高考数学讲义随机变量及其分布列.知识框架

合集下载

第七章随机变量及其分布列章末总结-高二数学教材配套教学课件(人教A版2019选择性必修第三册)

第七章随机变量及其分布列章末总结-高二数学教材配套教学课件(人教A版2019选择性必修第三册)
P(B|A)= ()
=
=
2
.
3
=

4
,
15
典例分析
(2)因为有放回地依次取出3个球,每次取出之前暗箱的情况没有变化,所以每
次取球互不影响,
6
3
所以第 1 次取出的是白球,第 3 次取到黑球的概率为10 = 5.
4
2
2
(3)依题意,每次取到白球的概率为10 = 5,且每次互不影响,故ξ~B 3, 5 ,
例1.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:
(1)第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率;
(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.
解: 设“第1次抽到理科题”为事件 A ,“第2次抽到理科题”为事件 B ,则“第1次和第2次都抽
这时称 X 服从二项分布,记为 X~B(n,p).
当 X~B(n,p)时,E(X)=np,D(X)=np(1-p).
知识梳理
要点四 超几何分布
(1) 若随机变量 X 服从超几何分布,则满足如下条件:
①该试验是不放回地抽取 n 次;
②随机变量 X 表示抽取到的次品件数(或类似事件),反之亦然.
(2)一般地,设有 N 件产品,其中次品的件数分别为 M,(M≤N),从中任取 n(n≤N)
<
>
/m
<
>
/m
<
典例分析
(2)因为 n(AB) =
>
m
<
A23
= 6 ,所以 P(AB) =
>
/m
<
>
m

离散型随机变量及其分布列、数字特征-高考数学复习

离散型随机变量及其分布列、数字特征-高考数学复习

0.8 .

解析:由结论2易得 E ( X )=0.8.
目录
课堂演练
考点 分类突破
精选考点 典例研析 技法重悟通
PART
2
目录
分布列的性质
【例1】 (1)(2024·云南一中检测)设离散型随机变量ξ的分布列
如下表所示,则下列各式正确的是(
ξ
-1
0

1
2
3
P
D. P (ξ<0.5)=0
目录
1
1
1
3
3
3
3
3
2
1
1
+ d ≤ ,所以- ≤ d ≤ .
3
3
3
目录
解题技法
离散型随机变量分布列性质的应用
(1)利用“总概率之和为1”可以求相关参数的取值范围或值;
(2)利用“离散型随机变量在某一范围内的概率等于它取这个范围
内各个值的概率之和”求某些特定事件的概率;
(3)可以根据性质判断所得分布列结果是否正确.
【例2】 (多选)设离散型随机变量 X 的分布列为
X
P
0
q
1
0.4
2
0.1
3
0.2
4
0.2
若离散型随机变量 Y 满足 Y =2 X +1,则下列结果正确的有(

A. q =0.1
B. E ( X )=2, D ( X )=1.4
C. E ( X )=2, D ( X )=1.8
D. E ( Y )=5, D ( Y )=7.2
(2) E ( aX + b )= aE ( X )+ b , D ( aX + b )= a 2 D
( X );

高考数学复习知识点讲解教案第64讲 离散型随机变量的分布列、数字特征

高考数学复习知识点讲解教案第64讲 离散型随机变量的分布列、数字特征
= 1 − = 0 = 0.2,
所以ቊ
解得 = 1 = 0.6.
= 1 + = 0 = 1,
(2)
设随机变量的分布列为 = =

+1
= 1,2,3,4,5 ,则
3
3
7
10
< < =____.
2
2
[解析] ∵ 随机变量的分布列为 = =
)
2
,故选C.
3
2
,进而
3
(2)
若随机变量的分布列如下表所示,则当 < = 0.3时,实数的取
值范围是(
A.[−3,2]
B
)

−3
−2
0
1
2

0.2
0.1
0.2
0.1
0.4
B.(−2,0]
C.(0,1]
D.(1,2]
[思路点拨](2)根据分布列中的数据计算出 ≤ −2 , ≤ 0 的值,然
4
.故选ABD.
3
例3
某校为激发学生对天文、航天、数字科技三类相关知识的兴趣,举行了一
次知识竞赛(竞赛试题中天文、航天、数字科技三类相关知识题量占比分别为
40%,40%,20%).某同学回答天文、航天、数字科技这三类问题中每个题的正
2 1 1
确率分别为 , , .
3 2 3
(1)
若该同学在题库中任选一题作答,求他回答正确的概率;
则 = 0 −
+1 2
3
1
3
0++1
3
× + −
=
+1 2
3

