
例 2(2003A)设 x 2 = å an cos nx (-p £ x £ p) ,则 a2 =
¥ ¥
。= 1。 。
(-2, å an x n 的收敛半径为 3,则 å nan (x - 1)n +1 的收敛区间为
n =1 n =1
n =1
¥
2n -1
+ a2n ) 收敛 å an 收敛
n =1
¥
åa
n =1
¥
n
u (4) lim n = l ¹ 0 则 å un 和 å vn 有相同的敛散性 n ¥ v n
åa , åb
2
例 11(2006A)将函数 f (x ) = 例 10(2006C)求幂级数 å 收敛域为 [-1,1] 。
¥ ¥
x 展成 x 的幂级数。 2 + x - x2
n -1
1 ¥ æ 1ö n ç (-1)n +1 + n ÷ ÷ å ç ÷ x , x Î (-1,1) 。 è 3 n =0 2 ø
¥
例 5(2003C)求幂级数 1 + å (-1)n
n =1
x 2n ( x < 1 )的和函数 f (x ) 及其极值。 2n
1 f (x ) = 1 - ln(1 + x 2 ) , x < 1 , f (x ) 在 x = 0 处取得极大值,且极大值为 f (0) = 1 。 2
1+x 2 ì ¥ ï (-1)n ï x arctan x , x ¹ 0 试将 f (x ) 展开成 x 的幂级数,并求 å 的和。 例 4(2001A)设 f (x ) = í 2 ï 1, x =0 n =1 1 - 4n ï ï î

无穷级数习题课(1)

无穷级数习题课(1)

故由比较审敛法的极限形式,原级数收敛。
5
解法2:由比值审敛法
6n1
lim an1 a n
n
lim
n
7n1 5n1 6n
6(7n 5n )
lim
n
7n1
5n1
7n 5n
lim
n
6(1 ( 5)n ) 7
1 ( 5)n1
6 7
1
7
故由比值审敛法知原级数收敛。
6
1.什么是传统机械按键设计?
传统的机械按键设计是需要手动按压按键触动PCBA上的开关按键来实现功 能的一种设计方式。
e e x x
x x
e0
1
n
x
x
lim
n
an
1
0
由级数收敛的必要条件,原级数发散。
4
【例3】判别级数
n1
6n 7n 5n
的收敛性。
解法1:此级数为正项级数,
an
6n 7n 5n
6n
lim 7n 5n lim 1 1
n ( 6 )n
n 1 ( 5)n
7
7
而级数 ( 6 )n 为等比级数收敛, n1 7
n1
2
三、典型例题
【例1】判别级数 n1
2n 3n
1
的收敛性,并求级数的和。
解:
由于
an
2n 3n
1
3n 3n
n1 3n
n 3n1
n1 3n
,由定义
2 23 3 4
Sn
(1
) 3
( 3
32
)
( 32
33
)
n ( 3n1
n1 3n )

(完整版)无穷级数习题及答案.doc

(完整版)无穷级数习题及答案.doc

第十一章 无穷级数(A)用定义判断下列级数的敛散性1. n 2n 1; .1;3. 11 。

2n 1 2n 2n2n 13 n5 nn 1判断下列正项级数的敛散性.n! ;5. n e; 6.n 1;7. 2n 3;8. n 4 ;n 1 e n1 2nn 1 n n 3 n 1 n! n 1 100 n nn nn1 n9.;10.3n n 12n。

n 11求下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛.1n 1n 1 ; 12.1n1; 13.1.1 1.01 1.001 1.0001;112 nln nn 1n 214.122 2 3 1 4 1 ;21 32 4 2求下列幂级数的收敛半径和收敛区间.3n x n;16.1 n x n ; 17.n! xn; .1 n;n n n 1 2n n n 1 n n 1n 119.1 2n 1; 20. n 2n;1 2 n 1xn 1 3 n xn求下列级数的和函数21. n 1 nxn 1; 22. n 1 21n 1 x2n 1;将下列函数展开成 x x 0 的幂的级数23. shx e xe x , x 00 ;24. cos 2 x , x 00 ;225. 1 x ln 1 x , x 00 ; 26. 1, x 0 3 ;x将下列函数在区间, 上展开为付里叶级数27. A xcos x,x。

28. f x 2t , x22x , 3x t 029.将函数 f x, 0 t 3 展开成付里叶级数。

xx, 0 xl2分别展开成正弦级数和余弦级数。

30.将函数 f xllx , x l2(B)用定义判断下列级数的敛散性1.1;2.1; 3.n 2 2 n 2n 03n 1 3n4n 1n n 1 n2n 1判断下列正项级数的敛散性2n n!2n2n3n na n. ; 5.;6. ,( a 0 );4n3n 12n nn 1nn1n 11nb7.,其中 a na ( n), a n , b , a 均为正数;n 1a n11x8.n,( a 0);9. n 42x ;1 n 1 0 1 x n 1 1判断下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛n 12 n 2n 1ln 2110.1;11.n 1;12.1n 1 nn!12 n 13n 2 3nn 1n 1nn 1求下列幂级数的收敛半径和收敛域.nx 2 n;14.x n ,( a 0 ,b 0 ); 1312n!n 1 anb nn 115.n12 n 1; 16. 3n2 nn;12 n4 n x 5x 1 n 1n 1n求下列级数的和函数17. nx 2n ;18.2n 1x 2 n ; 19. n 2 x n ;n 1n 1n ! n 120.求证: ln 21;n ;; 2将下列函数展开成 xx 0 的幂的级数21.f x21,x 0 0 ;22.f x12 ,x 01;23. x ,x 0 0 ; 2x3x 1x1 x 224.证明偶函数的付里叶级数数仅含余弦项;25.写出函数 f x1 x 2k , x2k 1 , 2k1 , k 0, 1, 2,的2付里叶级数,并讨论收敛情况。

(完整版)无穷级数期末复习题高等数学下册(上海电机学院)

(完整版)无穷级数期末复习题高等数学下册(上海电机学院)

