最新人教版七年级上册数学 代数式(基础篇)(Word版 含解析)
最新人教版七年级上册数学 代数式(基础篇)(Word版 含解析)
![最新人教版七年级上册数学 代数式(基础篇)(Word版 含解析)](https://img.taocdn.com/s3/m/36a3696280eb6294dc886c67.png)
一、初一数学代数式解答题压轴题精选(难)1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:________ 方法②:________请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________(2)根据(1)中的等式,解决如下问题:①已知:,求的值;②己知:,求的值.【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2(2)解:①把代入∴,∴②原式可化为:∴∴∴【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .方法②:草坪的面积= ;等式为:故答案为:,;【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.2.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收贵的价目表如下(注:水费按月份结算,m3表示立方米)价目表每月用水量价格不超过6m3的部分2元/m3超出6m3不超出10m3的部分4元/m3超出10m3的部分6元/m35m3和8m3,则应收水费分别是________元和________元.(2)若该户居民3月份用水量am3(其中6<a≤10),则应收水费多少元?(用含a的式子表示,并化简)(3)若该户层民4、5两个月共用水14m3(5月份用水量超过4月份),设4月份用水xm3,求该户居民4、5两个月共交水费多少元?(用含x的式子表示,并化简)【答案】(1)10;20(2)解:由依题意得:6×2+(a﹣6)×4=4a﹣12(元)答:应收水费(4a﹣12)元。
2024年新人教版七年级数学上册《第3章代数式 小结与复习》教学课件
![2024年新人教版七年级数学上册《第3章代数式 小结与复习》教学课件](https://img.taocdn.com/s3/m/1ef05c4fb5daa58da0116c175f0e7cd185251862.png)
x - y = (-3) - 5 = -8.
综上所述,x - y 的值为 -2 或 -8.
考点4:代数式的应用
例5 某学校办公楼前有一块长为 m,宽为 n 的长方形空 地,在中心位置留出一个半径为 a 的圆形区域建一个喷 泉,两边是两块长方形的休息区,阴影部分为绿地. (1) 用含字母 a、b、m、n 的式子表示绿地面积; 解:由图可知长方形空地面积为:mn, 喷泉面积为:πa2,休息区面积为:2ab, 所以绿地面积为:mn - πa2 - 2ab.
花坛面积为:πr2 m2,
所以草坪面积为:(ab - πr2) m2.
(2) 若空地的长为 150 米,宽为 80 米, 圆形花坛的半 径为 10 米,铺草坪每平方米需 20 元,花坛每平方米 需 50 元,则完成这个设计一共需要多少元 ( π 取 3 )? 解:当 a = 150,b = 80, r = 10 时, 花坛面积为:3×102 = 300 m2, 草坪面积为: 150×80 - 3×102 = 11 700 m2. 所以一共需要:11 700×20 + 300×50 = 249 000 (元).
练一练
1.(广东·期中)下列各式中,符合代数式书写规则的
是( B ) A. x×5
B. 1 xy
2
C. mn2
D. m÷n
A. 省略乘号,数字写在字母前面 5x
C. 数字写在字母前面
2mn
D.除号用分数线代替
m n
考点2:列代数式
例2 河上游的码头甲与下游的码头乙相距 s km,轮船
在静水中的速度为 x km/h,水流的速度为 y km/h,则
考点3:代数式的值
例4 若 a = 4,b = -2,求代数式 a - ab 的值. 解:当 a = 4,b = -2 时, a - ab = 4 - 4×(-2) = 12.
代数式七年级上册人教版
![代数式七年级上册人教版](https://img.taocdn.com/s3/m/0b9297b23086bceb19e8b8f67c1cfad6195fe9ea.png)
代数式七年级上册人教版一、代数式的概念。
1. 定义。
- 由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。
例如:2x + 3,a^2 - b,(1)/(x)(x≠0)等都是代数式。
单独的一个数或者一个字母也是代数式,比如5,a等。
2. 代数式与等式、不等式的区别。
- 等式是表示两个代数式相等关系的式子,用“=”连接,如2x+3 = 5x - 1。
- 不等式是表示两个代数式之间大小关系的式子,用“>”“<”“≥”“≤”等符号连接,如3x+2>x - 1。
而代数式只是一个表达式,没有表示相等或者不等关系。
二、代数式的书写规范。
1. 数字与字母相乘。
- 数字要写在字母前面,且省略乘号,如3× a应写成3a;当数字是带分数时,要把带分数化为假分数,例如1(1)/(2)x应写成(3)/(2)x。
2. 字母与字母相乘。
- 省略乘号,如a× b写成ab。
3. 除法运算。
- 一般写成分数形式,如a÷ b写成(a)/(b)(b≠0)。
三、代数式的分类。
1. 整式。
- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
例如3x,-5,a等都是单项式。
单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。
例如在单项式3x^2y中,系数是3,次数是2 + 1=3。
- 多项式:几个单项式的和叫做多项式。
每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
多项式里次数最高项的次数,叫做这个多项式的次数。
例如多项式2x^2+3x - 1,它有三项,分别是2x^2、3x、-1,其中-1是常数项,这个多项式的次数是2。
2. 分式。
- 一般地,如果A、B(B≠0)表示两个整式,且B中含有字母,那么式子(A)/(B)就叫做分式。
例如(1)/(x),(x + 1)/(x - 1)等都是分式。