高考数学总复习考点知识专题讲解11 离散型随机变量及其分布列

高考数学总复习考点知识专题讲解11 离散型随机变量及其分布列

高考数学总复习考点知识专题讲解 专题11离散型随机变量及其分布列知识点一 随机变量的概念、表示及特征1.概念:一般地,对于随机试验样本空间Ω中的每个样本点ω都有唯一的实数X (ω)与之对应,我们称X 为随机变量.2.表示:用大写英文字母表示随机变量,如X ,Y ,Z ;用小写英文字母表示随机变量的取值,如x ,y ,z .3.特征:随机试验中,每个样本点都有唯一的一个实数与之对应,随机变量有如下特征:(1)取值依赖于样本点. (2)所有可能取值是明确的. 知识点二 离散型随机变量可能取值为有限个或可以一一列举的随机变量,我们称之为离散型随机变量. 判断离散型随机变量的方法 (1)明确随机试验的所有可能结果; (2)将随机试验的结果数量化;(3)确定试验结果所对应的实数是否可以一一列出,如能一一列出,则该随机变量是离散型随机变量,否则不是.【例1】((2023•丰台区期末)下面给出的四个随机变量中是离散型随机变量的为() ①高速公路上某收费站在半小时内经过的车辆数1X ;②一个沿直线2y x 进行随机运动的质点离坐标原点的距离X;③某同学射击3次,命中的次数3X;④某电子元件的寿2命X;4A.①②B.③④C.①③D.②④【例2】(2023•从化区期中)袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球的号码之和为随机变量X,则X所有可能取值的个数是()A.25B.10C.9D.5知识点三离散型随机变量的分布列及其性质1.定义:一般地,设离散型随机变量X的可能取值为x1,x2,…,x n,我们称X取每一个值x i的概率P(X=x i)=p i,i=1,2,3,…,n为X的概率分布列,简称分布列.2.分布列的性质(1)p i≥0,i=1,2,…,n.(2)p1+p2+…+p n=1.分布列的性质及其应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数.(2)求随机变量在某个范围内的概率时,根据分布列,将所求范围内各随机变量对应的概率相加即可,其依据是互斥事件的概率加法公式.【例3】(2023•辽宁期末)随机变量X的分布列如下表所示,则(2)(…)P XA .0.1B .0.2C .0.3D .0.4【例4】(2022•朝阳区开学)设随机变量X 的分布列为()(1P X k k k λ===,2,3,4),则λ的值为() A .10B .110C .10-D .110-【例5】(2023•珠海期末)已知某离散型随机变量ξ的分布列为:则(q =)A .13和1-B .13C .12D .1-【例6】(2022•多选•天津模拟)设随机变量ξ的分布列为()(15kP ak k ξ===,2,3,4,5),则()A .115a =B .141()255P ξ<<= C .112()10215P ξ<<=D .23()510P ξ=…【例7】(2023•湖北模拟)设随机变量ξ的分布列如表:则下列正确的是()A .当{}n a 为等差数列时,5615a a += B .数列{}n a 的通项公式可以为109(1)n a n n =+C .当数列{}n a 满足1(1,2,9)2n na n ==时,10912a =D .当数列{}n a 满足2()(1k P k k a k ξ==…,2,10)时,1110(1)n a n n =+知识点四 两点分布如果P (A )=p ,则P (A )=1-p ,那么X 的分布列为我们称X 服从两点分布或0-1【例8】(多选)若离散型随机变量X 的分布列如下表所示,则下列说法错误的是()A .常数c 的值为23或13B .常数c 的值为23C .1(0)3P X ==D .2(0)3P X ==【例9】(2023•阜南县期末)从6名男生和4名女生中随机选出3名同学参加一项竞技测试.(1)求选出的3名同学中至少有1名女生的概率;(2)设ξ表示选出的3名同学中男生的人数,求ξ的分布列.【例10】(2023•崂山区期末)某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确得0分,第三个问题回答正确得20分,回答不正确得10-分.如果一位挑战者回答前两个问题正确的概率都是2 3,回答第三个问题正确的概率为12,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总分不低于10分就算闯关成功.(1)求至少回答对一个问题的概率.(2)求这位挑战者回答这三个问题的总得分X的分布列.(3)求这位挑战者闯关成功的概率.同步训练1.(2022•多选•临朐县开学)下列X是离散型随机变量的是()A.某座大桥一天经过的某品牌轿车的辆数XB .一天内的温度为XC .某网页一天内被点击的次数XD .射击运动员对目标进行射击,击中目标得1分,未击中目标得0分,用X 表示该运动员在一次射击中的得分2.(2023•上蔡县校级月考)设随机变量ξ的概率分布列如下表:则(|2|1)(P ξ-==) A .712B .12C .512D .163.(2023•周至县期末)设随机变量X 的分布列为()(1,2,3,4,5,6)2kcP X k k ===,其中c 为常数,则(2)P X …的值为() A .34B .1621C .6364D .64634.(2023•多选•宝安区期中)已知随机变量ξ的分布如下:则实数a 的值为()A .12-B .12C .14D .14-5.(2023•和平区校级期末)设随机变量与的分布列如下:则下列正确的是()A .当{}n a 为等差数列时,5615a a +=B .当数列{}n a 满足1(12n na n ==,2,⋯,9)时,10912a = C .数列{}n a 的通项公式可以为109(1)n a n n =+D .当数列{}n a 满足2()(1k P k k a k ξ==…,2,⋯,10)时,1110(1)n a n n =+6.(2023•郫都区模拟)甲袋中有2个黑球,4个白球,乙袋中有3个黑球,3个白球,从两袋中各取一球.(Ⅰ)求“两球颜色相同”的概率;(Ⅱ)设ξ表示所取白球的个数,求ξ的概率分布列.。

高考复习 第十二章 随机变量及其分布

高考复习 第十二章 随机变量及其分布
(2)若 是随机变量, 是常数,则 也是随机变量
★热 点 考 点 题 型 探 析★
考点一:离散型随机变量及其分布列的计算
题型1. 离散型随机变量的取值
[例1]写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果
(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数ξ;
特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和 即
★重 难 点 突 破★
1.重点:了解随机变量、离散型随机变量、连续型随机变量及离散型随机变量的分布列的意义,
2.难点:会求某些简单的离散型随机变量的分布列;掌握离散型随机变量的分布列的两个基本性质及简单运用。
3.重难点:.
解:设考生甲、乙正确完成实验操作的题数分别为 、 ,
则 取值分别为1,2,3; 取值分别为0,1,2,3。…………………………………2分
, , 。
∴考生甲正确完成题数的概率分布列为
1
2
3
2.(广东省五校2008年高三上期末联考)一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:
现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数 的分布列和数学期望.
P(ξ=0)= P(ξ=1)=
P(ξ=2)= P(ξ=3)=
∴ξ的分布列为:
ξ
0
1
23Βιβλιοθήκη 【名师指引】求离散型随机变量分布列时,应明确随机变量可能取哪些值,然后计算其相应的概率填入相应的表中即可。
【新题导练】
1.(安徽省淮南市2008届高三第一次模拟考试)某校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作. 规定:至少正确完成其中2题的便可提高通过. 已知6道备选题中考生甲有4题能正确完成,2题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响.分别写出甲、乙两考生正确完成题数的概率分布列;

随机变量及其分布知识点总结资料讲解.doc

随机变量及其分布知识点总结资料讲解.doc

圆梦教育中心 随机变量及其分布知识点整理一、离散型随机 量的分布列一 般 地 , 离 散 型 随 机 量 X 可 能 取 的x 1 , x 2 , , x i ,, x n , X 取 每 一 个 x i (i1,2, , n) 的 概 率P( Xx i ) p i , 称以下表格Xx 1 x 2 ⋯ x i ⋯ x n Pp 1p 2⋯p i⋯p n随机 量 X 的概率分布列, 称X 的分布列 .离散型随机 量的分布列具有下述两个性 :( 1) P i ≥ 0, i1,2, , n ( 2) p 1 p 2 p n 11.两点分布如果随机 量X 的分布列X1P 1-p p称 X 服从两点分布,并称p=P(X=1) 成功概率 .2.超几何分布 一般地,在含有M 件次品的 N 件 品中,任取 n 件,其中恰有 X 件次品, 事件X k 生的概率 :P( X k ) C M k C N n k M , k 0,1,2,3,..., mC nN 随机 量 X 的概率分布列如下:X1 ⋯ mPC M 0 C N n 0MC M 1 C N n 1M⋯C M m C N n m MC N nC N nC N n其中 mmin M , n , 且nN , M N , n, M , N N * 。

注:超几何分布的模型是不放回抽 二、条件概率一般地, A,B 两个事件 , 且 P( A)0 ,称P(B | A)P( AB )在事件 A 生的条件下 , 事件 B 生的条件概率 .P( A)0≤ P(B | A) ≤ 1如果 B 和 C 互斥,那么 P[( B U C ) | A] P( B | A) P(C | A)三、 相互独立事件A ,B 两个事件, 如果事件 A 是否 生 事件 B 生的概率没有影响( 即 P( AB) P( A)P( B) ), 称事件 A 与事件B 相互独立。