第十一章无穷级数一、选择题1.在下列级数当中,绝对收敛的级数是( C )(A)∑∞=+1121n n(B)()()2311nnn∑∞=-(C)()∑--nn3111(D)()nnnn111--∑∞=2.()∑∞=-2!1nnnnx在-∞<x<+∞的和函数()=xf(A )(A)e x2-(B) e x2(C) e x--2(D) e x2-3.下列级数中收敛的是( B )(A)∑+∞=11n nn(B)∑+∞=111n nn(C)()∑+∞=1121n n(D)()∑+∞=12111n n4.lim=∞→u nn是级数∑∞=1nnu收敛的( B )(A)充分条件(B) 必要条件(C) 充要条件(D) 无关条件5.级数∑∞=1nnu收敛的充分必要条件是( C )(A)lim=∞→u nn(B)1lim1<=+∞→ruunnn(C)s nn∞→lim存在(s n=u1+u2+…+u n)(D) nu n21≤6.下列级数中,发散的级数是( B )(A)∑∞=121n n(B)∑∞=11cosnn(C)()∑∞=131nn(D)()∑∞=-1132nn7.级数()()nx nnn51111-∑-∞=-的收敛区间是( B )(A)(0,2)(B)(]2,0 (C)[)2,0(D) [0,2]8.()+∞<<∞-∑∞=xnnnx1!的和函数是( B )(A)e x(B) 1-e x(C) 1+e x(D) x-119.下列级数中发散的是( A )(A)∑∞=12sinnnπ(B)()∑-∞=-1111nnn(C) ∑⎪⎭⎫⎝⎛∞=143nn(D)∑⎪⎭⎫⎝⎛∞=131n n10.幂级数()∑∞=-13nnx的收敛区间是( B )(A)()1,1-(B)()4,2(C) [)4,2(D)(]4,211.在下列级数中发散的是( D )(A)∑∞=123nn(B)()nnn1111∑∞=--(C) ∑∞=+1312n nn(D)∑∞=+13)1(1n nn12.幂级数()()xnnnn120!121+∞=∑+-的和函数是( D )(A)e x(B) xcos(C)()x+1ln(D) xsin13. 级数()()nx nn n 51111-∑-∞=-的收敛区间是(B )(A )(0,2) (B) (]2,0 (C) [)2,0 (D) [0,2]14. 在下列级数当中,绝对收敛的级数是( C )(A )∑∞=+1121n n (B)()()2311nn n∑∞=-(C)()∑--n n 3111 (D)()n n n n111--∑∞=15. 下列级数中不收敛的是( A ).A .∑∞=+-11)1(n nn n B .∑∞=-11)1(n n n C .∑∞=-1321)1(n n n D .∑∞=-121)1(n nn16.在下列级数中发散的是(C )(A )∑∞=131n n(B )Λ+++++321161814121 (C )Λ+++3001.0001.0001.0(D )()()()Λ+-+-53535353432 17.幂级数x n n nn ∑∞=++11)1ln(的收敛区间是(C ) (A )[]1,1- (B)(-1,1)(C) [)1,1- (D) (]1,1-18.下列级数中条件收敛的是( B )A .∑∞=--11)32()1(n n n B .∑∞=--11)1(n n nC .∑∞=--11)31()1(n nn D .∑∞=-+-1212)1(n n n n19.幂级数∑∞=++11)21(n nn x 的收敛区间是( C ) A .)2123(,- B .]2123[,- C .)2123[,-D .]2123(,-20.在下列级数中,条件收敛的是( B )(A )()111+∑-∞=n n n n(B) ()n n n 111∑-∞= (C)()∑-∞=1211n nn (D)∑∞=11n n21.级数∑⎪⎭⎫⎝⎛∞=+1152n n 的和S=( D )(A )23 (B) 35 (C) 52 (D) 3222. 设f(x)是周期为π2的周期函数,他在),[ππ-上的表达式为f(x)=x, 若f(x)的傅立叶级数 展开式为∑∞=++1)sin cos (2n n n nx b nx a a ,则=n a [D] A.1)1(2+-n n B.n n )1(2- C. 1)1(1+-n nD. 0 23. 设f(x)是周期为π2的周期函数,他在),[ππ-上的表达式为f(x)=2x , 若f(x)的傅立叶级数 展开式为∑∞=++1)sin cos (2n n n nx b nx a a ,则=n b [A] A. 0 B.n n)1(4- C. 1)1(2+-n n D. 1)1(4+-n n二、填空题 1.幂级数()∑∞=-02!1n nnn x的和函数是 e x 2-2.幂级数∑∞=02n nnx的收敛半径为21=R 。