【精选】七年级上册代数式(基础篇)(Word版 含解析)
![【精选】七年级上册代数式(基础篇)(Word版 含解析)](https://img.taocdn.com/s3/m/bf5dce4b5f0e7cd1842536ad.png)
一、初一数学代数式解答题压轴题精选(难)1.如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是30千米/小时,BC段为上山路,车速是22.5千米/小时,CD段为下山路,车速是36千米/小时,已知下山路是上山路的2倍.(1)若AB=6千米,老王开车从A到D共需多少时间?(2)当BC的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)【答案】(1)解:若AB=6千米,则BC=22千米,CD=44千米,从A到D所需时间为:=2.4(小时)(2)解:从A到D所需时间不变,(答案正确不回答不扣分)设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,t===2.4(小时)【解析】【分析】(1)根据题意可以求出AB,BC,CD的长,然后根据路程除以速度等于时间,即可分别算出老王开车行三段的时间,再求出其和即可;(2)从A到D所需时间不变,设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,,然后根据路程除以速度等于时间,即可分别表示出老王开车行三段的时间,再根据异分母分式加法法则求出其和,再整体代入即可得出结论;2.糖业是我省重要的生物资源产业.我省某糖业集团今年4月收购甘蔗后入榨甘蔗250万吨,榨糖率为12%.经市场调查知5月份糖的销售价为2940/吨,若糖业集团在5月销售4月生产的糖,产销率为60%;又知糖业集团若在6月、7月两个月内销售4月生产的糖,销售价将在5月的基础上每月比上月降低6%、糖销量将在5月的基础上每月比上月增加9%.(1)问2005年4月糖业集团生产了多少吨糖?(2)若糖业集团计划只在7月销售4月生产的糖,请求出该糖业集团7月销售4月生产的糖的销售额是多少?(精确到万元)(注:榨糖率=(产糖量/入榨甘蔗量)×100%,产销率=(糖销量/产糖量)×100%,销售额=销售单价×销售数量).【答案】(1)解:2005年4月糖业集团产糖250×12%=30(万吨)=300000(吨)(2)解:设7月份的糖价为x元/吨,则据已知条件有x=2597.784(元/吨);设7月份的糖销量为y吨,则据已知条件得:y=30×0.60×(1+9%)2=21.3858(万吨)设7月份销售4月份产糖的销售额为w元,则据题意得:w=2597.784×21.3858≈55556(万元).答:糖业集团7月份销售4月份产糖的销售额约为55556万元.【解析】【分析】(1)根据产糖量等于入搾甘蔗量乘以搾糖率即可求解;(2)由题意先求出7月份的糖价=2940(1-6%)2=2597.784元/吨,再求出7月份的糖销量=30×0.60×(1+9%)2=21.3858(万吨),最后根据销售额等于销售单价乘以销售量即可解答。
第三章+代数式+小结+课件-2024-2025学年人教版七年级数学上册
![第三章+代数式+小结+课件-2024-2025学年人教版七年级数学上册](https://img.taocdn.com/s3/m/ab8ac17dae45b307e87101f69e3143323868f56e.png)
代数式的意义
运算意义 实际意义
用字母表示数 代数式
列代数式
反比例关系
代数式的值
一般地,用数值代替代数式中的 字母,按照代数式中的运算关系 计算得出的结果,叫作代数式的 值,当字母取不同的数值时,代 数式的值一般也不同.
拓展提升
练习 1 如图,正方形 ABCD 的边长为 a.
(1)根据图中的数据,用含 a,b 的代数式表示阴影部
3.当长方形的周长一定时,相邻两边的长成反比例关 系吗?当长方形的面积一定时呢?为什么?
解:当长方形的周长一定时,相邻两边的长的和是一 定的,但积不是一定的,所以它们不成反比例关系;当长 方形的面积一定时,相邻两边的长的积是一定的,所以它 们成反比例关系.
定义:用运算符号把数或 表示数的字母连接起来的 式子叫作代数式.
练习 2 如图,用棋子摆出一组形如正方形的图形, 按照这种方法摆下去,摆第 n 个图形需要多少枚棋子?
…
第1个
第2个
第3个
1×4
2×4
3×4
…
解:摆第 n 个图形需要 4n 枚棋子.
第n个 4n
定义:用运算符号把数或 表示数的字母连接起来的 式子叫作代数式.
代数式的意义
运算意义 实际意义
用字母表示数 代数式
2
2
=18-4
A
4D
b
=14. 所以阴影部分的面积为 14.
B
a
C
练习 2 如图,用棋子摆出一组形如正方形的图形, 按照这种方法摆下去,摆第 n 个图形需要多少枚棋子?
…
第1个
第2 个
第3个
第n个
2×4-4
3×4-4
4×4-4
… 4(n+1)-4
人教版(2024)数学七年级上册+3.1+列代数式表示数量关系+课件
![人教版(2024)数学七年级上册+3.1+列代数式表示数量关系+课件](https://img.taocdn.com/s3/m/1b7a474cb5daa58da0116c175f0e7cd1842518ed.png)
C基础概念 3. 代数式的应用 4. 近似数的小结
问题引入
问题引入
一个文具店出售铅笔,每支价格为2元。如果你买了x支铅笔,那么一共需 要多少钱呢?
提问:“如果我们想表示‘买x支铅笔的总价’,可以怎么表达?”
总价 = 2 × x
代数式的含义 代表变量 或未知数。
表达数量 之间的关 系
在代数式 3x + 2 中, 表示3倍的x加上2,其 中x可以表示物品的数 量,整个式子则表示 购买x件物品的总价。
如何列代数式?
1. 明确已知量和未知量:找出题目中已知和要求表示的量。 2. 设未知量为字母:用字母(如x、y等)表示未知数。 3. 建立数量关系:根据题目要求列出代数式。
例题讲解
(1)长方形的长是5cm,面积是m cm2,则长方形的宽是 cm ; (2)男生数是女生数的2倍少15,如女生数是a,则男生数
为 2 a -15 ;
(3)某生语数英三科的总成绩是m,其中语文占50%,数学占x% ,
则该生的英语成绩是(1-40%-x%)m 。
小结
总结
代 数 式
定义
由数字、字母和运算符组成的式子,用于表示数量 关系。
牛刀小试:某人骑车每小时行驶15公里,骑行t小时后的总路程 是多少?