即 A 、 B 相互独立P( AB) P( A) P(B)一般地,如果事件A ,A , ⋯,A n 两两相互独立,那么n 个事件同 生的概率,等于每个事件 生的概率的 ,12即 P( A 1A 2... A n ) P( A 1 ) P( A 2 )...P( A n ) .注: (1) 互斥事件:指同一次试验中的两个事件不可能同时发生;(2)相互独立事件:指在不同试验下的两个事件互不影响.四、 n 次独立重复试验一般地,在相同条件下,重复做的n 次试验称为n 次独立重复试验.在 n 次独立重复试验中,记A i是“第i次试验的结果” ,显然, P( A1 A2A n ) P( A1 )P( A2 )P( A n )“相同条件下”等价于各次试验的结果不会受其他试验的影响注: 独立重复试验模型满足以下三方面特征第一:每次试验是在同样条件下进行;第二:各次试验中的事件是相互独立的;第三:每次试验都只有两种结果,即事件要么发生,要么不发生.n次独立重复试验的公式:一般地,在 n次独立重复中,事件 A生的次数 X,在每次中事件 A生的概率 p,那么在 n次独立重复中,事件 A 恰好生 k次的概率P( X k ) C n k p k (1 p)n k C n k p k q n k , k 0,1,2,..., n.(其中 q 1 p) ,而称p为成功概率.五、二项分布一般地,在n 次独立重复试验中,用X 表示事件 A 发生的次数,设每次试验中事件 A 发生的概率为p,则P( X k ) C n k p k (1 p)n k, k 0,1,2, ,nX01⋯k⋯nP C n0 p0q n C n1 p1q n 1⋯C n k p k q n k⋯C n n p n q0此时称随机变量X 服从二项分布,记作X ~ B(n, p) ,并称p为成功概率.六、离散随机变量的均值(数学期望)一般地,随机变量X 的概率分布列为X x1 x2 ⋯x i ⋯x nP p1 p2 ⋯p i ⋯p n则称 E( X ) x1 p1 x2 p2x i p i x n p n为X 的数学期望或均值,简称为期望 . 它反映了离散型随机变量取值的平均水平 .1.若Y aX b ,其中a,b常数,则Y 也是变量Y ax1 b ax2 b ⋯ax i b ⋯ax n bP p1 p2⋯p ⋯pi n则 EY aE( X ) b ,即 E(aX b) aE ( X ) b 2.一般地,如果随机变量X 服从两点分布,那么E( X )=1 p 0 (1 p)p 3.若X ~ B(n, p),则E( X ) np七、离散型随机变量取值的方差和标准差一般地 , 若离散型随机变量x 的概率分布列为X x1 x2 ⋯x i ⋯x nP p1 p2 ⋯p i ⋯p n则称 DX ( x1 E (X )) 2 p1 ( x2 E( X )) 2 p2 (x n E ( X 并称DX 为随机变量 X的标准差 .1.若 X 服从两点分布,则 D ( X ) p(1 p)2.若X ~ B(n, p),则D ( X )np(1 p)3.D ( aX b)a2 D ( X )即若 X 服从两点分布,则E( X )p。

随机变量及其分布知识点总结

随机变量及其分布知识点总结

随机变量及其分布知识点总结随机变量是数学中的一个基本概念,描述了一个随机事件的可能结果。

在概率论和统计学中,随机变量的分布是研究随机变量性质的重要工具。

本文将总结随机变量及其分布的相关知识,包括随机变量的定义、表示、分布、期望、方差等。

一、随机变量的定义随机变量是一种描述随机事件可能的变量,通常用符号 $X$ 表示。

随机变量的取值可以是离散的或连续的。

离散的随机变量只取有限或可数个取值,而连续的随机变量则取无限个取值。

二、随机变量的表示随机变量的表示通常用概率密度函数 $f_X(x)$ 或概率质量函数$g_X(x)$ 表示。

概率密度函数是描述随机变量取值分布的函数,通常用$f_X(x)$ 表示。

概率质量函数是描述随机变量离散程度的函数,通常用$g_X(x)$ 表示。

三、随机变量的分布随机变量的分布描述了随机变量取值的概率分布。

离散分布描述了随机变量只取有限或可数个取值的概率分布,连续分布描述了随机变量取无限个取值的概率分布。

1. 离散分布离散分布通常用 $P(X=x)$ 表示,其中 $x$ 是随机变量的取值。

离散分布的概率质量函数通常用 $g_X(x)$ 表示。

例如,正态分布的概率质量函数为:$$g_X(x) = frac{sqrt{2pi}}{x!}e^{-frac{(x-1)^2}{2}}$$2. 连续分布连续分布通常用 $P(X leq x)$ 表示,其中 $x$ 是随机变量的取值。

连续分布的概率质量函数通常用 $f_X(x)$ 表示。

例如,均匀分布的概率质量函数为: $$f_X(x) = begin{cases}1, & x in [0,1],0, & x in [1,2],end{cases}$$四、期望和方差随机变量的期望是随机变量的取值的总和。

离散分布的期望通常用$E(X)$ 表示,连续分布的期望通常用 $E[X]$ 表示。

期望的概率质量函数通常用$f_X(x)$ 表示。

2022年人教A版高中数学选择性必修第三册第七章随机变量及其分布列 章末知识梳理

2022年人教A版高中数学选择性必修第三册第七章随机变量及其分布列 章末知识梳理

返回导航
第七章 随机变量及其分布列
数学(选择性必修·第3册 RJA)
事实上,对于具体问题,若能设出 n 个事件 Ai(i=1,2,…,n),使之 满足AA1iA+j=A2∅+…+An=Ω,(任意两个事件互斥,i,j=1,2,…,n,i≠j).(1) 就可得 B=BΩ=BA1+BA2+…+BAn.(2)这样就便于应用概率的加法公 式和乘法公式.
返回导航
第七章 随机变量及其分布列
数学(选择性必修·第3册 RJA)
③二项分布与超几何分布的区别:有放回抽样,每次抽取时的总体 没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复 试验,此种抽样是二项分布模型.而不放回抽样,取出一个则总体中就 少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模 型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回 抽样还是不放回抽样.
i=1
i=1
返回导航
第七章 随机变量及其分布列
数学(选择性必修·第3册 RJA)
P(Ai|B)=PAPiPBB |Ai

PAiPB|Ai
k
,i=1,2,…,n
PAkPB|Ak
i=1
3.独立性与条件概率的关系:当 P(B)>0 且 P(AB)=P(A)P(B)时,
有 P(A|B)=PPABB=PAPPBB=P(A)
率公式求解.
返回导航
第七章 随机变量及其分布列
数学(选择性必修·第3册 RJA)
[解析] 解法一:记“至少出现 2 枚正面朝上”为事件 A,“恰好出 现 3 枚正面朝上”为事件 B,所求概率为 P(B|A),事件 A 包含的基本事 件的个数为 n(A)=C52+C53+C54+C55=26,