无穷级数(习题及解答).doc

无穷级数(习题及解答).doc

第十一章无穷级数§级数的概念、性质一、单项选择题1. 若级数an 1 q n收敛 ( a为常数 ),则q 满足条件是( ).(A) q 1 ;(B) q 1 ;(C) q 1 ;(D) q 1 .答 (D) .2.下列结论正确的是 ().(A) 若 lim u n 0 ,则u n收敛; (B) 若 lim( u n 1 u n ) 0 ,则u n 收敛;n n 1 n n 1(C) 若u n 收敛,则 lim u n 0 ; (D) 若u n 发散,则 lim u n 0. 答 (C) .n 1 n n 1 n3. 若级数u n 与v n 分别收敛于 S1 , S2,则下述结论中不成立的是( ).n 1 n 1(A) (u n v n ) S1 S2;(B) ku n kS1;n 1 n 1(C) kv n kS2;(D) u n S1 .答 (D) .n 1 n 1v n S24. 若级数u n 收敛,其和 S 0 ,则下述结论成立的是( ).n 1(A) ( u n S) 收敛;(B) 1收敛;n 1 n 1 u n(C) u n 1 收敛;(D) u n 收敛 . 答 (C) .n 1 n 15. 若级数a n 收敛,其和 S 0 ,则级数( a n a n 1 a n 2 ) 收敛于( ).n 1 n 1(A) S a1 ;(B) S a2; (C) S a1 a2;(D) S a2 a1.答 (B) .6. 若级数a n发散,b n收敛则( ).n 1 n 1(A)(a n b n ) 发散;(B)(a n b n ) 可能发散,也可能收敛;n 1 n 1(C)a n b n发散;(D)( a n2 b n2 ) 发散. 答 (A) .n 1 n 1二、填空题1. 设 a1 ,则( a)n.答: 1.n 01 a2. 级数 (ln 3)n 的和为.答:22n1 .n 0ln 33. 级数( n 2 2 n1 n) ,其和是.答: 12 .n 04.数项级数1的和为 . 答: 1.n 1 (2n1)(2n 1)25*. 级数2n 1 的和为.答: 3.n 02n 三、简答题1. 判定下列级数的敛散性(1)8 82 83L( 1) 8n 答: 收敛 .9 29 39 n L9解:1 1 1 L1 答: 发散 .(2)6 9 L33n解:1 1 1L1L答: 发散 .(3)333 n3 3解:3 32 33 L3n L答: 发散 .(4)2223 2n2解:1 1 1 1 1 11 1 L 答: 收敛 .(5)3223223 33L3n2 2n解:§正项级数收敛判别法、 P — 级数一、单项选择题1. 级数u n 与v n 满足 0 u n v n , (n 1,2,L ) ,则 ().n 1n 1(A) 若v n 发散 ,则 u n 发散; (B) 若u n 收敛 ,则 v n 收敛;n 1n 1n 1n 1(C) 若u n 收敛 ,则v n 发散; (D) 若u n 发散,则v n 发散 .答 (D) .n 1n 1n 1n12. 若 0a n 1, ( n 1,2, L ) ,则下列级数中肯定收敛的是().n (A)a n ;(B)( a n 1 a n ) ;n1n1(C)a n2;(D)a n .答 (C) .n 1n 13. 设级数 (1)2n nn!与 (2)3n n n! ,则 ( ).n 1nn 1 n(A) 级数 (1)、 (2)都收敛;(B) 级数 (1) 、 (2)都发散;(C) 级数 (1)收敛,级数 (2)发散;(D) 级数 (1)发散,级数 (2)收敛.答 (C) .4. 设级数 (1)1 与 (2) 10n , 则 ( ).n 1n nn 1 n!(A) 级数 (1)、 (2)都收敛;(B) 级数 (1) 、 (2)都发散;(C) 级数 (1)收敛 ,级数 (2)发散;(D) 级数 (1)发散 ,级数 (2)收敛.答 (D) .5. 下列级数中收敛的是 ().(A)n1 ; (B)sin1;n 1 n( n 2) n 1n(C)( 1)nn ; (D)1. 答 (A) .n 13n 1n 1 2n 11 216*. 若级数,则级数().n 1 n 2 6 n 1 (2n1)22222(A);(B);(C);(D).答 (B) .4812167. 设 u n 与 v n 均为正项级数 ,若 lim u n1,则下列结论成立的是().n 1n 1nv n(A)u n 收敛 ,v n 发散;(B)u n 发散 ,v n 收敛;n 1n1n 1n 1(C)u n 与v n 都收敛 ,或 u n 与 v n 都发散 .(D) 不能判别 .答 (C) .n 1n1n 1n 18. 设正项级数u n 收敛,则 ().n 1(A) 极限 limun 11;(B)极限 limu n 1 1;nu nnu n(C) 极限 lim n u n1;(D) 无法判定 .答 (A)n9. 用比值法或根值法判定级数u n 发散,则u n ().n 1n 1(A) 可能发散; (B) 一定发散;(C) 可能收敛;(D) 不能判定 .答 (B)二、填空题1. 正项级数u n 收敛的充分必要条件是部分和 S n.答:有上界 .n 12. 设级数2n 1收敛,则 的范围是.n 1n3. 级数u n 的部分和 S n2n ,则 u n.n 1n 14. 级数2n1是收敛还是发散.n 02n3 答:.22答:.n( n 1)答:收敛 . 5. 若级数1收敛,则 p 的范围是.答: p 0 . n 1n p sinn6. 级数3n n! 是收敛还是发散.答:发散 .n 1n n三、简答题1. 用比较法判定下列级数的敛散性:(1)1 n ;答:发散 . (2)1 ;答: 收敛 .n 1 1 n 2n 1 (n 1)(n 2)(3)sin n ;答:收敛 . (4)1 n (a 0) .答 a 1 收敛 ; a 1 发散 .a n 12 n 112. 用比值法判定下列级数的敛散性:(1)3n ; 答:发散 .(2)n 2 ;答: 收敛 .n 1 n 2nn 1 3n解:(3)2n nn!;答: 收敛 .(4)n tan n 1.答: 收敛 .n 1 nn 12解:3. 用根值法判定下列级数的敛散性: (1)n 1解:(3)n1nn1;答: 收敛 .(2) ;答:收敛 .2n 1 n 1[ln( n 1)]n解:2n 1n; 答:收敛 .3n 1解:b n(4) 其中 a n a, (n ) , a n , b, a 均为正数.a nn 1答:当 b a 时收敛,当 b a 时发散,当 b a 时不能判断.§一般项级数收敛判别法一、单项选择题1. 级数u n 与v n 满足u n v n , ( n 1,2, L ) ,则 ( ).n 1 n 1(A) 若v n 收敛 ,则u n 发散;(B) 若u n 发散 ,则v n 发散;n 1 n 1 n 1 n 1(C)若u n 收敛 ,则v n 发散;(D) 若v n 收敛 ,则u n 未必收敛.答(D) .2.下列结论正确的是 ().(A)u n收敛,必条件收敛;(B)u n 收敛,必绝对收敛;n 1 n 1(C)u n 发散,则u n 必条件收敛;n 1 n 1(D)u n 收敛,则u n 收敛.答 (D) .n 1 n 12.下列级数中,绝对收敛的是 ().(A) ( 1)n n; (B) ( 1)n 1 1 ;n 1 3n 1 n 1 n2(C) ( 1)n 1 1 ;(D) ( 1)n 1 1.答 (B) .n 1 ln( n 1) n 1 n3. 下列级数中,条件收敛的是 ( ).nn 2(A) ( 1)n 1 ;(B) ( 1)n 1 ;n 12n3 1 n 1 3(C) ( 1)n 1 1 ;(D) ( 1)n 1 1 .答 (A) .n 1n2 n 1 n 2n4. 设为常数,则级数sin n 1( ).n2 nn 1(A) 绝对收敛;(B) 条件收敛;(C) 发散;(D) 敛散性与的取值有关.答 (C) .5. 设a n cos n ln(1 1 ) (n 1,2,3, ) ,则级数( ).n(A) a n 与a n2 都收敛 . (B) a n与a n2 都发散 .n 1 n 1 n 1 n 1(C) a n 收敛,a n2发散. (D) a n发散,a n2 收敛 . 