1.已知每小时行驶15公里,要表示总路程 2.设总路程为 s 3. s = 15t
代数式的运用
例题讲解
1.每层楼房2.8米,某栋楼共有a层,用式子表示这栋楼的大约高度 2.8a米
2.圆柱体的底面半径、高分别是 r,h,用式子表示圆柱体的体积 πr2 h
3.甲乙两人相向而行,甲每小时行m千米,乙每小时行n千米,两人一 共行走2小时,共行走了 2(m+n)千米,如果一共行走了a小时,则, 两人共行走了 (m+n)a 千米.
3.2.1 代数式求值-人教版(2024)数学七年级上册
![3.2.1 代数式求值-人教版(2024)数学七年级上册](https://img.taocdn.com/s3/m/09ed6451effdc8d376eeaeaad1f34693dbef107d.png)
解:当a=-3,b=2时,
a2+b2=32+ (-2)2=13;
a2+b2=(-3)2+ 22=13;
(a+b)2=[3+(-2)]2=1.
(a+b)2=(-3+2)2=1.
8.求下列代数式的值:
2+1
(1)
,其中n=4;
−1
(2)(a-c)2+
解:当x=15,y=12时,
2x+3y=2×15+3×12=66;
1
(2) x=1,y= .
2
1
解:当x=1,y= 时,
2
1 7
2x+3y=2×1+3× = .
2 2
典例解析
【例2】根据下列a,b的值,分别求代数式a2-
的值:
(1) a=4,b=12;
解:当a=4,b=12时,
(2)a=-3,b=2.
人
教
版
第三章 代数式
3.2.1 代数式求值
学习目标
理解代数式的值,并能通过直接代入求值或整体代入求值,
从而求出一个代数式的值,渗透整体思想.
情境引入
【问题】 为了开展体育活动,学校要购置一批排球,每班配5个,学
校另外留 20个.学校总共需要购置多少个排球?
问1:记全校的班级数是n,则需要购置的排球总数是 5n+20 ;
式的值一般也不同.
【注意】
1.代入求值时,只将对应字母换成数值,式子中的其他符号和数字都
不改变;
2.代数式中原来省略的乘号,代入后出现数与数相乘时,必须添上乘
号;
3.当字母的取值是负数时,代入时要注意添加括号.
3.2 代数式的值 课件 2024-2025学年人教版(2024)数学七年级上册
![3.2 代数式的值 课件 2024-2025学年人教版(2024)数学七年级上册](https://img.taocdn.com/s3/m/27f2e8f9f424ccbff121dd36a32d7375a517c61b.png)
3.2 代数式的值
学习目标
1.理解代数式的值是由代数式中字母的取值确定的. 2.掌握求代数式的值的方法,并能解决较简单的实际问 题. 3.通过求代数式的值的过程初步体会到数学中抽象概 括的思维方法.
目录
01. 情境导入 02. 新知初探 03. 当堂达标 04. 课堂小结
01 情境导入
02 新知初探
新知初探
探究一 求代数式的值
1.为了开展体育活动、学校要购置一批排球,每班配5个,学校另外
留20个.学校总共需要购置多少个排球?
问题1 若全校的班级数是n个,则需要购置的排球总数是多少?
解: 问题2 如5果n+班2级0.数是15,则需要购置的排球总数是多少?
解:用15代替字母n,那么需要购置的排球总数 是 问题3 如5果n+班2级0=数5是×1250+,2则0=需9要5(购个置).的排球总数是多少? 解:用15代替字母n,那么需要购置的排球总数 是
思考 比较问题2,问题3两题的运算结果,你有什么想法?
小结 一般地,用数值代替代数式中的字母,按照代数式中的 运算关系计算得出的结果,叫作代数式的值. 当字母取不同的数值时,代数式的值一般也不同.
2.根据下列x,y的值,分别求代数式2x+3y的值:
(1)x=15,y=12;
(2)x=1,y= . 1
谢
谢
的价格为每千克 1.4元4 .
a
5.为了节约用水,某自来水公司采取以下收费方法:每户每月用水不超过 10吨,则每吨水收费1元,如果每户每月用水超过10吨,超过部分按每吨2.5 元收费,现在李老师家里2月份用水a吨(a>10). (1)请用代数式表示李老师2月份应交水费多少元? (2)如果a=16,那么李老师2月份应交水费多少元?
+第3章+++代数式+复习与小结课件++2024--2025学年人教版七年级数学上册++++
![+第3章+++代数式+复习与小结课件++2024--2025学年人教版七年级数学上册++++](https://img.taocdn.com/s3/m/d5480c0d59fafab069dc5022aaea998fcc2240e8.png)
(2)3(a2 b2 )
综合练习 6.已知a与b互为相反数,m与n互为倒数,c的绝对值 等于2,求代数式 3a 3b (mn)2024 c2 的值.
解:a b 0, mn 1, c2 4
3a 3b (mn)2024 c2 0 1 4 3
课堂小结
D.10mn 3
注意:
代数式书写时:
数与字母相除时,写成分数形式. 字母与字母相乘时省略乘号. 1或-1与字母相乘时,1通常省略不写.
知识点讲练 知识点2 列代数式表示数量关系
1.笔记本的单价是每本a元,练习本的单价是每本b
元,买4本笔记本和5本练习本共需( B )
A.(a b)元
B.(4a 5b)元
代数式书写时: 数与字母相除时,写成分数形式. 字母与字母相乘时省略乘号. 1或-1与字母相乘时,1通常省略不写. 数字与字母相乘时,数字在前,字母在后. 带分数与字母相乘时,把带分数化成假分数. 相同字母相乘时应写成幂的形式.
课后作业
1.课后复习题3; 2.完成练习册本课时的习题。
C.(5a 4b)元
D.4(a b)元
知识点讲练 知识点2 列代数式表示数量关系
2.用代数式表示: (1)m的4倍与n的3倍的差; (2)x的相反数与y的2倍的和;
解:(1)4m-3n (2)-x+2y
知识点讲练 知识点3反比例关系
(1)两个相关联的量,一个量变化,另一个量随之变 化,且这两个量的_乘_积__一_定__,这两个量就叫做 ___成_反__比__例___的量,它们之间的关系叫做__反_比__例__关_系__.