第十三单元随机变量及其分布-PPT精品

第十三单元随机变量及其分布-PPT精品
(2)X的可能取值有2,3,4,5,…,12.Y的可能取值为1,2,3,…,6.若以(i,j)表示 先后投掷的两枚骰子出现的点数,则 X=2表示(1,1), X=3表示(1,2),(2,1), X=4表示(1,3),(2,2),(3,1),
… X=12表示(6,6); Y=1表示(1,1), Y=2表示(1,2),(2,1),(2,2), Y=3表示(1,3),(2,3),(3,3),(3,1),(3,2),
4 15
易错警示
【例】某射手有5发子弹,射击一次命中概率为0.9.如果命中 就停止射击,否则一直到子弹用尽,求耗用子弹数X的分布 列.
错解 P(X=1)=0.9,P(X=2)=0.1×0.9=0.09, P(X=3)=0.1×0.1×0.9=0.009, P(X=4)= 0 .×1 30.9=0.000 9, P(X=5)= 0 .×1 40.9=0.000 09,故其分布列为
P所(X以=随5)机=变C量82CX21C的130C概81C率2…2 分…18布5…列…为………………………..8′
X=k
2
P(X=k) 1
30
3
4
5
2
……3 …………8 ..10′
15
10
15
(3)“一次取球所得分介于20分到40分之间”的事件记为C,则
P(C)=P(X=3)+P(X=4)= 2 3 .13
解 X可能取的值为0,1,2,3,
∵P(X=0)=
C
2 3
C
2
4,
C
2 4
C
2 6

1 5
P(X=1)= C31C42 C32C21C41 7
C42C62
15
又∵P(=3)=

高考数学选修知识讲解离散型随机变量及其分布列(理)

高考数学选修知识讲解离散型随机变量及其分布列(理)

离散型随机变量及其分布列编稿:赵雷 审稿:李霞【学习目标】1.了解离散型随机变量的概念.2.理解取有限个值的离散型随机变量及其分布列的概念.3.掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单问题.4. 理解两个特殊的分布列:“两点分布”和“超几何分布”。

【要点梳理】要点一、随机变量和离散型随机变量1. “随机试验”的概念一般地,一个试验如果满足下列条件:a .试验可以在相同的情形下重复进行.B .试验的所有可能结果是明确可知的,并且不止一个.c .每次试验总是恰好出现这些可能结果中的一个,但在试验之前却不能肯定这次试验会出现哪一个结果.这种试验就是一个随机试验,为了方便起见,也简称试验.2.随机变量的定义一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫做随机变量.通常用大写拉丁字母X ,Y ,Z (或小写希腊字母ξ,η,ζ)等表示。

要点诠释:(1)所谓随机变量,即是随机试验的试验结果和实数之间的一个对应关系,这种对应关系是人为建立起来的,但又是客观存在的。

例如,任意掷一枚硬币,可能出现正面向上、反面向上这两种结果,虽然这个随机试验的结果不具有数量性质,但仍可以用数量来表示它,比如,我们用ξ来表示这个随机试验中出现正面向上的次数,则ξ=0,表示试验结果为反面向上,ξ=1,表示试验结果为正面向上。

(2)随机变量实质是将随机试验的结果数量化 。

3.离散型随机变量的定义如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。

离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,….4. 随机变量的分类随机变量有以下两种:(1)离散型随机变量:(2)连续型随机变量: 如果随机变量可以取其一区间内的一切值,这样的随机变量叫做连续型随机变量.要点诠释:离散型随机变量和连续型随机变量的区别:离散型随机变量,它所可能取的值为有限个或至多可列个,或者说能将它的可能取值按一定次序一一列出.连续性随机变量可取某一区间内的一切值,我们无法将其中的值一一列举.例如,抛掷一枚骰子,可能出现的点数就是一个离散型随机变量;某人早晨在出租车站等出租车的时间(单位:秒)就不是一个离散型随机变量.5. 若是随机变量,其中a,b 是常数,则也是随机变量,并且不改变其属性(离散型、连续型)。

随机变量及其分布列知识点

随机变量及其分布列知识点

随机变量及其分布列知识点随机变量是描述随机实验结果的数值,它可以是离散的(只能取一些离散的数值)或连续的(可以取所有的数值)。

随机变量可以用来描述实验结果的各种特征,如数量、位置、时间等。

离散随机变量的分布列是一个表格,列出了随机变量取各个值的概率。

概率可以通过实验或理论分析得出。

在计算机科学和统计学中,分布列通常被表示为一个数组或字典。

离散随机变量的分布列有以下几个重要性质:1. 概率和为1:所有随机变量取值的概率之和等于1,即P(X=x1) + P(X=x2) + ... + P(X=xn) = 12.非负性:概率永远不会为负数,即P(X=x)>=0,对于所有的x。

3.互斥性:不同取值的随机变量概率互不重叠,即P(X=x1)与P(X=x2)不重叠,对于所有的x1和x24.互斥性:如果随机变量取值是离散的,那么分布列是一个离散函数,概率只在取值点有定义。

如果随机变量是连续的,那么分布列是一个连续函数,概率在区间上有定义。

离散随机变量的分布列可以用于计算各种统计量,如期望值、方差、标准差等。

期望值是随机变量取值的加权平均,方差是随机变量取值偏离平均值的程度。

标准差是方差的平方根,用来度量随机变量的离散程度。

在实际应用中,离散随机变量的分布列可以用来描述概率分布、事件的发生概率等。

它可以用来解决各种问题,如生活中的投资决策、经济模型的拟合、产品质量控制等。

例如,一个骰子的随机变量可以描述它可能的取值为1、2、3、4、5或6,对应的分布列是[1/6,1/6,1/6,1/6,1/6,1/6]。

这个分布列可以用来计算骰子摇出特定点数的概率,以及求得骰子取值的期望值和方差。

另一个例子是二项分布,它描述了在一系列独立实验中成功次数的概率分布。

二项分布的随机变量是一个离散随机变量,它的分布列可以用来计算成功次数的概率和期望值。

连续随机变量的分布列被称为概率密度函数。

概率密度函数描述了随机变量取值的概率密度,而不是概率。

高中数学随机变量分布列知识点

高中数学随机变量分布列知识点

第二章随机变量及其分布内容提要:一、随机变量的定义设是一个随机试验,其样本空间为 ..,若对每一个样本点「一 / ,都有唯一确定的实数-C与之对应,则称J上的实值函数「个随机变量(简记为一)。