答 (C) .n 1 n 1 n 1 n 16.设0 a n 1(n 1,2,3, ) ,则下列级数中肯定收敛的是(). n(A) a n . (B) ( 1) n a n.(C) an . (D) a n2 ln n . 答 (D) .n 1 n 1 n 2ln n n 27.下列命题中正确的是( ).(A) 若u n2与v n2都收敛,则(u n v n)2收敛 .n 1 n 1 n 1(B) 若u n v n收敛,则u n2与v n2都收敛.n 1 n 1 n 1(C) u n 发散 ,则u n 1若正项级数.n 1 n(D) 若u n v n (n 1,2,3, ) ,且u n 发散 ,则v n 发散 . 答 (A) .n 1 n 1二、填空题1. 级数( 1)n 1的取值范围是.答:1.绝对收敛,则n 1 n2. 级数1 sin n条件收敛, 则 的取值范围是 .答: 01.n 1 n 23. 级数a n 2收敛,则( 1)nan是条件收敛还是绝对收敛.n 0n 0n答:绝对 收敛 .三、简答题1. 判定下列级数的敛散性,若收敛,是条件收敛还是绝对收敛(1)( 1)n 11; n 1n解:(2)( 1)n 1 n;n 13n1解:sin n(3)n 1( n 1)2;解:(4)( 1)n 11;n 13 2n解:(5)( 1)n 11 ;n 1ln( n 1)解:(6)n 1 2n2( 1)n 1n!答: 条件收敛 .答: 绝对收敛 .答: 绝对收敛 .答: 绝对收敛 .答: 条件收敛 .答: 发散 .解:§幂级数收敛判别法一、单项选择题1. 幂级数x n 的收敛区间是 ( ).n 1 n(A) [ 1, 1] ;(B) ( 1, 1) ;(C) [ 1, 1) ; (D) ( 1, 1] .答 (C) .2. 幂级数( 1)n (x 1)n 的收敛区间是 ( ).n 1n 2n(A) [ 2 , 2] ;(B) ( 2 , 2) ;(C) [ 2, 2) ; (D) ( 2, 2] .答 (D) .3. 幂级数x 2 n的收敛半径是 ( ).1 n2 3nn(A) R 3 ;(B) R 3 ;(C) R 1(D)1答 (B) . ;R .3 3( A)(C)( B)(D)4. 若级数C n ( x 2)n在x 4 处是收敛的,则此级数在x 1 处 ( ).n 1(A) 发散; (B) 条件收敛;(C) 绝对收敛;(D) 收敛性不能确定.答 (C) .5. 若级数C n ( x 2)n在x 4 处是收敛的,则此级数在x 1 处( ).n 1(A) 发散;(B) 条件收敛;(C) 绝对收敛;(D) 收敛性不能确定.答 (D) . 6.若幂级数a n (x 1)n在x 1处条件收敛,则级数a n( ).n 0 n 0(A) 条件收敛;(B) 绝对收敛;(C) 发散;(D) 敛散性不能确定. 答(B) .二、填空题1. 幂级数xn的收敛域是.答: [ 1,1]. n 1n22. 幂级数2n 3n n的收敛域是.答:1 1n n2 x3,. n 1 33. 幂级数( 1)n 1 x2 n 1的收敛半径 R ,和函数是.(2 n 1)!n 1答: R , sin x.4. 幂级数( 1)n x 2n,和函数是.(2 n)!的收敛半径 Rn 0答: R , cosx.5. 设a n x n的收敛半径为R,则a n x2 n的收敛半径为.答: R.n 0 n 06. 设幂级数a n x n 的收敛半径为 4 ,则a n x2n 1的收敛半径为.答: 2.n 0 n 07. 幂级数( 1)n 1 (2 x 3)n 的收敛域是. 答: (1, 2].n 0 2n 18. 幂级数a n ( x 1)2 n在处x 2 条件收敛,则其收敛域为.答:[ 0,2] .n 0一、简答题1.求下列幂级数的收敛域.(1) nx n;答: ( 1,1). (2) ( 1)n 1 x n ;答: [ 1,1].n 1 n 1n2(3) x n ;答: [ 3, 3) .(4) 2n x n;答: 1 , 1.n 1 n 3nn 1 n2 1 2 2(5) ( x 5)n ;答:[4, 6). (6) ( 1)n x2n 1 .答: [ 1,1].n 1 n n 1 2n 12.用逐项求导或逐项积分,求下列幂级数的和函数.(1)nx n 1;答: S(x) 1 2 , x ( 1,1) .n 1 (1 x)解:(2)x2n 1 1 1 x.2n.答: S(x)ln1, x ( 1,1)n 1 1 2 x解:3*. 求级数1的和.答: 2ln 2. n 1 n 2n解:§函数展开成幂级数一、单项选择题1. 函数f ( x) e x2 展开成 x 的幂级数是( ).(A) 1 x 2 x4 x6L ; (B) 1 x 2x4 x6;2! 3! 2!L3!(C) 1 x x2 x3L ; (D) 1 xx2 x3.答 (B) . 2! 3! 2!L3!2. 如果f ( x)的麦克劳林展开式为a n x2 n,则 a n是( ).n 0(A) f ( n) (0) ;(B) f (2 n ) (0) ;(C) f (2 n ) (0) ;(D) f ( n ) (0) .答 (A) .n! n! (2 n)! (2 n)!3. 如果f ( x)在x x0的泰勒级数为a n ( x x0 ) n,则 a n是( ).n 0(A) f ( n) ( x0 ) ;(B) f (2 n ) ( x ) f (2 n ) ( x ) f ( n ) ( x )0; (C)n!0; (D) 0 .答 (C) .n! n!4. 函数 f ( x)sin 2x 展开成 x 的幂级数是 ( ). (A)xx 3 x 5 x 7 ; (B) 1 22 x 2 24 x 4 26 x 6;3! 5! L 2! 4! L7! 6!(C) 2 x 23 x 325 x 527 x 7 L ; (D) 1x 2x 4x 6L .答 (C) .3!5!7!4! 6!二、填空题1. 函数 f ( x) a x的麦克劳林展开式为x 12. 函数 f ( x) 3 2 的麦克劳林展开式为3. n 1x 2n 1幂级数( 1)(2n 的和函数是n 11)!4. 1 的麦克劳林级数为函数 f ( x)1 x5. 1的麦克劳林级数为函数 f ( x)1 x6. 函数 f ( x) ln(1 x) 的麦克劳林级数为7. 函数 f ( x) e x在 x 1 处的泰勒级数. 答:(ln n a) x n .n 0n!n. 答: 3ln 3 x n.n 02 n!.答: sin x ..答:n 0 x n ..答:( 1)n x n .n 0.答:(n 1x n1).n 1n. 答:e( x 1)n .n 0n!8. 函数 f ( x)1 在 x 1处的泰勒级数.答:( 1)n ( x 1)n .x 1n 02n 19. 函数 f ( x) 1 展开成 x 3 的幂级数为 .答:( 1)n (x3)n .xn 03n 110. 函数 f ( x)21n22 n 1 x 2n.cos x 展开成 x 的幂级数为. 答:( 1)(2n)!2 n 011. 级数( 1)n 的和等于.答: cos1.n 0 (2n)!三、简答题1. 将下列函数展开成 x 的幂级数,并求展开式成立的区间.(1) f ( x) ln( a x), ( a 0) ;解:答: ln(an 1x nn. x) ln a( 1)n an 1(2) f ( x) sin2 x ;解:答: sin2 x ( 1)n 1 (2 x) 2 n , ( , ).n 1 2(2n)!(3) f ( x) (1 x)ln(1 x) ;解:答: (1 x)ln(1( 1)n 1 x nx) x , ( 1, 1].n 2 n( n 1)(4*) f ( x) x ;1 x2 解:x ( 1)n 2(2 n)! x 2 n 1答:x , [ 1, 1].1 x2 n 1 ( n!) 2 2(5). f ( x) x .2xx2 3解:x 1 1 ( 1)n 1 x n 2(2n)! x 2 n 1答:, ( 1, 1).x 2 2 x 3 4 n 1 3n ( n!) 2 22. 将函数 f ( x) cos x 展开成 x的幂级数.3解:2 n2 n 1 n答: cosx1 ( 1)n 1 x 33 x 3, ( ,).2 n 0(2n)!(2n 1)! 3*. 