(4)带分数与字母相乘,将带分数_转__化_为__假__分_数__.
3.1 列代数式表示数量关系 (课件)人教版(2024)数学七年级上册
![3.1 列代数式表示数量关系 (课件)人教版(2024)数学七年级上册](https://img.taocdn.com/s3/m/a304081b32687e21af45b307e87101f69e31fbf9.png)
感悟新知
知2-练
解题秘方:认真审题,分清数量关系,并用字母正 确表示出来. 解:购买乙种读本的费用= 单价× 数量,则购买乙 种读本的费用为12(90 -x)元.
感悟新知
知2-练
3-1.为调研大众的低碳环保意识,小明在某超市出口统计
后发现: 一小时内使用自带环保袋的人数比使用超市
塑料袋人数的2 倍少4人. 若一小时内使用超市塑料袋
综合应用创新
方法点拨 列代数式表示图形面积常见形式:
综合应用创新
题型 5 列代数式表示变化规律
例 9 [新考法 归纳法]如图3.1-3 是按规律排列的一组图形的 前三个,观察图形解答下列问题:
综合应用创新
思路引导:
综合应用创新
(1)第5 个图形中,一共有多少个点?
解:观察图形的变化可知: 第1 个图形中,一共有(6+1)个点, 第2 个图形中,一共有(6×2+1)个点, 第3 个图形中,一共有(6×3+1)个点, 所以第4 个图形中,一共有(6×4 +1)个点, 第5 个图形中,一共有6×5+1 = 3 1(个)点;
综合应用创新
方法技巧 列代数式表示特征数的关键在于抓住各
类数的基本特点:如偶数是2 的倍数,奇数比 相邻偶数相差1 ,多位数等于相应数位上的数 字与相应计数单位乘积的和.
综合应用创新
题型 4 列代数式表示图形面积
例 8 如图3.1-2 ,有一块长为18 m,宽为10 m 的长方形土 地,现将三面留出宽都是x(0<x<8) m 的小路,余下的 部分为菜地,用含x 的代数式表示: 解题秘方:根据题中提供的数据以 及长方形的面积公式解决问题.
综合应用创新
(2)请用含n 的代数式表示出第n 个图形中点的数量. 解:第n 个图形中,一共有(6n+1)个点.
[+初中数学]代数式及其整式的运算课件+人教版数学七年级上册
![[+初中数学]代数式及其整式的运算课件+人教版数学七年级上册](https://img.taocdn.com/s3/m/656ab04ea31614791711cc7931b765ce05087ae1.png)
整理
第二课时 整式的运算
探究:下面的三对式子,每对式子之间有什么共同点?
2x与3x
2a2与7a2
8n3与5n3
1与3
所含字母_相__同___ 两相同
相同字母的指数也__相__同__
二者缺一不可
注意:所有的常数项都是同类项
板书:
一、同类项的定义:
像这样所含字母 相同 , 并且相同字母的指数也 相同 的项,叫同类项。
字母的指数不变。
例1、合并同类项:
探究:ac5·bc2
ac5·bc2=(a·b)·(c5·c2)=abc5+2=abc
7
(一)单项式与单项式相乘,把它们的系数、 相同字母的幂分别相乘,对于只在一个单项式里 含有的字母,则连同它的指数作为积的一个因 式.
范例解析
计算
(1) (5a2b)(-3a)
解:由题意得 m+2=6,
解得 m=4, ∴此多项式是-5x4+104x4-4x4y2.
课堂检测
变式 若关于x的多项式-5x3-mx2+(n-1)x-1
不含二次项和一次项,求m、n的值.
解:∵关于x的多项式-5x3-mx2+(n-1)x-1
不含二次项和一次项, ∴m=0,n-1=0, 则m=0,n=1.
归纳: 1.等号左边必须 是多项式 2.等号右边必须 是乘积
3.每个因式必须
是整式
练习.做一做 观察左边与右边的式子,有什么不同?