二、分布函数的概念和性质1分布函数的定义设+是随机变量,称定义在|一」÷ 上的实值函数F 1 1为随机变量-的分布函数。

2 .分布函数的性质⑴—「工1(2)单调不减性:F(XI) ≤F(吩Xι≤JC2,Iiln F(R = Q Ilin F(X) = 1,(3) 1 ■(4)右连续性:注:上述4个性质是函数"」是某一随机变量「的分布函数的充要条件。

在不同的教科书上,分布函数的定义可能有所不同,例如-,丄-J…,其性质也会有所不同。

(5)V"-:P(X>a)^↑-P(X<a^↑-F(a)Hm)=盹U)注:该性质是分布函数’对随机变量-的统计规律的描述。

三、离散型随机变量1离散型随机变量的定义若随机变量二的全部可能的取值至多有可列个,则称随机变量二是离散型随机变量。

2 .离散型随机变量的分布律(1)定义:离散型随机变量…的全部可能的取值 <η∙^∙,"'以及取每个值时的概率值,称为离散型随机变量一的分布律,表示为P{X = x i)-p it i=Uιι∙f或用表格表示:X X1X2X n …P k P i P2P n …或记为Λ≥⅛ ∑Λ =l(2)性质:注:该性质是是某一离散型随机变量的分布律的充要条件。

4.常见的离散型分布(1)两点分布(0—1分布):其分布律为ΛJΓ=⅛) = √(l-rf-∖ t = 0,l (O<P<1),01P1-5P(2)二项分布(i)二项分布的来源一‘重伯努利试验:设M是一个随机试验,只有两个可能的结果」及』, P(A) = P r P(A) = ∖-p,将E独立重复地进行月次,则称这一串重复的独立试验为' 重伯努利试验。

高考数学第一轮总复习1随机变量及其分布知识点课件

高考数学第一轮总复习1随机变量及其分布知识点课件

从中任意选8人参加“希望杯”数学竞赛,一定有三好学生参加的
概率
11答.为案: 426
.
429
解析: “一定有三好学生参加”其实就是至少有1名三好学生参加,
设选出的三好学生的人数为X,则X服从超几何分布,其中N=15,M=5,
n=8.由于
P(X=1)=
C51C170 C185

600 6435

40 429
第十三单元 随机变量及其分布
知识体系
第一节 离散型随机变量及其概率分布
1. 基本概念
(1)随机变量:随着试验结果的 不同而变化 的量叫做随机变量,通常 用字母X,Y,ξ,η,…表示.
(2)离散型随机变量:所有可能的取值都能 一一列出 的随机变量叫
做离散型随机变量.
(3)离散型随机变量的分布列:设离散型随机变量X可能取的值
………………………………………….4′
方法二:“一次取出的3个小球上的数字互不相同”的事件记为A,
“一次取出的3个小球上有两个数字相同”的事件记为
B,…………C…51C122′C81 1
则事件A和事件CB130是互1斥3 1事件2 ………………………………………2′
因为P(B)=
3,…3………………………………………..3′
分析 (1)是古典概型; (2)确定随机变量ξ所取的值; (3)计分介于20分到40分之间的概率等于ξ=3与ξ=4的概率之和.
解 (1)方法一:“一次取出的3个小球上的数字互不相同”的事件
记为
A,…………C…53C…21C21…C21… …2 ……………………………………………1′
C130
3
则P(A)=
解析: (1)记“这个人中奖”为事件A,则