将函数 f ( x) ln(3 x x 2 ) 在 x 1 展开成幂级数.解:答: ln(3 xx 2 ) ln 2( 1)n 11 ( x 1)n , (0, 2].n 02n n4*. 将函数 f (x)1展开成 x 4 的幂级数 .2 3xx 2解:答:1 11n3x 2n 0 2n 13n 1 ( x 4) , ( 6, 2).x 2§2 为周期的傅里叶级数一、单项选择题1. 函数系 1, cosx ,sin x ,cos 2x ,sin 2x, L ,cos nx ,sin nx,L ( ).(A) 在区间 [ , ] 上正交; (B) 在区间 [ , ] 上不正交;(C) 在区间 [0, ] 上正交; (D) 以上结论都不对.答 (A) .2. 函数系 1, sin x , sin 2x, L , sin nx ,L().(A) 在区间 [0,] 上正交;(B) 在区间 [0, ] 上不正交;(C) 不是周期函数;(D) 以上结论都不对.答 (B) .3. 下列结论不正确的是 ().(A) cosnx cosmxdx 0, ( n m) ; (B) sin nxsin mxdx 0, (n m) ; (C)cosnx sin mxdx 0 ;(D)cosnx cosnxdx0 . 答 (D) .4. f ( x) 是以 2 为周期的函数,当 f ( x) 是奇函数时,其傅里叶系数为 ().(A) a n 0, b n 1 f ( x)sin nxdx ; (B) a n 0, b n 1 f ( x)cos nxdx ;0 0(C) a n 0, b n 20, b n2sin nxdx .答 (C) .f ( x)sin nxdx ; (D) a n0 05. f ( x) 是以 2 为周期的函数,当 f ( x) 是偶函数时,其傅里叶系数为( ).(A) b n 0, a n 1 f ( x)sin nxd x ; (B) b n 0, a n 2 f ( x)cos nxdx ;0 0(C) b n 0, a n 10, a n2cosnxdx .答 (B) .f (x)cos nxdx ; (D) b n0 0二、填空题1. f ( x) 是以 2 为周期的函数, f ( x) 傅里叶级数为.答:a0 (a n cosnx b n sin nx). 其中2 n 1a n1f ( x)cos nxdx , n 0,1,2,L , b n1f ( x)sin nxdx , n 1,2,L .2. f ( x) 是以 2 为周期的偶函数, f ( x) 傅里叶级数为.答: a0 a n cosnx. 其中 a n 2 f ( x)cos nxdx , n 0,1,2, L .2 n 1 03. f ( x) 是以 2 为周期的奇函数, f ( x) 傅里叶级数为.答:b n sin nx.2f ( x)sin nxdx , n 1,2, L . 其中 b nn 1 04. 在 f ( x) x,( x ) 的傅里叶级数中,5. 在 f ( x) x 1,( x ) 的傅里叶级数中,6. 在 f ( x) x 1,( x ) 的傅里叶级数中,sin x 的系数为.答:2. sin 2x 的系数为.答: 1. cos2 x 的系数为.答:0.三、简答题1.下列函数 f ( x) 的周期为 2 ,试将其展开为傅里叶级数.(1) f ( x) 3x21, (x) ;解:答: f ( x) 2 1 12 ( 1)2 n cosnx , ( , ).n 1 nbx , x 0 (2) f ( x) 0 x ;ax ,解:答: f (x)(a b) [1 ( 1)n]( ba)cosnx ( 1)n 1 ( a b) sin nx ,4n 1n 2nx (2 k 1) .2. 将函数 f (x)xx) 展开为傅里叶级数.2sin (3解:答: f (x)18 3( 1)n 1n sin nx, ( , ).n 19n 213. 将函数 f ( x)x ,(x) 展开成傅里叶级数.cos2解:答: f (x)2 4 ( 1)n 11 cosnx, [ , ].n 14n 214. 将函数 f (x)x x) 展开成正弦级数., (02解:答: f (x)sin nx , (0, ]. n 1n 5. 将函数 f ( x) 2x 2 , (0 x) 展开成正弦级数和余弦级数.解:41)n2 22答: f (x)( nsin nx, [0, ).n 1n 3n 3f ( x) 228 ( 1)n cosnx , [0,].3n 1n 2§ 一般周期函数的傅里叶级数一、单项选择题1. 下列结论不正确的是 ( ).ln x m x(A) coscos dx 0, ( n m) ;ll l(B)lxsinm xd x 0, ( nm) ;sin nlll(C) ln x sinm xd x 0 ; (D) lx sin n xdx 0答 (D) . cos sin n.l l l ll l2. f ( x) 是以 2l 为周期的函数,则 f (x) 的傅里叶级数为 ( ). (A) a 0a n cosn xb n n x ; (B) a 0a n cosnx b n n x ;n 1l l 2n 1l l(C) b n n x ;(D) a 0 a n cos nx . 答 (B) .n 1l 2 n 1 l 3. f ( x) 是以 2l 为周期的函数,当 f (x) 是偶函数时,其傅里叶级数为 ( ). (A) a 0a n cosnx ;(B) a 0a n cosnx ;2n 1ln 1l(C)b n sinn x;(D) a 0a n sin nx . 答 (A) .n 1l2 n 1 l4. f ( x) 是以 2l 为周期的函数,当f (x) 是奇函数时,其傅里叶级数为 ( ).(A) b 0b n sinnx ;(B) b 0b n cosnx2 n1ln 1l(C)b n sinn x;(D)b n cosnx .答 (C) .n 1ln 1l二、填空题1. f ( x) 是以 2为周期的函数 , f ( x) 的傅里叶级数为.答:aa n cos nx b n sinnx .2n 122其中 an 11f ( x)cosnxdx,n 0,1,2, , bn1 1f (x)sin nxdx , n 1,2, L .2 12L2 122. f ( x) 是以 2l 为周期的偶函数 ,f ( x) 的傅里叶级数为.答:aa n cosnx. 其中 a n2 2 n 1lllnf ( x)cos xdx , n 0,1,2, L .3. f ( x) 是以 2l 为周期的奇函数, f (x) 的傅里叶级数为 .答:b n sinn x . 其中 b n2 0 f (x)sin nxdx , n 1,2, L .n 1 l l l4. 设 f ( x) 是以 3 为周期的函数,1 x , 1 x 0 f ( x) , 0x.又设 f ( x) 的傅里叶x 2 级数的和函数为 S( x) ,则 S(0), S(3).答: S(0)S(3) 1 .25. 设 f ( x) 是以 3 为周期的函数, 2 ,1x 0f ( x)0 x,则 f (x) 的傅里叶级数x 3 ,1在 x 1 处收敛于.答: 3.2x ,1 0 x6. 设f ( x)是以2为周期的函数, f ( x)2,又设 S( x) 是 f ( x) 的正0,1x 12弦级数的和函数,则7.S4答: S 71 .4 4三、简答题1. 设周期函数在一个周期内的表达式为f (x) 1 x21x 1 ,试将其展开2 2为傅里叶级数.解:答:11 1 ( 1)n 1x) ( , ).f ( x) 2 cos(2n12 n 122. 设周期函数在一个周期内的表达式为 f ( x) 2x 1, 3 x 0,试将其展开1 , 0 x 3 为傅里叶级数.解:答:1 62 [1 ( n n n 1 6 nf (x)n 1 n 2 1) ]cos x ( 1) sinx , x 3(2 k 1).2 3 n 33*. 将函数f ( x) x2 , (0 x 2) 分别展开成正弦级数和余弦级数.解:答: 28 ( 1)n 1 2 n nx n n3 2 [( 1) 1] sin 2 x, 0 x 2.n 1x 24 16 ( 1)n n0 x 2. 32n2 cos x,n 1 2。