计算下列各式: (1)3x(x-1)= (2)m(a+b-1)= (3)(m+4)(m-4)= (4)(y-3)2=
根据左边算式因式分解 (1)3x2-3x=( )( ) (2)ma+mb-m=( )( ) (3)m2-16=( )( ) (4)y2-6y+9=( )( )
最新人教版数学七年级上册 代数式(基础篇)(Word版 含解析)
![最新人教版数学七年级上册 代数式(基础篇)(Word版 含解析)](https://img.taocdn.com/s3/m/f01b45fd2e3f5727a5e962db.png)
一、初一数学代数式解答题压轴题精选(难)1.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S 石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。
【解析】【分析】(1)方案一:由图形可得S石子路=两条石子路面积-中间重合的正方形的面积;方案二:由题意可得S石子路= S长方形-S四分之一圆-S半圆;(2)把a、b的值的代入(1)中的两种方案计算即可判断求解.2.民谚有云:“不到庐山辜负目,不食螃蟹辜负腹.”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克)0~50部分(含50)50以上~150部分(含150,不含50)150以上~250部分(含250,不含150)250以上部分(不含250)价格(元)零售价的95%零售价的85%零售价的75%零售价的70%________元;(2)如果他批发x千克太湖蟹(150<x<200),则他在A家批发需要________元,在B 家批发需要________元(用含x的代数式表示);(3)现在他要批发170千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.【答案】(1)4968;4890(2)54x;45x+1200(3)解:当x=170时,54x=54×170=9180,45x+1200=45×170+1200=8850,因为9180>8850,所以他选择在B家批发更优惠【解析】【解答】解:(1)A:90×60×92%=4968(元),B:50×60×95%+40×60×85%=4890(元)。
第三章代数式+讲义+++2024—2025学年人教版数学七年级上册
![第三章代数式+讲义+++2024—2025学年人教版数学七年级上册](https://img.taocdn.com/s3/m/9d3128d7a1116c175f0e7cd184254b35effd1a14.png)
第三章代数式任务一代数式1.定义用运算符号把数或表示数的字母连接起来的式子称为代数式,例如,3a,t5,x+3y,a2,10+ba ,140 v.2.书写规范(1)在含有字母的式子中如果出现乘号,通常将数放在字母前,乘号写作“·”或省略不写.例如,100×t可以写成100·t或100t,m×n可以写成m·n或 mn.(2)当数字因数为“1”或“-1”时,常省略“1”.如1×xy写成 xy,-1×mn写成- mn.(3)带分数与字母相乘时,应把带分数化成假分数,如“12与a 的乘积”应写成“32a”.(4)字母与字母相除时,应写成分数的形式,如“m除以n”应写成‘4mn”(n ≠0).(5)式子后面有单位且式子是和或差的形式时,应把式子用括号括起来,如(2a+3b)元.[注意](1)同一问题中,相同的字母必须表示相同的量,不同的量必须要用不同的字母表示;(2)用字母表示实际问题中的某个量时,字母取值必须使式子有意义且符合实际情况.例1 填空:(1)一本字典的售价是56元,购买n本这样的字典需要元;(2)一台电视机的标价为a 元,则打八折后的售价为元;(3)温度由30℃下降t ℃后是℃.[答案](1)56n (2)0.8 a (3)(30-t)练 1.1 填空:(1)每包书有m册,13包书共有册;(2)若某地水稻每公顷的产量为n kg,则增产30%后每公顷的产量为 kg;(3)某水库的水位高度为 h m,上升2m后的水位高度为 m;(4)某班a 名学生参加植树节活动,其中男生有b名(b<a),若只由男生完成任务,则每人需植树15棵,若只由女生完成任务,则每人需植树棵.例2a 的平方的2倍减去3的差,应写成 ( )A.2a²−3B.2(a²−3)C.(2a)²−3D. a²(2-3)[答案] A练2.1下列用代数式2x表示的含义中,错误的是 ( )A.如果用x表示买一本书的价格,那么2x可以表示买2本这种书的价格B.若某公园的成人票价是儿童票价的2倍,儿童票价为x,则2x可以表示成人票价C.一辆汽车每分钟行驶x米,行驶两分钟共行驶了 2x米D.如果用x 表示正方形的边长,那么2x 可以表示正方形的面积任务二正比例和反比例1.正比例:两个相关联的量,一个量变化,另一个量也随着变化,且这两个量相对应的比值(商)一定,这两个量就叫作成正比例的量,它们之间的关系=k或y= kx来表示,其中k是一个确定的叫作正比例关系,可以用关系式yx值,且k≠0.2.反比例:两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例来表示,其中k是一个确定的值,且k≠关系,可以用关系式xy=k或y=kx0,k叫作比例系数.例3把相同体积的水倒入底面积不同的圆柱形容器中,容器的底面积与水的高度的变化情况如下表所示.(1)水的高度是怎样随着容器的底面积的大小变化而变化的?(2)相对应的容器的底面积与水的高度的乘积分别是多少?(3)用s 表示容器的底面积,h表示水的高度,用式子表示 s 与h 的关系,s与h成什么比例关系?解:(1)根据表格可以看出,相同体积的水倒入底面积不同的圆柱形容器中,水的高度是随着容器的底面积的变大而变低.(2)10×30=300,15×20=300,20×15=300,30×10=300,60×5=300,…,相对应的容器的底面积与水的高度的乘积都是300.,S与h成反比例关系.(3) sh=300或ℎ=300s练3.1下列各题中的两种量是否有比例关系? 如果有,成什么比例关系?(1)平行四边形的面积一定,它的底与高.( )(2)每公顷土地玉米的产量一定,玉米的总产量与土地公顷数.( ) (3)一根彩带的长度一定,已用的长度与未用的长度.( ) 任务三 代数式的值定义:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果,叫作代数式的值.当字母取不同的数值时,代数式的值一般也不同.例4当a=2,b=-1,c=-3时,求代数式b-4ac 的值.解:当a=2,b=-1,c=-3时,b-4ac=-1-4×2×(-3)=-1+24=23. 练4.1 当a=3,b=2时,代数式a²+2ab +b²的值是 ( )A.5B.13C.21D.25任务四 闯关演练 1.下列代数式符合书写要求的是 ( ) A.−52a B.413mC.x÷yD. ab42.“比a 的2倍大1的数”用代数式表示是( ) A.2(a+1) B.2(a-1) C.2a+1 D.2a-13.某人去年收入m 万元,今年比去年减少5%.,则今年的收入为 万元. 4.请你为代数式6x+3y 赋予一个实际意义:5.(1)如果一个三角形的面积一定,那么它的一条边长a 与这条边上的高h 成 比例关系;如果一个三角形的高一定,那么它的面积和对应的底成 比例关系.(2)200名同学参加队列操表演,如果按每排人数相等的规定排列,那么每排的人数与排数成 比例关系.6.根据下列x ,y 的值,分别求出代数式 x²− 2xy +y²的值:,y=−4.(1)x=2,y=-3; (2)x=127.已知x-2y=-3,则5(x−2y)²−3(x−2y)+40的值为 ( )A.5B.94C.45D.-48.练思维:抽象能力填空:(1)若m为整数,则2m 为数,2m—1为数(填“奇”或“偶”);(2)三个连续偶数,若中间一个数为 2n,则其余两个数为、;(3)三个连续奇数,最大的一个数为2k—1,则另两个数为、;(4)若一个两位数,其个位数字为a,十位数字为b,则这个两位数为;(5)一个三位数,其个位数字为c,十位数字为b,百位数字为a,则这个三位数为 .9.若a,b互为相反数,c,d互为倒数,m 的绝对值为2.(1)填空:a+b= ; cd= ;m= .的值.(2)求m+cd+a+bm。
人教版(2024)数学七年级上册 3.1 第1课时 代数式
![人教版(2024)数学七年级上册 3.1 第1课时 代数式](https://img.taocdn.com/s3/m/ffdd7d8827fff705cc1755270722192e44365809.png)
小组展示
越展越优秀
提疑惑:你有什么疑惑?