高中数学随机变量及其分布讲义及练习

高中数学随机变量及其分布讲义及练习

随机变量及其分布要求层次重难点取有限值的离散型随机变量及其分布列C⑴理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性.⑵理解超几何分布及其导出过程,并能进行简单的应用.超几何分布A(一) 知识内容1.运用计数原理,求随机事件的概率,为求随机变量的分布列打下基础.2.涉及到的主要是古典概型的概率求法,与概率初步相承接.对于直接列出基本事件空间求概率的题型不再收集,属于概率初步中的内容.(二)典例分析:【例1】 甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才想的数字,知识框架例题精讲高考要求离散型随机变量二点分布超几何分布 二项分布离散型随机变量的分布列板块一:随机事件的概率随机变量及其分布把乙猜的数字记为b,且{0129},,,,,,若||1a b∈-≤,则称甲乙“心有灵犀”.现任意a b找两个人玩这个游戏,则他们“心有灵犀”的概率为.【例2】从装有3个白球,4个红球的箱子中,把球一个个取出来,到第五个恰好白球全部取出来的概率是_____.【例3】从正二十边形的对角线中任取一条,则其与此正二十边形的所有边都不平行的概率为_____.【例4】某班有52人,男女各半,男女各自平均分成两组,从这个班中选出4人参加某项活动,这4人恰好来自不同组别的概率是______.【例5】(09上海春)一只猴子随机敲击只有26个小写英文字母的练习键盘.若每敲1次在屏幕上出现一个字母,它连续敲击10次,屏幕上的10个字母依次排成一行,则出现单词“monkey”的概率为______.【例6】6女,4男中随机选出3位参加测验.每位女同学能通过测验的概率为0.8,每位男同学能通过测验的概率为0.6.试求:⑴选出的3位同学中,至少有一位男同学的概率;⑵10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.【例7】(06江西)将7个人(含甲、乙)分成三个组,一组3人,另两组2人,不同的分组数为a,甲、乙分到同一组的概率为p,则a p,的值分别为()A .510521a p ==, B .410521a p ==, C .521021a p ==, D .421021a p ==,【例8】 (07四川)已知一组抛物线2112y ax bx =++,其中a 为2468,,,中任取的一个数,b 为1357,,,中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线1x =交点处的切线相互平行的概率是( )A .112B .760C .625D .516【例9】 (08湖南)对有(4)n n ≥个元素的总体{}12n ,,,进行抽样,先将总体分成两个子总体{}12m ,,,和{}12m m n ++,,,(m 是给定的正整数,且22m n -≤≤),再从每个子总体中各随机抽取2个元素组成样本.用ij P 表示元素i 和j 同时出现在样本中的概率,则1n P = ;所有(1)ij P i j n <≤≤的和等于 .【例10】 (2009江西10)为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5袋,能获奖的概率为( )A .3181B .3381C .4881D .5081【例11】 (2009重庆6)锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同.从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为( )A .891B .2591C .4891D .6091【例12】 (2009安徽)考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于( )A .175B .275C .375D .475【例13】 (2009安徽10)考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率等于( )A .1B .12C .13D .0【例14】 在某地的奥运火炬传递活动中,有编号为12318,,,,的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为_______.【例15】 右图中有一个信号源和五个接收器.接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号.若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是( )A .445B .136C .415D .815【例16】 已知盒中装有3只螺口与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯泡的概率为( )A .2140B .1740C .310D .7120【例17】(2006上海)两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是______(结果用分数表示).【例18】某人射击5枪,命中3枪,3枪中恰有2枪连中的概率为()A.120B.110C.25D.35【例19】从数字12345,,,,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为()A.19125B.18125C.16125D.13125【例20】(2007年全国II卷文)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率()0.96P A=.⑴求从该批产品中任取1件是二等品的概率p;⑵若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率()P B.【例21】(2006年浙江卷)甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球.由甲,乙两袋中各任取2个球.⑴若3n=,求取到的4个球全是红球的概率;⑵若取到的4个球中至少有2个红球的概率为34,求n.【例22】 (2009江苏23)对于正整数2n ≥,用n T 表示关于x 的一元二次方程220x ax b ++=有实数根的有序数组()a b ,的组数,其中{}12a b n ∈,,,,(a 和b 可以相等);对于随机选取的{}12a b n ∈,,,,(a 和b 可以相等),记n P 为关于x 的一元二次方程220x ax b ++=有实数根的概率.⑴求2n T 及2n P ;⑵求证:对任意正整数2n ≥,有11n P n>-.【例23】 某种电子玩具按下按钮后,会出现红球或绿球,已知按钮第一次按下后,出现红球与绿球的概率都是12,从按钮第二次按下起,若前次出现红球,则下一次出现红球、绿球的概率分别为1233,;若前次出现绿球,则下一次出现红球、绿球的概率分别为3255,;记 第(*)n n ∈N 次按下按钮后出现红球的概率为n P . ⑴求2P 的值;⑵当2n n ∈N ,≥时,求用1n P -表示n P 的表达式; ⑶求n P 关于n 的表达式.(一) 知识内容1.离散型随机变量如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.随机变量常用大写字母,,X Y 表示. 如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. 2.离散型随机变量的分布列将离散型随机变量X 所有可能的取值i x 与该取值对应的概率i p (1,2,,)i n =列表表示:X 1x 2x … i x … n x P1p2p…i p…n pX 的分布列.板块二:离散型随机变量及其分布列(二)典例分析:【例1】 以下随机变量中,不是离散型随机变量的是:⑴ 某城市一天之内发生的火警次数X ;⑵ 某城市一天之内的温度Y .【例2】 写出下列各随机变量可能的取值.⑴ 小明要去北京旅游,可能乘火车、汽车,也可能乘飞机,他的旅费分别为100元、260元 和600 元,记他的旅费为X ;⑵ 正方体的骰子,各面分别刻着123456,,,,,,随意掷两次,所得的点数之和X .【例3】 若()1P X n a =-≤,()1m P X b =-≥,其中m n <,则()P m X n ≤≤等于( )A .(1)(1)a b --B .1(1)a b --C .1()a b -+D .1(1)b a --【例4】 甲乙两名篮球运动员轮流投篮直至有人投中为止,设每次投篮甲投中的概率为0.4,乙投中的概率为0.6,而且每次不受其他次投篮结果的影响,甲投篮的次数为X ,若甲先投,则()P X k ==_________.【例5】 某12人的兴趣小组中,有5名三好生,现从中任意选6人参加竞赛,用X 表示这6人中三好生的人数,则(3)P X ==________.【例6】 设随机变量的分布列如下:k【例7】 设随机变量X 等可能的取值123n ,,,,,如果(4)0.3P X <=,那么( ) A .3n = B .4n = C .9n = D .10n =【例8】 设随机变量X 的概率分布列为2()1233iP X i a i ⎛⎫=== ⎪⎝⎭,,,,则a 的值是( ) A .1738 B .2738 C .1719 D .2719【例9】 已知随机变量X 的分布列为()(123)2iP X i i a===,,,则(2)P X == .【例10】 设随机变量X 的概率分布是()5kaP X k ==,a 为常数,123k =,,,则a =( ) A .2531 B .3125 C .12531 D .31125【例11】 设随机变量ξ所有可能取值为1234,,,,且已知概率()P k ξ=与k 成正比,求ξ的分布.【例12】 设随机变量X 的概率分布列为()1262k cP X k k ===,,,,,其中c 为常数,则(2)P X ≤的值为( )A .34B .1621C .6364D .6463【例13】 设随机变量X 的分布列为()()123k P X k k n λ===,,,,,,求λ的取值.【例14】 已知(12)(1)k p k k k λ==+,,为离散型随机变量的概率分布,求λ的取值.【例15】 随机变量X 的分布列()(1234)(1)p P X k k k k ===+,,,,p 为常数,则1522P X ⎛⎫<<= ⎪⎝⎭( )A .23B .34C .45D .56【例16】(2008年北京卷理)甲、乙等五名奥运志愿者被随机地分到A B C D,,,四个不同的岗位服务,每个岗位至少有一名志愿者.⑴求甲、乙两人同时参加A岗位服务的概率;⑵求甲、乙两人不在同一个岗位服务的概率;⑶设随机变量ξ为这五名志愿者中参加A岗位服务的人数,求ξ的分布列.【例17】甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23,求:⑴记甲击中目标的次数为ξ,ξ的概率分布及数学期望;⑵乙至多击中目标2次的概率;⑶甲恰好比乙多击中目标2次的概率.【例18】甲与乙两人掷硬币,甲用一枚硬币掷3次,记国徽面(记为正面)朝上的次数为随机变量X;乙用一枚硬币掷2次,记国徽面(记为正面)朝上的次数为随机变量Y.⑴求随机变量X与Y的分布列;⑵求甲得到的正面朝上的次数不少于1的概率.⑶求甲与乙得到的正面朝上的次数之和为3的概率;⑷求甲得到的正面朝上的次数大于乙的概率.【例19】一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得1-分,试写出从该盒中取出一球所得分数X的分布列,并求出所得分数不为0的概率.【例20】一袋中装有编号为123456,,,,,的6个大小相同的球,现从中随机取出3个球,以X表示取出的最大号码.⑴求X的概率分布;⑵求4X 的概率.【例21】袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用X表示取球终止所需要的取球次数.⑴求袋中所有的白球的个数;⑵求随机变量X的概率分布;⑶求甲取到白球的概率.【例22】一个袋中有5个球,编号为12345,,,,,在其中同时取3个球,以X表示取出的3个球中的最大号码,试求X的概率分布列以及最大号码不小于4的概率.(一) 知识内容1.如果随机变量X 的分布列为 X 1 0P p q其中01p <<,1q p =-X 服从参数为p 的二点分布.二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. X 1 0P 0.8 0.2两点分布又称01-为伯努利分布.2.超几何分布一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为C C ()C mn m M N M nNP X m --==(0m l ≤≤,l 为n 和M 中较小的一个). 我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N ,M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列.(二)典例分析:【例23】 某导游团有外语导游10人,其中6人会说日语,现要选出4人去完成一项任务,则有两人会说日语的概率为____.【例24】 在15个村庄中有6个村庄交通不便,现从中任意选取10个村庄,其中有X 个村庄交通不便,下列概率中等于46691015C C C 的是( ) A .(4)P X = B .(4)P X ≤ C .(6)P X =D .(6)P X ≤板块三:二点分布与超几何分布【例25】4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选三人中女生人数,则所选三人中女生人数1ξ≤的概率为().A.15B.25C.35D.45【例26】袋中装有2个5分硬币,3个二分硬币,5个一分硬币,任意抓取3个,则总面值超过1角的概率是()A.115B.215C.1315D.1415【例27】从分别标有数字1,2,3,4,5,6,7,8,9的9张卡片中任取2张,则两数之和是奇数的概率是______【例28】从一副扑克(无王牌)中随意抽取3张,其中至少有一张是黑桃的概率_______(保留四位有效数字)【例29】袋中有12个大小规格相同的球,其中含有2个红球,从中任取3个球,求取出的3个球中红球个数X的概率分布.【例30】袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.⑴摸出2个或3个白球;⑵至少摸出一个黑球.【例31】一批产品共100件,其中5件是废品,任抽10件进行检查,求下列事件的概率.⑴10件产品中至多有一件废品;⑵10件产品中至少有一件废品.【例32】(2009四川文)为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡),某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中34是省外游客,其余是省内游客,在省外游客中有13持金卡,在省内游客中有23持银卡.⑴在该团中随即采访2名游客,求恰有1人持银卡的概率;⑵在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率.【例33】已知10件产品中有3件是次品.⑴任意取出3件产品作检验,求其中至少有1件是次品的概率;⑵为了保证使3件次品全部检验出的概率超过0.6,最少应抽取几件产品作检验?【例34】人类血型有A型,B型,AB型,O型,四种常见血型,现在有100人,其中是A型血的有40人,B型血的有20人,AB型血的有10人,O型血的有30人,从这100人中随机选出两人,问血型不同的概率是多少?【例35】交5元钱,可以参加一次摸奖,一袋中有同样大小的球10个,其中8个标有1元钱,2个标有5元钱,摸奖者只能从中任取2个球,所得奖励是所抽2球的钱数之和,求摸奖人至少不赔的概率.【例36】一个口袋内有4个不同的红球,6个不同的白球,从中任取4个球,⑴红球的个数不比白球少的概率是多少?⑵若取一个红球记2分,取一个白球记1分,使总分不少于7分的概率是多少?【例37】已知甲盒内有大小相同的1个红球、1个绿球和2个黑球,乙盒内有大小相同的2个红球、1个绿球和3个黑球,现从甲乙两个盒子内各任取2球.⑴求取出的4个球中恰有1个红球的概率;⑵求取出的4个球中红球的个数不超过2个的概率.。