(完整版)无穷级数习题及答案.doc

(完整版)无穷级数习题及答案.doc

第十一章 无穷级数(A)用定义判断下列级数的敛散性1. n 2n 1; .1;3. 11 。

2n 1 2n 2n2n 13 n5 nn 1判断下列正项级数的敛散性.n! ;5. n e; 6.n 1;7. 2n 3;8. n 4 ;n 1 e n1 2nn 1 n n 3 n 1 n! n 1 100 n nn nn1 n9.;10.3n n 12n。

n 11求下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛.1n 1n 1 ; 12.1n1; 13.1.1 1.01 1.001 1.0001;112 nln nn 1n 214.122 2 3 1 4 1 ;21 32 4 2求下列幂级数的收敛半径和收敛区间.3n x n;16.1 n x n ; 17.n! xn; .1 n;n n n 1 2n n n 1 n n 1n 119.1 2n 1; 20. n 2n;1 2 n 1xn 1 3 n xn求下列级数的和函数21. n 1 nxn 1; 22. n 1 21n 1 x2n 1;将下列函数展开成 x x 0 的幂的级数23. shx e xe x , x 00 ;24. cos 2 x , x 00 ;225. 1 x ln 1 x , x 00 ; 26. 1, x 0 3 ;x将下列函数在区间, 上展开为付里叶级数27. A xcos x,x。

28. f x 2t , x22x , 3x t 029.将函数 f x, 0 t 3 展开成付里叶级数。

xx, 0 xl2分别展开成正弦级数和余弦级数。

30.将函数 f xllx , x l2(B)用定义判断下列级数的敛散性1.1;2.1; 3.n 2 2 n 2n 03n 1 3n4n 1n n 1 n2n 1判断下列正项级数的敛散性2n n!2n2n3n na n. ; 5.;6. ,( a 0 );4n3n 12n nn 1nn1n 11nb7.,其中 a na ( n), a n , b , a 均为正数;n 1a n11x8.n,( a 0);9. n 42x ;1 n 1 0 1 x n 1 1判断下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛n 12 n 2n 1ln 2110.1;11.n 1;12.1n 1 nn!12 n 13n 2 3nn 1n 1nn 1求下列幂级数的收敛半径和收敛域.nx 2 n;14.x n ,( a 0 ,b 0 ); 1312n!n 1 anb nn 115.n12 n 1; 16. 3n2 nn;12 n4 n x 5x 1 n 1n 1n求下列级数的和函数17. nx 2n ;18.2n 1x 2 n ; 19. n 2 x n ;n 1n 1n ! n 120.求证: ln 21;n ;; 2将下列函数展开成 xx 0 的幂的级数21.f x21,x 0 0 ;22.f x12 ,x 01;23. x ,x 0 0 ; 2x3x 1x1 x 224.证明偶函数的付里叶级数数仅含余弦项;25.写出函数 f x1 x 2k , x2k 1 , 2k1 , k 0, 1, 2,的2付里叶级数,并讨论收敛情况。

[经济学]高等数学第十一章无穷级数第二节常数项级数的审敛法

[经济学]高等数学第十一章无穷级数第二节常数项级数的审敛法
n =1


(3) 当 l = +∞ 时, 若
∑ v n 发散,则 ∑ un 发散;
n =1 n =1


un 证明 (1) 由lim = l n→ ∞ v n
l 对于ε = > 0, 2
l l un ∃ N , 当n > N时, l − < < l + 2 vn 2 l 3l 即 v n < un < v n 2 2 (n > N )
莱布尼茨定理
如果交错级数满足条件:
(ⅰ) un ≥ un + 1 ( n = 1,2,3,
) ;(ⅱ) lim un = 0 ,
1 1 n an a < 1, un < a ;a = 1, un ≡ ;a > 1, un < n . ( 2 )∑ ; 2n 2 a n =1 1 + a 2 ∞ v ( + 1 ) 1 π n π 2 n+1 2 = → ; ( 3)∑ n sin n ; un ~ n ⋅ n = vn, 2 2 vn 2 2n 2 n =1 ∞ un+1 n+1 p 1 np =( ) → 0; ( 4 )∑ ; un n n+1 n =1 n!
a n+1 (n + 1)! a n n!
(n + 1)
n +1
a a = → 1 n e (1 + ) n
nn ⎧ a < e , 收敛 , ⎪ ∴ ⎨ a > e , 发散 , ⎪ a = e , 发散 . ⎩
n n = a( ) n+1
3.根值审敛法 (柯西 Cauchy 判别法):

微积分复习课件 无穷级数(1)

微积分复习课件  无穷级数(1)