小组展示
用字母表示数的注意点: ①带分数与字母相乘时,把带分数化成假分数或小数;②1与 字母相乘时,1省略不写,-1与字母相乘时,留下“-”号.
知识讲解
知识点:代数式的概念及书写(重难点)
1.代数式:用运算符号把数或表示数的字母连接起来的式子叫 代数式.单独的一个数或字母也是代数式.
课堂小结
1.本节课主要学习了哪些知识?
学习了代数式的概念、书写规则,代数式的意义及实际意义 2.本节课你还有哪些疑惑?说一说.
同学们,大家体会到代数式的意义了吗?它能够 帮助我们用更加简洁的数学语言表述数量关系, 希望同学们课后好好感受.
课堂小结
2. 请同学们根据引言和例1、2的作答,试着说一说用字母表示 数时有哪些需要注意的地方.
①数与字母相乘或字母与字母相乘时,通常将乘号写作“·”或省略不写;② 数与字母相乘时,数写在前;③字母可以像数一样参与运算,相同字母相乘, 结果写成幂的形式;④如果代数式是带加、减运算且须注明单位的代数式要 加括号,后面注明单位;⑤式子中出现除法时一般按分数形式写
视频导入 同学们,你在生活中见过用字母表示的符号吗? (如:CCTV,PPT,RMB等) 它们有什么特点?(简洁明了,容易明白) 字母还可以代表什么呢?比如说,这句话你已经说过n遍了. 这句话中的字母代表什么呢?
一个不能确定的数
也就是说,我们可以用字母来表示数量。 接下来,请同学们观看一段视频:
自主探究
例3:小明每月从零花钱中捐出x元给希望工程,一年下来小明共 捐款__1_2_x___元.
变式:如图,某长方形广场的四角各铺设了四分之一圆形的草地, 若圆形的半径均为r m, 则草地的面积是____π_r2__m2, 空地的面积是__(a_b_-__π_r_2_)_m2.
3.2+第2课时+公式中的代数式求值(课件)+2024—2025学年人教版数学七年级上册
![3.2+第2课时+公式中的代数式求值(课件)+2024—2025学年人教版数学七年级上册](https://img.taocdn.com/s3/m/c9af2e92a0c7aa00b52acfc789eb172dec63997f.png)
代数的值
用字母表示数 列代数式
反比例关系 实际问题中的代数式求值
公式中的代数式求值
第三章 代数式
3.2 代数式的值
第2课时 公式中的代数式求值
人教版七年级(上)
教学目标
1. 能理解用公式描述同类事物中的某种数量关系. 2. 经历公式中的代数式求值所体现的简洁性和直观性. 3. 学会建立起数与形、数与式之间的联系. 重点:掌握各个常用公式并能在实际问题中表示. 难点:在实际问题中能够用公式熟练地表示出数量关
则梯形的面积 S =
a bh
2
,当 a = 2 cm,b = 4 cm,
h = 5 cm 时,S = 15 cm2.
1. 熟练掌握公式; 2. 根据题意列代数式并化简; 3. 将数据代入求值.
例1 如图,某学校操场最内侧的跑道由两段直道和两段
弯道组成,其中直道长为 a,半圆形弯道的直径为 b.
(1)用代数式表示这条跑道的周长.
3.(改自云南·期中)铜钱是我国的早期货币,外圆 内方的构造彰显了数学之美,记它的圆的半径为 a, 中间方孔周长为 b. (1) 请用含有 a,b 的式子表示 3 个铜钱阴影部分的总 面积;
解:由题意可得
3 个铜钱阴影部分的总面积为 3(πa2 - b2) = 3πa2 - 3b2.
(2) 当 a = 3,b = 1,则 3 个铜钱阴影部分的总面积 是多少?(π ≈ 3)
因此,这条跑道的周长
约为 300 m.
b
a
追问1 在第(2)问的基础上,若小优在此跑道上 跑步,平均速度为 v 米/分,则跑两圈用时多少分?