高中数学选修2-3-离散型随机变量及其分布列

高中数学选修2-3-离散型随机变量及其分布列

离散型随机变量及其分布列知识集结知识元离散型随机变量及其分布列知识讲解1.离散型随机变量及其分布列【考点归纳】1、相关概念;(1)随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示.(2)离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是随机变量,η=aξ+b,其中a、b是常数,则η也是随机变量.(3)连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量(4)离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出.2、离散型随机变量(1)随机变量:在随机试验中,试验可能出现的结果可以用一个变量X来表示,并且X是随着试验结果的不同而变化的,这样的变量X叫做一个随机变量.随机变量常用大写字母X,Y,…表示,也可以用希腊字母ξ,η,…表示.(2)离散型随机变量:如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.3、离散型随机变量的分布列.(1)定义:一般地,设离散型随机变量X的所有可能值为x1,x2,…,x n;X取每一个对应值的概率分别为p1,p2,…,p n,则得下表:X x1x2…x i…x nP p1p2…p i…p n该表为随机变量X的概率分布,或称为离散型随机变量X的分布列.(2)性质:①p i≥0,i=1,2,3,…,n;②p1+p2+…+p n=1.例题精讲离散型随机变量及其分布列例1.'袋中有2个白球,3个红球,5个黄球,这10个小球除颜色外完全相同.(1)从袋中任取3个球,求恰好取到2个黄球的概率;(2)从袋中任取2个球,记取到红球的个数为ξ,求ξ的分布列、期望E(ξ)和方差D(ξ).'例2.'甲、乙两人做定点投篮游戏,已知甲每次投篮命中的概率均为p,甲投篮3次均未命中的概率为,乙每次投篮命中的概率均为q,乙投篮2次恰好命中1次的概率为,甲、乙每次投篮是否命中相互之间没有影响.(1)若乙投篮3次,求至少命中2次的概率;(2)若甲、乙各投篮2次,设两人命中的总次数为X,求X的分布列和数学期望.'例3.'抛掷甲,乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记底面上所得的数字分别为x,y.记[]表示的整数部分,如:[]=1,设ξ为随机变量,ξ=[].(Ⅰ)求概率P(ξ=1);(Ⅱ)求ξ的分布列,并求其数学期望E(ξ).'当堂练习解答题练习1.'玉山一中篮球体育测试要求学生完成“立定投篮”和“三步上篮”两项测试,“立定投篮”和“三步上篮”各有2次投篮机会,先进行“立定投篮”测试,如果合格才能参加“三步上篮”测试.为了节约时间,每项测试只需且必须投中一次即为合格.小华同学“立定投篮”的命中率为,“三步上篮”的命中率为.假设小华不放弃任何一次投篮机会且每次投篮是否命中相互独立.(1)求小华同学两项测试均合格的概率;(2)设测试过程中小华投篮次数为X,求随机变量X的分布列和数学期望.'练习2.'某支教队有8名老师,现欲从中随机选出2名老师参加志愿活动,(1)若规定选出的至少有一名女老师,则共有18种不同的需安排方案,试求该支教队男、女老师的人数;(2)在(1)的条件下,记X为选出的2位老师中女老师的人数,写出X的分布列.'练习3.'装有除颜色外完全相同的6个白球、4个黑球和2个黄球的箱中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球输1元,取出黄球无输赢.(1)以X表示赢得的钱数,随机变量X可以取哪些值?求X的分布列;(2)求出赢钱(即X>0时)的概率.'练习4.'将10个白小球中的3个染成红色,3个染成黄色,试解决下列问题:(1)求取出3个小球中红球个数ξ的分布列;(2)求取出3个小球中红球个数多于白球个数的概率.'练习5.'新高考改革后,假设某命题省份只统一考试数学和语文,英语学科改为参加等级考试,每年考两次,分别放在每个学年的上下学期,其余六科政治,历史,地理,物理,化学,生物则以该省的省会考成绩为准.考生从中选择三科成绩,参加大学相关院校的录取.(Ⅰ)若英语等级考试有一次为优,即可达到某“双一流”院校的录取要求.假设某考生参加每次英语等级考试事件是相互独立的,且该生英语等级考试成绩为优的概率为,求该考生直到高二下期英语等级考试才为优的概率(Ⅱ)据预测,要想报考某“双一流”院校,省会考的六科成绩都在95分以上,才有可能被该校录取假设某考生在省会考六科的成绩都考到95分以上的概率都是,设该考生在省会考时考到95以上的科目数为X求X的分布列及数学期望.'练习6.'某高中志愿者男志愿者5人,女志愿者3人,这些人要参加社区服务工作.从这些人中随机抽取4人负责文明宣传工作,另外4人负责卫生服务工作.(Ⅰ)设M为事件;“负责文明宣传工作的志愿者中包含女志愿者甲但不包含男志愿者乙”,求事件M发生的概率;(Ⅱ)设X表示参加文明宣传工作的女志愿者人数,求随机变量X的分布列与数学期望.'练习7.'今年学雷锋日,乌鲁木齐市某中学计划从高中三个年级选派4名教师和若干名学生去当学雷锋文明交通宣传志愿者,用分层抽样法从高中三个年级的相关人员中抽取若干人组成文明交通宣传小组,学生的选派情况如下:(Ⅰ)求x,y的值;(Ⅱ)若从选派的高一、高二、高三年级学生中抽取3人参加文明交通宣传,求他们中恰好有1人是高三年级学生的概率;(Ⅲ)若4名教师可去A、B、C三个学雷锋文明交通宣传点进行文明交通宣传,其中每名教师去A、B、C三个文明交通宣传点是等可能的,且各位教师的选择相互独立.记到文明交通宣传点A的人数为X,求随机变量X的分布列和数学期望。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机变量及其分布
要求层次重难点
取有限值的离散型
随机变量及其分布

