高考数学讲义随机变量及其分布列.知识框架

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机变量及其分布

要求层次重难点

取有限值的离散型

随机变量及其分布

C

⑴理解取有限个值的离散型随机变量及

其分布列的概念,了解分布列对于刻画

随机现象的重要性.

⑵理解超几何分布及其导出过程,并能

进行简单的应用.

超几何分布 A

二项分布及其应用

要求层次重难点

条件概率 A

了解条件概率和两个事件相互独立的概

念,理解n次独立重复试验的模型及二

项分布,并能解决一些简单的实际问题.事件的独立性 A

n次独立重复试验与

二项分布

B

离散型随机变量的

要求层次重难点

取有限值的离散型随 B 理解取有限个值的离散型随机变量均高考要求

模块框架

随机变量及其分布列

均值与方差

机变量的均值、方差

值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.

正态分布

要求层次

重难点

正态分布

A

利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义.

1. 离散型随机变量及其分布列

⑴离散型随机变量 如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.随机变量常用大写字母,,X Y 表示.

如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. ⑵离散型随机变量的分布列

将离散型随机变量X 所有可能的取值x 与该取值对应的概率p (1,2,,)i n =列表表示:

X 1x 2x … i x … n x P

1p

2p

i p

n p

X 的分布列.

2.几类典型的随机分布

⑴两点分布

如果随机变量X 的分布列为

X 1 0 P p q

其中01p <<,1q p =-X 服从参数为p 的二点分布.

二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X X 的分布列满足二点分布.

X 1

P 0.8 0.2

两点分布又称01-布又称为伯努利分布.

⑵超几何分布 一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为

C C ()C m n m

M N M

n N

P X m --==(0m l ≤≤,l 为n 和M 中较小的一个).

我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N ,

M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列.

知识内容

⑶二项分布

1.独立重复试验

如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为

()C (1)k k n k

n n P k p p -=-(0,1,2,,)k n =. 2.二项分布

若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复

试验中,事件A 恰好发生k 次的概率是()C k k n k

n P X k p q -==,其中0,1,2,,k n =.于

是得到X 0

1

… k

… n

P

00C n

n p q

111

C n n p q

- … C k k n k

n p q

- 0

C n n n p q

由式

00111

()C C C C n n n k k n k

n n n n n n q p p q p q

p q

p q --+=++++

各对应项的值,所以称这样的散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p .

二项分布的均值与方差:

若离散型随机变量X 服从参数为n 和p 的二项分布,则

()E X np =,()D x npq =(1)q p =-.

⑷正态分布

1. 概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,

直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为X 的概率密度曲线.

曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布

⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布. 服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为22

()2()2πx f x μσσ

--=

⋅,

x ∈R ,其中μ,σ是参数,且0σ>,μ-∞<<+∞.

式中的参数μ和σ分别为正态变量的数学期望和标准差.期望

为μ、标准差为σ的正态分布通常记作2(,)N μσ. 正态变量的概率密度函数的图象叫做正态曲线.

⑵标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. ⑶重要结论:

①正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是68.3%,95.4%,99.7%.

②正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原

x=μO

y x

相关文档
最新文档