行程问题:路程 = 速度×时间 s = vt t s
v
解:跑道周长为 300 m,则跑两圈路程为 600 m.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学代数式解答题压轴题精选(难)1.如图,在数轴上有两点A、B,点A表示的数是8,点B在点A的左侧,且AB=14,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数:________ ;点P表示的数用含t的代数式表示为________ .(2)动点Q从点B出发沿数轴向左匀速运动,速度是点P速度的一半,动点P、Q同时出发,问点P运动多少秒后与点Q的距离为2个单位?(3)若点M为线段AP的中点,点N为线段BP的中点,在点P的运动过程中,线段MN 的长度是否会发生变化?若变化,请说明理由;若不变,求出线段MN的长.【答案】(1)解:8-14=-6;因此B点为-6;故答案为:-6;解:因为时间为t,则点P所移动距离为4t,因此点P为8-4t ;故答案为:8-4t(2)解:由题意得,Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;所以①P在Q的右侧时8-4t-(-2t-6)=2解得x=6②P在Q左侧时-2t-6-(8-4t)=2解得x=8答:动点P、Q同时出发,问点P运动6或8秒后与点Q的距离为2个单位.故答案为:6或8秒(3)解:①当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=7-2tMN=MP+NP=2t+7-2t=7②当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=2t-7MN=MP-NP=2t-(2t-7)=7因此在点P的运动过程中,线段MN的长度不变, MN=7【解析】【分析】(1)①由数轴上两点之间距离的规律易得B的值为8-14=16;②因为时间为t,则点P所移动距离为4t,因此易得P为8-4t(2)由题易得:Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;分别讨论P在Q 左侧或右侧的情况,由此列方程,易得结果为6或8秒;(3)结合(1)(2)易得当P在AB间以及P在B左边时的两种情况;当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t;当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14;利用中点性质,易得结果不变,为7.2.如图,正方形ABCD与正方形BEFG,且A,B,E在一直线上,已知AB=a,BE=b(b<a).(1)用a、b的代数式表示△ADE的面积.(2)用a、b的代数式表示△DCG的面积.(3)用a、b的代数式表示阴影部分的面积.【答案】(1)解:∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,A,B,E在一直线上,∴AB=AD=a,∠A=90°,∠EBG=∠ABC=90°,AE=AB+BE=a+b,∴S△ADE= AD·AE=(2)解:∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,∴AB=DC=BC=a,∠C=90°,BG=BE=b,∴CG=BC-BG=a-b,∴S △DCG= DC·CG=(3)解:∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,∴S正方形ABCD+S正方形BEFG= .又∵S△ADE= ,S△DCG= ,S△EFG= EF·FG= ,∴S阴影= -S△ADE-S△GEF-S△CDG== .【解析】【分析】(1)根据题意可得△ADE的两直角边AD、AE,再由三角形的面积公式求出即可;(2)先求出CG=BC-BG=a-b,再根据三角形的面积公式求出即可;(3)分别求出△ADE、△EFG、△DCG的面积和两个正方形的面积,即可得出阴影部分的面积.3.已知:a是﹣1,且a、b、c满足(c﹣6)2+|2a+b|=0,请回答问题:(1)请直接写出b、c的值:b=________,c=________(2)在数轴上,a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,①当点P在AB间运动(不包括A、B),试求出P点与A、B、C三点的距离之和.②当点P从A点出发,向右运动,请根据运动的不同情况,化简式子:|x+1|﹣|x﹣2|+2|x﹣6|(请写出化简过程)【答案】(1)2;6(2)解:①∵PA=x﹣(﹣1)=x+1,PB=2﹣x,PC=6﹣x,∴PA+PB+PC=x+1+2﹣x+6﹣x=9﹣x;|x+1|﹣|x﹣2|+2|x﹣6|②当﹣1≤x<2时,原式=x+1+x﹣2﹣2(x﹣6)=11;当2≤x<6时,原式=x+1﹣(x﹣2)﹣2(x﹣6)=﹣2x+15;当x≥6时,原式=x+1﹣(x﹣2)+2(x﹣6)=2x﹣9【解析】【解答】解:(1)∵(c﹣6)2+|2a+b|=0,∴c=6,2a+b=0,即b=﹣2a,又∵a=﹣1,∴b=2,故答案为:2,6;【分析】(1)根据非负数的性质可得;(2)①根据两点间距离公式列出算式,化简可得;②分别根据﹣1≤x<2、2≤x<6、x≥6结合绝对值性质,去绝对值符号后化简可得.4.亚萍做一道数学题,“已知两个多项式,,试求.”其中多项式的二次项系数印刷不清楚(1)乔亚萍看了答案以后知道,请你替乔亚萍求出多项式的二次项系数;(2)在(1)的基础上,乔亚萍已经将多项式正确求出,老师又给出了一个多项式,要求乔亚萍求出的结果.乔亚萍在求解时,误把“ ”看成“ ”,结果求出的答案为,请你替乔亚萍求出“ ”的正确答案.【答案】(1)解:设A的二次项系数为m,由题意可得mx2+4x+2(2x2-3x+1)=x2-2x+2mx2+4x+4x2-6x+2=x2-2x+2(m+4)x2-2x+2=x2-2x+2∴m+4=1解之:m=-3∴多项式A的二次项系数为-3.(2)解:∵A+C=x2-5x+2∴-3x2+4x+C=x2-5x+2∴C=x2-5x+2-3x2-4x=-2x2-9x+2∴A-C=-3x2+4x-(-2x2-9x+2)=-3x2+4x+2x2+9x-2=-x2+13x-2【解析】【分析】(1)设A的二次项系数为M,将其代入可得到mx2+4x+2(2x2-3x+1)=x2-2x+2,就可求出m的值.(2)根据题意可得到A+C=x2-5x+2,代入求出多项式C,然后求出A-C即可。