C
⑴理解取有限个值的离散型随机变量及
其分布列的概念,了解分布列对于刻画
随机现象的重要性.
⑵理解超几何分布及其导出过程,并能
进行简单的应用.
超几何分布 A
二项分布及其应用
要求层次重难点
条件概率 A
了解条件概率和两个事件相互独立的概
念,理解n次独立重复试验的模型及二
项分布,并能解决一些简单的实际问题.事件的独立性 A
n次独立重复试验与
二项分布
B
离散型随机变量的
要求层次重难点
取有限值的离散型随 B 理解取有限个值的离散型随机变量均高考要求
模块框架
随机变量及其分布列
均值与方差
机变量的均值、方差
值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.
正态分布
要求层次
重难点
正态分布
A
利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义.
1. 离散型随机变量及其分布列
⑴离散型随机变量 如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.随机变量常用大写字母,,X Y 表示.
如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. ⑵离散型随机变量的分布列
将离散型随机变量X 所有可能的取值x 与该取值对应的概率p (1,2,,)i n =列表表示:
X 1x 2x … i x … n x P
1p
2p

i p

n p
X 的分布列.
2.几类典型的随机分布
⑴两点分布
如果随机变量X 的分布列为
X 1 0 P p q
其中01p <<,1q p =-X 服从参数为p 的二点分布.
二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X X 的分布列满足二点分布.
X 1
P 0.8 0.2
两点分布又称01-布又称为伯努利分布.
⑵超几何分布 一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为
C C ()C m n m
M N M
n N
P X m --==(0m l ≤≤,l 为n 和M 中较小的一个).
我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N ,
M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列.
知识内容
⑶二项分布
1.独立重复试验
如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为
()C (1)k k n k
n n P k p p -=-(0,1,2,,)k n =. 2.二项分布
若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复
试验中,事件A 恰好发生k 次的概率是()C k k n k
n P X k p q -==,其中0,1,2,,k n =.于
是得到X 0
1
… k
… n
P
00C n
n p q
111
C n n p q
- … C k k n k
n p q
- 0
C n n n p q
由式
00111
()C C C C n n n k k n k
n n n n n n q p p q p q
p q
p q --+=++++
各对应项的值,所以称这样的散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p .
二项分布的均值与方差:
若离散型随机变量X 服从参数为n 和p 的二项分布,则
()E X np =,()D x npq =(1)q p =-.
⑷正态分布
1. 概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,
直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为X 的概率密度曲线.
曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布
⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布. 服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为22
()2()2πx f x μσσ
--=
⋅,
x ∈R ,其中μ,σ是参数,且0σ>,μ-∞<<+∞.
式中的参数μ和σ分别为正态变量的数学期望和标准差.期望
为μ、标准差为σ的正态分布通常记作2(,)N μσ. 正态变量的概率密度函数的图象叫做正态曲线.
⑵标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. ⑶重要结论:
①正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是68.3%,95.4%,99.7%.
②正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原
x=μO
y x
则.
⑷若2~()N ξμσ,,()f x 为其概率密度函数,则称()()()x
F x P x f t dt ξ-∞
==⎰≤为概率分布
函数,特别的,2
~(01)N ξμσ-,,称2
2()2t x x e dt φ-=⎰π
为标准正态分布函数. ()()x P x μ
ξφσ
-<=.
标准正态分布的值可以通过标准正态分布表查得.
分布函数新课标不作要求,适当了解以加深对密度曲线的理解即可.
3.离散型随机变量的期望与方差
1.离散型随机变量的数学期望
定义:一般地,设一个离散型随机变量X 所有可能的取的值是1x ,2x ,…,n x ,这些值对应的概率是1p ,2p ,…,n p ,则1122()n n E x x p x p x p =+++,叫做这个离散型随机变量X 的均值或数学期望(简称期望).
离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平. 2.离散型随机变量的方差
一般地,设一个离散型随机变量X 所有可能取的值是1x ,2x ,…,n x ,这些值对应的概率是1p ,2p ,…,n p ,则2221122()(())(())(())n n D X x E x p x E x p x E x p =-+-++-叫做这个离散型随机变量X 的方差.
离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小(离散程度).
()D X ()D x 叫做离散型随机变量X 的标准差,它也是一个衡量离散型随机变量波动大小的量.
3.X 为随机变量,a b ,为常数,则2()()()()E aX b aE X b D aX b a D X +=++=,
; 4. 典型分布的期望与方差:
⑴二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np .
⑵二项分布:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.
⑶超几何分布:若离散型随机变量X 服从参数为N M n ,,的超几何分布,
则()nM
E X N
=,2
()()()(1)n N n N M M D X N N --=-.
4.事件的独立性
如果事件A 是否发生对事件B 发生的概率没有影响,即(|)()P B A P B =,
这时,我们称两个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.
如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件都发生的概率,等于每个事件发
生的概率的积,即1212()()()()n n P A A A P A P A P A =⨯⨯⨯,并且上式中任意多个事
件i A 换成其对立事件后等式仍成立.
5.条件概率
对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号“(|)P B A ”来表示.把由事件A 与B 的交(或积),记做D A B =(或D AB =).。

相关文档
最新文档