则__________.
(A)

p
1 时, 2
级数 (1)n1un
n1
绝对收敛
(B)
当p
1 时, 2
级数 (1)n1un
n1
条件收敛
(C)
当0
p
1 时, 2
级数 (1)n1un
n1
绝对收敛
(D)
当0
p
1 时, 2
级数 (1)n1unn1发散来自3.对正项级数 un ,
n1
lim un1 =q<1 是该正项级数收敛的__________. u n
(A) 1
(B)
3
(C)
3
1
(D)
3
8.幂级数 1 x n 的收敛域为__________. n1 n
(A) [1, 1] (B) [1,1)
(C) (1, 1 ] (D) (1, 1)
9.若级数 an (x 3)n 在点 x=8 处收敛, 则此级数在点 x=1 处____. n1
(A) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 敛散性不能确定
10.B
11.D
1.(1, 1),
1 (1 x)2
2.
e (x 1)n , (, +)
n0 n!
三、解答题
1.(1) 比较判别法(有理化)收敛
(2) 比值判别法 0<e 时, 收敛; =e, 收敛; >e, 发散.
2 . 由 f (x) 是 二 阶 可 导 的 偶 函 数 , 得 f (0)=0, x=0 是 驻 点 , 又 因 为
n
(A) 充分非必要条件 (C) 充分必要条件
(B) 必要非充分条件 (D) 即非充分又非必要条件

高等数学(下)无穷级数

高等数学(下)无穷级数
为级数的和函数 , 并写成
01
添加标题
则在收敛域上有
04
添加标题
若用
02
添加标题
表示函数项级数前 n 项的和, 即
05
添加标题
令余项
03
添加标题
称它
06
例如, 等比级数
它的收敛域是
添加标题
它的发散域是
添加标题
或写作
添加标题
又如, 级数
添加标题
级数发散 ;
添加标题
所以级数的收敛域仅为
添加标题
有和函数
定理5. 根值审敛法 ( Cauchy判别法)
01
02
03
04
05
06
07
08
09
10
例7. 讨论级数
的敛散性 .
例8. 讨论级数
的敛散性 .
D
C
A
B
二 、交错级数及其审敛法
01
02
03
04
05
06
07
收敛
收敛
收敛
上述级数各项取绝对值后所成的级数是否收敛 ?
发散
收敛
收敛
用Leibnitz 判别法判别下列级数的敛散性:
两个级数同时收敛或发散 ;
特别取
可得如下结论 :
对正项级数
(2) 当 且 收敛时,
(3) 当 且 发散时,
也收敛 ;
也发散 .
例3. 判别级数
添加标题
添加标题
添加标题
添加标题
添加标题
添加标题
添加标题
添加标题
添加标题

为正项级数, 且

(1) 当

《高等数学》第十一章 无穷级数 第一节

《高等数学》第十一章 无穷级数   第一节


lim
n
sn

lim
n
1 (1 2
1) 2n 1

1, 2
级数收敛, 和为 1 .
2
19

例 3 试把循环小数 2.317 2.3171717表示 成分数的形式.

2.317

2.3

17 103

17 105

17 107



2.3

17 103
n0

2 3 4 5 6 7 8 9 10
16



1 (2m
1

1 2m
2



1 2m1
)


2m项
每项均大于1 即前m 1项大于(m 1) 1
2
2
该级数发散. 由性质4推论,调和级数发散.
29

例5
判别级数
n1
un


(1)n1
n1
n n1
的敛散性

n n1
limun lim(1)
n
n
0 n1
该级数发散
30
练习. 判断下列级数的敛散性, 若收敛求其和:
(2)

n1n3

1 3n2

2n
;
解: (1) 令

e n1 ( n 1) !
un1 un
(n1)n1 enn! nn

1 (n 1, 2, )
i 1
部分和数列 s1 u1 , s2 u1 u2 ,
s3 u1 u2 u3 ,,

无穷级数 习题课

无穷级数 习题课

二 要点提示
(一)常数项级数 一 常数项级数 1.级数收敛的必要条件 级数收敛的必要条件: 级数收敛的必要条件 收敛,则 n→∞ 若 ∑ un 收敛 则 lim un = 0.
n =1 ∞
由此可得:若 必发散. 由此可得 若 lim un ≠ 0,则级数∑ un 必发散
n→∞ n =1

常用来判定级数是发散的. 常用来判定级数是发散的.切不可用来判定
1 3 4 1. 1+ + ; 3 5 6
解 级数为
∑ ( 1)
n =1

n 1
n n+2
由于一般项
lim ( 1)
n =1 ∞
答:不正确. 不正确. 因为证明中使用了比较判别法, 因为证明中使用了比较判别法, 而比较 判别法只适用于正项级数, 判别法只适用于正项级数, 题目中并未指 出级数是正项级数.正确方法如下: 出级数是正项级数.正确方法如下:
故 ∑ ( bn an )与∑ ( cn an )均为正项级数,

n
2
n
ln ( 1 + x ) = ∑ ( 1)
n =1

n 1
x x x =x + ( 1 < x ≤ 1) . n 2 3
n
2
3
三 思考与分析
1.试判断下列命题是否正确 试判断下列命题是否正确? 试判断下列命题是否正确 (1)若 lim un = 0,则 ∑ un 必定收敛 若 必定收敛. n→∞ n =1 (2)设 ∑ un , ∑ vn 是正项级数 设 是正项级数,
(2)间接展开法: 利用已知函数的展开式 间接展开法: 利用已知函数的展开式, 间接展开法 通过恒等变形 变量代换, 级数的代数运算 恒等变形,变量代换 通过恒等变形 变量代换 级数的代数运算 及逐项求导或积分,把函数展开成幂级数 把函数展开成幂级数. 及逐项求导或积分 把函数展开成幂级数 注意两点: 注意两点 1.熟记几个常用初等函数的马克劳林展出式 熟记几个常用初等函数的马克劳林展出式. 熟记几个常用初等函数的马克劳林展出式 2.根据已知展开式写出所求展开式相应的 根据已知展开式写出所求展开式相应的 收敛区间. 收敛区间 逐项求导或积分后 原级数的收敛半径不变 逐项求导或积分后,原级数的收敛半径不变 逐项求导或积分后 原级数的收敛半径不变, 但收敛域可能会变. 但收敛域可能会变