5.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是________.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【答案】(1)﹣(a﹣b)2(2)解:∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9;(3)解:∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,∴a﹣c=﹣2,2b﹣d=5,∴原式=﹣2+5﹣(﹣5)=8.【解析】【解答】解:(1)∵3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为:﹣(a﹣b)2;【分析】(1)利用整体思想,把(a−b)2看成一个整体,合并3(a−b)2−6(a−b)2+2(a−b)2即可得到结果;(2)原式可化为3(x2−2y)−21,把x2−2y=4整体代入即可;(3)依据a−2b=3,2b−c=−5,c−d=10,即可得到a−c=−2,2b−d=5,整体代入进行计算即可.6.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个长为,宽为的长方形内,该长方形内部未被卡片覆盖的部分用阴影表示.(1)能否用只含的式子表示出图②中两块阴影部分的周长和?________(填“能”或“不能”);(2)若能,请你用只含的式子表示出中两块阴影部分的周长和;若不能,请说明理由. 【答案】(1)能(2)解:能,理由如下:设小长方形的长为a,宽为b,上面的长方形周长为:下面的长方形周长为:两式联立,总周长为:(由图可得)阴影部分总周长为【解析】【解答】解:(1)能;故答案为能;【分析】设图①小长方形的长为a,宽为b,由图②表示出上面与下面两个长方形的周长,求出之和,根据题意得到,代入计算即可得到结果.7.如图所示,图甲由长方形①,长方形②组成,图甲通过移动长方形②得到图乙.(1)S甲=________,S乙=________(用含a、b的代数式分别表示);(2)利用(1)的结果,说明a2、b2、(a+b)(a﹣b)的等量关系;(3)现有一块如图丙尺寸的长方形纸片,请通过对它分割,再对分割的各部分移动,组成新的图形,画出图形,利用图形说明(a+b)2、(a﹣b)2、ab三者的等量关系.【答案】(1)(a+b)(a-b);a2-b2(2)由两个图形的面积相等可知,(a+b)(a-b)=a2-b2。
(3)S正方形=(a+b)2, S正方形=(a-b)2+4ab∴(a+b)2=(a-b)2+4ab【解析】【分析】(1)根据图形的面积。
列式得到答案即可;(2)根据两组图案所表示的面积相等,即可得到等量关系;(3)同理,首先根据面积列出两种方式表示的面积,得到答案即可。
8.已知多项式3x6﹣2x2﹣4的常数项为a,次数为b.(1)设a与b分别对应数轴上的点A、点B,请直接写出a=________,b=________,并在数轴上确定点A、点B的位置;(2)在(1)的条件下,点P以每秒2个单位长度的速度从点A向B运动,运动时间为t 秒:①若PA﹣PB=6,求t的值,并写出此时点P所表示的数;②若点P从点A出发,到达点B后再以相同的速度返回点A,在返回过程中,求当OP=3时,t为何值?【答案】(1)﹣4;6(2)解:①∵PA=2t,AB=6﹣(﹣4)=10,∴PB=AB﹣PA=10﹣2t.∵PA﹣PB=6,∴2t﹣(10﹣2t)=6,解得t=4,此时点P所表示的数为﹣4+2t=﹣4+2×4=4;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)如果P在原点右边,那么AB+BP=10+(6﹣3)=13,t=;(Ⅱ)如果P在原点左边,那么AB+BP=10+(6+3)=19,t=.【解析】【解答】(1)∵多项式3x6﹣2x2﹣4的常数项为a,次数为b,∴a=﹣4,b=6.如图所示:故答案为﹣4,6;【分析】(1)根据多项式的常数项与次数的定义分别求出a,b的值,然后在数轴上表示即可;(2)①根据PA﹣PB=6列出关于t的方程,解方程求出t的值,进而得到点P所表示的数;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)P在原点右边;(Ⅱ)P 在原点左边.分别求出点P运动的路程,再除以速度即可.9.若两个有理数的和等于这两个有理数的积,则称这两个有理数互为相依数例如:有理数与3,因为+3= 3.所以有理数与与3是互为相依数(1)直接判断下列两组有理数是否互为相依数,①-5与-2 ②-3与(2)若有理数与 -7 互为相依数,求m的值;(3)若有理数a与b互为相依数,b与c互为相反数,求式子的值(4)对于有理数a(a 0,1),对它进行如下操作:取a的相依数,得到;取的倒数,得到;取的相依数,得到;取的倒数,得到;….;依次按如上的操作得到一组数 , , ,…, . 若a= ,试着直接写出 , , ,…,的和.【答案】(1)解:若a与b互为相依数,则a+b=ab,①∵(-5)+(-2)=-7,(-5)×(-2)=10,∴(-5)+(-2)≠(-5)×(-2)∴-5与-2不互为相依数.②∵-3+=-,-3×=-,∴-3+=-3×,∴-3与互为相依数.(2)解:∵与-7互为相依数,依题可得:+(-7)=×(-7),解得:m=∴m的值为.(3)解:依题可得:a+b=ab,b+c=0,∴原式=5ab+7c-5a+2b-4,=5(a+b)+7c-5a+2b-4,=5a+5b+7c-5a+2b-4,=7(b+c)-4,=7×0-4,=-4.(4)解:依题可得:a+a1=a·a1,解得:a1=,∵a2为的a1倒数,∴a2=,依此类推:a3=1-a,a4=,a5=,a6=a,由此可得:这一组数的周期为6,∵a=,∴a1=5,a2=, a3=-, a4=-4,a5=, a6=,∴a1+a2+a3+a4+a5+a6=5+--4++=3,∴a1+a2+a3+a4+a5+a6+……+a2018,=336×3+a2017+a2018,=336×3+a1+a2,=336×3+5+,=1013.【解析】【分析】(1)根据题中给出两个有理数互为相依数的概念即可判断.(2)根据题中给出互为相依数的定义列出方程,解之即可.(3)根据题意得出a+b=ab,b+c=0,再将原整式化简,计算即可得出答案.(4)根据题意求得a1=,a2=,a3=1-a,a4=,a5=,a6=a,由此可得:这一组数的周期为6,将a=代入、可得:a1=5,a2=,a3=-,a4=-4,a5=,a6=,先求出a1+a2+a3+a4+a5+a6的和为3,再根据a1+a2+a3+a4+a5+a6+……+a2018=336×3+a1+a2,代入计算即可.10.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如下(注:水费按月份结算):价目表每月用水量价格不超过6立方米的部分2元/立方米超出6立方米,不超出10立方米的部分4元/立方米超出10立方米的部分8元/立方米(1)填空:若某户居民2月份用水4立方米,则应收水费________元;(2)若该户居民3月份用水a立方米(其中6<a<10),则应收水费________元;(用含a 的代数式表示,并化简)(3)若该户居民4、5两个月共用水15立方米(5月份用水量超过了4月份),设4月份用水x立方米,求该户居民4、5两个月共交水费多少元?(用含x的代数式表示,并化简)【答案】(1)8(2)4a-12(3)解:当0<x<5时,则15-x>10,应收水费为:2x+2×6+4×4+(15-x-10)×8=-6x+68(元);当5≤x<6时,则9≤15-x≤10,应收水费为:2x+2×6+(15-x-6)×4=-2x+48(元);当6≤x,则6<x<15-x<9,应收水费为:2×6+(x-6)×4+2×6+(15-x-6)×4=36(元)。