高等数学11-1 无穷级数的概念与性质

高等数学11-1 无穷级数的概念与性质

1 sin 1 n 1 0, 解. (1)因为 lim n sin lim n n n 1 / n 所以级数发散.
17/21
常数项级数的概念与性质
1 ln n 3 (2) n 3 n 1 3n 1 1 因调和级数 解 发散, 由性质1知, 发散. n 1 n n 1 3n ln n 3 l n3 而级数 n 是以 r 为公比的等比级数, 3 n 1 3
常数项级数的概念与性质
一、常数项级数的概念
引例 求圆的面积
正六边形:a1 正十二边形:a1+a2 正二十四边形:a1+a2 a3
正3 2n 边形:a1+a2 a3
圆:A a1+a2 a3 圆:A a1+a2 a3 an
an
an
1/21
常数项级数的概念与性质
n 1 n 1


n 1
n 1


n 1
n 1
12/21
常数项级数的概念与性质
性质3 添加或去掉有限项不影响一个级数的敛散性 .
注:
仅讨论级数 un 的敛散性时, 可简记为 un ,
n1
但求收敛级数的和时,需指明从哪一项开始!
13/21
常数项级数的概念与性质
性质4 设级数 un 收敛, 则对其各项任意加括号所得
n
矛盾! 级数发散 .
9/21
常数项级数的概念与性质
小结:判断级数敛散性步骤:
(1)求出级数的前n项和(部分和)Sn;
(2)讨论 lim Sn 的存在性.
n
10/21
常数项级数的概念与性质
二、收敛级数的基本性质
性质1 设常数 k 0, 则 un与 kun
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f ( x) 在 U( x0 )内能展开成幂级数
f ( x) 在 U( x0 )内能展开成幂级数 an( x x0 )n , 则其展
开式是唯一的 .
n0
函数展开成幂级数 , 可用直接方法 , 也可用间接方法 . 8
1 . 几何级数 a qn1 .
n1
q 1 , 收敛 ; q 1 , 发散 .
n1 n1
n1
n1
n1
2 设 k 0 , 则 k un 与un 同敛散 ,
n1
n1
而且 , 若 un收敛 , 则有 k un k un .
n1
n1
n1
3 un 与 un 同敛散 .
nk
n1
4 收敛级数加括号后仍收敛 ; 逆否命题正确 .
5
un
nk
收敛
lim
n
un
0;
逆否命题正确 .
2
正项级数审敛法:
2.
调和级数
1 n
n1
1
1 2
1 3
1 n
3.
1
n1 n p
1
1 2p
1 3p
1 np
p ( 0, 1] p (1, )
发散
收敛
发散
4.
(1)n1
n1
1 n
1
1 2
1 3
1 4
条件收敛
5.
(1)n1
n1
1 np
1
1 2p
1 3p
1 4p
( p 0)
收敛
9
1 e x xn 1 x x2 x3
(2)
lim
n
un
0
.
级数收敛性与前 k 项无关
则 (1)n1un 收敛 , 且其和 s u1 , 余项 rn un1 .
n1
任意项级数审敛法 : 绝对收敛与条件收敛
定理 绝对收敛级数 un 一定收敛 .
n1
比值审敛法 :
若 lim
n
un1 un
,则
根值审敛法 : 若 lim n
n
un
,则
4
幂级数 :
an( x x0 )n 或 an xn
n0
n0
幂级数 an xn 的收敛半径 :
n0
当 x R 时 , 幂级数绝对收敛 ;
当 x R 时 , 幂级数发散 ,
称 R 为幂级数的 收敛半径 .
当 x R 或 x R 时 , 幂级数可能收敛 , 也可能发散 .
R lim an , n an1
第十一章 无穷级数 习题课
un
正项级数 交错级数
n1 任意项级数
数项级数
级数 un 收敛
n1
固定 x x0
收敛域
un( x)
幂级数 Forier 级数
n1
其它
函数项级数
n
lim
n
k
uk
1
s
.
记 s un .
n1
1
级数的基本性质:
1 设 un , vn 都收敛 , 则 (un vn ) un vn .
f
(n)( x0 n!
)
(
x
x0 )n
f ( x) ~ f (0) f (0) x f (0) x2 f (n)(0) xn
2!
n!
f ( x) 在 U( x0 )内能展开成幂级数

U
(
x0
)

,
lim
n
Rn
(
x)
0
当 x U( x0 ) 时 , f (n)( x) M ( n k , k 1, k 2, )
eix cos x i sin x .
2
sin x eix eix .
2i
11
Forier 级数
( f ( x) 以 2 为周期 )
f ( x) ~
a0 2
( ancos nx bnsin nx)
n1
幂级数 an xn 在收敛区间 (R , R ) 上可逐项求导或积分 .
n0
s(
x
)
an
n0
x
n
n0
an xn
n an xn1
n1
x
0
s( x) d
x
x 0
an
n0பைடு நூலகம்
x
n
d
x
n0
x 0
an xn
d
x
an xn1 n0 n 1
7
函数展开成幂级数 f ( x) ~ f ( x0 ) f ( x0 )( x x0 )
4 ln(1 x) (1)n xn1 x x2 x3 x4
n0 n 1
2 3 4 x ( 1, 1 ]
5 arctan x (1)n x2n1 x x3 x5 x7
n02n 1
3 5 7 x [ 110, 1 ]
6 (1 x) 1 ( 1) ( n 1) xn
k 0
an
n0
x
n
bn
n0
xn
dn
n0
xn
bn xn 0
n0
dn 使下式成立 :
an xn
n0
dn
n0
x
n
bn
n0
xn
6
幂级数和函数的性质
幂级数 an xn 的和函数 s( x) 在收敛区间上连续 .
n0
(R , R) , [R , R) (R , R] 或 [R , R]
n0 n!
2! 3!
x (, )
2
sin x
(1)n x2n1 x x3 x5 x7
n0(2n 1)!
3! 5! 7! x (, )
3 cos x (1)n x2n 1 x2 x4 x6
n0 (2n)!
2! 4! 6!
x (, )
(sin x ~ 奇函数 , cos x ~ 偶函数 , (sin x) cos x )
un 收敛
n1
un 的部分和序列 { sn } 有上界 .
n1
比较审敛法 :
若 un vn ( n k 1 , k 2 , ) 则
如果
lim
n
un vn
( 0 )
则 un
与 vn 同敛散 .
极限审敛法 : ( un 0 的速度较快 , un 收敛 )
(
p
1) 若
lim
R lim
n
n
1 an
当 R 0 时 , 幂级数只在 x 0 点收敛 ;
当 R 时 , 幂级数在全实轴收敛 .
5
幂级数在公共收敛区间上可进行加减乘(除)四则运算 .
an xn bn xn (an bn )xn
n0
n0
n0
an
n0
x
n
bn
n0
x
n
cn
n0
xn
n
cn akbnk
n
n
pun
(0
) , 则 un
收敛 ;

lim
n
n
un
(0
)
,
则 un
发散
.
比值审敛法 :

lim
n
un1 un
,

根值审敛法 :

lim n
n
un
, 则
3
交错级数审敛法 :
Leibnitz 定理
对于交错级数
(1)n1
un
,
如果
n1
(1) un un1 , ( n 1 , 2 , 3 , )
n1
n!
1 x ( 1) x2 ( 1)( 2) x3
2!
3!
x ( 1, 1 )
1 1 1 x x2 x3 x4
1 x 1 1 x x2 x3 x4
1 x
x ( 1, 1 ) x ( 1, 1 )
欧拉 (Euler) 公式 :
cos x eix eix ,
相关文档
最新文档